research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-bromo-5,7-dimeth­­oxy-2,3-di­hydro-1H-inden-1-one

crossmark logo

aDepartment of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, Louisiana 70125, USA, and bDepartment of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118-5698, USA
*Correspondence e-mail: jsridhar@xula.edu, donahue@tulane.edu

Edited by J. Reibenspies, Texas A & M University, USA (Received 13 June 2024; accepted 2 July 2024; online 19 July 2024)

In the title mol­ecule, C11H11BrO3, the di­hydro­indene moiety is essentially planar but with a slight twist in the saturated portion of the five-membered ring. The meth­oxy groups lie close to the above plane. In the crystal, π-stacking inter­actions between six-membered rings form stacks of mol­ecules extending along the a-axis direction, which are linked by weak C—H⋯O and C—H⋯Br hydrogen bonds. A Hirshfeld surface analysis was performed showing H⋯H, O⋯H/H⋯O and Br⋯H/H⋯Br contacts make the largest contributions to inter­molecular inter­actions in the crystal.

1. Chemical context

Aberrant expression of protein kinases is a hallmark of several cancers, and small mol­ecules targeting specific kinases are in clinical use as cancer therapeutics (Du & Lovly, 2018[Du, Z. & Lovly, C. M. (2018). Mol. Cancer, 17, 58.]; Kannaiyan & Mahadevan, 2018[Kannaiyan, R. & Mahadevan, D. (2018). Expert Rev. Anticancer Ther. 18, 1249-1270.]; Roskoski, 2023[Roskoski, R. Jr (2023). Pharmacol. Res. 187, 106552.]). Development of resistance to the kinase inhibitors is a frequent occurrence, which motivates a continuing search for new kinase inhibitors (Yang et al., 2022[Yang, Y., Li, S., Wang, Y., Zhao, Y. & Li, Q. (2022). Sig Transduct. Target. Ther. 7, 329.]). One of the key characteristics of the kinase inhibitors is the capacity to form two hydrogen bonds, one as donor and one as acceptor, with the hinge region of the kinase (Arter et al., 2022[Arter, C., Trask, L., Ward, S., Yeoh, S. & Bayliss, R. (2022). J. Biol. Chem. 298, 102247.]; Attwood et al., 2021[Attwood, M. M., Fabbro, D., Sokolov, A. V., Knapp, S. & Schiöth, H. B. (2021). Nat. Rev. Drug Discov. 20, 839-861.]). Planarity with two functional groups capable of making the two essential hydrogen bonds, along with other substit­uents to target the unique residues of the ATP binding pocket for potency and specificity, are the fundamental structural features of kinase inhibitors.

We have developed 5-hy­droxy-1,4-naphtho­quinones as HER2 and PIM1 kinase inhibitors (Schroeder et al., 2014[Schroeder, R. L., Stevens, C. L. & Sridhar, J. (2014). Molecules, 19, 15196-15212.], 2016[Schroeder, R. L., Goyal, N., Bratton, M., Townley, I., Pham, N. A., Tram, P., Stone, T., Geathers, J., Nguyen, K. & Sridhar, J. (2016). Bioorg. Med. Chem. Lett. 26, 3187-3191.]; Sridhar et al., 2014[Sridhar, J., Sfondouris, M. E., Bratton, M. R., Nguyen, T. L., Townley, I., Klein Stevens, C. L. & Jones, F. E. (2014). Bioorg. Med. Chem. Lett. 24, 126-131.]). To circumvent the issue of oxidation-reduction reactions of the quinone moiety, 5,7-dihy­droxy-2,3-di­hydro-1H-inden-1-one is currently under development as a new core structure. The new series based upon this platform is capable of making the requisite hydrogen bonds to the kinase hinge region and has potential for functionalization at the 2, 3, 4, 5 and 6 positions to enable specific and potent inhibition of the kinase of inter­est. Bromination serves as an initial step for functionalizing the core structure of 5,7-dimeth­oxy-2,3-di­hydro-1H-inden-1-one.

Bromination by free radical or electrophilic aromatic substitution mechanisms using N-bromo­succinimide (NBS) is known to introduce a bromine atom on an allylic or benzylic carbon atom or on an aromatic ring (Djerassi, 1948[Djerassi, C. (1948). Chem. Rev. 43, 271-317.]; Li et al., 2014[Li, H.-J., Wu, Y.-C., Dai, J.-H., Song, Y., Cheng, R. & Qiao, Y. (2014). Molecules 19, 3401-3416.]). When subjected to bromination with NBS in benzene in the presence of azobisisobutyro­nitrile (AIBN) for 15 h at ambient temperature, 5,7-dimeth­oxy-2,3-dihydro-1H-inden-1-one yielded a single product. From among the product outcomes depicted as 1A, 1B and 1C in Fig. 1[link], NMR spectroscopy indicated that electrophilic aromatic substitution had occurred to form a single species – either 1A or 1B. X-ray crystallography has identified the product as 1B (Fig. 2[link]), the detailed structural characterization and crystal packing arrangement of which we describe herein.

[Scheme 1]
[Figure 1]
Figure 1
Synthesis scheme for 4-bromo-5,7-dimethoxy-2,3-dihydro-1H-inden-1-one.
[Figure 2]
Figure 2
The title mol­ecule with labeling scheme and 50% probability displacement ellipsoids.

2. Structural commentary

The di­hydro­indene moiety is planar to within 0.045 (3) Å (r.m.s. deviation of the contributing atoms = 0.003 Å) with C9 that distance from one side of the mean plane and C8 0.018 (4) Å from the opposite side. This twist in the five-membered ring is towards the upper end of the range seen in related structures (see Database survey). Both meth­oxy groups are nearly coplanar with the C1–C6 ring as indicated by the C10—O1—C3—C4 and C11—O2—C5—C4 torsion angles which are, respectively, 2.7 (4) and 6.6 (5)°. All bond distances and inter­bond angles are as expected for the formulation given.

3. Supra­molecular features

In the crystal (Fig. 3[link]), the mol­ecules stack along the a-axis direction with significant π inter­actions between the C1–C6 rings [centroid–centroid distance = 3.5606 (16) Å, dihedral angle = 1.61 (13)°, slippage alternates between 0.93 and 0.96 Å]. The stacks are linked by weak C11—H11C⋯O3 and C11—H11C⋯Br1 hydrogen bonds (Table 1[link] and Figs. 4[link] and 5[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯Br1i 0.98 3.06 3.605 (4) 116
C11—H11C⋯Br1ii 0.98 2.90 3.683 (3) 137
C11—H11C⋯O3iii 0.98 2.58 3.288 (4) 129
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (iii) [-x+1, -y+1, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
A portion of one stack viewed along the c-axis direction with the π-stacking inter­actions depicted by dashed lines. Non-inter­acting hydrogen atoms are omitted for clarity.
[Figure 4]
Figure 4
Packing viewed along the c-axis direction with the C—H⋯O and C—H⋯Br hydrogen bonds depicted, respectively, by black and green dashed lines. The π-stacking inter­actions are depicted by orange dashed lines and non-inter­acting hydrogen atoms are omitted for clarity.
[Figure 5]
Figure 5
Packing viewed along the a-axis direction with the C—H⋯O and C—H⋯Br hydrogen bonds depicted, respectively, by black and green dashed lines. The π-stacking inter­actions are depicted by orange dashed lines and non-inter­acting hydrogen atoms are omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD; updated to May 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) with the search fragment shown in Fig. 6[link] returned 58 hits of which 25 are most similar to the title mol­ecule with the remainder having additional rings fused to the aromatic ring or being metal complexes. Inter­estingly, there are no examples with three substituents on the six-membered ring, but the search found 18 structures with one substituent, six with two and the unsubstituted parent mol­ecule (R = R′ = R′′ = H, QQQGMJ; Morin et al., 1974[Morin, Y., Brassy, C. & Mellier, A. (1974). J. Mol. Struct. 20, 461-469.], QQQGMJ01; Peña Ruiz et al., 2004[Peña Ruiz, T., Fernández-Gómez, M., López González, J. J., Koziol, A. E. & Granadino Roldán, J. M. (2004). J. Mol. Struct. 707, 33-46.]). There are two structures with R′′ = Br, namely AWOBOF (R = R′ = H; Aldeborgh et al., 2014[Aldeborgh, H., George, K., Howe, M., Lowman, H., Moustakas, H., Strunsky, N. & Tanski, J. M. (2014). J. Chem. Crystallogr. 44, 70-81.]) and LAQCAJ (R = H, R′ = NH2; Çelik et al., 2012[Çelik, Í., Akkurt, M., Yılmaz, M., Tutar, A., Erenler, R. & García-Granda, S. (2012). Acta Cryst. E68, o833.]), and one with R = R′ = OMe, R" = H (MXINDO10; Gupta et al., 1984[Gupta, M. P., Lenstra, A. T. H. & Geise, H. J. (1984). Acta Cryst. C40, 1846-1848.]). The other structures with two substituents have R = OMe, R′ = H, R′′ = 4-fluoro­benzoyl (CAPHEJ; Chang & Lee, 2011[Chang, M.-Y. & Lee, N.-C. (2011). J. Chin. Chem. Soc. 58, 306-308.]), R = OH, R′ = H, R′′ = 4-meth­oxy­benzoyl (CAPHIN; Chang & Lee, 2011[Chang, M.-Y. & Lee, N.-C. (2011). J. Chin. Chem. Soc. 58, 306-308.]), R = H, R′ = H, R′′ = OPri (CETCAG; Coyanis et al., 2006[Coyanis, E. M., Panayides, J.-L., Fernandes, M. A., de Koning, C. B. & van Otterlo, W. A. L. (2006). J. Organomet. Chem. 691, 5222-5239.]) and R′ = H, R = R′′ = Me (MUQCEG; Johnson et al., 2002[Johnson, B. A., Kleinman, M. H., Turro, N. J. & Garcia-Garibay, M. A. (2002). J. Org. Chem. 67, 6944-6953.]). In AWOBOF and LAQCAJ, the C—Br distances are virtually the same as in the title mol­ecule [1.892 (3) Å] and the twist in the five-membered ring is slightly less. Among the other disubstituted mol­ecules, the greatest deviation of the saturated carbon atoms of the five-membered ring from the mean plane of the bicyclic moiety is in CAPHIN [0.091 (2) and −0.122 (2) Å] while the least is in MUQCEG [0.016 (3) and −0.012 (3) Å]. As in the title mol­ecule, the methyl carbon atoms of the meth­oxy groups in CAPHEJ, CETCAG and MXINDO10 lie in or very close to the mean plane of the nine-membered ring system. Where π-stacking of the six-membered aromatic rings occurs in the disubstituted examples, this involves only pairs of mol­ecules (LAQCAJ and MXINDO10) rather than extended stacks.

[Figure 6]
Figure 6
The fragment used in the database survey.

5. Hirshfeld surface analysis

The Hirshfeld surface was constructed with CrystalExplorer 21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) with descriptions of the several plots obtained and their inter­pretations described elsewhere (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). Fig. 7[link]a shows the surface plotted over dnorm in the range −0.1265 to 1.2968 in arbitrary units with four neighboring mol­ecules. The two above and below the surface constitute part of the column formed by the π-stacking inter­actions, while the two at the right are part of an adjacent column showing the C—H⋯O and C—H⋯Br hydrogen bonds that link columns. Fig. 7[link]b shows the surface plotted over the shape function and the flat area in the center containing red and blue triangles clearly shows the π-stacking inter­actions. The 2-D fingerprint plots are shown in Fig. 8[link], from which it was determined that H⋯H contacts contribute 37.1% of the total (Fig. 8[link]b) while O⋯H/H⋯O (Fig. 8[link]c) and Br⋯H/H⋯Br (Fig. 8[link]d) contacts contribute, respectively, 26.3% and 16.8%. The C⋯C contacts, which are primarily the π-stacking inter­actions, contribute 9.8%. Other contacts make minimal contributions.

[Figure 7]
Figure 7
The Hirshfeld surface plotted over (a) dnorm and (b) over the shape index including two additional mol­ecules in the stack plus two more in an adjacent stack with the C—H⋯O and C—H⋯Br hydrogen bonds shown by green dashed lines.
[Figure 8]
Figure 8
Fingerprint plots showing (a) all contacts, (b) H⋯H contacts, (c) O⋯H/H⋯O contacts, (d) Br⋯H/H⋯Br contacts, and (e) C⋯C contacts.

6. Synthesis and crystallization

To a solution of 5,7-dimethoxy-2,3-dihydro-1H-inden-1-one (1.0 g, 5.2 mmol) in benzene (15 mL) were added N-bromo­succinimide (0.93 g, 5.2 mmol) and a catalytic amount of azobisisobutyro­nitrile at room temperature. This reaction mixture was stirred for 15 h, with progress being monitored by TLC. Upon completion of the reaction, the benzene was removed by distillation, and water was added. The resulting slurry was stirred for 30 min, and the crude 4-bromo-5,7-dimethoxy-2,3-dihydro-1H-inden-1-one was then collected by vacuum filtration and dried on the filter by continued application of the vacuum for an additional 30 min. Yield: 1.27 g of off-white solid, 4.7 mmol, 90%, m.p. 498–500 K. Rf: 0.4 (1:1 ethyl acetate:hexa­ne). 1H NMR (δ, ppm in DMSO-d6): 6.64 (s, 1 H), 3.97 (s, 3 H), 3.88 (s, 3 H), 2.87–2.84 (m, 2 H), 2.55–2.52 (m, 2 H). 13C NMR (δ, ppm in DMSO-d6): 201.62, 162.29, 158.85, 157.96, 120.11, 99.75, 96.44, 57.66, 56.55, 37.01, 27.31. HRMS [M + H]+: 79Br calculated, 270.9970; found, 270.9974; 81Br calculated, 272.9949; found, 272.9946. The NMR spectra (see supporting information) were acquired using a Bruker 400 MHz spectrometer, while the mass spectrum was obtained using a Thermo LTQ-Orbitrap LC/MS/MS System/UltiMate 3000 HPLC. The compound was crystallized from 15% ethyl acetate in hexane.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were included as riding contributions in idealized positions with isotropic displacement parameters tied to those of the attached atoms. One reflection affected by the beamstop was omitted from the final refinement.

Table 2
Experimental details

Crystal data
Chemical formula C11H11BrO3
Mr 271.11
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 150
a, b, c (Å) 7.0928 (5), 14.3933 (10), 10.0419 (7)
V3) 1025.17 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.99
Crystal size (mm) 0.22 × 0.06 × 0.03
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON 3 diffractometer
Absorption correction Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.70, 0.89
No. of measured, independent and observed [I > 2σ(I)] reflections 13923, 2534, 2366
Rint 0.030
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.056, 1.08
No. of reflections 2534
No. of parameters 139
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.41, −0.39
Absolute structure Flack x determined using 1025 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]). Refined as an inversion twin
Absolute structure parameter 0.039 (12)
Computer programs: APEX4 and SAINT (Bruker, 2021[Bruker (2021). APEX4 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.]), SHELXT/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/1 (Lübben et al., 2019[Lübben, J., Wandtke, C. M., Hübschle, C. B., Ruf, M., Sheldrick, G. M. & Dittrich, B. (2019). Acta Cryst. A75, 50-62.]; Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

4-Bromo-5,7-dimethoxy-2,3-dihydro-1H-inden-1-one top
Crystal data top
C11H11BrO3Dx = 1.757 Mg m3
Mr = 271.11Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 9927 reflections
a = 7.0928 (5) Åθ = 2.8–28.2°
b = 14.3933 (10) ŵ = 3.99 mm1
c = 10.0419 (7) ÅT = 150 K
V = 1025.17 (12) Å3Block, colourless
Z = 40.22 × 0.06 × 0.03 mm
F(000) = 544
Data collection top
Bruker D8 QUEST PHOTON 3
diffractometer
2534 independent reflections
Radiation source: fine-focus sealed tube2366 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 7.3910 pixels mm-1θmax = 28.3°, θmin = 2.8°
φ and ω scansh = 98
Absorption correction: numerical
(SADABS; Krause et al., 2015)
k = 1919
Tmin = 0.70, Tmax = 0.89l = 1313
13923 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0247P)2 + 0.097P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2534 reflectionsΔρmax = 0.41 e Å3
139 parametersΔρmin = 0.39 e Å3
1 restraintAbsolute structure: Flack x determined using 1025 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013). Refined as an inversion twin
Primary atom site location: dualAbsolute structure parameter: 0.039 (12)
Special details top

Experimental. The diffraction data were obtained from 3 sets of frames, each of width 0.50 ° in ω or φ, collected with scan parameters determined by the "strategy" routine in APEX4. The scan time was 10.00 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. One reflection affected by the beamstop was omitted from the final refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.26616 (4)0.95085 (2)0.61925 (8)0.02538 (11)
O10.2173 (3)0.77072 (17)0.7610 (2)0.0259 (5)
O20.3585 (3)0.56410 (13)0.3929 (2)0.0217 (5)
O30.4552 (3)0.66801 (14)0.1506 (2)0.0265 (6)
C10.3410 (4)0.81569 (19)0.4184 (3)0.0153 (6)
C20.2942 (4)0.8293 (2)0.5505 (3)0.0171 (6)
C30.2657 (3)0.7523 (2)0.6327 (5)0.0184 (7)
C40.2862 (4)0.6621 (2)0.5822 (3)0.0191 (7)
H40.2661760.6101590.6387820.023*
C50.3355 (4)0.6484 (2)0.4500 (3)0.0173 (6)
C60.3652 (4)0.7259 (2)0.3673 (3)0.0155 (6)
C70.4207 (4)0.73116 (19)0.2271 (3)0.0172 (6)
C80.4287 (5)0.8336 (2)0.1892 (3)0.0214 (7)
H8A0.3416660.8464780.1143950.026*
H8B0.5580280.8508840.1616450.026*
C90.3700 (4)0.8891 (2)0.3127 (3)0.0201 (7)
H9A0.4701120.9332910.3391590.024*
H9B0.2520570.9239610.2960520.024*
C100.1933 (6)0.6945 (3)0.8509 (4)0.0339 (9)
H10A0.1537650.7179360.9381440.051*
H10B0.3129960.6610200.8600850.051*
H10C0.0968950.6522140.8160370.051*
C110.3100 (5)0.4840 (2)0.4710 (4)0.0248 (7)
H11A0.3206970.4280120.4159540.037*
H11B0.1802670.4901300.5033130.037*
H11C0.3960910.4791710.5470440.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03113 (18)0.02045 (15)0.02457 (17)0.00137 (11)0.0002 (2)0.00798 (19)
O10.0341 (14)0.0296 (14)0.0140 (12)0.0017 (10)0.0020 (10)0.0017 (10)
O20.0326 (13)0.0131 (10)0.0193 (11)0.0007 (9)0.0028 (10)0.0019 (9)
O30.0366 (13)0.0231 (11)0.0200 (14)0.0059 (9)0.0048 (9)0.0025 (9)
C10.0122 (14)0.0157 (13)0.0182 (15)0.0012 (12)0.0021 (11)0.0019 (11)
C20.0160 (15)0.0153 (14)0.0201 (16)0.0006 (12)0.0021 (12)0.0023 (12)
C30.0131 (12)0.0277 (14)0.014 (2)0.0014 (10)0.0025 (13)0.0032 (17)
C40.0184 (15)0.0200 (15)0.0188 (17)0.0014 (12)0.0007 (11)0.0039 (11)
C50.0145 (15)0.0163 (14)0.0212 (15)0.0008 (12)0.0018 (12)0.0017 (12)
C60.0128 (14)0.0173 (14)0.0163 (15)0.0007 (11)0.0003 (11)0.0010 (12)
C70.0160 (15)0.0171 (14)0.0186 (15)0.0021 (11)0.0013 (12)0.0024 (12)
C80.0281 (18)0.0188 (15)0.0174 (16)0.0020 (13)0.0053 (13)0.0046 (12)
C90.0239 (17)0.0156 (15)0.0210 (15)0.0010 (12)0.0022 (13)0.0001 (12)
C100.045 (2)0.039 (2)0.0182 (19)0.0062 (17)0.0017 (15)0.0042 (16)
C110.0346 (19)0.0144 (14)0.0254 (18)0.0033 (14)0.0029 (15)0.0046 (14)
Geometric parameters (Å, º) top
Br1—C21.892 (3)C6—C71.465 (4)
O1—C31.359 (6)C7—C81.524 (4)
O1—C101.431 (4)C8—C91.532 (4)
O2—C51.352 (3)C8—H8A0.9900
O2—C111.437 (4)C8—H8B0.9900
O3—C71.215 (3)C9—H9A0.9900
C1—C21.381 (4)C9—H9B0.9900
C1—C61.401 (4)C10—H10A0.9800
C1—C91.512 (4)C10—H10B0.9800
C2—C31.396 (5)C10—H10C0.9800
C3—C41.401 (5)C11—H11A0.9800
C4—C51.387 (4)C11—H11B0.9800
C4—H40.9500C11—H11C0.9800
C5—C61.406 (4)
C3—O1—C10118.6 (3)C7—C8—H8A110.3
C5—O2—C11117.4 (3)C9—C8—H8A110.3
C2—C1—C6120.8 (3)C7—C8—H8B110.3
C2—C1—C9127.5 (3)C9—C8—H8B110.3
C6—C1—C9111.8 (3)H8A—C8—H8B108.6
C1—C2—C3119.4 (3)C1—C9—C8104.0 (2)
C1—C2—Br1120.4 (2)C1—C9—H9A111.0
C3—C2—Br1120.2 (3)C8—C9—H9A111.0
O1—C3—C2116.2 (3)C1—C9—H9B111.0
O1—C3—C4123.4 (3)C8—C9—H9B111.0
C2—C3—C4120.4 (4)H9A—C9—H9B109.0
C5—C4—C3120.3 (3)O1—C10—H10A109.5
C5—C4—H4119.8O1—C10—H10B109.5
C3—C4—H4119.8H10A—C10—H10B109.5
O2—C5—C4124.4 (3)O1—C10—H10C109.5
O2—C5—C6116.3 (3)H10A—C10—H10C109.5
C4—C5—C6119.3 (3)H10B—C10—H10C109.5
C1—C6—C5119.8 (3)O2—C11—H11A109.5
C1—C6—C7109.7 (2)O2—C11—H11B109.5
C5—C6—C7130.5 (3)H11A—C11—H11B109.5
O3—C7—C6128.6 (3)O2—C11—H11C109.5
O3—C7—C8124.0 (3)H11A—C11—H11C109.5
C6—C7—C8107.5 (2)H11B—C11—H11C109.5
C7—C8—C9107.0 (2)
C6—C1—C2—C31.8 (4)C9—C1—C6—C5177.2 (3)
C9—C1—C2—C3177.4 (3)C2—C1—C6—C7177.9 (3)
C6—C1—C2—Br1178.9 (2)C9—C1—C6—C72.8 (3)
C9—C1—C2—Br11.9 (4)O2—C5—C6—C1178.9 (3)
C10—O1—C3—C2177.7 (3)C4—C5—C6—C11.3 (4)
C10—O1—C3—C42.7 (4)O2—C5—C6—C71.0 (5)
C1—C2—C3—O1179.1 (3)C4—C5—C6—C7178.8 (3)
Br1—C2—C3—O10.3 (3)C1—C6—C7—O3179.4 (3)
C1—C2—C3—C40.6 (4)C5—C6—C7—O30.7 (5)
Br1—C2—C3—C4179.9 (2)C1—C6—C7—C80.7 (3)
O1—C3—C4—C5179.8 (3)C5—C6—C7—C8179.2 (3)
C2—C3—C4—C50.2 (4)O3—C7—C8—C9178.4 (3)
C11—O2—C5—C46.6 (5)C6—C7—C8—C91.5 (3)
C11—O2—C5—C6173.7 (3)C2—C1—C9—C8177.2 (3)
C3—C4—C5—O2179.9 (3)C6—C1—C9—C83.6 (3)
C3—C4—C5—C60.2 (4)C7—C8—C9—C13.0 (3)
C2—C1—C6—C52.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···Br1i0.983.063.605 (4)116
C11—H11C···Br1ii0.982.903.683 (3)137
C11—H11C···O3iii0.982.583.288 (4)129
Symmetry codes: (i) x+1/2, y1/2, z1/2; (ii) x+1/2, y+3/2, z; (iii) x+1, y+1, z+1/2.
 

Acknowledgements

Tulane University is acknowledged for its ongoing support with operational costs for the diffraction facility.

Funding information

Funding for this research was provided by: National Institutes of Health (grant No. 8G12MD007595-04; grant No. 3U54MD007595-15S1); National Science Foundation (grant No. 2300447); Louisiana Board of Regents (grant No. LEQSF-(2002-03)-ENH-TR-67). The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding institutions.

References

First citationAldeborgh, H., George, K., Howe, M., Lowman, H., Moustakas, H., Strunsky, N. & Tanski, J. M. (2014). J. Chem. Crystallogr. 44, 70–81.  Web of Science CSD CrossRef CAS Google Scholar
First citationArter, C., Trask, L., Ward, S., Yeoh, S. & Bayliss, R. (2022). J. Biol. Chem. 298, 102247.  CrossRef PubMed Google Scholar
First citationAttwood, M. M., Fabbro, D., Sokolov, A. V., Knapp, S. & Schiöth, H. B. (2021). Nat. Rev. Drug Discov. 20, 839–861.  CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2021). APEX4 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.  Google Scholar
First citationÇelik, Í., Akkurt, M., Yılmaz, M., Tutar, A., Erenler, R. & García-Granda, S. (2012). Acta Cryst. E68, o833.  CSD CrossRef IUCr Journals Google Scholar
First citationChang, M.-Y. & Lee, N.-C. (2011). J. Chin. Chem. Soc. 58, 306–308.  CSD CrossRef CAS Google Scholar
First citationCoyanis, E. M., Panayides, J.-L., Fernandes, M. A., de Koning, C. B. & van Otterlo, W. A. L. (2006). J. Organomet. Chem. 691, 5222–5239.  CSD CrossRef CAS Google Scholar
First citationDjerassi, C. (1948). Chem. Rev. 43, 271–317.  CrossRef PubMed CAS Web of Science Google Scholar
First citationDu, Z. & Lovly, C. M. (2018). Mol. Cancer, 17, 58.  CrossRef PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGupta, M. P., Lenstra, A. T. H. & Geise, H. J. (1984). Acta Cryst. C40, 1846–1848.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationJohnson, B. A., Kleinman, M. H., Turro, N. J. & Garcia-Garibay, M. A. (2002). J. Org. Chem. 67, 6944–6953.  CSD CrossRef PubMed CAS Google Scholar
First citationKannaiyan, R. & Mahadevan, D. (2018). Expert Rev. Anticancer Ther. 18, 1249–1270.  CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLi, H.-J., Wu, Y.-C., Dai, J.-H., Song, Y., Cheng, R. & Qiao, Y. (2014). Molecules 19, 3401–3416.  CrossRef PubMed Google Scholar
First citationLübben, J., Wandtke, C. M., Hübschle, C. B., Ruf, M., Sheldrick, G. M. & Dittrich, B. (2019). Acta Cryst. A75, 50–62.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMorin, Y., Brassy, C. & Mellier, A. (1974). J. Mol. Struct. 20, 461–469.  CSD CrossRef CAS Web of Science Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPeña Ruiz, T., Fernández-Gómez, M., López González, J. J., Koziol, A. E. & Granadino Roldán, J. M. (2004). J. Mol. Struct. 707, 33–46.  Google Scholar
First citationRoskoski, R. Jr (2023). Pharmacol. Res. 187, 106552.  CrossRef PubMed Google Scholar
First citationSchroeder, R. L., Goyal, N., Bratton, M., Townley, I., Pham, N. A., Tram, P., Stone, T., Geathers, J., Nguyen, K. & Sridhar, J. (2016). Bioorg. Med. Chem. Lett. 26, 3187–3191.  CrossRef CAS PubMed Google Scholar
First citationSchroeder, R. L., Stevens, C. L. & Sridhar, J. (2014). Molecules, 19, 15196–15212.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridhar, J., Sfondouris, M. E., Bratton, M. R., Nguyen, T. L., Townley, I., Klein Stevens, C. L. & Jones, F. E. (2014). Bioorg. Med. Chem. Lett. 24, 126–131.  CrossRef CAS PubMed Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYang, Y., Li, S., Wang, Y., Zhao, Y. & Li, Q. (2022). Sig Transduct. Target. Ther. 7, 329.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds