research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure determination and Hirshfeld surface analysis of N-acetyl-N-3-meth­­oxy­phenyl and N-(2,5-di­meth­­oxy­phen­yl)-N-phenyl­sulfonyl derivatives of N-[1-(phenyl­sulfon­yl)-1H-indol-2-yl]methanamine

crossmark logo

aDepartment of Physics, The New College, Chennai 600 014, University of Madras, Tamil Nadu, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai-600 025, Tamilnadu, India
*Correspondence e-mail: mnizam.new@gmail.com

Edited by K. V. Domasevitch, National Taras Shevchenko University of Kyiv, Ukraine (Received 14 June 2024; accepted 5 July 2024; online 9 July 2024)

Two new [1-(phenyl­sulfon­yl)-1H-indol-2-yl]methanamine derivatives, namely, N-(3-meth­oxy­phen­yl)-N-{[1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}acetamide, C24H22N2O4S, (I), and N-(2,5-di­meth­oxy­phen­yl)-N-{[1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}benzene­sulfonamide, C29H26N2O6S2, (II), reveal a nearly orthogonal orientation of their indole ring systems and sulfonyl-bound phenyl rings. The sulfonyl moieties adopt the anti-periplanar conformation. For both compounds, the crystal packing is dominated by C—H⋯O bonding [C⋯O = 3.312 (4)–3.788 (8) Å], with the structure of II exhibiting a larger number, but weaker bonds of this type. Slipped ππ inter­actions of anti­parallel indole systems are specific for I, whereas the structure of II delivers two kinds of C—H⋯π inter­actions at both axial sides of the indole moiety. These findings agree with the results of Hirshfeld surface analysis. The primary contributions to the surface areas are associated with the contacts involving H atoms. Although II manifests a larger fraction of the O⋯H/H⋯O contacts (25.8 versus 22.4%), most of them are relatively distal and agree with the corresponding van der Waals separations.

1. Chemical context

Derivatives of indole exhibit anti­bacterial (Okabe & Adachi, 1998[Okabe, N. & Adachi, Y. (1998). Acta Cryst. C54, 386-387.]) and anti­tumour (Schollmeyer et al., 1995[Schollmeyer, D., Fischer, G. & Pindur, U. (1995). Acta Cryst. C51, 2572-2575.]) activities. In particular, 1-(phenyl­sulfon­yl)indoles are applicable to the synthesis of biologically active alkaloids, such as the anti­cancer alkaloid ellipticine, carbazoles, furo­indoles, pyrrolo­indoles, indolocarbazoles and their analogues, including pyridocarbazoles. Some of the phenyl­sulfonyl indole compounds have been shown to inhibit the HIV-1 RT enzyme in vitro and HTLVIIIb viral spread in MT-4 human T-lymphoid cells (Williams et al., 1993[Williams, T. M., Ciccarone, T. M., MacTough, S. C., Rooney, C. S., Balani, S. K., Condra, J. H., Emini, E. A., Goldman, M. E., Greenlee, W. J., Kauffman, L. R., O'Brien, J. A., Sardana, V. V., Schleif, W. A., Theoharides, A. D. & Anderson, P. S. (1993). J. Med. Chem. 36, 1291-1294.]). In such systems, the phenyl­sulfonyl moiety can act either as a protecting or an activating group (Jasinski et al., 2010[Jasinski, J. P., Rinderspacher, A. & Gribble, G. W. (2010). J. Chem. Crystallogr. 40, 40-47.]). Ring-substituted acetanilides are valuable synthetic inter­mediates (Gowda et al., 2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o3364.]) that are used as precursors for the preparation of many heterocyclic compounds (Wen et al., 2006[Wen, Y.-H., Li, X.-M., Xu, L.-L., Tang, X.-F. & Zhang, S.-S. (2006). Acta Cryst. E62, o4427-o4428.]). The amide linkage [–NHC(O)–] is known for its importance in maintaining protein architectures and it has been utilized in the development of mol­ecular devices for a spectrum of purposes in organic chemistry (NizamMohideen, SubbiahPandi et al., 2009[NizamMohideen, M., SubbiahPandi, A., Panneer Selvam, N. & Perumal, P. T. (2009). Acta Cryst. E65, o714-o715.]; NizamMohideen et al., 2009a[NizamMohideen, M., Thenmozhi, S., SubbiahPandi, A., Selvam, N. P. & Perumal, P. T. (2009a). Acta Cryst. E65, o740.],b[NizamMohideen, M., Thenmozhi, S., SubbiahPandi, A., Selvam, N. P. & Perumal, P. T. (2009b). Acta Cryst. E65, o829.]). Benzene­sulfonamide derivatives exhibit anti­tumor (Yang et al., 2002[Yang, L. M., Lin, S. J., Hsu, F. L. & Yang, T. H. (2002). Bioorg. Med. Chem. Lett. 12, 1013-1015.]), anti-bacterial (Badr, 2008[Badr, E. E. (2008). J. Dispersion Sci. Technol. 29, 1143-1149.]) and anti-fungal (Hanafy et al., 2007[Hanafy, A., Uno, J., Mitani, H., Kang, Y. & Mikami, Y. (2007). Nippon Ishinkin Gakkai Zasshi, 48, 47-50.]) activities. Recognizing the importance of such compounds for biochemical applications and drug discovery and our ongoing research into the construction of indole derivatives have prompted us to investigate a series of corresponding meth­oxy­phenyl-substituted species. We report herein the crystal structure determination and Hirshfeld surface analysis of two new (1-(phenyl­sulfon­yl)-1H-indol-2-yl)methanamine derivatives: N-(3-meth­oxy­phen­yl)-N-{[1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}acetamide (I) and N-(2,5-di­meth­oxy­phen­yl)-N-{[1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}benzene­sulfonamide (II).

[Scheme 1]

2. Structural commentary

The mol­ecular structures of the title compounds, which differ in the substituents at the exocyclic nitro­gen atoms N2 [N-acetyl-N-3-meth­oxy­phenyl (I) and N-phenyl­sulfonyl-N-(2,5-di­meth­oxy­phen­yl) (II)], are illustrated in Figs. 1[link] and 2[link], respectively. In both compounds, the indole ring system (N1/C1–C8) is essentially planar, with maximum deviations from the corresponding mean planes of 0.027 (3) and 0.017 (5) Å observed for atoms C8 in I and C1 in II. The sulfonyl-bound phenyl rings (C9–C14) are almost orthogonal to the carrier indole ring systems (N1/C1–C8), with respective inter­planar angles of 83.9 (2)° for I and 83.5 (7)° for II. The meth­oxy-bound phenyl rings (C16–C21) in I and II are inclined to the indole frameworks, subtending dihedral angles of 66.31 (15) and 77.70 (9)°, respectively. In I, the planes of these outer phenyl rings (C9–C14 and C16–C21) subtend an angle of 59.8 (2)°, while in II they are nearly orthogonal [86.9 (9)°]. In the latter case, the dihedral angle between two sulfonyl-bound phenyl rings (C9–C14 and C24–C29) is 54.4 (2)°. The torsion angles O2—S1—N1—C1 and O1—S1—N1—C8 [177.3 (3) and −159.7 (3)° for I and −160.5 (5) and 164.0 (5)° for II, respectively] indicate the anti-periplanar conformation of the sulfonyl moiety. The geometric parameters of compounds I and II agree well with those reported for related structures [Madhan et al., 2022[Madhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2022). Acta Cryst. E78, 1198-1203.], 2023a[Madhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2023a). Acta Cryst. E79, 521-525.],b[Madhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2023b). Acta Cryst. E79, 741-746.], 2024[Madhan, S., NizamMohideen, M., Harikrishnan, K. & MohanaKrishnan, A. K. (2024). Acta Cryst. E80, 682-690.]]. In both compounds, the tetra­hedral configuration around atom S1 is slightly distorted. The increase in the O2—S1—O1 angle [119.83 (17)° in I and 120.1 (3)° in II], with a simultaneous decrease in the N1—S1—C9 angle [104.54 (15)° in I and 105.9 (3)° in II] from the ideal tetra­hedral value (109.5°) are attributed to the Thorpe–Ingold effect (Bassindale, 1984[Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.]). The widening of the angles may be due to the repulsive inter­action between the two short S=O bonds. In both compounds, as a result of the electron-withdrawing character of the phenyl­sulfonyl group, the N—Csp2 bond lengths [N1—C1 = 1.420 (4) in I and 1.429 (8) Å in II and N1—C8 = 1.427 (4) in I and 1.421 (7) Å in II] are longer than the mean value of 1.355 (14) Å for this bond (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]; Cambridge Structural Database (CSD), Version 5.37; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). In both compounds, the sum of the bond angles around N1 [352.2 (2)° in I and 355.8 (2)° in II] indicate the sp2 hybridization (Beddoes et al., 1986[Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.]). In both compounds, the expansion of the ipso angles at atoms C1, C3 and C4, and the contraction of the apical angles at atoms C2, C5 and C6 is caused by fusion of the smaller pyrrole ring with the six-membered benzene ring and the strain is taken up by angular distortion rather than by bond-length distortion (Allen, 1981[Allen, F. H. (1981). Acta Cryst. B37, 900-906.]).

[Figure 1]
Figure 1
The mol­ecular structure of compound I, with atom labelling and displacement ellipsoids drawn at the 30% probability level. The dashed line indicates the intra­molecular hydrogen bond.
[Figure 2]
Figure 2
The mol­ecular structure of compound II, with atom labelling and displacement ellipsoids drawn at the 30% probability level. The dashed lines indicate the intra­molecular hydrogen bonds.

The mol­ecular conformation of compound I is stabilized by the weak intra­molecular hydrogen bond C2—H2⋯O1 [C2⋯O1 = 2.993 (5) Å] formed by the sulfone O atom, which generates an S(6) (N1/S1/O1/C1/C2/H2) ring motif (Fig. 1[link]). A similar inter­action in compound II [C2⋯O1 = 2.886 (9) Å] is accompanied by two additional intra­molecular bonds involving methyl­ene donors and sulfone [C15⋯O2 = 2.948 (8) Å] and meth­oxy­phenyl [C15⋯O4 = 2.862 (8) Å] O atoms, which in total generate three S(6) ring motifs (N1/S1/O1/C1/C2/H2, N1/S1/O2/C8/C15/H15B) and N2/C16/C21/O4/C15/H15A), respectively (Fig. 2[link]).

3. Supra­molecular features

With a lack of conventional hydrogen-bond donor functionality, the supra­molecular structures of both compounds are dominated by C—H⋯O bonding (Tables 1[link] and 2[link]), whereas ππ inter­actions are specific for I and weaker C—H⋯π bonds are relevant for II only. In the crystal of I, the shortest hydrogen-bond contacts are observed for acetyl O-atom acceptors [C17⋯O4iii = 3.312 (4) Å, symmetry code: (iii) −x + 2, −y + 1, −z + 1]. Such bonds assemble pairs of the mol­ecules into centrosymmetric dimers (Fig. 3[link]) with a cyclic R22(12) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) ring motif. The dimers are further inter­connected into chains propagating along the a-direction through double ππ inter­actions of the indole ring systems (Fig. 3[link]). The components of such stacks are related by inversion and therefore two indole systems are parallel, with inter­planar separation of 3.517 (4) Å. However, the overlap is only partial, as it is indicated by relatively large inter­centroid distances [Cg1⋯Cg2iv = 3.801 (5) Å; Cg1 and Cg2 are the centroids of the N1/C1/C6–C8 and C1–C6 rings, respectively; symmetry code: (iv) −x + 1, −y + 1, −z + 1] and slippage angle of 22.3 (3)°. These parameters agree well with those for ππ inter­actions seen in the crystal structures of comparable 1-(phenyl­sulfon­yl)-1H-indole derivatives (Madhan et al., 2024[Madhan, S., NizamMohideen, M., Harikrishnan, K. & MohanaKrishnan, A. K. (2024). Acta Cryst. E80, 682-690.]). Three C—H⋯O bonds with sulfone O-atom acceptors [C⋯O = 3.410 (5)–3.537 (4) Å; Table 1[link]] are important for connection of the above chains into layers parallel to the ac plane (Fig. 4[link]) and separated by 9.890 Å, which is half of the b-axis parameter of the unit cell. Only one C—H⋯O bond occurs between the layers, involving the sterically most accessible acetyl O-atom acceptor [C12⋯O4ii = 3.527 (6) Å; symmetry code: (ii) x, −y + [{3\over 2}], z + [{1\over 2}]]. No significant C—H⋯π inter­actions with C⋯centroid distances below 4 Å are observed in the structure.

Table 1
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1 0.93 2.41 2.993 (5) 120
C5—H5⋯O1i 0.93 2.75 3.530 (5) 143
C7—H7⋯O1i 0.93 2.81 3.537 (4) 135
C12—H12⋯O4ii 0.93 2.62 3.527 (6) 164
C13—H13⋯O3iii 0.93 2.69 3.591 (7) 164
C17—H17⋯O4iii 0.93 2.42 3.312 (4) 161
C24—H24B⋯O2i 0.96 2.49 3.410 (5) 160
Symmetry codes: (i) [x, y, z-1]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+2, -y+1, -z+1].

Table 2
Hydrogen-bond geometry (Å, °) for II[link]

Cg1 and Cg2 are the centroids of the N1/C1/C6–C8 and C1–C6 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1 0.93 2.30 2.886 (9) 121
C15—H15A⋯O4 0.97 2.23 2.862 (8) 122
C15—H15B⋯O2 0.97 2.34 2.948 (8) 120
C10—H10⋯O5i 0.93 2.93 3.719 (9) 144
C11—H11⋯O6i 0.93 2.85 3.723 (11) 156
C15—H15A⋯O1ii 0.97 2.68 3.333 (8) 125
C19—H19⋯O2iii 0.93 2.96 3.647 (9) 132
C20—H20⋯O5iii 0.93 2.88 3.788 (8) 165
C28—H28⋯O6ii 0.93 2.79 3.716 (9) 171
C23—H23CCg1ii 0.96 2.96 3.701 (3) 135
C25—H25⋯Cg2iv 0.93 2.67 3.483 (5) 147
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+2, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Fragment of non-covalent chain propagating along the a-axis direction in the structure of I, with the pairs of the inversion-related adjacent mol­ecules linked by double C—H⋯O bonds (dotted blue lines) and double ππ inter­actions (solid blue lines). [Symmetry codes: (iii) −x + 2, −y + 1, −z + 1; (iv) x + 1, −y + 1, −z + 1.]
[Figure 4]
Figure 4
Projection of the structure of I on the ac plane, showing the layer assembled with C—H⋯O and ππ bonds. [Symmetry codes: (i) x, y, z − 1; (v) x, y, z + 1.]

Similar non-covalent layers parallel to the ac plane are also seen in compound II (Fig. 5[link]). However, the bonding pattern differs as ππ inter­actions are replaced by C—H⋯π inter­actions (on both axial sides of the indole system) and more extensive C—H⋯O bonding (Table 2[link]). This is in line with increased number of hydrogen-bond donors and acceptors due to the incorporation of the additional phenyl­sulfonyl groups. The layers are sustained by a number of C—H⋯O inter­actions, which are relatively weak and distal [C⋯O = 3.503 (9)–3.788 (8)Å]. Significantly shorter contacts adopted by methyl groups are also present: C23⋯O1v = 3.199 (7) Å; symmetry code: (v) x, y, z + 1. As a result of inappropriate angles at the H atoms, these contacts are not regarded as hydrogen bonds, rather representing a kind of tetrel inter­action CH3⋯O. A salient feature of the layer concerns C—H⋯π inter­actions involving the C1–C6 rings, which are appreciably short and directional [C25⋯Cg2iv = 3.483 (5) Å; C25—H25⋯Cg2iv = 147°; Cg2 is the C1–C6 ring centroid; symmetry code: (iv) x − [{1\over 2}], −y + [{3\over 2}], z + [{1\over 2}]]. The shortest inter­layer inter­actions represent C—H⋯O bonds with the most polarized methyl­ene donors [C15⋯O1ii = 3.333 (8) Å; symmetry code: (ii) x, −y + 2, z + [{1\over 2}]], which act in synergy with a set of longer C—H⋯O (phen­yl) bonds and weak C—H⋯π bonds to the indole (N1/C1/C6–C8) acceptors (Fig. 6[link]). In comparison with the structure of I, the much more extensive inter­actions in the present case result in a lower inter­layer spacing of 8.596 Å, which is a half of the b- axis parameter of the unit cell. This contributes to a slightly higher packing index of 68.1% versus 66.9% for I. However, in both the cases, the packing indices approach the lower limit of the 65–75% range expected for organic solids (Dunitz, 1995[Dunitz, J. D. (1995). X-ray Analysis and the Structure of Organic Solids, 2nd corrected reprint, pp. 106-111. Basel: Verlag Helvetica Chimica Acta.]), suggesting relatively loose packing of these sterically strained mol­ecules.

[Figure 5]
Figure 5
The non-covalent layer in the structure of II, viewed in a projection on the ac plane. Dotted blue lines represent CH⋯O bonds and short tetrel bonds C23⋯O1v, while blue areas indicate short C—H⋯π bonds with the sulfonyl-bound phenyl donors situated nearly orthogonal to the plane of the drawing. [Symmetry codes: (i) x + [{1\over 2}], −y + [{3\over 2}], z − [{1\over 2}]; (iii) x + [{1\over 2}], −y + [{3\over 2}], z + [{1\over 2}]; (iv) x − [{1\over 2}], −y + [{3\over 2}], z + [{1\over 2}]; (v) x, y, z + 1.]
[Figure 6]
Figure 6
Set of inter­layer bonds in the structure of II, with the C—H⋯O and C—H⋯π bonds marked with dashed blue and red lines, respectively. Blue strips indicate two successive layers, which are nearly orthogonal to the plane of the drawing. [Symmetry codes: (ii) x, −y + 2, z + [{1\over 2}]; (iv) x − [{1\over 2}], −y + [{3\over 2}], z + [{1\over 2}].]

4. Hirshfeld surface analysis

The Hirshfeld surface calculations and associated two-dimensional fingerprint plots for I and II were performed in accord with established procedures (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]) using Crystal Explorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) to determine the influence of weak inter­molecular inter­actions upon the mol­ecular packing in the absence of conventional hydrogen bonds. The Hirshfeld surfaces for two compounds mapped over dnorm using a fixed colour scale of −0.249 (red) to 1.450 a.u. (blue) for I and −0.096 (red) to 1.442 a.u. (blue) for II are shown in Fig. 7[link]. One can note a relatively scarce landscape of short contacts that is particularly the case for II, which shows normal van der Waals separations only (denoted with several white regions on the surface). The few red spots present in the case I indicate inter­molecular contacts involved in weak hydrogen bonding.

[Figure 7]
Figure 7
The Hirshfeld surfaces of compounds I and II mapped over dnorm.

The two-dimensional fingerprint plots (Parkin et al., 2007[Parkin, A., Barr, G., Dong, W., Gilmore, C. J., Jayatilaka, D., McKinnon, J. J., Spackman, M. A. & Wilson, C. C. (2007). CrystEngComm, 9, 648-652.]) detailing the various inter­actions for the mol­ecules are shown in Fig. 8[link]. For both compounds, the Hirshfeld surfaces suggest dominance of contacts with hydrogen atoms, accounting for over 85% of the contacts. Beyond the largest fractions of H⋯H contacts (48.8 and 44.6%), these short separations are overwhelmingly O⋯H/H⋯O and C⋯H/H⋯C, which contribute 22.4 and 21.7%, respectively, to the Hirshfeld surface in I and 25.8 and 26.8%, respectively, in II, respectively. The plots also illustrate the finding discussed above that the structure of II exhibits a larger number, but essentially weaker C—H⋯O bonds. Thus, for I the O⋯H/H⋯O plot represents pair of broad spikes pointing to the lower left, with the shortest contact being 2.35 Å, whereas in the case of II the diffuse and faintly discernible spikes are much shorter (O⋯H = 2.70 Å). The larger contribution of C⋯H/H⋯C contacts for II (Fig. 8[link]) reflects the increased significance of C—H⋯π inter­actions for the crystal packing, in line with increased number of aromatic groups. The small fraction of N⋯H/H⋯N contacts (1.3%) is also a consequence of C—H⋯π bonding, namely with the pyrrole ring acceptor. An overlap between the parallel indole ring systems in I, due to the slipped ππ inter­actions, is clearly indicated by the plots for C⋯C, N⋯C/C⋯N and O⋯C/C⋯O (total contribution is 7.1%), in the form of the blue areas centered at ca de = di = 1.90 Å and with shortest contacts of 3.50 Å (Fig. 8[link]). This weak bonding complements the above inter­actions involving H atoms. For both compounds, the H⋯H inter­molecular contacts predominate, followed by the C⋯H/H⋯C and O⋯H/H⋯O contacts. The Hirshfeld surface analysis confirms the importance of distal H-atom contacts (and contacts associated with the ππ inter­action for I) in establishing the packing.

[Figure 8]
Figure 8
Two-dimensional fingerprint plots for I and II and those delineated into the principal contributions of H⋯H, C⋯H/H⋯C, O⋯H/H⋯O, N⋯H/H⋯N, C⋯C, O⋯C/C⋯O and N⋯C/C⋯N contacts. Other contributors account for less than 1.0% contacts to the surface areas.

5. Database survey

A search of the Cambridge Structural Database (Version 5.37; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) indicated 123 compounds incorporating the phenyl­sulfonyl-1H-indole moiety. Of these, the most closely related examples are provided by structures of bromo-substituted 3-methyl-1-(phenyl­sulfon­yl)-1H-indole derivatives (JOMJII, JOMJAA and JOMJEE; Madhan et al., 2024[Madhan, S., NizamMohideen, M., Harikrishnan, K. & MohanaKrishnan, A. K. (2024). Acta Cryst. E80, 682-690.]), ethyl 2-acet­oxy­methyl-1-phenyl­sulfonyl-1H-indole-3-carboxyl­ate (HUCQUS; Gunasekaran et al., 2009[Gunasekaran, B., Sureshbabu, R., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2009). Acta Cryst. E65, o2069.]), 3-iodo-2-methyl-1-phenyl­sulfonyl-1H-indole (ULESEK; Ramathilagam et al., 2011[Ramathilagam, C., Saravanan, V., Mohanakrishnan, A. K., Chakkaravarthi, G., Umarani, P. R. & Manivannan, V. (2011). Acta Cryst. E67, o632.]) and 1-(2-bromo­methyl-1-phenyl­sulfonyl-1H-indol-3-yl)propan-1-one (CIQFEP; Umadevi et al., 2013[Umadevi, M., Saravanan, V., Yamuna, R., Mohanakrishnan, A. K. & Chakkaravarthi, G. (2013). Acta Cryst. E69, o1802-o1803.]). In these structures, the sulfonyl-bound phenyl rings are almost orth­ogonal to the indole ring systems [the corresponding dihedral angles are in the range 73.35 (7)–89.91 (11)°], being comparable with those in the present two compounds.

6. Synthesis and crystallization

Compound I: 3-meth­oxy-N-{[1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}aniline (0.100 g, 0.255 mmol) was dissolved in 5 ml of acetic anhydride and the reaction mixture was stirred for 8 h at 343 K. After completion of the reaction (monitored by TLC, Rf = 0.30, hexa­ne–ethyl acetate 80:20 v/v), the solution was poured into crushed ice (50 g), the solid formed was filtered, washed with 100 ml of water and dried over anhydrous CaCl2. Recrystallization of the crude product from diethyl ether (10 mL) afforded N-(3-meth­oxy­phen­yl)-N-{[1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}acetamide as a colourless solid (84 mg, 76%), m.p. = 413–415 K. 1H NMR (300 MHz, CDCl3), δ, p.p.m.: 8.06 (d, J = 7.8 Hz, 1H), 7.74 (d, J = 7.8 Hz, 2H), 7.50–7.34 (m, 4H), 7.29–7.16 (m, 3H), 6.87–6.79 (m, 3H), 6.61 (s, 1H), 5.35 (s, 2H), 3.76 (s, 3H), 2.04 (s, 3H). 13C{1H} NMR (75 MHz, CDCl3), δ, p.p.m.: 170.7, 160.4, 144.2, 138.3, 137.1, 137.0, 133.7, 130.3, 129.5, 129.2, 126.3, 124.4, 123.7, 120.6, 119.7, 114.5, 113.4, 113.3, 110.4, 55.4, 48.2, 22.6.

Compound II: To a solution of 2-(bromo­meth­yl)-1-(phenyl­sulfon­yl)-1H-indole (0.710 g, 2.040 mmol) in CH3CN (10 ml), K2CO3 (0.422 g, 3.060 mmol) and N-(2,5-di­meth­oxy­phen­yl)benzene­sulfonamide (0.717 g, 2.448 mmol) were added and the mixture was stirred at room temperature for 12 h. After completion of the reaction (monitored by TLC, Rf = 0.60, hexane-ethyl acetate 80:20 v/v), the mixture was poured into crushed ice (50 g) containing 1 mL of concentrated HCl solution. The mixture was extracted with ethyl acetate (2 × 20 ml), the extracts were washed with water (2 × 20 ml) and dried over anhydrous Na2SO4. Removal of the solvent in vacuo followed by trituration of the crude product with 5 ml of methanol afforded N-(2,5-di­meth­oxy­phen­yl)-N-{[1-(phenyl­sulfon­yl)-1H-indol-2-yl]meth­yl}benzene­sulfonamide (0.802 g, 70%) as colourless solid, m.p. = 409–411 K. 1H NMR (300 MHz, CDCl3), δ, p.p.m.: 7.95 (d, J = 7.8 Hz, 1H), 7.66–7.57 (m, 4H), 7.53–7.46 (m, 1H), 7.43–7.35 (m, 4H), 7.32–7.24 (m, 2H), 7.21–7.08 (m, 2H), 7.00–6.90 (m, 2H), 6.73 (dd, J1 = 9.0 Hz, J2 = 2.7 Hz, 1H), 6.63–6.54 (m, 1H), 5.23 (s, 2H), 3.65 (s, 3H), 3.24 (s, 3H). 13C{1H} NMR (75 MHz, CDCl3), δ, p.p.m.: 153.1, 150.1, 139.6, 138.3, 138.1, 137.3, 133.7, 132.5, 129.7, 129.2, 128.5, 127.7, 127.2, 126.3, 124.4, 123.8, 120.9, 118.9, 114.9, 114.5, 112.1, 111.6, 55.8, 55.3, 49.1.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All C-bound H atoms were positioned geometrically and constrained to ride on their parent atoms: C—H = 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 3
Experimental details

  I II
Crystal data
Chemical formula C24H22N2O4S C29H26N2O6S2
Mr 434.49 562.64
Crystal system, space group Monoclinic, P21/c Monoclinic, Cc
Temperature (K) 305 293
a, b, c (Å) 13.6698 (17), 19.781 (2), 8.1056 (10) 13.463 (9), 17.193 (12), 11.532 (7)
β (°) 99.388 (8) 94.844 (19)
V3) 2162.4 (5) 2660 (3)
Z 4 4
Radiation type Cu Kα Mo Kα
μ (mm−1) 1.61 0.25
Crystal size (mm) 0.16 × 0.13 × 0.04 0.33 × 0.22 × 0.11
 
Data collection
Diffractometer Bruker D8 Venture Diffractometer Bruker D8 Venture Diffractometer
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.634, 0.753 0.504, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 47234, 3963, 2595 42032, 5193, 4533
Rint 0.087 0.086
(sin θ/λ)max−1) 0.604 0.628
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.179, 1.07 0.057, 0.154, 1.12
No. of reflections 3963 5193
No. of parameters 283 354
No. of restraints 0 2
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.41 1.17, −0.26
Absolute structure Flack x determined using 1861 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.16 (4)
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2018/3 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), pubCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

N-(3-Methoxyphenyl)-N-{[1-(phenylsulfonyl)-1H-indol-2-yl]methyl}acetamide (I) top
Crystal data top
C24H22N2O4SF(000) = 912
Mr = 434.49Dx = 1.335 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 13.6698 (17) ÅCell parameters from 47234 reflections
b = 19.781 (2) Åθ = 1.4–25.0°
c = 8.1056 (10) ŵ = 1.61 mm1
β = 99.388 (8)°T = 305 K
V = 2162.4 (5) Å3Prism, colorless
Z = 40.16 × 0.13 × 0.04 mm
Data collection top
Bruker D8 Venture Diffractometer2595 reflections with I > 2σ(I)
Radiation source: micro focus sealed tubeRint = 0.087
ω and φ scansθmax = 68.6°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1616
Tmin = 0.634, Tmax = 0.753k = 2323
47234 measured reflectionsl = 99
3963 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.179 w = 1/[σ2(Fo2) + (0.0662P)2 + 2.3955P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3963 reflectionsΔρmax = 0.27 e Å3
283 parametersΔρmin = 0.41 e Å3
0 restraintsExtinction correction: SHELXL2018/3 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0036 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5527 (2)0.58150 (16)0.5180 (4)0.0494 (8)
C20.4749 (3)0.61289 (19)0.5779 (5)0.0613 (9)
H20.4711820.6137740.6914260.074*
C30.4031 (3)0.6428 (2)0.4613 (5)0.0727 (11)
H30.3506360.6651790.4973640.087*
C40.4072 (3)0.6402 (2)0.2915 (5)0.0781 (12)
H40.3572450.6604650.2160340.094*
C50.4840 (3)0.6083 (2)0.2333 (5)0.0673 (10)
H50.4858450.6062080.1192520.081*
C60.5586 (2)0.57918 (17)0.3473 (4)0.0513 (8)
C70.6486 (3)0.54485 (18)0.3303 (4)0.0555 (8)
H70.6707580.5363690.2297560.067*
C80.6960 (2)0.52676 (16)0.4825 (4)0.0502 (8)
C90.7198 (3)0.64340 (19)0.8178 (4)0.0599 (9)
C100.6621 (4)0.6939 (2)0.8699 (6)0.0867 (13)
H100.6009100.6839530.8999140.104*
C110.6973 (5)0.7597 (3)0.8766 (8)0.1113 (19)
H110.6597000.7940430.9136070.134*
C120.7863 (5)0.7751 (3)0.8299 (7)0.1083 (18)
H120.8085460.8196040.8330230.130*
C130.8418 (4)0.7248 (3)0.7790 (7)0.1038 (17)
H130.9029060.7351340.7488800.125*
C140.8097 (3)0.6589 (2)0.7709 (6)0.0824 (12)
H140.8483010.6250990.7342690.099*
C150.7907 (3)0.48792 (19)0.5282 (4)0.0591 (9)
H15A0.8379400.5149360.6028040.071*
H15B0.7779400.4469450.5868900.071*
C160.8217 (2)0.40106 (16)0.3218 (4)0.0484 (8)
C170.8897 (2)0.35387 (16)0.3928 (4)0.0525 (8)
H170.9435060.3671520.4716010.063*
C180.8780 (3)0.28657 (17)0.3468 (4)0.0544 (8)
C190.7983 (3)0.26690 (19)0.2299 (5)0.0618 (9)
H190.7897800.2217230.1991770.074*
C200.7312 (3)0.3150 (2)0.1590 (5)0.0672 (10)
H200.6775510.3017420.0798240.081*
C210.7419 (3)0.38218 (19)0.2031 (4)0.0607 (9)
H210.6964700.4141910.1539030.073*
C220.9413 (4)0.1736 (2)0.3867 (6)0.0915 (14)
H22A0.8796740.1563720.4113480.137*
H22B0.9953890.1498740.4523720.137*
H22C0.9439390.1673300.2701030.137*
C230.8979 (3)0.51411 (18)0.3257 (5)0.0578 (9)
C240.9462 (3)0.4928 (2)0.1812 (5)0.0687 (10)
H24A0.9926340.5268520.1598320.103*
H24B0.8965150.4871870.0838030.103*
H24C0.9803980.4508240.2071340.103*
N10.63700 (19)0.54697 (14)0.6039 (3)0.0495 (7)
N20.8335 (2)0.47013 (13)0.3784 (3)0.0516 (7)
O10.5933 (2)0.55538 (14)0.8893 (3)0.0732 (8)
O20.7592 (2)0.51507 (13)0.8517 (3)0.0735 (8)
O30.9487 (2)0.24362 (12)0.4258 (4)0.0755 (8)
O40.9139 (2)0.56971 (13)0.3939 (4)0.0815 (9)
S10.67746 (7)0.55995 (5)0.80653 (10)0.0577 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0507 (18)0.0488 (18)0.0484 (18)0.0017 (14)0.0070 (14)0.0016 (14)
C20.061 (2)0.071 (2)0.055 (2)0.0074 (19)0.0169 (17)0.0000 (17)
C30.062 (2)0.088 (3)0.070 (3)0.019 (2)0.0174 (19)0.004 (2)
C40.069 (2)0.096 (3)0.069 (3)0.024 (2)0.012 (2)0.016 (2)
C50.066 (2)0.083 (3)0.053 (2)0.014 (2)0.0087 (17)0.0099 (19)
C60.0535 (18)0.0532 (19)0.0469 (18)0.0029 (15)0.0074 (14)0.0035 (14)
C70.062 (2)0.062 (2)0.0441 (18)0.0094 (17)0.0107 (15)0.0019 (15)
C80.0541 (18)0.0479 (18)0.0489 (18)0.0059 (15)0.0094 (14)0.0045 (14)
C90.069 (2)0.062 (2)0.0469 (19)0.0051 (18)0.0015 (16)0.0058 (16)
C100.091 (3)0.072 (3)0.097 (3)0.007 (2)0.014 (3)0.022 (2)
C110.141 (5)0.063 (3)0.125 (5)0.005 (3)0.007 (4)0.030 (3)
C120.147 (5)0.070 (3)0.100 (4)0.029 (4)0.003 (4)0.009 (3)
C130.105 (4)0.089 (4)0.117 (4)0.033 (3)0.018 (3)0.013 (3)
C140.078 (3)0.078 (3)0.093 (3)0.009 (2)0.018 (2)0.015 (2)
C150.062 (2)0.063 (2)0.0498 (19)0.0096 (17)0.0032 (16)0.0078 (16)
C160.0477 (17)0.0484 (18)0.0498 (18)0.0023 (14)0.0101 (14)0.0055 (14)
C170.0519 (18)0.0469 (19)0.0570 (19)0.0013 (15)0.0035 (15)0.0051 (15)
C180.057 (2)0.0495 (19)0.057 (2)0.0028 (16)0.0110 (16)0.0052 (15)
C190.072 (2)0.052 (2)0.063 (2)0.0132 (18)0.0132 (18)0.0067 (17)
C200.066 (2)0.068 (2)0.063 (2)0.010 (2)0.0016 (18)0.0101 (19)
C210.059 (2)0.062 (2)0.059 (2)0.0033 (18)0.0037 (16)0.0056 (17)
C220.119 (4)0.047 (2)0.107 (4)0.013 (2)0.014 (3)0.001 (2)
C230.0501 (19)0.051 (2)0.070 (2)0.0038 (16)0.0001 (16)0.0033 (17)
C240.064 (2)0.067 (2)0.078 (3)0.0058 (19)0.0183 (19)0.005 (2)
N10.0545 (16)0.0554 (16)0.0385 (14)0.0040 (13)0.0077 (11)0.0023 (11)
N20.0515 (15)0.0473 (15)0.0566 (16)0.0022 (13)0.0101 (12)0.0067 (12)
O10.0866 (19)0.0873 (19)0.0511 (14)0.0085 (15)0.0270 (13)0.0007 (13)
O20.0924 (19)0.0701 (17)0.0512 (14)0.0249 (15)0.0085 (13)0.0035 (12)
O30.0819 (18)0.0497 (15)0.091 (2)0.0084 (13)0.0019 (15)0.0007 (13)
O40.0768 (18)0.0556 (16)0.108 (2)0.0049 (14)0.0034 (16)0.0171 (15)
S10.0714 (6)0.0588 (6)0.0420 (5)0.0043 (4)0.0062 (4)0.0007 (4)
Geometric parameters (Å, º) top
C1—C21.386 (5)C15—N21.473 (4)
C1—C61.400 (4)C15—H15A0.9700
C1—N11.420 (4)C15—H15B0.9700
C2—C31.379 (5)C16—C171.375 (5)
C2—H20.9300C16—C211.383 (5)
C3—C41.387 (6)C16—N21.442 (4)
C3—H30.9300C17—C181.385 (5)
C4—C51.373 (5)C17—H170.9300
C4—H40.9300C18—O31.366 (4)
C5—C61.385 (5)C18—C191.378 (5)
C5—H50.9300C19—C201.380 (5)
C6—C71.431 (5)C19—H190.9300
C7—C81.345 (4)C20—C211.378 (5)
C7—H70.9300C20—H200.9300
C8—N11.427 (4)C21—H210.9300
C8—C151.499 (5)C22—O31.420 (5)
C9—C141.380 (6)C22—H22A0.9600
C9—C101.381 (5)C22—H22B0.9600
C9—S11.746 (4)C22—H22C0.9600
C10—C111.386 (7)C23—O41.234 (4)
C10—H100.9300C23—N21.356 (4)
C11—C121.365 (8)C23—C241.496 (5)
C11—H110.9300C24—H24A0.9600
C12—C131.357 (8)C24—H24B0.9600
C12—H120.9300C24—H24C0.9600
C13—C141.373 (6)N1—S11.665 (3)
C13—H130.9300O1—S11.426 (3)
C14—H140.9300O2—S11.427 (3)
C2—C1—C6122.1 (3)H15A—C15—H15B108.0
C2—C1—N1130.7 (3)C17—C16—C21120.7 (3)
C6—C1—N1107.2 (3)C17—C16—N2118.5 (3)
C3—C2—C1116.9 (3)C21—C16—N2120.8 (3)
C3—C2—H2121.5C16—C17—C18120.0 (3)
C1—C2—H2121.5C16—C17—H17120.0
C2—C3—C4121.7 (4)C18—C17—H17120.0
C2—C3—H3119.2O3—C18—C19124.5 (3)
C4—C3—H3119.2O3—C18—C17115.5 (3)
C5—C4—C3121.0 (4)C19—C18—C17120.0 (3)
C5—C4—H4119.5C18—C19—C20119.3 (3)
C3—C4—H4119.5C18—C19—H19120.4
C4—C5—C6118.9 (4)C20—C19—H19120.4
C4—C5—H5120.6C21—C20—C19121.4 (3)
C6—C5—H5120.6C21—C20—H20119.3
C5—C6—C1119.4 (3)C19—C20—H20119.3
C5—C6—C7133.1 (3)C20—C21—C16118.6 (3)
C1—C6—C7107.5 (3)C20—C21—H21120.7
C8—C7—C6109.3 (3)C16—C21—H21120.7
C8—C7—H7125.3O3—C22—H22A109.5
C6—C7—H7125.3O3—C22—H22B109.5
C7—C8—N1108.4 (3)H22A—C22—H22B109.5
C7—C8—C15129.1 (3)O3—C22—H22C109.5
N1—C8—C15122.4 (3)H22A—C22—H22C109.5
C14—C9—C10120.1 (4)H22B—C22—H22C109.5
C14—C9—S1119.9 (3)O4—C23—N2120.5 (4)
C10—C9—S1119.9 (3)O4—C23—C24122.2 (4)
C9—C10—C11118.7 (5)N2—C23—C24117.3 (3)
C9—C10—H10120.7C23—C24—H24A109.5
C11—C10—H10120.7C23—C24—H24B109.5
C12—C11—C10121.1 (5)H24A—C24—H24B109.5
C12—C11—H11119.4C23—C24—H24C109.5
C10—C11—H11119.4H24A—C24—H24C109.5
C13—C12—C11119.3 (5)H24B—C24—H24C109.5
C13—C12—H12120.4C1—N1—C8107.5 (2)
C11—C12—H12120.4C1—N1—S1121.4 (2)
C12—C13—C14121.4 (5)C8—N1—S1126.1 (2)
C12—C13—H13119.3C23—N2—C16123.5 (3)
C14—C13—H13119.3C23—N2—C15118.2 (3)
C13—C14—C9119.4 (5)C16—N2—C15116.7 (3)
C13—C14—H14120.3C18—O3—C22118.9 (3)
C9—C14—H14120.3O1—S1—O2119.83 (17)
N2—C15—C8111.2 (3)O1—S1—N1106.91 (15)
N2—C15—H15A109.4O2—S1—N1106.10 (14)
C8—C15—H15A109.4O1—S1—C9108.73 (18)
N2—C15—H15B109.4O2—S1—C9109.62 (18)
C8—C15—H15B109.4N1—S1—C9104.54 (15)
C6—C1—C2—C30.7 (6)N2—C16—C21—C20176.8 (3)
N1—C1—C2—C3179.7 (4)C2—C1—N1—C8177.6 (4)
C1—C2—C3—C41.5 (6)C6—C1—N1—C82.7 (4)
C2—C3—C4—C50.7 (7)C2—C1—N1—S121.1 (5)
C3—C4—C5—C60.9 (7)C6—C1—N1—S1159.3 (2)
C4—C5—C6—C11.7 (6)C7—C8—N1—C12.7 (4)
C4—C5—C6—C7177.7 (4)C15—C8—N1—C1179.1 (3)
C2—C1—C6—C50.9 (5)C7—C8—N1—S1157.9 (3)
N1—C1—C6—C5178.8 (3)C15—C8—N1—S125.7 (5)
C2—C1—C6—C7178.6 (3)O4—C23—N2—C16170.7 (3)
N1—C1—C6—C71.7 (4)C24—C23—N2—C1610.4 (5)
C5—C6—C7—C8179.4 (4)O4—C23—N2—C155.6 (5)
C1—C6—C7—C80.0 (4)C24—C23—N2—C15175.6 (3)
C6—C7—C8—N11.7 (4)C17—C16—N2—C2380.1 (4)
C6—C7—C8—C15177.7 (3)C21—C16—N2—C23102.1 (4)
C14—C9—C10—C111.1 (7)C17—C16—N2—C1585.2 (4)
S1—C9—C10—C11179.6 (4)C21—C16—N2—C1592.5 (4)
C9—C10—C11—C121.2 (8)C8—C15—N2—C2390.1 (4)
C10—C11—C12—C131.2 (9)C8—C15—N2—C16103.7 (3)
C11—C12—C13—C141.0 (9)C19—C18—O3—C220.1 (6)
C12—C13—C14—C90.9 (8)C17—C18—O3—C22179.4 (4)
C10—C9—C14—C130.9 (7)C1—N1—S1—O148.3 (3)
S1—C9—C14—C13179.5 (4)C8—N1—S1—O1159.7 (3)
C7—C8—C15—N21.1 (5)C1—N1—S1—O2177.3 (3)
N1—C8—C15—N2176.6 (3)C8—N1—S1—O230.7 (3)
C21—C16—C17—C180.7 (5)C1—N1—S1—C966.9 (3)
N2—C16—C17—C18177.0 (3)C8—N1—S1—C985.1 (3)
C16—C17—C18—O3179.3 (3)C14—C9—S1—O1169.5 (3)
C16—C17—C18—C190.1 (5)C10—C9—S1—O111.9 (4)
O3—C18—C19—C20179.7 (3)C14—C9—S1—O236.8 (4)
C17—C18—C19—C200.4 (5)C10—C9—S1—O2144.7 (3)
C18—C19—C20—C210.3 (6)C14—C9—S1—N176.6 (3)
C19—C20—C21—C160.4 (6)C10—C9—S1—N1102.0 (3)
C17—C16—C21—C200.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.932.412.993 (5)120
C5—H5···O1i0.932.753.530 (5)143
C7—H7···O1i0.932.813.537 (4)135
C12—H12···O4ii0.932.623.527 (6)164
C13—H13···O3iii0.932.693.591 (7)164
C17—H17···O4iii0.932.423.312 (4)161
C24—H24B···O2i0.962.493.410 (5)160
Symmetry codes: (i) x, y, z1; (ii) x, y+3/2, z+1/2; (iii) x+2, y+1, z+1.
N-(2,5-Dimethoxyphenyl)-N-{[1-(phenylsulfonyl)-1H-indol-2-yl]methyl}benzenesulfonamide (II) top
Crystal data top
C29H26N2O6S2F(000) = 1176
Mr = 562.64Dx = 1.405 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 13.463 (9) ÅCell parameters from 42032 reflections
b = 17.193 (12) Åθ = 1.4–25.0°
c = 11.532 (7) ŵ = 0.25 mm1
β = 94.844 (19)°T = 293 K
V = 2660 (3) Å3Prism, colorless
Z = 40.33 × 0.22 × 0.11 mm
Data collection top
Bruker D8 Venture Diffractometer4533 reflections with I > 2σ(I)
Radiation source: micro focus sealed tubeRint = 0.086
ω and φ scansθmax = 26.5°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1616
Tmin = 0.504, Tmax = 0.745k = 2121
42032 measured reflectionsl = 1414
5193 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.0731P)2 + 3.4858P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
5193 reflectionsΔρmax = 1.17 e Å3
354 parametersΔρmin = 0.26 e Å3
2 restraintsAbsolute structure: Flack x determined using 1861 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.16 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5561 (5)0.9136 (3)0.2353 (5)0.0405 (13)
C20.5964 (6)0.9217 (4)0.1289 (6)0.0540 (16)
H20.5559730.9220120.0594220.065*
C30.6984 (6)0.9292 (4)0.1301 (7)0.0629 (19)
H30.7277090.9336030.0601660.076*
C40.7585 (6)0.9304 (5)0.2352 (8)0.068 (2)
H40.8271850.9357840.2344980.081*
C50.7173 (5)0.9237 (5)0.3382 (8)0.0611 (18)
H50.7580880.9244470.4074450.073*
C60.6143 (5)0.9157 (3)0.3416 (6)0.0457 (14)
C70.5506 (5)0.9086 (4)0.4325 (6)0.0474 (15)
H70.5712620.9085680.5115310.057*
C80.4548 (4)0.9019 (3)0.3871 (5)0.0368 (12)
C90.3602 (5)0.7823 (3)0.1536 (5)0.0419 (13)
C100.4339 (5)0.7464 (4)0.0981 (7)0.0556 (17)
H100.4844970.7753730.0688260.067*
C110.4316 (6)0.6650 (4)0.0862 (9)0.070 (2)
H110.4814000.6393670.0501140.084*
C120.3561 (7)0.6243 (5)0.1277 (8)0.071 (2)
H120.3546910.5705060.1196850.085*
C130.2819 (7)0.6605 (5)0.1812 (8)0.074 (2)
H130.2303840.6312580.2079410.088*
C140.2831 (6)0.7404 (5)0.1957 (6)0.0608 (19)
H140.2332900.7653040.2327690.073*
C150.3647 (5)0.9029 (3)0.4548 (5)0.0400 (12)
H15A0.3810980.9289970.5285040.048*
H15B0.3121740.9322700.4119610.048*
C160.3950 (4)0.7701 (3)0.5439 (5)0.0371 (12)
C170.4070 (5)0.6956 (4)0.4999 (5)0.0443 (13)
H170.3751020.6819470.4281270.053*
C180.4660 (5)0.6420 (4)0.5620 (6)0.0481 (15)
C190.5150 (5)0.6612 (4)0.6672 (6)0.0552 (17)
H190.5552920.6248050.7079870.066*
C200.5043 (5)0.7351 (4)0.7125 (6)0.0531 (16)
H200.5375100.7482170.7838110.064*
C210.4437 (4)0.7899 (4)0.6516 (5)0.0422 (13)
C220.4410 (7)0.5443 (5)0.4146 (8)0.074 (2)
H22A0.4613650.5814540.3591130.110*
H22B0.3695420.5429770.4115440.110*
H22C0.4655690.4937290.3962920.110*
C230.4596 (8)0.8823 (5)0.8082 (7)0.077 (2)
H23A0.5310270.8805240.8202730.115*
H23B0.4314240.8452850.8583640.115*
H23C0.4368090.9335780.8255210.115*
C240.1965 (4)0.8362 (4)0.6486 (5)0.0415 (13)
C250.1984 (5)0.7775 (4)0.7286 (6)0.0531 (16)
H250.2061520.7261360.7056260.064*
C260.1887 (6)0.7953 (5)0.8457 (7)0.067 (2)
H260.1893990.7555730.9004440.081*
C270.1782 (6)0.8710 (5)0.8800 (7)0.065 (2)
H270.1721970.8826260.9578700.078*
C280.1766 (6)0.9298 (5)0.7985 (7)0.065 (2)
H280.1701160.9811040.8225190.077*
C290.1843 (5)0.9143 (4)0.6818 (7)0.0540 (16)
H290.1815690.9541180.6270160.065*
N10.4553 (4)0.9058 (3)0.2641 (4)0.0389 (10)
N20.3279 (4)0.8234 (3)0.4772 (4)0.0363 (10)
O10.3855 (4)0.9166 (3)0.0595 (4)0.0592 (12)
O20.2718 (4)0.9068 (3)0.2140 (4)0.0608 (13)
O30.4797 (5)0.5658 (3)0.5265 (5)0.0713 (15)
O40.4295 (4)0.8639 (3)0.6904 (4)0.0544 (11)
O50.1821 (3)0.7351 (3)0.4813 (4)0.0556 (12)
O60.1575 (3)0.8740 (3)0.4303 (5)0.0573 (12)
S10.36074 (11)0.88404 (9)0.16552 (11)0.0423 (4)
S20.20853 (11)0.81497 (9)0.50035 (12)0.0414 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.050 (3)0.031 (3)0.041 (3)0.009 (2)0.010 (3)0.000 (2)
C20.062 (4)0.051 (4)0.050 (4)0.011 (3)0.011 (3)0.004 (3)
C30.070 (5)0.057 (4)0.065 (5)0.014 (4)0.030 (4)0.002 (3)
C40.053 (4)0.063 (5)0.089 (6)0.016 (3)0.017 (4)0.007 (4)
C50.044 (3)0.068 (5)0.072 (5)0.011 (3)0.004 (3)0.003 (4)
C60.051 (3)0.035 (3)0.050 (4)0.005 (3)0.003 (3)0.000 (2)
C70.048 (3)0.052 (4)0.041 (3)0.010 (3)0.004 (3)0.003 (3)
C80.047 (3)0.032 (3)0.031 (3)0.005 (2)0.002 (2)0.001 (2)
C90.042 (3)0.041 (3)0.040 (3)0.001 (3)0.010 (2)0.002 (3)
C100.043 (3)0.050 (4)0.074 (5)0.003 (3)0.002 (3)0.011 (3)
C110.053 (4)0.051 (4)0.104 (7)0.003 (3)0.008 (4)0.019 (4)
C120.086 (6)0.050 (4)0.074 (5)0.012 (4)0.011 (5)0.003 (4)
C130.091 (6)0.067 (5)0.064 (5)0.036 (5)0.011 (4)0.003 (4)
C140.056 (4)0.074 (5)0.052 (4)0.007 (4)0.003 (3)0.015 (3)
C150.049 (3)0.035 (3)0.036 (3)0.001 (2)0.003 (2)0.003 (2)
C160.039 (3)0.041 (3)0.032 (3)0.001 (2)0.003 (2)0.003 (2)
C170.044 (3)0.047 (3)0.040 (3)0.006 (3)0.004 (2)0.003 (2)
C180.043 (3)0.038 (3)0.062 (4)0.003 (3)0.002 (3)0.003 (3)
C190.046 (4)0.063 (4)0.055 (4)0.006 (3)0.007 (3)0.013 (3)
C200.044 (3)0.066 (4)0.047 (4)0.003 (3)0.011 (3)0.001 (3)
C210.038 (3)0.050 (3)0.037 (3)0.003 (3)0.000 (2)0.005 (2)
C220.071 (5)0.056 (5)0.092 (6)0.006 (4)0.005 (4)0.023 (4)
C230.104 (7)0.079 (6)0.044 (4)0.005 (5)0.013 (4)0.018 (4)
C240.035 (3)0.049 (3)0.041 (3)0.006 (2)0.006 (2)0.007 (2)
C250.062 (4)0.049 (4)0.049 (4)0.002 (3)0.006 (3)0.002 (3)
C260.078 (5)0.080 (5)0.044 (4)0.006 (4)0.007 (4)0.001 (4)
C270.059 (4)0.089 (6)0.049 (4)0.008 (4)0.010 (3)0.020 (4)
C280.060 (4)0.064 (5)0.071 (5)0.015 (4)0.017 (4)0.027 (4)
C290.057 (4)0.047 (3)0.059 (4)0.012 (3)0.015 (3)0.008 (3)
N10.042 (3)0.042 (3)0.032 (2)0.004 (2)0.0000 (19)0.0013 (19)
N20.037 (2)0.039 (2)0.033 (2)0.0031 (19)0.0025 (19)0.0005 (18)
O10.083 (3)0.055 (3)0.037 (2)0.001 (2)0.008 (2)0.002 (2)
O20.052 (3)0.073 (3)0.055 (3)0.014 (2)0.009 (2)0.014 (2)
O30.084 (4)0.048 (3)0.081 (4)0.010 (3)0.005 (3)0.003 (3)
O40.067 (3)0.056 (3)0.038 (2)0.003 (2)0.007 (2)0.0134 (19)
O50.055 (3)0.065 (3)0.045 (3)0.018 (2)0.001 (2)0.011 (2)
O60.046 (2)0.069 (3)0.055 (3)0.007 (2)0.005 (2)0.010 (2)
S10.0484 (8)0.0465 (7)0.0305 (7)0.0067 (7)0.0057 (6)0.0013 (6)
S20.0377 (7)0.0507 (8)0.0350 (7)0.0053 (6)0.0013 (5)0.0019 (6)
Geometric parameters (Å, º) top
C1—C21.390 (9)C17—H170.9300
C1—C61.398 (9)C18—C191.371 (10)
C1—N11.429 (8)C18—O31.389 (8)
C2—C31.379 (11)C19—C201.385 (10)
C2—H20.9300C19—H190.9300
C3—C41.399 (13)C20—C211.396 (9)
C3—H30.9300C20—H200.9300
C4—C51.358 (12)C21—O41.368 (8)
C4—H40.9300C22—O31.400 (10)
C5—C61.397 (10)C22—H22A0.9600
C5—H50.9300C22—H22B0.9600
C6—C71.416 (10)C22—H22C0.9600
C7—C81.355 (9)C23—O41.420 (8)
C7—H70.9300C23—H23A0.9600
C8—N11.421 (7)C23—H23B0.9600
C8—C151.497 (8)C23—H23C0.9600
C9—C101.372 (10)C24—C251.367 (9)
C9—C141.385 (10)C24—C291.410 (9)
C9—S11.755 (6)C24—S21.768 (6)
C10—C111.406 (10)C25—C261.401 (10)
C10—H100.9300C25—H250.9300
C11—C121.354 (13)C26—C271.371 (12)
C11—H110.9300C26—H260.9300
C12—C131.367 (13)C27—C281.380 (13)
C12—H120.9300C27—H270.9300
C13—C141.383 (12)C28—C291.385 (11)
C13—H130.9300C28—H280.9300
C14—H140.9300C29—H290.9300
C15—N21.484 (7)N1—S11.676 (5)
C15—H15A0.9700N2—S21.658 (5)
C15—H15B0.9700O1—S11.410 (5)
C16—C171.392 (8)O2—S11.419 (5)
C16—C211.397 (8)O5—S21.431 (5)
C16—N21.459 (7)O6—S21.436 (5)
C17—C181.377 (9)
C2—C1—C6122.6 (6)C18—C19—H19120.1
C2—C1—N1131.5 (6)C20—C19—H19120.1
C6—C1—N1105.8 (5)C19—C20—C21120.2 (6)
C3—C2—C1117.6 (7)C19—C20—H20119.9
C3—C2—H2121.2C21—C20—H20119.9
C1—C2—H2121.2O4—C21—C20123.7 (5)
C2—C3—C4120.8 (7)O4—C21—C16116.7 (5)
C2—C3—H3119.6C20—C21—C16119.6 (6)
C4—C3—H3119.6O3—C22—H22A109.5
C5—C4—C3120.5 (7)O3—C22—H22B109.5
C5—C4—H4119.7H22A—C22—H22B109.5
C3—C4—H4119.7O3—C22—H22C109.5
C4—C5—C6120.8 (8)H22A—C22—H22C109.5
C4—C5—H5119.6H22B—C22—H22C109.5
C6—C5—H5119.6O4—C23—H23A109.5
C5—C6—C1117.6 (7)O4—C23—H23B109.5
C5—C6—C7134.0 (7)H23A—C23—H23B109.5
C1—C6—C7108.5 (6)O4—C23—H23C109.5
C8—C7—C6109.7 (6)H23A—C23—H23C109.5
C8—C7—H7125.1H23B—C23—H23C109.5
C6—C7—H7125.1C25—C24—C29121.1 (6)
C7—C8—N1107.3 (5)C25—C24—S2120.2 (5)
C7—C8—C15125.7 (5)C29—C24—S2118.8 (5)
N1—C8—C15126.4 (5)C24—C25—C26119.4 (7)
C10—C9—C14121.5 (6)C24—C25—H25120.3
C10—C9—S1119.1 (5)C26—C25—H25120.3
C14—C9—S1119.3 (6)C27—C26—C25120.4 (8)
C9—C10—C11118.8 (7)C27—C26—H26119.8
C9—C10—H10120.6C25—C26—H26119.8
C11—C10—H10120.6C26—C27—C28119.7 (7)
C12—C11—C10119.4 (8)C26—C27—H27120.2
C12—C11—H11120.3C28—C27—H27120.2
C10—C11—H11120.3C27—C28—C29121.5 (7)
C11—C12—C13121.6 (7)C27—C28—H28119.3
C11—C12—H12119.2C29—C28—H28119.3
C13—C12—H12119.2C28—C29—C24117.9 (7)
C12—C13—C14120.3 (8)C28—C29—H29121.1
C12—C13—H13119.8C24—C29—H29121.1
C14—C13—H13119.8C8—N1—C1108.7 (5)
C13—C14—C9118.4 (7)C8—N1—S1126.8 (4)
C13—C14—H14120.8C1—N1—S1123.0 (4)
C9—C14—H14120.8C16—N2—C15118.0 (5)
N2—C15—C8112.2 (5)C16—N2—S2115.2 (4)
N2—C15—H15A109.2C15—N2—S2116.8 (4)
C8—C15—H15A109.2C18—O3—C22118.2 (6)
N2—C15—H15B109.2C21—O4—C23119.0 (6)
C8—C15—H15B109.2O1—S1—O2120.1 (3)
H15A—C15—H15B107.9O1—S1—N1106.1 (3)
C17—C16—C21119.2 (5)O2—S1—N1106.8 (3)
C17—C16—N2118.1 (5)O1—S1—C9109.1 (3)
C21—C16—N2122.6 (5)O2—S1—C9107.9 (3)
C18—C17—C16120.4 (6)N1—S1—C9105.9 (3)
C18—C17—H17119.8O5—S2—O6119.4 (3)
C16—C17—H17119.8O5—S2—N2106.9 (3)
C19—C18—C17120.8 (6)O6—S2—N2105.8 (3)
C19—C18—O3115.0 (6)O5—S2—C24107.7 (3)
C17—C18—O3124.2 (6)O6—S2—C24108.6 (3)
C18—C19—C20119.8 (6)N2—S2—C24107.9 (3)
C6—C1—C2—C32.4 (10)C25—C24—C29—C281.4 (10)
N1—C1—C2—C3179.0 (6)S2—C24—C29—C28179.0 (6)
C1—C2—C3—C41.4 (11)C7—C8—N1—C11.2 (6)
C2—C3—C4—C50.3 (12)C15—C8—N1—C1172.4 (5)
C3—C4—C5—C60.1 (12)C7—C8—N1—S1167.7 (4)
C4—C5—C6—C11.0 (10)C15—C8—N1—S121.2 (8)
C4—C5—C6—C7179.1 (8)C2—C1—N1—C8178.1 (6)
C2—C1—C6—C52.2 (9)C6—C1—N1—C81.1 (6)
N1—C1—C6—C5179.6 (6)C2—C1—N1—S114.8 (9)
C2—C1—C6—C7177.9 (6)C6—C1—N1—S1168.1 (4)
N1—C1—C6—C70.5 (6)C17—C16—N2—C15131.1 (6)
C5—C6—C7—C8179.7 (7)C21—C16—N2—C1551.7 (7)
C1—C6—C7—C80.2 (7)C17—C16—N2—S284.4 (6)
C6—C7—C8—N10.9 (7)C21—C16—N2—S292.8 (6)
C6—C7—C8—C15172.1 (5)C8—C15—N2—C1660.6 (6)
C14—C9—C10—C111.3 (11)C8—C15—N2—S2155.5 (4)
S1—C9—C10—C11178.4 (6)C19—C18—O3—C22173.2 (7)
C9—C10—C11—C121.2 (12)C17—C18—O3—C227.9 (10)
C10—C11—C12—C130.0 (13)C20—C21—O4—C2313.8 (10)
C11—C12—C13—C140.9 (13)C16—C21—O4—C23167.1 (7)
C12—C13—C14—C90.8 (12)C8—N1—S1—O1164.0 (5)
C10—C9—C14—C130.4 (11)C1—N1—S1—O131.3 (5)
S1—C9—C14—C13177.4 (6)C8—N1—S1—O234.8 (5)
C7—C8—C15—N298.6 (7)C1—N1—S1—O2160.5 (5)
N1—C8—C15—N291.8 (6)C8—N1—S1—C980.1 (5)
C21—C16—C17—C180.2 (9)C1—N1—S1—C984.6 (5)
N2—C16—C17—C18177.1 (5)C10—C9—S1—O141.5 (6)
C16—C17—C18—C191.0 (10)C14—C9—S1—O1135.6 (5)
C16—C17—C18—O3177.9 (6)C10—C9—S1—O2173.5 (5)
C17—C18—C19—C200.8 (10)C14—C9—S1—O23.6 (6)
O3—C18—C19—C20178.2 (7)C10—C9—S1—N172.4 (6)
C18—C19—C20—C210.1 (11)C14—C9—S1—N1110.5 (5)
C19—C20—C21—O4179.9 (6)C16—N2—S2—O553.8 (4)
C19—C20—C21—C160.8 (10)C15—N2—S2—O5161.2 (4)
C17—C16—C21—O4179.8 (5)C16—N2—S2—O6177.9 (4)
N2—C16—C21—O43.0 (8)C15—N2—S2—O632.9 (5)
C17—C16—C21—C200.6 (9)C16—N2—S2—C2461.8 (5)
N2—C16—C21—C20177.8 (5)C15—N2—S2—C2483.2 (5)
C29—C24—C25—C260.3 (10)C25—C24—S2—O521.3 (6)
S2—C24—C25—C26180.0 (6)C29—C24—S2—O5158.4 (5)
C24—C25—C26—C270.6 (12)C25—C24—S2—O6151.9 (5)
C25—C26—C27—C280.4 (12)C29—C24—S2—O627.7 (6)
C26—C27—C28—C290.7 (12)C25—C24—S2—N293.8 (5)
C27—C28—C29—C241.5 (11)C29—C24—S2—N286.5 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1/C1/C6–C8 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.932.302.886 (9)121
C15—H15A···O40.972.232.862 (8)122
C15—H15B···O20.972.342.948 (8)120
C10—H10···O5i0.932.933.719 (9)144
C11—H11···O6i0.932.853.723 (11)156
C15—H15A···O1ii0.972.683.333 (8)125
C19—H19···O2iii0.932.963.647 (9)132
C20—H20···O5iii0.932.883.788 (8)165
C28—H28···O6ii0.932.793.716 (9)171
C23—H23C···Cg1ii0.962.963.701 (3)135
C25—H25···Cg2iv0.932.673.483 (5)147
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x, y+2, z+1/2; (iii) x+1/2, y+3/2, z+1/2; (iv) x1/2, y+3/2, z+1/2.
 

Acknowledgements

The authors thank the SAIF, IIT, Madras, India, for the data collection.

References

First citationAllen, F. H. (1981). Acta Cryst. B37, 900–906.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBadr, E. E. (2008). J. Dispersion Sci. Technol. 29, 1143–1149.  Web of Science CrossRef CAS Google Scholar
First citationBassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.  Google Scholar
First citationBeddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDunitz, J. D. (1995). X-ray Analysis and the Structure of Organic Solids, 2nd corrected reprint, pp. 106–111. Basel: Verlag Helvetica Chimica Acta.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o3364.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGunasekaran, B., Sureshbabu, R., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2009). Acta Cryst. E65, o2069.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHanafy, A., Uno, J., Mitani, H., Kang, Y. & Mikami, Y. (2007). Nippon Ishinkin Gakkai Zasshi, 48, 47–50.  CrossRef CAS Google Scholar
First citationJasinski, J. P., Rinderspacher, A. & Gribble, G. W. (2010). J. Chem. Crystallogr. 40, 40–47.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMadhan, S., NizamMohideen, M., Harikrishnan, K. & MohanaKrishnan, A. K. (2024). Acta Cryst. E80, 682–690.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMadhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2022). Acta Cryst. E78, 1198–1203.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMadhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2023a). Acta Cryst. E79, 521–525.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMadhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2023b). Acta Cryst. E79, 741–746.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNizamMohideen, M., SubbiahPandi, A., Panneer Selvam, N. & Perumal, P. T. (2009). Acta Cryst. E65, o714–o715.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNizamMohideen, M., Thenmozhi, S., SubbiahPandi, A., Selvam, N. P. & Perumal, P. T. (2009a). Acta Cryst. E65, o740.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNizamMohideen, M., Thenmozhi, S., SubbiahPandi, A., Selvam, N. P. & Perumal, P. T. (2009b). Acta Cryst. E65, o829.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkabe, N. & Adachi, Y. (1998). Acta Cryst. C54, 386–387.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParkin, A., Barr, G., Dong, W., Gilmore, C. J., Jayatilaka, D., McKinnon, J. J., Spackman, M. A. & Wilson, C. C. (2007). CrystEngComm, 9, 648–652.  Web of Science CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRamathilagam, C., Saravanan, V., Mohanakrishnan, A. K., Chakkaravarthi, G., Umarani, P. R. & Manivannan, V. (2011). Acta Cryst. E67, o632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchollmeyer, D., Fischer, G. & Pindur, U. (1995). Acta Cryst. C51, 2572–2575.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationUmadevi, M., Saravanan, V., Yamuna, R., Mohanakrishnan, A. K. & Chakkaravarthi, G. (2013). Acta Cryst. E69, o1802–o1803.  CSD CrossRef IUCr Journals Google Scholar
First citationWen, Y.-H., Li, X.-M., Xu, L.-L., Tang, X.-F. & Zhang, S.-S. (2006). Acta Cryst. E62, o4427–o4428.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilliams, T. M., Ciccarone, T. M., MacTough, S. C., Rooney, C. S., Balani, S. K., Condra, J. H., Emini, E. A., Goldman, M. E., Greenlee, W. J., Kauffman, L. R., O'Brien, J. A., Sardana, V. V., Schleif, W. A., Theoharides, A. D. & Anderson, P. S. (1993). J. Med. Chem. 36, 1291–1294.  CrossRef CAS PubMed Web of Science Google Scholar
First citationYang, L. M., Lin, S. J., Hsu, F. L. & Yang, T. H. (2002). Bioorg. Med. Chem. Lett. 12, 1013–1015.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds