research communications
N-acetyl-N-3-methoxyphenyl and N-(2,5-dimethoxyphenyl)-N-phenylsulfonyl derivatives of N-[1-(phenylsulfonyl)-1H-indol-2-yl]methanamine
determination and Hirshfeld surface analysis ofaDepartment of Physics, The New College, Chennai 600 014, University of Madras, Tamil Nadu, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai-600 025, Tamilnadu, India
*Correspondence e-mail: mnizam.new@gmail.com
Two new [1-(phenylsulfonyl)-1H-indol-2-yl]methanamine derivatives, namely, N-(3-methoxyphenyl)-N-{[1-(phenylsulfonyl)-1H-indol-2-yl]methyl}acetamide, C24H22N2O4S, (I), and N-(2,5-dimethoxyphenyl)-N-{[1-(phenylsulfonyl)-1H-indol-2-yl]methyl}benzenesulfonamide, C29H26N2O6S2, (II), reveal a nearly orthogonal orientation of their indole ring systems and sulfonyl-bound phenyl rings. The sulfonyl moieties adopt the anti-periplanar conformation. For both compounds, the crystal packing is dominated by C—H⋯O bonding [C⋯O = 3.312 (4)–3.788 (8) Å], with the structure of II exhibiting a larger number, but weaker bonds of this type. Slipped π–π interactions of antiparallel indole systems are specific for I, whereas the structure of II delivers two kinds of C—H⋯π interactions at both axial sides of the indole moiety. These findings agree with the results of Hirshfeld surface analysis. The primary contributions to the surface areas are associated with the contacts involving H atoms. Although II manifests a larger fraction of the O⋯H/H⋯O contacts (25.8 versus 22.4%), most of them are relatively distal and agree with the corresponding van der Waals separations.
1. Chemical context
Derivatives of indole exhibit antibacterial (Okabe & Adachi, 1998) and antitumour (Schollmeyer et al., 1995) activities. In particular, 1-(phenylsulfonyl)indoles are applicable to the synthesis of biologically active such as the anticancer alkaloid ellipticine, carbazoles, furoindoles, pyrroloindoles, indolocarbazoles and their analogues, including pyridocarbazoles. Some of the phenylsulfonyl indole compounds have been shown to inhibit the HIV-1 RT enzyme in vitro and HTLVIIIb viral spread in MT-4 human T-lymphoid cells (Williams et al., 1993). In such systems, the phenylsulfonyl moiety can act either as a protecting or an activating group (Jasinski et al., 2010). Ring-substituted acetanilides are valuable synthetic intermediates (Gowda et al., 2007) that are used as precursors for the preparation of many (Wen et al., 2006). The amide linkage [–NHC(O)–] is known for its importance in maintaining protein architectures and it has been utilized in the development of molecular devices for a spectrum of purposes in organic chemistry (NizamMohideen, SubbiahPandi et al., 2009; NizamMohideen et al., 2009a,b). Benzenesulfonamide derivatives exhibit antitumor (Yang et al., 2002), anti-bacterial (Badr, 2008) and anti-fungal (Hanafy et al., 2007) activities. Recognizing the importance of such compounds for biochemical applications and drug discovery and our ongoing research into the construction of indole derivatives have prompted us to investigate a series of corresponding methoxyphenyl-substituted species. We report herein the determination and Hirshfeld surface analysis of two new (1-(phenylsulfonyl)-1H-indol-2-yl)methanamine derivatives: N-(3-methoxyphenyl)-N-{[1-(phenylsulfonyl)-1H-indol-2-yl]methyl}acetamide (I) and N-(2,5-dimethoxyphenyl)-N-{[1-(phenylsulfonyl)-1H-indol-2-yl]methyl}benzenesulfonamide (II).
2. Structural commentary
The molecular structures of the title compounds, which differ in the substituents at the exocyclic nitrogen atoms N2 [N-acetyl-N-3-methoxyphenyl (I) and N-phenylsulfonyl-N-(2,5-dimethoxyphenyl) (II)], are illustrated in Figs. 1 and 2, respectively. In both compounds, the indole ring system (N1/C1–C8) is essentially planar, with maximum deviations from the corresponding mean planes of 0.027 (3) and 0.017 (5) Å observed for atoms C8 in I and C1 in II. The sulfonyl-bound phenyl rings (C9–C14) are almost orthogonal to the carrier indole ring systems (N1/C1–C8), with respective interplanar angles of 83.9 (2)° for I and 83.5 (7)° for II. The methoxy-bound phenyl rings (C16–C21) in I and II are inclined to the indole frameworks, subtending dihedral angles of 66.31 (15) and 77.70 (9)°, respectively. In I, the planes of these outer phenyl rings (C9–C14 and C16–C21) subtend an angle of 59.8 (2)°, while in II they are nearly orthogonal [86.9 (9)°]. In the latter case, the dihedral angle between two sulfonyl-bound phenyl rings (C9–C14 and C24–C29) is 54.4 (2)°. The torsion angles O2—S1—N1—C1 and O1—S1—N1—C8 [177.3 (3) and −159.7 (3)° for I and −160.5 (5) and 164.0 (5)° for II, respectively] indicate the anti-periplanar conformation of the sulfonyl moiety. The geometric parameters of compounds I and II agree well with those reported for related structures [Madhan et al., 2022, 2023a,b, 2024]. In both compounds, the tetrahedral configuration around atom S1 is slightly distorted. The increase in the O2—S1—O1 angle [119.83 (17)° in I and 120.1 (3)° in II], with a simultaneous decrease in the N1—S1—C9 angle [104.54 (15)° in I and 105.9 (3)° in II] from the ideal tetrahedral value (109.5°) are attributed to the Thorpe–Ingold effect (Bassindale, 1984). The widening of the angles may be due to the repulsive interaction between the two short S=O bonds. In both compounds, as a result of the electron-withdrawing character of the phenylsulfonyl group, the N—Csp2 bond lengths [N1—C1 = 1.420 (4) in I and 1.429 (8) Å in II and N1—C8 = 1.427 (4) in I and 1.421 (7) Å in II] are longer than the mean value of 1.355 (14) Å for this bond (Allen et al., 1987; Cambridge Structural Database (CSD), Version 5.37; Groom et al., 2016). In both compounds, the sum of the bond angles around N1 [352.2 (2)° in I and 355.8 (2)° in II] indicate the sp2 (Beddoes et al., 1986). In both compounds, the expansion of the ipso angles at atoms C1, C3 and C4, and the contraction of the apical angles at atoms C2, C5 and C6 is caused by fusion of the smaller pyrrole ring with the six-membered benzene ring and the strain is taken up by angular distortion rather than by bond-length distortion (Allen, 1981).
The molecular conformation of compound I is stabilized by the weak intramolecular hydrogen bond C2—H2⋯O1 [C2⋯O1 = 2.993 (5) Å] formed by the sulfone O atom, which generates an S(6) (N1/S1/O1/C1/C2/H2) ring motif (Fig. 1). A similar interaction in compound II [C2⋯O1 = 2.886 (9) Å] is accompanied by two additional intramolecular bonds involving methylene donors and sulfone [C15⋯O2 = 2.948 (8) Å] and methoxyphenyl [C15⋯O4 = 2.862 (8) Å] O atoms, which in total generate three S(6) ring motifs (N1/S1/O1/C1/C2/H2, N1/S1/O2/C8/C15/H15B) and N2/C16/C21/O4/C15/H15A), respectively (Fig. 2).
3. Supramolecular features
With a lack of conventional hydrogen-bond donor functionality, the supramolecular structures of both compounds are dominated by C—H⋯O bonding (Tables 1 and 2), whereas π–π interactions are specific for I and weaker C—H⋯π bonds are relevant for II only. In the crystal of I, the shortest hydrogen-bond contacts are observed for acetyl O-atom acceptors [C17⋯O4iii = 3.312 (4) Å, symmetry code: (iii) −x + 2, −y + 1, −z + 1]. Such bonds assemble pairs of the molecules into centrosymmetric dimers (Fig. 3) with a cyclic R22(12) (Bernstein et al., 1995) ring motif. The dimers are further interconnected into chains propagating along the a-direction through double π–π interactions of the indole ring systems (Fig. 3). The components of such stacks are related by inversion and therefore two indole systems are parallel, with interplanar separation of 3.517 (4) Å. However, the overlap is only partial, as it is indicated by relatively large intercentroid distances [Cg1⋯Cg2iv = 3.801 (5) Å; Cg1 and Cg2 are the centroids of the N1/C1/C6–C8 and C1–C6 rings, respectively; symmetry code: (iv) −x + 1, −y + 1, −z + 1] and slippage angle of 22.3 (3)°. These parameters agree well with those for π–π interactions seen in the crystal structures of comparable 1-(phenylsulfonyl)-1H-indole derivatives (Madhan et al., 2024). Three C—H⋯O bonds with sulfone O-atom acceptors [C⋯O = 3.410 (5)–3.537 (4) Å; Table 1] are important for connection of the above chains into layers parallel to the ac plane (Fig. 4) and separated by 9.890 Å, which is half of the b-axis parameter of the Only one C—H⋯O bond occurs between the layers, involving the sterically most accessible acetyl O-atom acceptor [C12⋯O4ii = 3.527 (6) Å; symmetry code: (ii) x, −y + , z + ]. No significant C—H⋯π interactions with C⋯centroid distances below 4 Å are observed in the structure.
|
Similar non-covalent layers parallel to the ac plane are also seen in compound II (Fig. 5). However, the bonding pattern differs as π–π interactions are replaced by C—H⋯π interactions (on both axial sides of the indole system) and more extensive C—H⋯O bonding (Table 2). This is in line with increased number of hydrogen-bond donors and acceptors due to the incorporation of the additional phenylsulfonyl groups. The layers are sustained by a number of C—H⋯O interactions, which are relatively weak and distal [C⋯O = 3.503 (9)–3.788 (8)Å]. Significantly shorter contacts adopted by methyl groups are also present: C23⋯O1v = 3.199 (7) Å; symmetry code: (v) x, y, z + 1. As a result of inappropriate angles at the H atoms, these contacts are not regarded as hydrogen bonds, rather representing a kind of tetrel interaction CH3⋯O. A salient feature of the layer concerns C—H⋯π interactions involving the C1–C6 rings, which are appreciably short and directional [C25⋯Cg2iv = 3.483 (5) Å; C25—H25⋯Cg2iv = 147°; Cg2 is the C1–C6 ring centroid; symmetry code: (iv) x − , −y + , z + ]. The shortest interlayer interactions represent C—H⋯O bonds with the most polarized methylene donors [C15⋯O1ii = 3.333 (8) Å; symmetry code: (ii) x, −y + 2, z + ], which act in synergy with a set of longer C—H⋯O (phenyl) bonds and weak C—H⋯π bonds to the indole (N1/C1/C6–C8) acceptors (Fig. 6). In comparison with the structure of I, the much more extensive interactions in the present case result in a lower interlayer spacing of 8.596 Å, which is a half of the b- axis parameter of the This contributes to a slightly higher packing index of 68.1% versus 66.9% for I. However, in both the cases, the packing indices approach the lower limit of the 65–75% range expected for organic solids (Dunitz, 1995), suggesting relatively loose packing of these sterically strained molecules.
4. Hirshfeld surface analysis
The Hirshfeld surface calculations and associated two-dimensional fingerprint plots for I and II were performed in accord with established procedures (Tan et al., 2019) using Crystal Explorer (Spackman et al., 2021) to determine the influence of weak intermolecular interactions upon the molecular packing in the absence of conventional hydrogen bonds. The Hirshfeld surfaces for two compounds mapped over dnorm using a fixed colour scale of −0.249 (red) to 1.450 a.u. (blue) for I and −0.096 (red) to 1.442 a.u. (blue) for II are shown in Fig. 7. One can note a relatively scarce landscape of short contacts that is particularly the case for II, which shows normal van der Waals separations only (denoted with several white regions on the surface). The few red spots present in the case I indicate intermolecular contacts involved in weak hydrogen bonding.
The two-dimensional fingerprint plots (Parkin et al., 2007) detailing the various interactions for the molecules are shown in Fig. 8. For both compounds, the Hirshfeld surfaces suggest dominance of contacts with hydrogen atoms, accounting for over 85% of the contacts. Beyond the largest fractions of H⋯H contacts (48.8 and 44.6%), these short separations are overwhelmingly O⋯H/H⋯O and C⋯H/H⋯C, which contribute 22.4 and 21.7%, respectively, to the Hirshfeld surface in I and 25.8 and 26.8%, respectively, in II, respectively. The plots also illustrate the finding discussed above that the structure of II exhibits a larger number, but essentially weaker C—H⋯O bonds. Thus, for I the O⋯H/H⋯O plot represents pair of broad spikes pointing to the lower left, with the shortest contact being 2.35 Å, whereas in the case of II the diffuse and faintly discernible spikes are much shorter (O⋯H = 2.70 Å). The larger contribution of C⋯H/H⋯C contacts for II (Fig. 8) reflects the increased significance of C—H⋯π interactions for the crystal packing, in line with increased number of aromatic groups. The small fraction of N⋯H/H⋯N contacts (1.3%) is also a consequence of C—H⋯π bonding, namely with the pyrrole ring acceptor. An overlap between the parallel indole ring systems in I, due to the slipped π–π interactions, is clearly indicated by the plots for C⋯C, N⋯C/C⋯N and O⋯C/C⋯O (total contribution is 7.1%), in the form of the blue areas centered at ca de = di = 1.90 Å and with shortest contacts of 3.50 Å (Fig. 8). This weak bonding complements the above interactions involving H atoms. For both compounds, the H⋯H intermolecular contacts predominate, followed by the C⋯H/H⋯C and O⋯H/H⋯O contacts. The Hirshfeld surface analysis confirms the importance of distal H-atom contacts (and contacts associated with the π–π interaction for I) in establishing the packing.
5. Database survey
A search of the Cambridge Structural Database (Version 5.37; Groom et al., 2016) indicated 123 compounds incorporating the phenylsulfonyl-1H-indole moiety. Of these, the most closely related examples are provided by structures of bromo-substituted 3-methyl-1-(phenylsulfonyl)-1H-indole derivatives (JOMJII, JOMJAA and JOMJEE; Madhan et al., 2024), ethyl 2-acetoxymethyl-1-phenylsulfonyl-1H-indole-3-carboxylate (HUCQUS; Gunasekaran et al., 2009), 3-iodo-2-methyl-1-phenylsulfonyl-1H-indole (ULESEK; Ramathilagam et al., 2011) and 1-(2-bromomethyl-1-phenylsulfonyl-1H-indol-3-yl)propan-1-one (CIQFEP; Umadevi et al., 2013). In these structures, the sulfonyl-bound phenyl rings are almost orthogonal to the indole ring systems [the corresponding dihedral angles are in the range 73.35 (7)–89.91 (11)°], being comparable with those in the present two compounds.
6. Synthesis and crystallization
Compound I: 3-methoxy-N-{[1-(phenylsulfonyl)-1H-indol-2-yl]methyl}aniline (0.100 g, 0.255 mmol) was dissolved in 5 ml of acetic anhydride and the reaction mixture was stirred for 8 h at 343 K. After completion of the reaction (monitored by TLC, Rf = 0.30, hexane–ethyl acetate 80:20 v/v), the solution was poured into crushed ice (50 g), the solid formed was filtered, washed with 100 ml of water and dried over anhydrous CaCl2. Recrystallization of the crude product from diethyl ether (10 mL) afforded N-(3-methoxyphenyl)-N-{[1-(phenylsulfonyl)-1H-indol-2-yl]methyl}acetamide as a colourless solid (84 mg, 76%), m.p. = 413–415 K. 1H NMR (300 MHz, CDCl3), δ, p.p.m.: 8.06 (d, J = 7.8 Hz, 1H), 7.74 (d, J = 7.8 Hz, 2H), 7.50–7.34 (m, 4H), 7.29–7.16 (m, 3H), 6.87–6.79 (m, 3H), 6.61 (s, 1H), 5.35 (s, 2H), 3.76 (s, 3H), 2.04 (s, 3H). 13C{1H} NMR (75 MHz, CDCl3), δ, p.p.m.: 170.7, 160.4, 144.2, 138.3, 137.1, 137.0, 133.7, 130.3, 129.5, 129.2, 126.3, 124.4, 123.7, 120.6, 119.7, 114.5, 113.4, 113.3, 110.4, 55.4, 48.2, 22.6.
Compound II: To a solution of 2-(bromomethyl)-1-(phenylsulfonyl)-1H-indole (0.710 g, 2.040 mmol) in CH3CN (10 ml), K2CO3 (0.422 g, 3.060 mmol) and N-(2,5-dimethoxyphenyl)benzenesulfonamide (0.717 g, 2.448 mmol) were added and the mixture was stirred at room temperature for 12 h. After completion of the reaction (monitored by TLC, Rf = 0.60, hexane-ethyl acetate 80:20 v/v), the mixture was poured into crushed ice (50 g) containing 1 mL of concentrated HCl solution. The mixture was extracted with ethyl acetate (2 × 20 ml), the extracts were washed with water (2 × 20 ml) and dried over anhydrous Na2SO4. Removal of the solvent in vacuo followed by trituration of the crude product with 5 ml of methanol afforded N-(2,5-dimethoxyphenyl)-N-{[1-(phenylsulfonyl)-1H-indol-2-yl]methyl}benzenesulfonamide (0.802 g, 70%) as colourless solid, m.p. = 409–411 K. 1H NMR (300 MHz, CDCl3), δ, p.p.m.: 7.95 (d, J = 7.8 Hz, 1H), 7.66–7.57 (m, 4H), 7.53–7.46 (m, 1H), 7.43–7.35 (m, 4H), 7.32–7.24 (m, 2H), 7.21–7.08 (m, 2H), 7.00–6.90 (m, 2H), 6.73 (dd, J1 = 9.0 Hz, J2 = 2.7 Hz, 1H), 6.63–6.54 (m, 1H), 5.23 (s, 2H), 3.65 (s, 3H), 3.24 (s, 3H). 13C{1H} NMR (75 MHz, CDCl3), δ, p.p.m.: 153.1, 150.1, 139.6, 138.3, 138.1, 137.3, 133.7, 132.5, 129.7, 129.2, 128.5, 127.7, 127.2, 126.3, 124.4, 123.8, 120.9, 118.9, 114.9, 114.5, 112.1, 111.6, 55.8, 55.3, 49.1.
7. Refinement
Crystal data, data collection and structure . All C-bound H atoms were positioned geometrically and constrained to ride on their parent atoms: C—H = 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms.
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989024006649/nu2006sup1.cif
contains datablocks global, I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024006649/nu2006Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989024006649/nu2006IIsup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024006649/nu2006Isup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989024006649/nu2006IIsup5.cml
C24H22N2O4S | F(000) = 912 |
Mr = 434.49 | Dx = 1.335 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
a = 13.6698 (17) Å | Cell parameters from 47234 reflections |
b = 19.781 (2) Å | θ = 1.4–25.0° |
c = 8.1056 (10) Å | µ = 1.61 mm−1 |
β = 99.388 (8)° | T = 305 K |
V = 2162.4 (5) Å3 | Prism, colorless |
Z = 4 | 0.16 × 0.13 × 0.04 mm |
Bruker D8 Venture Diffractometer | 2595 reflections with I > 2σ(I) |
Radiation source: micro focus sealed tube | Rint = 0.087 |
ω and φ scans | θmax = 68.6°, θmin = 3.3° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −16→16 |
Tmin = 0.634, Tmax = 0.753 | k = −23→23 |
47234 measured reflections | l = −9→9 |
3963 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.058 | H-atom parameters constrained |
wR(F2) = 0.179 | w = 1/[σ2(Fo2) + (0.0662P)2 + 2.3955P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
3963 reflections | Δρmax = 0.27 e Å−3 |
283 parameters | Δρmin = −0.41 e Å−3 |
0 restraints | Extinction correction: SHELXL2018/3 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0036 (4) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.5527 (2) | 0.58150 (16) | 0.5180 (4) | 0.0494 (8) | |
C2 | 0.4749 (3) | 0.61289 (19) | 0.5779 (5) | 0.0613 (9) | |
H2 | 0.471182 | 0.613774 | 0.691426 | 0.074* | |
C3 | 0.4031 (3) | 0.6428 (2) | 0.4613 (5) | 0.0727 (11) | |
H3 | 0.350636 | 0.665179 | 0.497364 | 0.087* | |
C4 | 0.4072 (3) | 0.6402 (2) | 0.2915 (5) | 0.0781 (12) | |
H4 | 0.357245 | 0.660465 | 0.216034 | 0.094* | |
C5 | 0.4840 (3) | 0.6083 (2) | 0.2333 (5) | 0.0673 (10) | |
H5 | 0.485845 | 0.606208 | 0.119252 | 0.081* | |
C6 | 0.5586 (2) | 0.57918 (17) | 0.3473 (4) | 0.0513 (8) | |
C7 | 0.6486 (3) | 0.54485 (18) | 0.3303 (4) | 0.0555 (8) | |
H7 | 0.670758 | 0.536369 | 0.229756 | 0.067* | |
C8 | 0.6960 (2) | 0.52676 (16) | 0.4825 (4) | 0.0502 (8) | |
C9 | 0.7198 (3) | 0.64340 (19) | 0.8178 (4) | 0.0599 (9) | |
C10 | 0.6621 (4) | 0.6939 (2) | 0.8699 (6) | 0.0867 (13) | |
H10 | 0.600910 | 0.683953 | 0.899914 | 0.104* | |
C11 | 0.6973 (5) | 0.7597 (3) | 0.8766 (8) | 0.1113 (19) | |
H11 | 0.659700 | 0.794043 | 0.913607 | 0.134* | |
C12 | 0.7863 (5) | 0.7751 (3) | 0.8299 (7) | 0.1083 (18) | |
H12 | 0.808546 | 0.819604 | 0.833023 | 0.130* | |
C13 | 0.8418 (4) | 0.7248 (3) | 0.7790 (7) | 0.1038 (17) | |
H13 | 0.902906 | 0.735134 | 0.748880 | 0.125* | |
C14 | 0.8097 (3) | 0.6589 (2) | 0.7709 (6) | 0.0824 (12) | |
H14 | 0.848301 | 0.625099 | 0.734269 | 0.099* | |
C15 | 0.7907 (3) | 0.48792 (19) | 0.5282 (4) | 0.0591 (9) | |
H15A | 0.837940 | 0.514936 | 0.602804 | 0.071* | |
H15B | 0.777940 | 0.446945 | 0.586890 | 0.071* | |
C16 | 0.8217 (2) | 0.40106 (16) | 0.3218 (4) | 0.0484 (8) | |
C17 | 0.8897 (2) | 0.35387 (16) | 0.3928 (4) | 0.0525 (8) | |
H17 | 0.943506 | 0.367152 | 0.471601 | 0.063* | |
C18 | 0.8780 (3) | 0.28657 (17) | 0.3468 (4) | 0.0544 (8) | |
C19 | 0.7983 (3) | 0.26690 (19) | 0.2299 (5) | 0.0618 (9) | |
H19 | 0.789780 | 0.221723 | 0.199177 | 0.074* | |
C20 | 0.7312 (3) | 0.3150 (2) | 0.1590 (5) | 0.0672 (10) | |
H20 | 0.677551 | 0.301742 | 0.079824 | 0.081* | |
C21 | 0.7419 (3) | 0.38218 (19) | 0.2031 (4) | 0.0607 (9) | |
H21 | 0.696470 | 0.414191 | 0.153903 | 0.073* | |
C22 | 0.9413 (4) | 0.1736 (2) | 0.3867 (6) | 0.0915 (14) | |
H22A | 0.879674 | 0.156372 | 0.411348 | 0.137* | |
H22B | 0.995389 | 0.149874 | 0.452372 | 0.137* | |
H22C | 0.943939 | 0.167330 | 0.270103 | 0.137* | |
C23 | 0.8979 (3) | 0.51411 (18) | 0.3257 (5) | 0.0578 (9) | |
C24 | 0.9462 (3) | 0.4928 (2) | 0.1812 (5) | 0.0687 (10) | |
H24A | 0.992634 | 0.526852 | 0.159832 | 0.103* | |
H24B | 0.896515 | 0.487187 | 0.083803 | 0.103* | |
H24C | 0.980398 | 0.450824 | 0.207134 | 0.103* | |
N1 | 0.63700 (19) | 0.54697 (14) | 0.6039 (3) | 0.0495 (7) | |
N2 | 0.8335 (2) | 0.47013 (13) | 0.3784 (3) | 0.0516 (7) | |
O1 | 0.5933 (2) | 0.55538 (14) | 0.8893 (3) | 0.0732 (8) | |
O2 | 0.7592 (2) | 0.51507 (13) | 0.8517 (3) | 0.0735 (8) | |
O3 | 0.9487 (2) | 0.24362 (12) | 0.4258 (4) | 0.0755 (8) | |
O4 | 0.9139 (2) | 0.56971 (13) | 0.3939 (4) | 0.0815 (9) | |
S1 | 0.67746 (7) | 0.55995 (5) | 0.80653 (10) | 0.0577 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0507 (18) | 0.0488 (18) | 0.0484 (18) | 0.0017 (14) | 0.0070 (14) | 0.0016 (14) |
C2 | 0.061 (2) | 0.071 (2) | 0.055 (2) | 0.0074 (19) | 0.0169 (17) | 0.0000 (17) |
C3 | 0.062 (2) | 0.088 (3) | 0.070 (3) | 0.019 (2) | 0.0174 (19) | 0.004 (2) |
C4 | 0.069 (2) | 0.096 (3) | 0.069 (3) | 0.024 (2) | 0.012 (2) | 0.016 (2) |
C5 | 0.066 (2) | 0.083 (3) | 0.053 (2) | 0.014 (2) | 0.0087 (17) | 0.0099 (19) |
C6 | 0.0535 (18) | 0.0532 (19) | 0.0469 (18) | 0.0029 (15) | 0.0074 (14) | 0.0035 (14) |
C7 | 0.062 (2) | 0.062 (2) | 0.0441 (18) | 0.0094 (17) | 0.0107 (15) | 0.0019 (15) |
C8 | 0.0541 (18) | 0.0479 (18) | 0.0489 (18) | 0.0059 (15) | 0.0094 (14) | −0.0045 (14) |
C9 | 0.069 (2) | 0.062 (2) | 0.0469 (19) | 0.0051 (18) | 0.0015 (16) | −0.0058 (16) |
C10 | 0.091 (3) | 0.072 (3) | 0.097 (3) | 0.007 (2) | 0.014 (3) | −0.022 (2) |
C11 | 0.141 (5) | 0.063 (3) | 0.125 (5) | 0.005 (3) | 0.007 (4) | −0.030 (3) |
C12 | 0.147 (5) | 0.070 (3) | 0.100 (4) | −0.029 (4) | −0.003 (4) | −0.009 (3) |
C13 | 0.105 (4) | 0.089 (4) | 0.117 (4) | −0.033 (3) | 0.018 (3) | −0.013 (3) |
C14 | 0.078 (3) | 0.078 (3) | 0.093 (3) | −0.009 (2) | 0.018 (2) | −0.015 (2) |
C15 | 0.062 (2) | 0.063 (2) | 0.0498 (19) | 0.0096 (17) | 0.0032 (16) | −0.0078 (16) |
C16 | 0.0477 (17) | 0.0484 (18) | 0.0498 (18) | −0.0023 (14) | 0.0101 (14) | −0.0055 (14) |
C17 | 0.0519 (18) | 0.0469 (19) | 0.0570 (19) | −0.0013 (15) | 0.0035 (15) | −0.0051 (15) |
C18 | 0.057 (2) | 0.0495 (19) | 0.057 (2) | 0.0028 (16) | 0.0110 (16) | 0.0052 (15) |
C19 | 0.072 (2) | 0.052 (2) | 0.063 (2) | −0.0132 (18) | 0.0132 (18) | −0.0067 (17) |
C20 | 0.066 (2) | 0.068 (2) | 0.063 (2) | −0.010 (2) | −0.0016 (18) | −0.0101 (19) |
C21 | 0.059 (2) | 0.062 (2) | 0.059 (2) | 0.0033 (18) | 0.0037 (16) | −0.0056 (17) |
C22 | 0.119 (4) | 0.047 (2) | 0.107 (4) | 0.013 (2) | 0.014 (3) | −0.001 (2) |
C23 | 0.0501 (19) | 0.051 (2) | 0.070 (2) | 0.0038 (16) | 0.0001 (16) | −0.0033 (17) |
C24 | 0.064 (2) | 0.067 (2) | 0.078 (3) | −0.0058 (19) | 0.0183 (19) | 0.005 (2) |
N1 | 0.0545 (16) | 0.0554 (16) | 0.0385 (14) | 0.0040 (13) | 0.0077 (11) | −0.0023 (11) |
N2 | 0.0515 (15) | 0.0473 (15) | 0.0566 (16) | 0.0022 (13) | 0.0101 (12) | −0.0067 (12) |
O1 | 0.0866 (19) | 0.0873 (19) | 0.0511 (14) | −0.0085 (15) | 0.0270 (13) | 0.0007 (13) |
O2 | 0.0924 (19) | 0.0701 (17) | 0.0512 (14) | 0.0249 (15) | −0.0085 (13) | 0.0035 (12) |
O3 | 0.0819 (18) | 0.0497 (15) | 0.091 (2) | 0.0084 (13) | 0.0019 (15) | 0.0007 (13) |
O4 | 0.0768 (18) | 0.0556 (16) | 0.108 (2) | −0.0049 (14) | 0.0034 (16) | −0.0171 (15) |
S1 | 0.0714 (6) | 0.0588 (6) | 0.0420 (5) | 0.0043 (4) | 0.0062 (4) | −0.0007 (4) |
C1—C2 | 1.386 (5) | C15—N2 | 1.473 (4) |
C1—C6 | 1.400 (4) | C15—H15A | 0.9700 |
C1—N1 | 1.420 (4) | C15—H15B | 0.9700 |
C2—C3 | 1.379 (5) | C16—C17 | 1.375 (5) |
C2—H2 | 0.9300 | C16—C21 | 1.383 (5) |
C3—C4 | 1.387 (6) | C16—N2 | 1.442 (4) |
C3—H3 | 0.9300 | C17—C18 | 1.385 (5) |
C4—C5 | 1.373 (5) | C17—H17 | 0.9300 |
C4—H4 | 0.9300 | C18—O3 | 1.366 (4) |
C5—C6 | 1.385 (5) | C18—C19 | 1.378 (5) |
C5—H5 | 0.9300 | C19—C20 | 1.380 (5) |
C6—C7 | 1.431 (5) | C19—H19 | 0.9300 |
C7—C8 | 1.345 (4) | C20—C21 | 1.378 (5) |
C7—H7 | 0.9300 | C20—H20 | 0.9300 |
C8—N1 | 1.427 (4) | C21—H21 | 0.9300 |
C8—C15 | 1.499 (5) | C22—O3 | 1.420 (5) |
C9—C14 | 1.380 (6) | C22—H22A | 0.9600 |
C9—C10 | 1.381 (5) | C22—H22B | 0.9600 |
C9—S1 | 1.746 (4) | C22—H22C | 0.9600 |
C10—C11 | 1.386 (7) | C23—O4 | 1.234 (4) |
C10—H10 | 0.9300 | C23—N2 | 1.356 (4) |
C11—C12 | 1.365 (8) | C23—C24 | 1.496 (5) |
C11—H11 | 0.9300 | C24—H24A | 0.9600 |
C12—C13 | 1.357 (8) | C24—H24B | 0.9600 |
C12—H12 | 0.9300 | C24—H24C | 0.9600 |
C13—C14 | 1.373 (6) | N1—S1 | 1.665 (3) |
C13—H13 | 0.9300 | O1—S1 | 1.426 (3) |
C14—H14 | 0.9300 | O2—S1 | 1.427 (3) |
C2—C1—C6 | 122.1 (3) | H15A—C15—H15B | 108.0 |
C2—C1—N1 | 130.7 (3) | C17—C16—C21 | 120.7 (3) |
C6—C1—N1 | 107.2 (3) | C17—C16—N2 | 118.5 (3) |
C3—C2—C1 | 116.9 (3) | C21—C16—N2 | 120.8 (3) |
C3—C2—H2 | 121.5 | C16—C17—C18 | 120.0 (3) |
C1—C2—H2 | 121.5 | C16—C17—H17 | 120.0 |
C2—C3—C4 | 121.7 (4) | C18—C17—H17 | 120.0 |
C2—C3—H3 | 119.2 | O3—C18—C19 | 124.5 (3) |
C4—C3—H3 | 119.2 | O3—C18—C17 | 115.5 (3) |
C5—C4—C3 | 121.0 (4) | C19—C18—C17 | 120.0 (3) |
C5—C4—H4 | 119.5 | C18—C19—C20 | 119.3 (3) |
C3—C4—H4 | 119.5 | C18—C19—H19 | 120.4 |
C4—C5—C6 | 118.9 (4) | C20—C19—H19 | 120.4 |
C4—C5—H5 | 120.6 | C21—C20—C19 | 121.4 (3) |
C6—C5—H5 | 120.6 | C21—C20—H20 | 119.3 |
C5—C6—C1 | 119.4 (3) | C19—C20—H20 | 119.3 |
C5—C6—C7 | 133.1 (3) | C20—C21—C16 | 118.6 (3) |
C1—C6—C7 | 107.5 (3) | C20—C21—H21 | 120.7 |
C8—C7—C6 | 109.3 (3) | C16—C21—H21 | 120.7 |
C8—C7—H7 | 125.3 | O3—C22—H22A | 109.5 |
C6—C7—H7 | 125.3 | O3—C22—H22B | 109.5 |
C7—C8—N1 | 108.4 (3) | H22A—C22—H22B | 109.5 |
C7—C8—C15 | 129.1 (3) | O3—C22—H22C | 109.5 |
N1—C8—C15 | 122.4 (3) | H22A—C22—H22C | 109.5 |
C14—C9—C10 | 120.1 (4) | H22B—C22—H22C | 109.5 |
C14—C9—S1 | 119.9 (3) | O4—C23—N2 | 120.5 (4) |
C10—C9—S1 | 119.9 (3) | O4—C23—C24 | 122.2 (4) |
C9—C10—C11 | 118.7 (5) | N2—C23—C24 | 117.3 (3) |
C9—C10—H10 | 120.7 | C23—C24—H24A | 109.5 |
C11—C10—H10 | 120.7 | C23—C24—H24B | 109.5 |
C12—C11—C10 | 121.1 (5) | H24A—C24—H24B | 109.5 |
C12—C11—H11 | 119.4 | C23—C24—H24C | 109.5 |
C10—C11—H11 | 119.4 | H24A—C24—H24C | 109.5 |
C13—C12—C11 | 119.3 (5) | H24B—C24—H24C | 109.5 |
C13—C12—H12 | 120.4 | C1—N1—C8 | 107.5 (2) |
C11—C12—H12 | 120.4 | C1—N1—S1 | 121.4 (2) |
C12—C13—C14 | 121.4 (5) | C8—N1—S1 | 126.1 (2) |
C12—C13—H13 | 119.3 | C23—N2—C16 | 123.5 (3) |
C14—C13—H13 | 119.3 | C23—N2—C15 | 118.2 (3) |
C13—C14—C9 | 119.4 (5) | C16—N2—C15 | 116.7 (3) |
C13—C14—H14 | 120.3 | C18—O3—C22 | 118.9 (3) |
C9—C14—H14 | 120.3 | O1—S1—O2 | 119.83 (17) |
N2—C15—C8 | 111.2 (3) | O1—S1—N1 | 106.91 (15) |
N2—C15—H15A | 109.4 | O2—S1—N1 | 106.10 (14) |
C8—C15—H15A | 109.4 | O1—S1—C9 | 108.73 (18) |
N2—C15—H15B | 109.4 | O2—S1—C9 | 109.62 (18) |
C8—C15—H15B | 109.4 | N1—S1—C9 | 104.54 (15) |
C6—C1—C2—C3 | −0.7 (6) | N2—C16—C21—C20 | −176.8 (3) |
N1—C1—C2—C3 | 179.7 (4) | C2—C1—N1—C8 | −177.6 (4) |
C1—C2—C3—C4 | 1.5 (6) | C6—C1—N1—C8 | 2.7 (4) |
C2—C3—C4—C5 | −0.7 (7) | C2—C1—N1—S1 | −21.1 (5) |
C3—C4—C5—C6 | −0.9 (7) | C6—C1—N1—S1 | 159.3 (2) |
C4—C5—C6—C1 | 1.7 (6) | C7—C8—N1—C1 | −2.7 (4) |
C4—C5—C6—C7 | −177.7 (4) | C15—C8—N1—C1 | −179.1 (3) |
C2—C1—C6—C5 | −0.9 (5) | C7—C8—N1—S1 | −157.9 (3) |
N1—C1—C6—C5 | 178.8 (3) | C15—C8—N1—S1 | 25.7 (5) |
C2—C1—C6—C7 | 178.6 (3) | O4—C23—N2—C16 | −170.7 (3) |
N1—C1—C6—C7 | −1.7 (4) | C24—C23—N2—C16 | 10.4 (5) |
C5—C6—C7—C8 | 179.4 (4) | O4—C23—N2—C15 | −5.6 (5) |
C1—C6—C7—C8 | 0.0 (4) | C24—C23—N2—C15 | 175.6 (3) |
C6—C7—C8—N1 | 1.7 (4) | C17—C16—N2—C23 | 80.1 (4) |
C6—C7—C8—C15 | 177.7 (3) | C21—C16—N2—C23 | −102.1 (4) |
C14—C9—C10—C11 | −1.1 (7) | C17—C16—N2—C15 | −85.2 (4) |
S1—C9—C10—C11 | −179.6 (4) | C21—C16—N2—C15 | 92.5 (4) |
C9—C10—C11—C12 | 1.2 (8) | C8—C15—N2—C23 | 90.1 (4) |
C10—C11—C12—C13 | −1.2 (9) | C8—C15—N2—C16 | −103.7 (3) |
C11—C12—C13—C14 | 1.0 (9) | C19—C18—O3—C22 | 0.1 (6) |
C12—C13—C14—C9 | −0.9 (8) | C17—C18—O3—C22 | 179.4 (4) |
C10—C9—C14—C13 | 0.9 (7) | C1—N1—S1—O1 | 48.3 (3) |
S1—C9—C14—C13 | 179.5 (4) | C8—N1—S1—O1 | −159.7 (3) |
C7—C8—C15—N2 | 1.1 (5) | C1—N1—S1—O2 | 177.3 (3) |
N1—C8—C15—N2 | 176.6 (3) | C8—N1—S1—O2 | −30.7 (3) |
C21—C16—C17—C18 | −0.7 (5) | C1—N1—S1—C9 | −66.9 (3) |
N2—C16—C17—C18 | 177.0 (3) | C8—N1—S1—C9 | 85.1 (3) |
C16—C17—C18—O3 | −179.3 (3) | C14—C9—S1—O1 | 169.5 (3) |
C16—C17—C18—C19 | 0.1 (5) | C10—C9—S1—O1 | −11.9 (4) |
O3—C18—C19—C20 | 179.7 (3) | C14—C9—S1—O2 | 36.8 (4) |
C17—C18—C19—C20 | 0.4 (5) | C10—C9—S1—O2 | −144.7 (3) |
C18—C19—C20—C21 | −0.3 (6) | C14—C9—S1—N1 | −76.6 (3) |
C19—C20—C21—C16 | −0.4 (6) | C10—C9—S1—N1 | 102.0 (3) |
C17—C16—C21—C20 | 0.9 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O1 | 0.93 | 2.41 | 2.993 (5) | 120 |
C5—H5···O1i | 0.93 | 2.75 | 3.530 (5) | 143 |
C7—H7···O1i | 0.93 | 2.81 | 3.537 (4) | 135 |
C12—H12···O4ii | 0.93 | 2.62 | 3.527 (6) | 164 |
C13—H13···O3iii | 0.93 | 2.69 | 3.591 (7) | 164 |
C17—H17···O4iii | 0.93 | 2.42 | 3.312 (4) | 161 |
C24—H24B···O2i | 0.96 | 2.49 | 3.410 (5) | 160 |
Symmetry codes: (i) x, y, z−1; (ii) x, −y+3/2, z+1/2; (iii) −x+2, −y+1, −z+1. |
C29H26N2O6S2 | F(000) = 1176 |
Mr = 562.64 | Dx = 1.405 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
a = 13.463 (9) Å | Cell parameters from 42032 reflections |
b = 17.193 (12) Å | θ = 1.4–25.0° |
c = 11.532 (7) Å | µ = 0.25 mm−1 |
β = 94.844 (19)° | T = 293 K |
V = 2660 (3) Å3 | Prism, colorless |
Z = 4 | 0.33 × 0.22 × 0.11 mm |
Bruker D8 Venture Diffractometer | 4533 reflections with I > 2σ(I) |
Radiation source: micro focus sealed tube | Rint = 0.086 |
ω and φ scans | θmax = 26.5°, θmin = 3.6° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −16→16 |
Tmin = 0.504, Tmax = 0.745 | k = −21→21 |
42032 measured reflections | l = −14→14 |
5193 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.057 | H-atom parameters constrained |
wR(F2) = 0.154 | w = 1/[σ2(Fo2) + (0.0731P)2 + 3.4858P] where P = (Fo2 + 2Fc2)/3 |
S = 1.12 | (Δ/σ)max < 0.001 |
5193 reflections | Δρmax = 1.17 e Å−3 |
354 parameters | Δρmin = −0.26 e Å−3 |
2 restraints | Absolute structure: Flack x determined using 1861 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.16 (4) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.5561 (5) | 0.9136 (3) | 0.2353 (5) | 0.0405 (13) | |
C2 | 0.5964 (6) | 0.9217 (4) | 0.1289 (6) | 0.0540 (16) | |
H2 | 0.555973 | 0.922012 | 0.059422 | 0.065* | |
C3 | 0.6984 (6) | 0.9292 (4) | 0.1301 (7) | 0.0629 (19) | |
H3 | 0.727709 | 0.933603 | 0.060166 | 0.076* | |
C4 | 0.7585 (6) | 0.9304 (5) | 0.2352 (8) | 0.068 (2) | |
H4 | 0.827185 | 0.935784 | 0.234498 | 0.081* | |
C5 | 0.7173 (5) | 0.9237 (5) | 0.3382 (8) | 0.0611 (18) | |
H5 | 0.758088 | 0.924447 | 0.407445 | 0.073* | |
C6 | 0.6143 (5) | 0.9157 (3) | 0.3416 (6) | 0.0457 (14) | |
C7 | 0.5506 (5) | 0.9086 (4) | 0.4325 (6) | 0.0474 (15) | |
H7 | 0.571262 | 0.908568 | 0.511531 | 0.057* | |
C8 | 0.4548 (4) | 0.9019 (3) | 0.3871 (5) | 0.0368 (12) | |
C9 | 0.3602 (5) | 0.7823 (3) | 0.1536 (5) | 0.0419 (13) | |
C10 | 0.4339 (5) | 0.7464 (4) | 0.0981 (7) | 0.0556 (17) | |
H10 | 0.484497 | 0.775373 | 0.068826 | 0.067* | |
C11 | 0.4316 (6) | 0.6650 (4) | 0.0862 (9) | 0.070 (2) | |
H11 | 0.481400 | 0.639367 | 0.050114 | 0.084* | |
C12 | 0.3561 (7) | 0.6243 (5) | 0.1277 (8) | 0.071 (2) | |
H12 | 0.354691 | 0.570506 | 0.119685 | 0.085* | |
C13 | 0.2819 (7) | 0.6605 (5) | 0.1812 (8) | 0.074 (2) | |
H13 | 0.230384 | 0.631258 | 0.207941 | 0.088* | |
C14 | 0.2831 (6) | 0.7404 (5) | 0.1957 (6) | 0.0608 (19) | |
H14 | 0.233290 | 0.765304 | 0.232769 | 0.073* | |
C15 | 0.3647 (5) | 0.9029 (3) | 0.4548 (5) | 0.0400 (12) | |
H15A | 0.381098 | 0.928997 | 0.528504 | 0.048* | |
H15B | 0.312174 | 0.932270 | 0.411961 | 0.048* | |
C16 | 0.3950 (4) | 0.7701 (3) | 0.5439 (5) | 0.0371 (12) | |
C17 | 0.4070 (5) | 0.6956 (4) | 0.4999 (5) | 0.0443 (13) | |
H17 | 0.375102 | 0.681947 | 0.428127 | 0.053* | |
C18 | 0.4660 (5) | 0.6420 (4) | 0.5620 (6) | 0.0481 (15) | |
C19 | 0.5150 (5) | 0.6612 (4) | 0.6672 (6) | 0.0552 (17) | |
H19 | 0.555292 | 0.624805 | 0.707987 | 0.066* | |
C20 | 0.5043 (5) | 0.7351 (4) | 0.7125 (6) | 0.0531 (16) | |
H20 | 0.537510 | 0.748217 | 0.783811 | 0.064* | |
C21 | 0.4437 (4) | 0.7899 (4) | 0.6516 (5) | 0.0422 (13) | |
C22 | 0.4410 (7) | 0.5443 (5) | 0.4146 (8) | 0.074 (2) | |
H22A | 0.461365 | 0.581454 | 0.359113 | 0.110* | |
H22B | 0.369542 | 0.542977 | 0.411544 | 0.110* | |
H22C | 0.465569 | 0.493729 | 0.396292 | 0.110* | |
C23 | 0.4596 (8) | 0.8823 (5) | 0.8082 (7) | 0.077 (2) | |
H23A | 0.531027 | 0.880524 | 0.820273 | 0.115* | |
H23B | 0.431424 | 0.845285 | 0.858364 | 0.115* | |
H23C | 0.436809 | 0.933578 | 0.825521 | 0.115* | |
C24 | 0.1965 (4) | 0.8362 (4) | 0.6486 (5) | 0.0415 (13) | |
C25 | 0.1984 (5) | 0.7775 (4) | 0.7286 (6) | 0.0531 (16) | |
H25 | 0.206152 | 0.726136 | 0.705626 | 0.064* | |
C26 | 0.1887 (6) | 0.7953 (5) | 0.8457 (7) | 0.067 (2) | |
H26 | 0.189399 | 0.755573 | 0.900444 | 0.081* | |
C27 | 0.1782 (6) | 0.8710 (5) | 0.8800 (7) | 0.065 (2) | |
H27 | 0.172197 | 0.882626 | 0.957870 | 0.078* | |
C28 | 0.1766 (6) | 0.9298 (5) | 0.7985 (7) | 0.065 (2) | |
H28 | 0.170116 | 0.981104 | 0.822519 | 0.077* | |
C29 | 0.1843 (5) | 0.9143 (4) | 0.6818 (7) | 0.0540 (16) | |
H29 | 0.181569 | 0.954118 | 0.627016 | 0.065* | |
N1 | 0.4553 (4) | 0.9058 (3) | 0.2641 (4) | 0.0389 (10) | |
N2 | 0.3279 (4) | 0.8234 (3) | 0.4772 (4) | 0.0363 (10) | |
O1 | 0.3855 (4) | 0.9166 (3) | 0.0595 (4) | 0.0592 (12) | |
O2 | 0.2718 (4) | 0.9068 (3) | 0.2140 (4) | 0.0608 (13) | |
O3 | 0.4797 (5) | 0.5658 (3) | 0.5265 (5) | 0.0713 (15) | |
O4 | 0.4295 (4) | 0.8639 (3) | 0.6904 (4) | 0.0544 (11) | |
O5 | 0.1821 (3) | 0.7351 (3) | 0.4813 (4) | 0.0556 (12) | |
O6 | 0.1575 (3) | 0.8740 (3) | 0.4303 (5) | 0.0573 (12) | |
S1 | 0.36074 (11) | 0.88404 (9) | 0.16552 (11) | 0.0423 (4) | |
S2 | 0.20853 (11) | 0.81497 (9) | 0.50035 (12) | 0.0414 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.050 (3) | 0.031 (3) | 0.041 (3) | −0.009 (2) | 0.010 (3) | 0.000 (2) |
C2 | 0.062 (4) | 0.051 (4) | 0.050 (4) | −0.011 (3) | 0.011 (3) | −0.004 (3) |
C3 | 0.070 (5) | 0.057 (4) | 0.065 (5) | −0.014 (4) | 0.030 (4) | 0.002 (3) |
C4 | 0.053 (4) | 0.063 (5) | 0.089 (6) | −0.016 (3) | 0.017 (4) | −0.007 (4) |
C5 | 0.044 (3) | 0.068 (5) | 0.072 (5) | −0.011 (3) | 0.004 (3) | 0.003 (4) |
C6 | 0.051 (3) | 0.035 (3) | 0.050 (4) | −0.005 (3) | −0.003 (3) | 0.000 (2) |
C7 | 0.048 (3) | 0.052 (4) | 0.041 (3) | −0.010 (3) | −0.004 (3) | 0.003 (3) |
C8 | 0.047 (3) | 0.032 (3) | 0.031 (3) | −0.005 (2) | 0.002 (2) | −0.001 (2) |
C9 | 0.042 (3) | 0.041 (3) | 0.040 (3) | −0.001 (3) | −0.010 (2) | −0.002 (3) |
C10 | 0.043 (3) | 0.050 (4) | 0.074 (5) | −0.003 (3) | 0.002 (3) | −0.011 (3) |
C11 | 0.053 (4) | 0.051 (4) | 0.104 (7) | 0.003 (3) | −0.008 (4) | −0.019 (4) |
C12 | 0.086 (6) | 0.050 (4) | 0.074 (5) | −0.012 (4) | −0.011 (5) | −0.003 (4) |
C13 | 0.091 (6) | 0.067 (5) | 0.064 (5) | −0.036 (5) | 0.011 (4) | −0.003 (4) |
C14 | 0.056 (4) | 0.074 (5) | 0.052 (4) | −0.007 (4) | 0.003 (3) | −0.015 (3) |
C15 | 0.049 (3) | 0.035 (3) | 0.036 (3) | 0.001 (2) | 0.003 (2) | −0.003 (2) |
C16 | 0.039 (3) | 0.041 (3) | 0.032 (3) | −0.001 (2) | 0.003 (2) | −0.003 (2) |
C17 | 0.044 (3) | 0.047 (3) | 0.040 (3) | −0.006 (3) | −0.004 (2) | −0.003 (2) |
C18 | 0.043 (3) | 0.038 (3) | 0.062 (4) | −0.003 (3) | 0.002 (3) | 0.003 (3) |
C19 | 0.046 (4) | 0.063 (4) | 0.055 (4) | 0.006 (3) | −0.007 (3) | 0.013 (3) |
C20 | 0.044 (3) | 0.066 (4) | 0.047 (4) | −0.003 (3) | −0.011 (3) | −0.001 (3) |
C21 | 0.038 (3) | 0.050 (3) | 0.037 (3) | −0.003 (3) | 0.000 (2) | −0.005 (2) |
C22 | 0.071 (5) | 0.056 (5) | 0.092 (6) | −0.006 (4) | −0.005 (4) | −0.023 (4) |
C23 | 0.104 (7) | 0.079 (6) | 0.044 (4) | 0.005 (5) | −0.013 (4) | −0.018 (4) |
C24 | 0.035 (3) | 0.049 (3) | 0.041 (3) | −0.006 (2) | 0.006 (2) | −0.007 (2) |
C25 | 0.062 (4) | 0.049 (4) | 0.049 (4) | −0.002 (3) | 0.006 (3) | 0.002 (3) |
C26 | 0.078 (5) | 0.080 (5) | 0.044 (4) | −0.006 (4) | 0.007 (4) | −0.001 (4) |
C27 | 0.059 (4) | 0.089 (6) | 0.049 (4) | −0.008 (4) | 0.010 (3) | −0.020 (4) |
C28 | 0.060 (4) | 0.064 (5) | 0.071 (5) | −0.015 (4) | 0.017 (4) | −0.027 (4) |
C29 | 0.057 (4) | 0.047 (3) | 0.059 (4) | −0.012 (3) | 0.015 (3) | −0.008 (3) |
N1 | 0.042 (3) | 0.042 (3) | 0.032 (2) | −0.004 (2) | 0.0000 (19) | −0.0013 (19) |
N2 | 0.037 (2) | 0.039 (2) | 0.033 (2) | −0.0031 (19) | 0.0025 (19) | 0.0005 (18) |
O1 | 0.083 (3) | 0.055 (3) | 0.037 (2) | 0.001 (2) | −0.008 (2) | −0.002 (2) |
O2 | 0.052 (3) | 0.073 (3) | 0.055 (3) | 0.014 (2) | −0.009 (2) | −0.014 (2) |
O3 | 0.084 (4) | 0.048 (3) | 0.081 (4) | 0.010 (3) | −0.005 (3) | −0.003 (3) |
O4 | 0.067 (3) | 0.056 (3) | 0.038 (2) | −0.003 (2) | −0.007 (2) | −0.0134 (19) |
O5 | 0.055 (3) | 0.065 (3) | 0.045 (3) | −0.018 (2) | −0.001 (2) | −0.011 (2) |
O6 | 0.046 (2) | 0.069 (3) | 0.055 (3) | 0.007 (2) | −0.005 (2) | 0.010 (2) |
S1 | 0.0484 (8) | 0.0465 (7) | 0.0305 (7) | 0.0067 (7) | −0.0057 (6) | −0.0013 (6) |
S2 | 0.0377 (7) | 0.0507 (8) | 0.0350 (7) | −0.0053 (6) | −0.0013 (5) | −0.0019 (6) |
C1—C2 | 1.390 (9) | C17—H17 | 0.9300 |
C1—C6 | 1.398 (9) | C18—C19 | 1.371 (10) |
C1—N1 | 1.429 (8) | C18—O3 | 1.389 (8) |
C2—C3 | 1.379 (11) | C19—C20 | 1.385 (10) |
C2—H2 | 0.9300 | C19—H19 | 0.9300 |
C3—C4 | 1.399 (13) | C20—C21 | 1.396 (9) |
C3—H3 | 0.9300 | C20—H20 | 0.9300 |
C4—C5 | 1.358 (12) | C21—O4 | 1.368 (8) |
C4—H4 | 0.9300 | C22—O3 | 1.400 (10) |
C5—C6 | 1.397 (10) | C22—H22A | 0.9600 |
C5—H5 | 0.9300 | C22—H22B | 0.9600 |
C6—C7 | 1.416 (10) | C22—H22C | 0.9600 |
C7—C8 | 1.355 (9) | C23—O4 | 1.420 (8) |
C7—H7 | 0.9300 | C23—H23A | 0.9600 |
C8—N1 | 1.421 (7) | C23—H23B | 0.9600 |
C8—C15 | 1.497 (8) | C23—H23C | 0.9600 |
C9—C10 | 1.372 (10) | C24—C25 | 1.367 (9) |
C9—C14 | 1.385 (10) | C24—C29 | 1.410 (9) |
C9—S1 | 1.755 (6) | C24—S2 | 1.768 (6) |
C10—C11 | 1.406 (10) | C25—C26 | 1.401 (10) |
C10—H10 | 0.9300 | C25—H25 | 0.9300 |
C11—C12 | 1.354 (13) | C26—C27 | 1.371 (12) |
C11—H11 | 0.9300 | C26—H26 | 0.9300 |
C12—C13 | 1.367 (13) | C27—C28 | 1.380 (13) |
C12—H12 | 0.9300 | C27—H27 | 0.9300 |
C13—C14 | 1.383 (12) | C28—C29 | 1.385 (11) |
C13—H13 | 0.9300 | C28—H28 | 0.9300 |
C14—H14 | 0.9300 | C29—H29 | 0.9300 |
C15—N2 | 1.484 (7) | N1—S1 | 1.676 (5) |
C15—H15A | 0.9700 | N2—S2 | 1.658 (5) |
C15—H15B | 0.9700 | O1—S1 | 1.410 (5) |
C16—C17 | 1.392 (8) | O2—S1 | 1.419 (5) |
C16—C21 | 1.397 (8) | O5—S2 | 1.431 (5) |
C16—N2 | 1.459 (7) | O6—S2 | 1.436 (5) |
C17—C18 | 1.377 (9) | ||
C2—C1—C6 | 122.6 (6) | C18—C19—H19 | 120.1 |
C2—C1—N1 | 131.5 (6) | C20—C19—H19 | 120.1 |
C6—C1—N1 | 105.8 (5) | C19—C20—C21 | 120.2 (6) |
C3—C2—C1 | 117.6 (7) | C19—C20—H20 | 119.9 |
C3—C2—H2 | 121.2 | C21—C20—H20 | 119.9 |
C1—C2—H2 | 121.2 | O4—C21—C20 | 123.7 (5) |
C2—C3—C4 | 120.8 (7) | O4—C21—C16 | 116.7 (5) |
C2—C3—H3 | 119.6 | C20—C21—C16 | 119.6 (6) |
C4—C3—H3 | 119.6 | O3—C22—H22A | 109.5 |
C5—C4—C3 | 120.5 (7) | O3—C22—H22B | 109.5 |
C5—C4—H4 | 119.7 | H22A—C22—H22B | 109.5 |
C3—C4—H4 | 119.7 | O3—C22—H22C | 109.5 |
C4—C5—C6 | 120.8 (8) | H22A—C22—H22C | 109.5 |
C4—C5—H5 | 119.6 | H22B—C22—H22C | 109.5 |
C6—C5—H5 | 119.6 | O4—C23—H23A | 109.5 |
C5—C6—C1 | 117.6 (7) | O4—C23—H23B | 109.5 |
C5—C6—C7 | 134.0 (7) | H23A—C23—H23B | 109.5 |
C1—C6—C7 | 108.5 (6) | O4—C23—H23C | 109.5 |
C8—C7—C6 | 109.7 (6) | H23A—C23—H23C | 109.5 |
C8—C7—H7 | 125.1 | H23B—C23—H23C | 109.5 |
C6—C7—H7 | 125.1 | C25—C24—C29 | 121.1 (6) |
C7—C8—N1 | 107.3 (5) | C25—C24—S2 | 120.2 (5) |
C7—C8—C15 | 125.7 (5) | C29—C24—S2 | 118.8 (5) |
N1—C8—C15 | 126.4 (5) | C24—C25—C26 | 119.4 (7) |
C10—C9—C14 | 121.5 (6) | C24—C25—H25 | 120.3 |
C10—C9—S1 | 119.1 (5) | C26—C25—H25 | 120.3 |
C14—C9—S1 | 119.3 (6) | C27—C26—C25 | 120.4 (8) |
C9—C10—C11 | 118.8 (7) | C27—C26—H26 | 119.8 |
C9—C10—H10 | 120.6 | C25—C26—H26 | 119.8 |
C11—C10—H10 | 120.6 | C26—C27—C28 | 119.7 (7) |
C12—C11—C10 | 119.4 (8) | C26—C27—H27 | 120.2 |
C12—C11—H11 | 120.3 | C28—C27—H27 | 120.2 |
C10—C11—H11 | 120.3 | C27—C28—C29 | 121.5 (7) |
C11—C12—C13 | 121.6 (7) | C27—C28—H28 | 119.3 |
C11—C12—H12 | 119.2 | C29—C28—H28 | 119.3 |
C13—C12—H12 | 119.2 | C28—C29—C24 | 117.9 (7) |
C12—C13—C14 | 120.3 (8) | C28—C29—H29 | 121.1 |
C12—C13—H13 | 119.8 | C24—C29—H29 | 121.1 |
C14—C13—H13 | 119.8 | C8—N1—C1 | 108.7 (5) |
C13—C14—C9 | 118.4 (7) | C8—N1—S1 | 126.8 (4) |
C13—C14—H14 | 120.8 | C1—N1—S1 | 123.0 (4) |
C9—C14—H14 | 120.8 | C16—N2—C15 | 118.0 (5) |
N2—C15—C8 | 112.2 (5) | C16—N2—S2 | 115.2 (4) |
N2—C15—H15A | 109.2 | C15—N2—S2 | 116.8 (4) |
C8—C15—H15A | 109.2 | C18—O3—C22 | 118.2 (6) |
N2—C15—H15B | 109.2 | C21—O4—C23 | 119.0 (6) |
C8—C15—H15B | 109.2 | O1—S1—O2 | 120.1 (3) |
H15A—C15—H15B | 107.9 | O1—S1—N1 | 106.1 (3) |
C17—C16—C21 | 119.2 (5) | O2—S1—N1 | 106.8 (3) |
C17—C16—N2 | 118.1 (5) | O1—S1—C9 | 109.1 (3) |
C21—C16—N2 | 122.6 (5) | O2—S1—C9 | 107.9 (3) |
C18—C17—C16 | 120.4 (6) | N1—S1—C9 | 105.9 (3) |
C18—C17—H17 | 119.8 | O5—S2—O6 | 119.4 (3) |
C16—C17—H17 | 119.8 | O5—S2—N2 | 106.9 (3) |
C19—C18—C17 | 120.8 (6) | O6—S2—N2 | 105.8 (3) |
C19—C18—O3 | 115.0 (6) | O5—S2—C24 | 107.7 (3) |
C17—C18—O3 | 124.2 (6) | O6—S2—C24 | 108.6 (3) |
C18—C19—C20 | 119.8 (6) | N2—S2—C24 | 107.9 (3) |
C6—C1—C2—C3 | 2.4 (10) | C25—C24—C29—C28 | 1.4 (10) |
N1—C1—C2—C3 | 179.0 (6) | S2—C24—C29—C28 | −179.0 (6) |
C1—C2—C3—C4 | −1.4 (11) | C7—C8—N1—C1 | 1.2 (6) |
C2—C3—C4—C5 | 0.3 (12) | C15—C8—N1—C1 | 172.4 (5) |
C3—C4—C5—C6 | −0.1 (12) | C7—C8—N1—S1 | 167.7 (4) |
C4—C5—C6—C1 | 1.0 (10) | C15—C8—N1—S1 | −21.2 (8) |
C4—C5—C6—C7 | −179.1 (8) | C2—C1—N1—C8 | −178.1 (6) |
C2—C1—C6—C5 | −2.2 (9) | C6—C1—N1—C8 | −1.1 (6) |
N1—C1—C6—C5 | −179.6 (6) | C2—C1—N1—S1 | 14.8 (9) |
C2—C1—C6—C7 | 177.9 (6) | C6—C1—N1—S1 | −168.1 (4) |
N1—C1—C6—C7 | 0.5 (6) | C17—C16—N2—C15 | −131.1 (6) |
C5—C6—C7—C8 | −179.7 (7) | C21—C16—N2—C15 | 51.7 (7) |
C1—C6—C7—C8 | 0.2 (7) | C17—C16—N2—S2 | 84.4 (6) |
C6—C7—C8—N1 | −0.9 (7) | C21—C16—N2—S2 | −92.8 (6) |
C6—C7—C8—C15 | −172.1 (5) | C8—C15—N2—C16 | 60.6 (6) |
C14—C9—C10—C11 | −1.3 (11) | C8—C15—N2—S2 | −155.5 (4) |
S1—C9—C10—C11 | −178.4 (6) | C19—C18—O3—C22 | −173.2 (7) |
C9—C10—C11—C12 | 1.2 (12) | C17—C18—O3—C22 | 7.9 (10) |
C10—C11—C12—C13 | 0.0 (13) | C20—C21—O4—C23 | −13.8 (10) |
C11—C12—C13—C14 | −0.9 (13) | C16—C21—O4—C23 | 167.1 (7) |
C12—C13—C14—C9 | 0.8 (12) | C8—N1—S1—O1 | 164.0 (5) |
C10—C9—C14—C13 | 0.4 (11) | C1—N1—S1—O1 | −31.3 (5) |
S1—C9—C14—C13 | 177.4 (6) | C8—N1—S1—O2 | 34.8 (5) |
C7—C8—C15—N2 | −98.6 (7) | C1—N1—S1—O2 | −160.5 (5) |
N1—C8—C15—N2 | 91.8 (6) | C8—N1—S1—C9 | −80.1 (5) |
C21—C16—C17—C18 | 0.2 (9) | C1—N1—S1—C9 | 84.6 (5) |
N2—C16—C17—C18 | −177.1 (5) | C10—C9—S1—O1 | 41.5 (6) |
C16—C17—C18—C19 | −1.0 (10) | C14—C9—S1—O1 | −135.6 (5) |
C16—C17—C18—O3 | 177.9 (6) | C10—C9—S1—O2 | 173.5 (5) |
C17—C18—C19—C20 | 0.8 (10) | C14—C9—S1—O2 | −3.6 (6) |
O3—C18—C19—C20 | −178.2 (7) | C10—C9—S1—N1 | −72.4 (6) |
C18—C19—C20—C21 | 0.1 (11) | C14—C9—S1—N1 | 110.5 (5) |
C19—C20—C21—O4 | −179.9 (6) | C16—N2—S2—O5 | −53.8 (4) |
C19—C20—C21—C16 | −0.8 (10) | C15—N2—S2—O5 | 161.2 (4) |
C17—C16—C21—O4 | 179.8 (5) | C16—N2—S2—O6 | 177.9 (4) |
N2—C16—C21—O4 | −3.0 (8) | C15—N2—S2—O6 | 32.9 (5) |
C17—C16—C21—C20 | 0.6 (9) | C16—N2—S2—C24 | 61.8 (5) |
N2—C16—C21—C20 | 177.8 (5) | C15—N2—S2—C24 | −83.2 (5) |
C29—C24—C25—C26 | −0.3 (10) | C25—C24—S2—O5 | 21.3 (6) |
S2—C24—C25—C26 | −180.0 (6) | C29—C24—S2—O5 | −158.4 (5) |
C24—C25—C26—C27 | −0.6 (12) | C25—C24—S2—O6 | 151.9 (5) |
C25—C26—C27—C28 | 0.4 (12) | C29—C24—S2—O6 | −27.7 (6) |
C26—C27—C28—C29 | 0.7 (12) | C25—C24—S2—N2 | −93.8 (5) |
C27—C28—C29—C24 | −1.5 (11) | C29—C24—S2—N2 | 86.5 (5) |
Cg1 and Cg2 are the centroids of the N1/C1/C6–C8 and C1–C6 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O1 | 0.93 | 2.30 | 2.886 (9) | 121 |
C15—H15A···O4 | 0.97 | 2.23 | 2.862 (8) | 122 |
C15—H15B···O2 | 0.97 | 2.34 | 2.948 (8) | 120 |
C10—H10···O5i | 0.93 | 2.93 | 3.719 (9) | 144 |
C11—H11···O6i | 0.93 | 2.85 | 3.723 (11) | 156 |
C15—H15A···O1ii | 0.97 | 2.68 | 3.333 (8) | 125 |
C19—H19···O2iii | 0.93 | 2.96 | 3.647 (9) | 132 |
C20—H20···O5iii | 0.93 | 2.88 | 3.788 (8) | 165 |
C28—H28···O6ii | 0.93 | 2.79 | 3.716 (9) | 171 |
C23—H23C···Cg1ii | 0.96 | 2.96 | 3.701 (3) | 135 |
C25—H25···Cg2iv | 0.93 | 2.67 | 3.483 (5) | 147 |
Symmetry codes: (i) x+1/2, −y+3/2, z−1/2; (ii) x, −y+2, z+1/2; (iii) x+1/2, −y+3/2, z+1/2; (iv) x−1/2, −y+3/2, z+1/2. |
Acknowledgements
The authors thank the SAIF, IIT, Madras, India, for the data collection.
References
Allen, F. H. (1981). Acta Cryst. B37, 900–906. CrossRef CAS Web of Science IUCr Journals Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Badr, E. E. (2008). J. Dispersion Sci. Technol. 29, 1143–1149. Web of Science CrossRef CAS Google Scholar
Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons. Google Scholar
Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797. CSD CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dunitz, J. D. (1995). X-ray Analysis and the Structure of Organic Solids, 2nd corrected reprint, pp. 106–111. Basel: Verlag Helvetica Chimica Acta. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o3364. Web of Science CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gunasekaran, B., Sureshbabu, R., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2009). Acta Cryst. E65, o2069. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hanafy, A., Uno, J., Mitani, H., Kang, Y. & Mikami, Y. (2007). Nippon Ishinkin Gakkai Zasshi, 48, 47–50. CrossRef CAS Google Scholar
Jasinski, J. P., Rinderspacher, A. & Gribble, G. W. (2010). J. Chem. Crystallogr. 40, 40–47. Web of Science CSD CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Madhan, S., NizamMohideen, M., Harikrishnan, K. & MohanaKrishnan, A. K. (2024). Acta Cryst. E80, 682–690. Web of Science CSD CrossRef IUCr Journals Google Scholar
Madhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2022). Acta Cryst. E78, 1198–1203. Web of Science CSD CrossRef IUCr Journals Google Scholar
Madhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2023a). Acta Cryst. E79, 521–525. Web of Science CSD CrossRef IUCr Journals Google Scholar
Madhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2023b). Acta Cryst. E79, 741–746. Web of Science CSD CrossRef IUCr Journals Google Scholar
NizamMohideen, M., SubbiahPandi, A., Panneer Selvam, N. & Perumal, P. T. (2009). Acta Cryst. E65, o714–o715. Web of Science CSD CrossRef IUCr Journals Google Scholar
NizamMohideen, M., Thenmozhi, S., SubbiahPandi, A., Selvam, N. P. & Perumal, P. T. (2009a). Acta Cryst. E65, o740. Web of Science CSD CrossRef IUCr Journals Google Scholar
NizamMohideen, M., Thenmozhi, S., SubbiahPandi, A., Selvam, N. P. & Perumal, P. T. (2009b). Acta Cryst. E65, o829. Web of Science CSD CrossRef IUCr Journals Google Scholar
Okabe, N. & Adachi, Y. (1998). Acta Cryst. C54, 386–387. Web of Science CSD CrossRef IUCr Journals Google Scholar
Parkin, A., Barr, G., Dong, W., Gilmore, C. J., Jayatilaka, D., McKinnon, J. J., Spackman, M. A. & Wilson, C. C. (2007). CrystEngComm, 9, 648–652. Web of Science CrossRef CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ramathilagam, C., Saravanan, V., Mohanakrishnan, A. K., Chakkaravarthi, G., Umarani, P. R. & Manivannan, V. (2011). Acta Cryst. E67, o632. Web of Science CSD CrossRef IUCr Journals Google Scholar
Schollmeyer, D., Fischer, G. & Pindur, U. (1995). Acta Cryst. C51, 2572–2575. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. Web of Science CrossRef IUCr Journals Google Scholar
Umadevi, M., Saravanan, V., Yamuna, R., Mohanakrishnan, A. K. & Chakkaravarthi, G. (2013). Acta Cryst. E69, o1802–o1803. CSD CrossRef IUCr Journals Google Scholar
Wen, Y.-H., Li, X.-M., Xu, L.-L., Tang, X.-F. & Zhang, S.-S. (2006). Acta Cryst. E62, o4427–o4428. Web of Science CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Williams, T. M., Ciccarone, T. M., MacTough, S. C., Rooney, C. S., Balani, S. K., Condra, J. H., Emini, E. A., Goldman, M. E., Greenlee, W. J., Kauffman, L. R., O'Brien, J. A., Sardana, V. V., Schleif, W. A., Theoharides, A. D. & Anderson, P. S. (1993). J. Med. Chem. 36, 1291–1294. CrossRef CAS PubMed Web of Science Google Scholar
Yang, L. M., Lin, S. J., Hsu, F. L. & Yang, T. H. (2002). Bioorg. Med. Chem. Lett. 12, 1013–1015. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.