research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, mol­ecular and crystal structure of [(NH2)2CSSC(NH2)2]2[RuBr6]Br2·3H2O

crossmark logo

aRUDN University, 115419 Moscow, Russian Federation, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, c"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), Murtuza Mukhtarov str. 194, Az 1065, Baku, Azerbaijan, dDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148, Baku, Azerbaijan, and eDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by N. Alvarez Failache, Universidad de la Repüblica, Uruguay (Received 3 June 2024; accepted 12 July 2024; online 23 July 2024)

The title compound, bis­[di­thio­bis­(formamidinium)] hexa­bromido­ruthenium dibromide trihydrate, [(NH2)2CSSC(NH2)2]2[RuBr6]Br2·3H2O, crystallizes in the ortho­rhom­bic system, space group Cmcm, Z = 4. The [RuBr6]2− anionic complex has an octa­hedral structure. The Ru—Br distances fall in the range 2.4779 (4)–2.4890 (4) Å. The S—S and C—S distances are 2.0282 (12) and 1.783 (2) Å, respectively. The H2O mol­ecules, Br ions, and NH2 groups of the cation are linked by hydrogen bonds. The conformation of the cation is consolidated by intra­molecular O—H⋯Br, O—H⋯O, N—H⋯Br and N—H⋯O hydrogen bonds. The [(NH2)2CSSC(NH2)2]2+ cations form a hydrogen-bonded system involving the Br ions and the water mol­ecules. Two Br anions form four hydrogen bonds, each with the NH2 groups of two cations, thus linking the cations into a ring. The rings are connected by water mol­ecules, forming N—H⋯O—H⋯Br hydrogen bonds.

1. Chemical context

Oxidation of thio­carbamide in an acidic medium results in the αα′-­(di­thio­bis­formamidinium) cation {[(NH2)2CSSC(NH2)2]2+ or [S2C2(NH2)4]2+ in a simplified form; Preisler & Berger, 1947[Preisler, P. W. & Berger, L. (1947). J. Am. Chem. Soc. 69, 322-325.]}. There are only a few examples of compounds containing [S2C2(NH2)4]2+ cations described in the literature. For example, direct inter­action of compounds with [S2C2(NH2)4]Cl2 in concentrated hydro­chloric acid produced [S2C2(NH2)4][MCl4], M = Cu, Co, Zn, Hg (Golovnev et al., 2013[Golovnev, N. N., Kirik, S. D. & Leshok, A. A. (2013). Russ. J. Inorg. Chem. 58, 701-705.]), [S2C2(NH2)4]2[Hg2Cl8] (Vasiliev et al., 2013[Vasiliev, A. D. & Golovnev, N. N. (2013). Russ. J. Inorg. Chem. 58, 1298-1301.]) and [S2C2(NH2)4]2[OsIVCl6]Cl2·3H2O (Rudnitskaya et al., 2019[Rudnitskaya, O. V., Dobrokhotova, E. V., Kultyshkina, E. K., Dorovatovskii, P. V., Lazarenko, V. A. & Khrustalev, V. N. (2019). Inorg. Chim. Acta, 484, 352-356.]), while changing the reaction medium to concentrated hydro­bromic acid resulted in the formation of [S2C2(NH2)4][HgBr4] (Golovnev et al., 2013[Golovnev, N. N., Kirik, S. D. & Leshok, A. A. (2013). Russ. J. Inorg. Chem. 58, 701-705.]).

From the point of view of synthetic coordination chemistry, the reactions of rhenium and osmium complexes with thio­carbamide are of inter­est. These reactions led to compounds with an outer sphere di­thio­bis­formamidinium cation. Thus, the inter­action of ReO4 with thio­carbamide (tu) in hydro­chloric acid allows the preparation of complexes [S2C2(NH2)4][ReCl4(H2O)O], [S2C2(NH2)4]2[ReCl5(H2O)]Cl3·2H2O and [S2C2(NH2)4]2[ReCl5(tu)]Cl (Lis, 1979[Lis, T. (1979). Acta Cryst. B35, 3041-3044.], 1980[Lis, T. (1980). Acta Cryst. B36, 2782-2784.]; Lis & Starynowicz, 1985[Lis, T. & Starynowicz, P. (1985). Acta Cryst. C41, 1299-1302.]). In this case, oxidation of thio­urea (hereinafter, tu) occurs by rhenium(VII). When K2[ReCl6] reacts with tu in dilute HCl, thio­carbamide oxidation occurs under the influence of atmospheric oxygen, giving [S2C2(NH2)4]2[ReCl6]Cl2·3H2O (Lis & Starynowicz, 1985[Lis, T. & Starynowicz, P. (1985). Acta Cryst. C41, 1299-1302.]). Similar complexes [S2C2(NH2)4]2[OsX6]X2·3H2O where X = Cl, Br were obtained by the reaction of H2[OsX6] and tu in concentrated HCl and HBr, respectively. In the aforementioned case, thio­carbamide was oxidized by osmium(IV) (Rudnitskaya et al., 2008[Rudnitskaya, O. V., Kultyshkina, E. K., Stash, A. I., Glukhova, A. A. & Venskovski, N. U. (2008). Crystallogr. Rep. 53, 608-612.], 2019[Rudnitskaya, O. V., Dobrokhotova, E. V., Kultyshkina, E. K., Dorovatovskii, P. V., Lazarenko, V. A. & Khrustalev, V. N. (2019). Inorg. Chim. Acta, 484, 352-356.]). The mol­ecular and crystal structures of the rhenium and osmium complexes discussed above were established by X-ray diffraction. The inter­action of K4[Ru2OCl10] with α,α′-­(di­thio­bis­formamidinium) chloride forms the unique ruthenium(III) compound [Ru2(tu)3Cl6]·2H2O, containing three tu bridging mol­ecules (Rudnitskaya et al., 2017a[Rudnitskaya, O. V., Kultyshkinaa, E. K., Dobrokhotovaa, E. V., Khrustalev, V. N. & Zubavichus, Ya. V. (2017a). XXVII International Chugaev Conference on Coordination Chemistry, Nizhny Novgorod, Russia, Book of Abstracts, p. 84.]). The structure of [Cl3Ru(tu)3RuCl3] will be published elsewhere.

[Scheme 1]

This study aimed to investigate the inter­action between ruthenium compounds and αα′-bis­(di­thio­bis­formamidinium) bromide in hydro­bromic acid solutions.

2. Structural commentary

The title compound (Fig. 1[link]) is isostructural to the similar osmium complex (Rudnitskaya et al., 2008[Rudnitskaya, O. V., Kultyshkina, E. K., Stash, A. I., Glukhova, A. A. & Venskovski, N. U. (2008). Crystallogr. Rep. 53, 608-612.], 2019[Rudnitskaya, O. V., Dobrokhotova, E. V., Kultyshkina, E. K., Dorovatovskii, P. V., Lazarenko, V. A. & Khrustalev, V. N. (2019). Inorg. Chim. Acta, 484, 352-356.]). In the α,α′-­(di­thio­bis­formamidinium) cation, the S—S bond is single and has a length of 2.0282 (12) Å, while in the osmium complex the length of this bond is 2.039 (2) Å. The cation adopts the most energetically favorable gauche conformation with a C—S—S—C torsion angle of 97.15 (11)°, which is slightly smaller than the angle in the osmium analogue (102.62°). The intrinsic symmetry of the cations is C2, and the thio­carbamide fragments retain a planar structure in both complexes. The intrinsic symmetry of the [RuBr6]2– ion is D2h. The coordination number of ruthenium is 6, and the anion takes the form of a distorted octa­hedron, d(Ru—Br) = 2.4779 (4)–2.4890 (4) Å for three Br atoms are different, but within standard errors (Table 1[link]). The conformation of the cation is aslo consolidated by intra­molecular N—H⋯S hydrogen bonds (Table 2[link], Fig. 1[link]). In [(NH2)2CSSC(NH2)2]2[OsBr6]Br2·3H2O, the conformation of the cation is also stabilized by intra­molecular N—H⋯S hydrogen bonds (Rudnitskaya et al., 2008[Rudnitskaya, O. V., Kultyshkina, E. K., Stash, A. I., Glukhova, A. A. & Venskovski, N. U. (2008). Crystallogr. Rep. 53, 608-612.]). The geometric parameters of the title compound are normal and consistent with those of the related compounds described in the Database survey (Section 4).

Table 1
Selected bond lengths (Å)

Ru1—Br1 2.4779 (4) Ru1—Br3 2.4866 (3)
Ru1—Br3i 2.4866 (3) Ru1—Br2 2.4890 (4)
Symmetry code: (i) [-x+1, y, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.80 (4) 2.02 (4) 2.814 (3) 167 (3)
O1—H1C⋯Br3 0.84 (3) 2.52 (3) 3.293 (3) 154 (4)
O1—H1D⋯O2 0.84 (3) 2.00 (4) 2.794 (4) 157 (5)
N1—H1B⋯Br4 0.77 (3) 2.60 (4) 3.327 (2) 157 (3)
N2—H2B⋯Br1ii 0.81 (3) 2.96 (4) 3.496 (2) 125 (3)
N2—H2A⋯Br2iii 0.88 (4) 2.79 (4) 3.456 (2) 134 (3)
N2—H2B⋯Br4 0.81 (3) 2.87 (4) 3.592 (3) 149 (3)
O2—H2⋯Br4iv 0.95 (5) 2.48 (5) 3.419 (2) 167 (4)
Symmetry codes: (ii) [-x+1, -y+1, z-{\script{1\over 2}}]; (iii) [x, -y+1, -z+1]; (iv) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z].
[Figure 1]
Figure 1
The mol­ecular structure of [S2C2(NH2)4]2[RuBr6]Br2·3H2O, showing the atom labeling and displacement ellipsoids drawn at the 30% probability level. Symmetry codes: (A) x, y, [{3\over 2}] − z; (B) 1 − x, y, [{3\over 2}] − z; (C) x, 1 − y, 1 − z.

3. Supra­molecular features

The [(NH2)2CSSC(NH2)2]2+ cations and [RuBr6]2– complex anion form a system of hydrogen bonds with the Br ions and water mol­ecules (Table 2[link], Figs. 1[link] and 2[link]). Two cations are bound in a ring by two Br ions, each forming four hydrogen bonds with the NH2 groups of the cations. A similar system of hydrogen bonds is present in the osmium complex.

[Figure 2]
Figure 2
View of the arrangement and inter­actions of the [(NH2)2CSSC(NH2)2]2+ cations, the RuBr62– and Br anions, and water mol­ecules in the unit cell.

For two O—H⋯Br hydrogen bonds [O1—H1C⋯Br3 and O2—H2⋯Br4v, symmetry code: (v) x − [{1\over 2}], y + [{1\over 2}], z], the average distance of H⋯Br is 3.356 (3) Å and the average value of the O—H⋯Br angle is 161 (4)°. For four N—H⋯Br hydrogen bonds [N1—H1B⋯Br4, N2—H2B⋯Br1iii, N2—H2A⋯Br2iv, N2—H2B⋯Br4, symmetry codes: (iii) −x + 1, −y + 1, z − [{1\over 2}]; (iv) x, −y + 1, −z + 1], the average H⋯Br distance is 3.468 (3) Å and the average N—H⋯Br angle is 141 (3)°. These values show that hydrogen bonds are quite strong.

4. Database survey

A search of the Cambridge Crystallographic Database (updated 20 March 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using the [RuBr6]2– complex ion and the αα′-bis­(di­thio­bis­form­amidinium) cation as the search fragments revealed five closely related compounds, viz. bis­[α,α′-di­thio­bis­(form­amidinium)] hexa­bromido­osmium(IV) dibromide trihydrate (CSD refcode XAJVUB; Rudnitskaya et al., 2008[Rudnitskaya, O. V., Kultyshkina, E. K., Stash, A. I., Glukhova, A. A. & Venskovski, N. U. (2008). Crystallogr. Rep. 53, 608-612.]), bis­[disulfane­diyl­bis(amino­methaniminium)] bis­(chloride) hexa­chlorido­osmium(IV) trihydrate (NIPBIA; Rudnitskaya et al., 2019[Rudnitskaya, O. V., Dobrokhotova, E. V., Kultyshkina, E. K., Dorovatovskii, P. V., Lazarenko, V. A. & Khrustalev, V. N. (2019). Inorg. Chim. Acta, 484, 352-356.]), bis­[disulfanediylbis(amino­methaniminium)] bis­(bro­mide) hexa­bromido­osmium(IV) trihydrate (NIPBOG; Rudnitskaya et al., 2019[Rudnitskaya, O. V., Dobrokhotova, E. V., Kultyshkina, E. K., Dorovatovskii, P. V., Lazarenko, V. A. & Khrustalev, V. N. (2019). Inorg. Chim. Acta, 484, 352-356.]), bis­[(di­amino­methyl­ene)sulfonium] hexa­chlor­ido­osmium (PATCIZ; Rudnitskaya et al., 2017b[Rudnitskaya, O. V., Kultyshkina, E. K., Dobrokhotova, E. V., Podvoyskaya, V. S., Dorovatovskii, P. V., Lazarenko, V. A., Zubavichus, Y. V. & Khrustalev, V. N. (2017b). Polyhedron, 134, 114-119.]) and bis­[(di­amino­methyl­ene)sulfonium] hexa­bromido­osmium (PATCOF; Rudnitskaya et al., 2017b[Rudnitskaya, O. V., Kultyshkina, E. K., Dobrokhotova, E. V., Podvoyskaya, V. S., Dorovatovskii, P. V., Lazarenko, V. A., Zubavichus, Y. V. & Khrustalev, V. N. (2017b). Polyhedron, 134, 114-119.]).

XAJVUB, NIPBIA and NIPBOG crystallize in the ortho­rhom­bic Cmcm space group with Z = 4, while PATCIZ and PATCOF crystallize in the triclinic P[\overline{1}] space group with Z = 1. In XAJVUB, the [OsBr6] 2– anionic complex has an octa­hedral structure. The Os—Br distances fall in the range 2.483–2.490 Å. The α,α′-di­thio­bis­formamidinium cation is a product of the oxidation of thio­carbamide. The S—S and C—S distances are 2.016 and 1.784 Å, respectively. The water mol­ecules, Br ions, and NH2 groups of the cation are linked by hydrogen bonds. In NIPBIA and NIPBOG, the osmium atoms in the [OsX6] 2− (X = Cl or Br) anions adopt slightly distorted octa­hedral coordination. The α,α′-di­thio­bis­formamidinium cations are paired into rings by N—H⋯Cl hydrogen bonds. The rings are further connected into a 3D framework by hydrogen bonds involving the water mol­ecules and S⋯Cl non-covalent inter­actions. In the crystal structures of PATCIZ and PATCOF, the (NH2)2CSH+ cations and [OsX6]2− anions are linked into two-tier layers in the (110) plane by the N—H⋯X(Cl, Br) and S—H⋯X(Cl, Br) hydrogen bonds and S⋯X(Cl, Br) non-covalent attractive contacts. It can be seen from the similar geometric parameter values given in Table 3[link] that the discussed compounds are comparable with each other.

Table 3
Selected values of bond distances (Å) and angles (°) in various salts and complexes

Compound S—S C—S C—S—S C—S—S—C Reference
Title compound 2.0282 (12) 1.783 (2) 102.90 (9) −95.15 (11) This study
XAJVUB 2.024 (2) 1.778 (5) 103.2 (2) 96.3 (Rudnitskaya et al., 2008[Rudnitskaya, O. V., Kultyshkina, E. K., Stash, A. I., Glukhova, A. A. & Venskovski, N. U. (2008). Crystallogr. Rep. 53, 608-612.])
NIPBIA 2.036 (2) 1.789 (5) 102.43 (17) −96.4 (4) (Rudnitskaya et al., 2019[Rudnitskaya, O. V., Dobrokhotova, E. V., Kultyshkina, E. K., Dorovatovskii, P. V., Lazarenko, V. A. & Khrustalev, V. N. (2019). Inorg. Chim. Acta, 484, 352-356.])
NIPBOG 2.039 (2) 1.796 (5) 102.62 (15) −97.9 (3) (Rudnitskaya et al., 2019[Rudnitskaya, O. V., Dobrokhotova, E. V., Kultyshkina, E. K., Dorovatovskii, P. V., Lazarenko, V. A. & Khrustalev, V. N. (2019). Inorg. Chim. Acta, 484, 352-356.])
PATCIZ 1.739 (10) (Rudnitskaya et al., 2017b[Rudnitskaya, O. V., Kultyshkina, E. K., Dobrokhotova, E. V., Podvoyskaya, V. S., Dorovatovskii, P. V., Lazarenko, V. A., Zubavichus, Y. V. & Khrustalev, V. N. (2017b). Polyhedron, 134, 114-119.])
PATCOF 1.751 (9) (Rudnitskaya et al., 2017b[Rudnitskaya, O. V., Kultyshkina, E. K., Dobrokhotova, E. V., Podvoyskaya, V. S., Dorovatovskii, P. V., Lazarenko, V. A., Zubavichus, Y. V. & Khrustalev, V. N. (2017b). Polyhedron, 134, 114-119.])

5. Synthesis and crystallization

Synthesis of [(NH2)2CSSC(NH2)2]2[RuBr6]Br2·3H2O

To 0.10 g of K4[Ru2OCl10], 10 mL of concentrated HBr (from Riedel de Haen) were added, and the reaction mixture was heated in a water bath until the K4[Ru2OCl10] dissolved completely. Then a solution of 0.13 g of [S2C2(NH2)4]Br2·2H2O (molar ratio Ru:[S2C2(NH2)4]Br2 = 1:1.5) was added, and the resulting solution was evaporated in a water bath to 2–3 ml. Dark, large ortho­rhom­bic crystals formed after the solution was cooled. The precipitate was filtered off, and washed with 3 ml of distilled water and 4 ml of ethanol. The mass of the obtained solid was 0.10 g (yield: 67%). Found Ru = 9.6%, for [S2C2(NH2)4]2[RuBr6]Br2·3H2O: calculated Ru = 9.67%. Sulfur and bromine were determined by microanalysis, and ruthenium was determined by reducing the sample to metallic ruthenium in a stream of H2 at 1073 K. Errors between the found and measured values are normal depending on the technique used.

The compound is highly soluble in DMSO, giving blue solutions, while in dilute and concentrated HBr it dissolves over time (red and orange solutions, respectively) and is insoluble in alcohol and acetone.

EAS [λmax, nm (ɛ, mol−1 L cm−1)]: in HBr (2 mol L−1) – 400 (1800), 460 (1550), 560sh (720); in HBr (9 mol L−1) – 375sh (2850), 390 (2830), 440sh (2050), 455 (2450), 465sh (2400), 520sh (800); in DMSO – 390sh (6700), 480sh (2000), 505sh (2800), 555 (3930), 619 (4060), 686 (3980), 710sh (3000), 755sh (1900).

FTIR (ν, cm−1): 183, 230 ν (Ru—Br); 422 ρ(SCN2), ρ(NH2); 497 δ(CN2); 577 b(SCN2), ν(CS); 815 ν(CS), νs(CN), δ(CN2); 1063 ρ(NH2), νas(CN); 1119, 1385 νs(CN), ν(CS), ρ(NH2); 1621, 1627, 1645 δ(NH2), δ(OH2), νas(CN); 3050 ν(NH), 3260, 3400 νas(NH), ν(OH).

The reaction with K4[Ru2OCl10] was carried out similarly at a ratio of Ru:[S2C2(NH2)4]2+ = 1:2, and reactions with ruthenium trichlorides were carried out using ratios of reactants of 1:1.5 and 1:2.

As a result of all experiments, [S2C2(NH2)4]2[RuBr6]Br2·3H2O precipitates formed, but when the ratio of the initial components was 1:2, the precipitates contained an admixture of [S2C2(NH2)4]Br2·2H2O.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All hydrogen atoms were derived from the Fourier synthesis map and refined isotopically with dependent isotropic thermal parameters with Uiso(H) = 1.2Ueq(N) and Uiso(H) = 1.5Ueq(O).

Table 4
Experimental details

Crystal data
Chemical formula (C2H8N4S2)2[RuBr6]Br2·3H2O
Mr 1098.88
Crystal system, space group Orthorhombic, Cmcm
Temperature (K) 150
a, b, c (Å) 11.6462 (3), 13.9943 (4), 16.9225 (5)
V3) 2758.04 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 12.49
Crystal size (mm) 0.30 × 0.20 × 0.02
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.043, 0.100
No. of measured, independent and observed [I > 2σ(I)] reflections 22642, 2269, 2057
Rint 0.043
(sin θ/λ)max−1) 0.715
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.057, 1.07
No. of reflections 2269
No. of parameters 93
No. of restraints 1
H-atom treatment Only H-atom coordinates refined
Δρmax, Δρmin (e Å−3) 1.06, −0.59
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Bis[dithiobis(formamidinium)] hexabromidoruthenium dibromide trihydrate top
Crystal data top
(C2H8N4S2)2[RuBr6]Br2·3H2ODx = 2.646 Mg m3
Mr = 1098.88Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, CmcmCell parameters from 1291 reflections
a = 11.6462 (3) Åθ = 2.3–26.6°
b = 13.9943 (4) ŵ = 12.49 mm1
c = 16.9225 (5) ÅT = 150 K
V = 2758.04 (13) Å3Plate, black
Z = 40.30 × 0.20 × 0.02 mm
F(000) = 2056
Data collection top
Bruker D8 Venture
diffractometer
2057 reflections with I > 2σ(I)
Radiation source: microsourceRint = 0.043
φ and ω scansθmax = 30.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1616
Tmin = 0.043, Tmax = 0.100k = 1920
22642 measured reflectionsl = 2424
2269 independent reflections
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: difference Fourier map
wR(F2) = 0.057Only H-atom coordinates refined
S = 1.07 w = 1/[σ2(Fo2) + (0.0237P)2 + 6.898P]
where P = (Fo2 + 2Fc2)/3
2269 reflections(Δ/σ)max = 0.001
93 parametersΔρmax = 1.06 e Å3
1 restraintΔρmin = 0.59 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.5000000.65423 (2)0.7500000.01754 (8)
Br10.5000000.77930 (2)0.85365 (2)0.02178 (8)
Br20.5000000.52583 (2)0.64822 (2)0.02559 (8)
Br30.28649 (3)0.65551 (2)0.7500000.02565 (9)
Br40.5000000.17169 (2)0.58416 (2)0.02717 (9)
S10.18284 (5)0.47494 (4)0.55623 (4)0.02521 (13)
N10.2957 (2)0.33273 (17)0.61812 (15)0.0280 (5)
H1A0.264 (3)0.353 (2)0.657 (2)0.034*
H1B0.330 (3)0.285 (2)0.616 (2)0.034*
N20.3321 (2)0.35163 (17)0.48633 (16)0.0329 (5)
H2A0.331 (3)0.386 (3)0.443 (2)0.039*
H2B0.380 (3)0.310 (2)0.489 (2)0.039*
C10.2816 (2)0.37771 (17)0.55165 (16)0.0241 (5)
O10.2061 (2)0.4299 (2)0.7500000.0305 (6)
H1C0.249 (4)0.478 (3)0.7500000.046*
H1D0.136 (3)0.445 (4)0.7500000.046*
O20.0000000.5321 (3)0.7500000.0360 (9)
H20.0000000.579 (4)0.709 (3)0.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01735 (16)0.01668 (16)0.01860 (17)0.0000.0000.000
Br10.02324 (15)0.02066 (15)0.02144 (16)0.0000.0000.00283 (11)
Br20.03078 (18)0.02150 (16)0.02447 (17)0.0000.0000.00468 (12)
Br30.01777 (15)0.02213 (16)0.0371 (2)0.00096 (11)0.0000.000
Br40.02496 (16)0.02304 (16)0.0335 (2)0.0000.0000.00104 (13)
S10.0280 (3)0.0238 (3)0.0238 (3)0.0043 (2)0.0033 (2)0.0016 (2)
N10.0287 (11)0.0256 (11)0.0298 (12)0.0040 (8)0.0033 (9)0.0043 (9)
N20.0370 (13)0.0272 (11)0.0345 (13)0.0063 (10)0.0128 (11)0.0034 (10)
C10.0228 (11)0.0199 (10)0.0295 (13)0.0019 (9)0.0023 (9)0.0015 (9)
O10.0329 (14)0.0254 (13)0.0333 (15)0.0003 (11)0.0000.000
O20.042 (2)0.032 (2)0.035 (2)0.0000.0000.000
Geometric parameters (Å, º) top
Ru1—Br12.4779 (4)N1—H1A0.80 (4)
Ru1—Br1i2.4779 (4)N1—H1B0.77 (3)
Ru1—Br3ii2.4866 (3)N2—C11.305 (3)
Ru1—Br32.4866 (3)N2—H2A0.88 (4)
Ru1—Br2i2.4890 (4)N2—H2B0.81 (3)
Ru1—Br22.4890 (4)O1—H1C0.84 (3)
S1—C11.783 (2)O1—H1D0.84 (3)
S1—S1iii2.0282 (12)O2—H20.95 (5)
N1—C11.299 (3)
Br1—Ru1—Br1i90.122 (19)Br3—Ru1—Br290.298 (8)
Br1—Ru1—Br3ii89.708 (8)Br2i—Ru1—Br287.58 (2)
Br1i—Ru1—Br3ii89.708 (8)C1—S1—S1iii102.90 (9)
Br1—Ru1—Br389.708 (8)C1—N1—H1A119 (2)
Br1i—Ru1—Br389.708 (8)C1—N1—H1B117 (3)
Br3ii—Ru1—Br3179.17 (2)H1A—N1—H1B124 (4)
Br1—Ru1—Br2i91.151 (12)C1—N2—H2A123 (2)
Br1i—Ru1—Br2i178.727 (16)C1—N2—H2B117 (3)
Br3ii—Ru1—Br2i90.298 (8)H2A—N2—H2B117 (3)
Br3—Ru1—Br2i90.298 (8)N1—C1—N2122.7 (2)
Br1—Ru1—Br2178.729 (16)N1—C1—S1114.4 (2)
Br1i—Ru1—Br291.150 (12)N2—C1—S1122.8 (2)
Br3ii—Ru1—Br290.298 (8)H1C—O1—H1D112 (5)
S1iii—S1—C1—N1179.53 (18)S1iii—S1—C1—N22.0 (2)
Symmetry codes: (i) x, y, z+3/2; (ii) x+1, y, z+3/2; (iii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.80 (4)2.02 (4)2.814 (3)167 (3)
O1—H1C···Br30.84 (3)2.52 (3)3.293 (3)154 (4)
O1—H1D···O20.84 (3)2.00 (4)2.794 (4)157 (5)
N1—H1B···Br40.77 (3)2.60 (4)3.327 (2)157 (3)
N2—H2B···Br1iv0.81 (3)2.96 (4)3.496 (2)125 (3)
N2—H2A···Br2iii0.88 (4)2.79 (4)3.456 (2)134 (3)
N2—H2B···Br40.81 (3)2.87 (4)3.592 (3)149 (3)
O2—H2···Br4v0.95 (5)2.48 (5)3.419 (2)167 (4)
Symmetry codes: (iii) x, y+1, z+1; (iv) x+1, y+1, z1/2; (v) x1/2, y+1/2, z.
Selected values of bond distances (Å) and angles (°) in various salts and complexes top
CompoundS—SC—SC—S—SC—S—S—CReference
Title compound2.0282 (12)1.783 (2)102.90 (9)-95.15 (11)This study
XAJVUB2.024 (2)1.778 (5)103.2 (2)96.3(Rudnitskaya et al., 2008)
NIPBIA2.036 (2)1.789 (5)102.43 (17)-96.4 (4)(Rudnitskaya et al., 2019)
NIPBOG2.039 (2)1.796 (5)102.62 (15)-97.9 (3)(Rudnitskaya et al., 2019)
PATCIZ1.739 (10)(Rudnitskaya et al., 2017b)
PATCOF1.751 (9)(Rudnitskaya et al., 2017b)
 

Acknowledgements

Authors' contributions are as follows. Conceptualization, OVR, MRK and MA; methodology, DSP and MGP; investigation, DSP and MRK; writing (original draft), MA, AB and ANK, writing (review and editing of the manuscript), IGM and ANK; visualization, MA, OVR, and IGM; funding acquisition, AB and OVR; resources, AB, and MA; supervision, MA and ANK.

Funding information

Funding for this research was provided by: Baku State University and the RUDN University Strategic Academic Leadership Program.

References

First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGolovnev, N. N., Kirik, S. D. & Leshok, A. A. (2013). Russ. J. Inorg. Chem. 58, 701–705.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLis, T. (1979). Acta Cryst. B35, 3041–3044.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationLis, T. (1980). Acta Cryst. B36, 2782–2784.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationLis, T. & Starynowicz, P. (1985). Acta Cryst. C41, 1299–1302.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationPreisler, P. W. & Berger, L. (1947). J. Am. Chem. Soc. 69, 322–325.  CrossRef CAS PubMed Google Scholar
First citationRudnitskaya, O. V., Dobrokhotova, E. V., Kultyshkina, E. K., Dorovatovskii, P. V., Lazarenko, V. A. & Khrustalev, V. N. (2019). Inorg. Chim. Acta, 484, 352–356.  CSD CrossRef CAS Google Scholar
First citationRudnitskaya, O. V., Kultyshkinaa, E. K., Dobrokhotovaa, E. V., Khrustalev, V. N. & Zubavichus, Ya. V. (2017a). XXVII International Chugaev Conference on Coordination Chemistry, Nizhny Novgorod, Russia, Book of Abstracts, p. 84.  Google Scholar
First citationRudnitskaya, O. V., Kultyshkina, E. K., Dobrokhotova, E. V., Podvoyskaya, V. S., Dorovatovskii, P. V., Lazarenko, V. A., Zubavichus, Y. V. & Khrustalev, V. N. (2017b). Polyhedron, 134, 114–119.  CSD CrossRef CAS Google Scholar
First citationRudnitskaya, O. V., Kultyshkina, E. K., Stash, A. I., Glukhova, A. A. & Venskovski, N. U. (2008). Crystallogr. Rep. 53, 608–612.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVasiliev, A. D. & Golovnev, N. N. (2013). Russ. J. Inorg. Chem. 58, 1298–1301.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds