research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­[(η5-tert-butyl­cyclo­pentadien­yl)tri­carbonyl­molybdenum(I)](MoMo)

crossmark logo

aAcad. M. Nagiev Institute of Catalysis and Inorganic Chemistry, Ministry of Science and Education of the Azerbaijan Republic, Azerbaijan, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, cWestern Caspian University, Istiqlaliyyat Street 31, AZ 1001, Baku, Azerbaijan, dAzerbaijan Medical University, Scientific Research Centre (SRC), A. Kasumzade St. 14. AZ 1022, Baku, Azerbaijan, and eDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by M. Weil, Vienna University of Technology, Austria (Received 5 June 2024; accepted 15 July 2024; online 23 July 2024)

The dinuclear mol­ecule of the title compound, [Mo2(C9H13)2(CO)6] or [Mo(tBuCp)(CO)3]2 where tBu and Cp are tert-butyl and cyclo­penta­dienyl, is centrosymmetric and is characterized by an Mo—Mo bond length of 3.2323 (3) Å. Imposed by inversion symmetry, the tBuCp and the carbonyl ligands are in a transoid arrangement to each other. In the crystal, inter­molecular C—H⋯O contacts lead to the formation of layers parallel to the bc plane.

1. Chemical context

Cyclo­penta­dienyl (Cp) complexes can be employed as versatile precursors for the synthesis of new functional materials, including heterocycles, catalysts, organic conductors or pharmaceuticals (Absolonová et al., 2021[Absolonová, M., Melounková, L., Vinklárek, J., Honzíček, J., Dostál, L. & Mrózek, O. (2021). ChemMedChem, 16, 1805-1813.]; Kharitonov et al., 2022[Kharitonov, V. B., Muratov, D. V. & Loginov, D. A. (2022). Coord. Chem. Rev. 471, 214744.]). Not only the exchange of the central metal atoms to which the Cp ligands are bound, but also the decoration of Cp ligands with functional groups can be used as a synthetic strategy to develop new catalysts (Loginov et al., 2019[Loginov, D. A., Shul'pina, L. S., Muratov, D. V. & Shul'pin, G. B. (2019). Coord. Chem. Rev. 387, 1-31.]). Similarly to other coordination compounds (Mahmoudi et al., 2017a[Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192-205.],b[Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763-4772.]; Mahmudov & Pombeiro 2023[Mahmudov, K. T. & Pombeiro, A. J. L. (2023). Chem. Eur. J. 29, e202203861.]), the inter­play between electron-donating or -withdrawing functions of substituents with their non-covalent donor or acceptor character in cyclo­penta­dienyl complexes can improve activity and selectivity of catalytic transformations.

[Scheme 1]

In this context, we report the synthesis and crystal structure analysis of a dinuclear bis­(tert-butyl­cyclo­penta­dien­yl)hexa­carbonyl­dimolybdenum(I) complex, [Mo(C9H13)(CO)3]2 or [Mo(tBuCp)(CO)3]2 (tBu and Cp represent tert-butyl and cyclo­penta­dien­yl).

2. Structural commentary

The dinuclear title complex crystallizes in the monoclinic space group P21/c with half of the mol­ecule present in the asymmetric unit (Fig. 1[link]). The entire dimer is generated by an inversion center located at the middle of the Mo—Mo bond (Fig. 2[link]). Imposed by inversion symmetry, the tert-butyl­cyclo­penta­dienyl (tBuCp) ligands are in a transoid arrangement about the Mo—Mo bond with that bond being 3.2323 (3) Å in length. For the tert-butyl groups on the (tBuCp) ring, the Mo1i—Mo1—C5—C6 torsion angle is 115.30 (18)°. All bond angles involving the carbonyl ligands are close to linearity, with Mo1—C10≡O1, Mo1—C11≡O2 and Mo1—C12≡O3 being 174.6 (2), 173.1 (2) and 178.2 (2)°, respectively.

[Figure 1]
Figure 1
The asymmetric unit of the title compound, showing the labeling scheme. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2]
Figure 2
The intra- and inter­molecular hydrogen contacts within the crystal structure of the title compound. [Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) x, −y + [{3\over 2}], z + [{1\over 2}].]

The mol­ecule of the title compound is sterically strained, which seems to be caused by short non-valent CO⋯CiOi and tBuCp⋯CiiOii contacts, as well as steric inter­action between the tert-butyl and C12≡O3 groups [symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) x, −y + [{3\over 2}], z + [{1\over 2}]]. The C12⋯H9A and O3⋯H9A contacts have values as small as 2.65 and 2.68 Å, respectively (Fig. 2[link]). The torsion angles C1—C5—C6—C7 and C4—C5—C6—C7 are 87.0 (3)° and −80.5 (3)°, respectively. The steric influence of the tert-butyl group is also evident in the –Mo(CO)3– fragment with a C12—Mo1—C11 angle as small as 76.04 (11)°.

In addition, an intra­molecular C—H⋯O inter­action [(C4)H4⋯O2i = 2.60 Å, C4 —H4 ⋯O2i = 123°] consolidates the mol­ecular conformation (Table 1[link]; Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.95 2.60 3.212 (3) 123
C2—H2⋯O3ii 0.95 2.52 3.429 (4) 160
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

3. Supra­molecular features

In the crystal of the title compound, an inter­molecular C—H⋯O inter­action [(C2)H2⋯O3ii = 2.52 Å, C2—H2⋯O3ii = 160°; symmetry code: (ii) x, −y + [{3\over 2}], z + [{1\over 2}]] is important and close to linear (Table 1[link]; Figs. 2[link]–5[link][link][link]). These inter­actions connect the mol­ecules into layers parallel to the bc plane (Figs. 3[link]–5[link][link]).

[Figure 3]
Figure 3
View of the non-classical hydrogen-bonding inter­actions down the a axis.
[Figure 4]
Figure 4
View of the non-classical hydrogen-bonding inter­actions down the b axis.
[Figure 5]
Figure 5
View of the non-classical hydrogen-bonding inter­actions down the c axis.

4. Database survey

A survey of the Cambridge Structural Database (CSD, Version 5.43, last update November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) returned 25 hits for a search with the bis­[(η5-cyclo­penta­dien­yl)tri­carbonyl­molybdenum] moiety as the search criterion. The four closest similar compounds are those with refcodes CYPMOC01 (Gould et al., 1988[Gould, R. O., Barker, J. & Kilner, M. (1988). Acta Cryst. C44, 461-463.]), CYPMOC10 (Adams et al., 1974[Adams, R. D., Collins, D. M. & Cotton, F. A. (1974). Inorg. Chem. 13, 1086-1090.]), GAKVUJ (Clegg et al., 1988[Clegg, W., Compton, N. A., Errington, R. J. & Norman, N. C. (1988). Acta Cryst. C44, 568-570.]), and TIVLAL (Hughes et al., 1996[Hughes, R. P., Lomprey, J. R., Rheingold, A. L. & Yap, G. P. A. (1996). J. Organomet. Chem. 517, 63-70.]).

CYPMOC10 crystallizes in the monoclinic P21/c space group with Z = 2, CYPMOC10 and GAKVUJ crystallize in the monoclinic P21/n space group with Z = 2, while CYPMOC01 crystallizes in the monoclinic I2 space group with Z = 2, and TIVLAL in the triclinic P[\overline{1}] space group with Z = 1.

Although the Mo—Mo distances in these structures vary slightly depending on the steric effects caused by the groups attached to the Cp rings, the values may be compared within the error limits of the experiments. The Mo—Mo distances are 3.2239 (11) Å for CYPMOC01, 3.235 (1) Å for CYPMOC10, 3.281 (1) Å for GAKVUJ, and 3.253 (1) Å for TIVLAL. The average length of the Mo—Mo bond in these structures is 3.263 (8) Å, which is in agreement with the length of the Mo—Mo bond for the title compound [3.2323 (3) Å]. In all these structures, the Mo—C≡O angles deviate only slightly from linearity due to the steric effects mentioned.

5. Synthesis and crystallization

The binuclear complex [Mo(tBuCp)(CO)3]2 was synthesized according to a reported protocol (Manning et al., 1990[Manning, A. R., Hackett, P., Birdwhistell, P. R. & Soye, P. (1990). Inorg. Synth. 28, 148-150.]). Under an inert atmosphere, 195 mg (5 mmol) of sodium amide and 0.7 ml (5 mmol) of freshly distilled tert-butyl­cyclo­penta­diene in diglyme (100 ml) were heated for 3 h at 318–323 K. After the mixture had cooled to room temperature, 1.32 g (5 mmol) of molybdenum hexa­carbonyl were added and the mixture heated at 423 K for 40 min. The yellow-colored reaction mixture was cooled to room temperature and 40 g of iron(III) sulfate [Fe2(SO4)3·9H2O] in 400 ml of water and 25 ml of glacial acetic acid were added. The reaction mixture turned red, and crystals precipitated from it, which were filtered and further washed with water, methanol and pentane. After drying, 2.56 g (85%) of a dark-red crystalline solid of the title compound were obtained. Melting point: 441–442 K (with decomposition); 1H NMR, 300 MHz, (CD2Cl2), δ(p.p.m.): 1.19 (s, 18H, 6CH3), 5.02 (s, 4H, α-CH), 5.20 (s, 4H, β-CH); IR: ν(cm−1): 1948, 1912 and 1858 (C≡O). Deep-red crystals of the title complex suitable for single crystal X-ray analysis were grown in toluene at a temperature of 263 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were included in calculated positions and treated as riding: C—H = 0.95–0.98 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula [Mo2(C9H13)2(CO)6]
Mr 602.35
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 12.1857 (7), 8.0515 (5), 12.6153 (8)
β (°) 105.490 (2)
V3) 1192.77 (13)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.09
Crystal size (mm) 0.34 × 0.27 × 0.14
 
Data collection
Diffractometer Bruker D8 Quest PHOTON 100 detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.692, 0.845
No. of measured, independent and observed [I > 2σ(I)] reflections 13856, 2269, 1892
Rint 0.051
(sin θ/λ)max−1) 0.611
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.054, 1.03
No. of reflections 2269
No. of parameters 148
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.34
Computer programs: APEX4 and SAINT (Bruker, 2018[Bruker (2018). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Bis[(η5-tert-butylcyclopentadienyl)tricarbonylmolybdenum(I)](MoMo) top
Crystal data top
[Mo2(C9H13)2(CO)6]F(000) = 604
Mr = 602.35Dx = 1.677 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.1857 (7) ÅCell parameters from 3077 reflections
b = 8.0515 (5) Åθ = 3.0–23.6°
c = 12.6153 (8) ŵ = 1.09 mm1
β = 105.490 (2)°T = 150 K
V = 1192.77 (13) Å3Prism, red
Z = 20.34 × 0.27 × 0.14 mm
Data collection top
Bruker D8 Quest PHOTON 100 detector
diffractometer
1892 reflections with I > 2σ(I)
φ and ω scansRint = 0.051
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 25.7°, θmin = 1.7°
Tmin = 0.692, Tmax = 0.845h = 1114
13856 measured reflectionsk = 89
2269 independent reflectionsl = 1512
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.0188P)2 + 0.5962P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2269 reflectionsΔρmax = 0.38 e Å3
148 parametersΔρmin = 0.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8160 (2)0.5120 (3)0.6172 (2)0.0197 (6)
H10.8716230.5684530.5903680.024*
C20.7428 (2)0.5865 (4)0.6739 (2)0.0224 (7)
H20.7413950.7006740.6925000.027*
C30.6726 (2)0.4613 (3)0.6979 (2)0.0206 (6)
H30.6154670.4762380.7356050.025*
C40.7017 (2)0.3089 (3)0.6559 (2)0.0184 (6)
H40.6662660.2048130.6598230.022*
C50.7923 (2)0.3371 (3)0.6071 (2)0.0172 (6)
C60.8635 (2)0.2032 (3)0.5714 (2)0.0230 (7)
C70.9527 (3)0.1482 (4)0.6762 (3)0.0381 (9)
H7A1.0007850.2430250.7077180.057*
H7B1.0001070.0600120.6580580.057*
H7C0.9141140.1063110.7297450.057*
C80.7904 (3)0.0537 (4)0.5238 (3)0.0491 (11)
H8A0.8384400.0328700.5048890.074*
H8B0.7320530.0873410.4574720.074*
H8C0.7535620.0105290.5782960.074*
C90.9232 (4)0.2666 (5)0.4893 (3)0.0625 (13)
H9A0.8665520.2994050.4216020.094*
H9B0.9718210.1788510.4726420.094*
H9C0.9701490.3628900.5201000.094*
C100.5452 (2)0.3181 (3)0.3980 (2)0.0179 (6)
C110.5746 (2)0.7073 (4)0.4444 (2)0.0189 (6)
C120.6983 (2)0.5190 (3)0.3786 (2)0.0197 (6)
O10.50217 (16)0.2156 (2)0.33646 (16)0.0251 (5)
O20.55213 (16)0.8396 (2)0.41126 (16)0.0259 (5)
O30.73768 (18)0.5429 (2)0.30634 (17)0.0302 (5)
Mo10.63311 (2)0.48528 (3)0.50317 (2)0.01290 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0147 (15)0.0257 (16)0.0162 (14)0.0030 (12)0.0001 (11)0.0002 (12)
C20.0230 (18)0.0223 (15)0.0169 (16)0.0053 (13)0.0031 (13)0.0044 (12)
C30.0170 (16)0.0344 (17)0.0091 (14)0.0089 (13)0.0014 (11)0.0011 (12)
C40.0162 (16)0.0218 (15)0.0156 (15)0.0028 (12)0.0016 (12)0.0067 (12)
C50.0129 (16)0.0212 (15)0.0145 (15)0.0022 (11)0.0015 (12)0.0012 (11)
C60.0204 (17)0.0250 (16)0.0218 (16)0.0099 (13)0.0026 (13)0.0012 (12)
C70.030 (2)0.042 (2)0.035 (2)0.0190 (16)0.0021 (16)0.0046 (16)
C80.036 (2)0.040 (2)0.065 (3)0.0123 (17)0.0026 (19)0.0283 (19)
C90.079 (3)0.054 (3)0.077 (3)0.040 (2)0.061 (3)0.029 (2)
C100.0174 (16)0.0190 (15)0.0184 (15)0.0064 (12)0.0064 (12)0.0050 (12)
C110.0124 (16)0.0267 (17)0.0170 (15)0.0024 (12)0.0030 (12)0.0021 (12)
C120.0197 (16)0.0155 (15)0.0230 (16)0.0041 (12)0.0039 (13)0.0011 (12)
O10.0268 (12)0.0224 (11)0.0241 (12)0.0005 (9)0.0032 (9)0.0097 (9)
O20.0257 (12)0.0156 (11)0.0355 (13)0.0020 (9)0.0067 (10)0.0072 (9)
O30.0413 (14)0.0292 (12)0.0274 (12)0.0044 (10)0.0216 (11)0.0055 (9)
Mo10.01234 (14)0.01388 (13)0.01223 (13)0.00102 (10)0.00287 (9)0.00043 (10)
Geometric parameters (Å, º) top
C1—C21.418 (4)C6—C71.536 (4)
C1—C51.437 (4)C7—H7A0.9800
C1—Mo12.318 (3)C7—H7B0.9800
C1—H10.9500C7—H7C0.9800
C2—C31.406 (4)C8—H8A0.9800
C2—Mo12.357 (3)C8—H8B0.9800
C2—H20.9500C8—H8C0.9800
C3—C41.419 (4)C9—H9A0.9800
C3—Mo12.381 (3)C9—H9B0.9800
C3—H30.9500C9—H9C0.9800
C4—C51.419 (4)C10—O11.158 (3)
C4—Mo12.360 (3)C10—Mo11.990 (3)
C4—H40.9500C11—O21.151 (3)
C5—C61.525 (4)C11—Mo11.992 (3)
C5—Mo12.356 (3)C12—O31.154 (3)
C6—C91.505 (4)C12—Mo11.960 (3)
C6—C81.522 (4)
C2—C1—C5108.7 (2)C6—C8—H8B109.5
C2—C1—Mo173.84 (15)H8A—C8—H8B109.5
C5—C1—Mo173.53 (15)C6—C8—H8C109.5
C2—C1—H1125.6H8A—C8—H8C109.5
C5—C1—H1125.6H8B—C8—H8C109.5
Mo1—C1—H1118.8C6—C9—H9A109.5
C3—C2—C1107.8 (2)C6—C9—H9B109.5
C3—C2—Mo173.69 (15)H9A—C9—H9B109.5
C1—C2—Mo170.87 (15)C6—C9—H9C109.5
C3—C2—H2126.1H9A—C9—H9C109.5
C1—C2—H2126.1H9B—C9—H9C109.5
Mo1—C2—H2121.1O1—C10—Mo1174.6 (2)
C2—C3—C4108.2 (3)O2—C11—Mo1173.1 (2)
C2—C3—Mo171.79 (15)O3—C12—Mo1178.2 (2)
C4—C3—Mo171.76 (15)C12—Mo1—C1079.64 (11)
C2—C3—H3125.9C12—Mo1—C1176.04 (11)
C4—C3—H3125.9C10—Mo1—C11106.46 (11)
Mo1—C3—H3122.2C12—Mo1—C187.50 (11)
C3—C4—C5108.9 (2)C10—Mo1—C1137.22 (10)
C3—C4—Mo173.42 (15)C11—Mo1—C1109.68 (10)
C5—C4—Mo172.33 (15)C12—Mo1—C593.81 (10)
C3—C4—H4125.5C10—Mo1—C5104.20 (10)
C5—C4—H4125.5C11—Mo1—C5145.19 (10)
Mo1—C4—H4120.4C1—Mo1—C535.79 (9)
C4—C5—C1106.2 (2)C12—Mo1—C2115.65 (11)
C4—C5—C6125.8 (2)C10—Mo1—C2156.39 (10)
C1—C5—C6127.1 (3)C11—Mo1—C295.11 (10)
C4—C5—Mo172.64 (14)C1—Mo1—C235.29 (9)
C1—C5—Mo170.68 (14)C5—Mo1—C258.97 (9)
C6—C5—Mo1129.98 (18)C12—Mo1—C4127.37 (10)
C9—C6—C8109.7 (3)C10—Mo1—C498.49 (10)
C9—C6—C5112.4 (2)C11—Mo1—C4149.01 (10)
C8—C6—C5110.9 (2)C1—Mo1—C458.45 (10)
C9—C6—C7109.3 (3)C5—Mo1—C435.03 (9)
C8—C6—C7108.5 (3)C2—Mo1—C458.06 (10)
C5—C6—C7106.1 (2)C12—Mo1—C3145.58 (11)
C6—C7—H7A109.5C10—Mo1—C3123.87 (10)
C6—C7—H7B109.5C11—Mo1—C3114.21 (10)
H7A—C7—H7B109.5C1—Mo1—C358.09 (10)
C6—C7—H7C109.5C5—Mo1—C358.36 (9)
H7A—C7—H7C109.5C2—Mo1—C334.52 (10)
H7B—C7—H7C109.5C4—Mo1—C334.82 (9)
C6—C8—H8A109.5
C5—C1—C2—C30.9 (3)C2—C1—C5—C41.6 (3)
Mo1—C1—C2—C364.91 (18)Mo1—C1—C5—C464.44 (17)
C5—C1—C2—Mo165.81 (18)C2—C1—C5—C6167.9 (2)
C1—C2—C3—C40.1 (3)Mo1—C1—C5—C6126.0 (3)
Mo1—C2—C3—C462.92 (18)C2—C1—C5—Mo166.01 (18)
C1—C2—C3—Mo163.06 (18)C4—C5—C6—C9160.1 (3)
C2—C3—C4—C51.2 (3)C1—C5—C6—C932.3 (4)
Mo1—C3—C4—C564.09 (18)Mo1—C5—C6—C963.0 (4)
C2—C3—C4—Mo162.93 (19)C4—C5—C6—C837.0 (4)
C3—C4—C5—C11.7 (3)C1—C5—C6—C8155.4 (3)
Mo1—C4—C5—C163.12 (17)Mo1—C5—C6—C860.1 (3)
C3—C4—C5—C6168.0 (2)C4—C5—C6—C780.5 (3)
Mo1—C4—C5—C6127.2 (3)C1—C5—C6—C787.0 (3)
C3—C4—C5—Mo164.78 (18)Mo1—C5—C6—C7177.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.952.603.212 (3)123
C2—H2···O3ii0.952.523.429 (4)160
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z+1/2.
 

Acknowledgements

This work was supported by the Acad. M. Nagiev Institute of Catalysis and Inorganic Chemistry, Ministry of Science and Education of the Azerbaijan Republic, Western Caspian University (Azerbaijan) and Azerbaijan Medical University. The authors′ contributions are as follows. Conceptualization, IUL, MA and AB; synthesis, NZI and IUL; X-ray analysis, IUL and KIH; writing (review and editing of the manuscript) IUL and MA; funding acquisition, NZI, DBT, IUL and KIH; supervision, IUL, MA and AB.

References

First citationAbsolonová, M., Melounková, L., Vinklárek, J., Honzíček, J., Dostál, L. & Mrózek, O. (2021). ChemMedChem, 16, 1805–1813.  Google Scholar
First citationAdams, R. D., Collins, D. M. & Cotton, F. A. (1974). Inorg. Chem. 13, 1086–1090.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2018). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClegg, W., Compton, N. A., Errington, R. J. & Norman, N. C. (1988). Acta Cryst. C44, 568–570.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGould, R. O., Barker, J. & Kilner, M. (1988). Acta Cryst. C44, 461–463.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHughes, R. P., Lomprey, J. R., Rheingold, A. L. & Yap, G. P. A. (1996). J. Organomet. Chem. 517, 63–70.  CSD CrossRef CAS Google Scholar
First citationKharitonov, V. B., Muratov, D. V. & Loginov, D. A. (2022). Coord. Chem. Rev. 471, 214744.  CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLoginov, D. A., Shul'pina, L. S., Muratov, D. V. & Shul'pin, G. B. (2019). Coord. Chem. Rev. 387, 1–31.  CrossRef CAS Google Scholar
First citationMahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763–4772.  Web of Science CSD CrossRef Google Scholar
First citationMahmudov, K. T. & Pombeiro, A. J. L. (2023). Chem. Eur. J. 29, e202203861.  CrossRef PubMed Google Scholar
First citationManning, A. R., Hackett, P., Birdwhistell, P. R. & Soye, P. (1990). Inorg. Synth. 28, 148–150.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds