research communications
η5-tert-butylcyclopentadienyl)tricarbonylmolybdenum(I)](Mo—Mo)
of bis[(aAcad. M. Nagiev Institute of Catalysis and Inorganic Chemistry, Ministry of Science and Education of the Azerbaijan Republic, Azerbaijan, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, cWestern Caspian University, Istiqlaliyyat Street 31, AZ 1001, Baku, Azerbaijan, dAzerbaijan Medical University, Scientific Research Centre (SRC), A. Kasumzade St. 14. AZ 1022, Baku, Azerbaijan, and eDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np
The dinuclear molecule of the title compound, [Mo2(C9H13)2(CO)6] or [Mo(tBuCp)(CO)3]2 where tBu and Cp are tert-butyl and cyclopentadienyl, is centrosymmetric and is characterized by an Mo—Mo bond length of 3.2323 (3) Å. Imposed by inversion symmetry, the tBuCp and the carbonyl ligands are in a transoid arrangement to each other. In the crystal, intermolecular C—H⋯O contacts lead to the formation of layers parallel to the bc plane.
Keywords: crystal structure; Mo complex; carbonyl ligands; cyclopentadienyl ligand; tert-butyl group; carbonyl group; binuclear complex; steric effect.
CCDC reference: 2243119
1. Chemical context
Cyclopentadienyl (Cp) complexes can be employed as versatile precursors for the synthesis of new functional materials, including heterocycles, catalysts, organic conductors or pharmaceuticals (Absolonová et al., 2021; Kharitonov et al., 2022). Not only the exchange of the central metal atoms to which the Cp ligands are bound, but also the decoration of Cp ligands with functional groups can be used as a synthetic strategy to develop new catalysts (Loginov et al., 2019). Similarly to other coordination compounds (Mahmoudi et al., 2017a,b; Mahmudov & Pombeiro 2023), the interplay between electron-donating or -withdrawing functions of substituents with their non-covalent donor or acceptor character in cyclopentadienyl complexes can improve activity and selectivity of catalytic transformations.
In this context, we report the synthesis and tert-butylcyclopentadienyl)hexacarbonyldimolybdenum(I) complex, [Mo(C9H13)(CO)3]2 or [Mo(tBuCp)(CO)3]2 (tBu and Cp represent tert-butyl and cyclopentadienyl).
analysis of a dinuclear bis(2. Structural commentary
The dinuclear title complex crystallizes in the monoclinic P21/c with half of the molecule present in the (Fig. 1). The entire dimer is generated by an inversion center located at the middle of the Mo—Mo bond (Fig. 2). Imposed by inversion symmetry, the tert-butylcyclopentadienyl (tBuCp) ligands are in a transoid arrangement about the Mo—Mo bond with that bond being 3.2323 (3) Å in length. For the tert-butyl groups on the (tBuCp) ring, the Mo1i—Mo1—C5—C6 torsion angle is 115.30 (18)°. All bond angles involving the carbonyl ligands are close to linearity, with Mo1—C10≡O1, Mo1—C11≡O2 and Mo1—C12≡O3 being 174.6 (2), 173.1 (2) and 178.2 (2)°, respectively.
The molecule of the title compound is sterically strained, which seems to be caused by short non-valent CO⋯CiOi and tBuCp⋯CiiOii contacts, as well as steric interaction between the tert-butyl and C12≡O3 groups [symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) x, −y + , z + ]. The C12⋯H9A and O3⋯H9A contacts have values as small as 2.65 and 2.68 Å, respectively (Fig. 2). The torsion angles C1—C5—C6—C7 and C4—C5—C6—C7 are 87.0 (3)° and −80.5 (3)°, respectively. The steric influence of the tert-butyl group is also evident in the –Mo(CO)3– fragment with a C12—Mo1—C11 angle as small as 76.04 (11)°.
In addition, an intramolecular C—H⋯O interaction [(C4)H4⋯O2i = 2.60 Å, C4 —H4 ⋯O2i = 123°] consolidates the molecular conformation (Table 1; Fig. 2).
3. Supramolecular features
In the crystal of the title compound, an intermolecular C—H⋯O interaction [(C2)H2⋯O3ii = 2.52 Å, C2—H2⋯O3ii = 160°; symmetry code: (ii) x, −y + , z + ] is important and close to linear (Table 1; Figs. 2–5). These interactions connect the molecules into layers parallel to the bc plane (Figs. 3–5).
4. Database survey
A survey of the Cambridge Structural Database (CSD, Version 5.43, last update November 2022; Groom et al., 2016) returned 25 hits for a search with the bis[(η5-cyclopentadienyl)tricarbonylmolybdenum] moiety as the search criterion. The four closest similar compounds are those with refcodes CYPMOC01 (Gould et al., 1988), CYPMOC10 (Adams et al., 1974), GAKVUJ (Clegg et al., 1988), and TIVLAL (Hughes et al., 1996).
CYPMOC10 crystallizes in the monoclinic P21/c with Z = 2, CYPMOC10 and GAKVUJ crystallize in the monoclinic P21/n with Z = 2, while CYPMOC01 crystallizes in the monoclinic I2 with Z = 2, and TIVLAL in the triclinic P with Z = 1.
Although the Mo—Mo distances in these structures vary slightly depending on the steric effects caused by the groups attached to the Cp rings, the values may be compared within the error limits of the experiments. The Mo—Mo distances are 3.2239 (11) Å for CYPMOC01, 3.235 (1) Å for CYPMOC10, 3.281 (1) Å for GAKVUJ, and 3.253 (1) Å for TIVLAL. The average length of the Mo—Mo bond in these structures is 3.263 (8) Å, which is in agreement with the length of the Mo—Mo bond for the title compound [3.2323 (3) Å]. In all these structures, the Mo—C≡O angles deviate only slightly from linearity due to the steric effects mentioned.
5. Synthesis and crystallization
The binuclear complex [Mo(tBuCp)(CO)3]2 was synthesized according to a reported protocol (Manning et al., 1990). Under an inert atmosphere, 195 mg (5 mmol) of sodium amide and 0.7 ml (5 mmol) of freshly distilled tert-butylcyclopentadiene in diglyme (100 ml) were heated for 3 h at 318–323 K. After the mixture had cooled to room temperature, 1.32 g (5 mmol) of molybdenum hexacarbonyl were added and the mixture heated at 423 K for 40 min. The yellow-colored reaction mixture was cooled to room temperature and 40 g of iron(III) sulfate [Fe2(SO4)3·9H2O] in 400 ml of water and 25 ml of glacial acetic acid were added. The reaction mixture turned red, and crystals precipitated from it, which were filtered and further washed with water, methanol and pentane. After drying, 2.56 g (85%) of a dark-red crystalline solid of the title compound were obtained. Melting point: 441–442 K (with decomposition); 1H NMR, 300 MHz, (CD2Cl2), δ(p.p.m.): 1.19 (s, 18H, 6CH3), 5.02 (s, 4H, α-CH), 5.20 (s, 4H, β-CH); IR: ν(cm−1): 1948, 1912 and 1858 (C≡O). Deep-red crystals of the title complex suitable for single crystal X-ray analysis were grown in toluene at a temperature of 263 K.
6. Refinement
Crystal data, data collection and structure . H atoms were included in calculated positions and treated as riding: C—H = 0.95–0.98 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms.
details are summarized in Table 2Supporting information
CCDC reference: 2243119
https://doi.org/10.1107/S2056989024006959/wm5725sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024006959/wm5725Isup2.hkl
[Mo2(C9H13)2(CO)6] | F(000) = 604 |
Mr = 602.35 | Dx = 1.677 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.1857 (7) Å | Cell parameters from 3077 reflections |
b = 8.0515 (5) Å | θ = 3.0–23.6° |
c = 12.6153 (8) Å | µ = 1.09 mm−1 |
β = 105.490 (2)° | T = 150 K |
V = 1192.77 (13) Å3 | Prism, red |
Z = 2 | 0.34 × 0.27 × 0.14 mm |
Bruker D8 Quest PHOTON 100 detector diffractometer | 1892 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.051 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 25.7°, θmin = 1.7° |
Tmin = 0.692, Tmax = 0.845 | h = −11→14 |
13856 measured reflections | k = −8→9 |
2269 independent reflections | l = −15→12 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.025 | H-atom parameters constrained |
wR(F2) = 0.054 | w = 1/[σ2(Fo2) + (0.0188P)2 + 0.5962P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
2269 reflections | Δρmax = 0.38 e Å−3 |
148 parameters | Δρmin = −0.34 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.8160 (2) | 0.5120 (3) | 0.6172 (2) | 0.0197 (6) | |
H1 | 0.871623 | 0.568453 | 0.590368 | 0.024* | |
C2 | 0.7428 (2) | 0.5865 (4) | 0.6739 (2) | 0.0224 (7) | |
H2 | 0.741395 | 0.700674 | 0.692500 | 0.027* | |
C3 | 0.6726 (2) | 0.4613 (3) | 0.6979 (2) | 0.0206 (6) | |
H3 | 0.615467 | 0.476238 | 0.735605 | 0.025* | |
C4 | 0.7017 (2) | 0.3089 (3) | 0.6559 (2) | 0.0184 (6) | |
H4 | 0.666266 | 0.204813 | 0.659823 | 0.022* | |
C5 | 0.7923 (2) | 0.3371 (3) | 0.6071 (2) | 0.0172 (6) | |
C6 | 0.8635 (2) | 0.2032 (3) | 0.5714 (2) | 0.0230 (7) | |
C7 | 0.9527 (3) | 0.1482 (4) | 0.6762 (3) | 0.0381 (9) | |
H7A | 1.000785 | 0.243025 | 0.707718 | 0.057* | |
H7B | 1.000107 | 0.060012 | 0.658058 | 0.057* | |
H7C | 0.914114 | 0.106311 | 0.729745 | 0.057* | |
C8 | 0.7904 (3) | 0.0537 (4) | 0.5238 (3) | 0.0491 (11) | |
H8A | 0.838440 | −0.032870 | 0.504889 | 0.074* | |
H8B | 0.732053 | 0.087341 | 0.457472 | 0.074* | |
H8C | 0.753562 | 0.010529 | 0.578296 | 0.074* | |
C9 | 0.9232 (4) | 0.2666 (5) | 0.4893 (3) | 0.0625 (13) | |
H9A | 0.866552 | 0.299405 | 0.421602 | 0.094* | |
H9B | 0.971821 | 0.178851 | 0.472642 | 0.094* | |
H9C | 0.970149 | 0.362890 | 0.520100 | 0.094* | |
C10 | 0.5452 (2) | 0.3181 (3) | 0.3980 (2) | 0.0179 (6) | |
C11 | 0.5746 (2) | 0.7073 (4) | 0.4444 (2) | 0.0189 (6) | |
C12 | 0.6983 (2) | 0.5190 (3) | 0.3786 (2) | 0.0197 (6) | |
O1 | 0.50217 (16) | 0.2156 (2) | 0.33646 (16) | 0.0251 (5) | |
O2 | 0.55213 (16) | 0.8396 (2) | 0.41126 (16) | 0.0259 (5) | |
O3 | 0.73768 (18) | 0.5429 (2) | 0.30634 (17) | 0.0302 (5) | |
Mo1 | 0.63311 (2) | 0.48528 (3) | 0.50317 (2) | 0.01290 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0147 (15) | 0.0257 (16) | 0.0162 (14) | −0.0030 (12) | −0.0001 (11) | 0.0002 (12) |
C2 | 0.0230 (18) | 0.0223 (15) | 0.0169 (16) | 0.0053 (13) | −0.0031 (13) | −0.0044 (12) |
C3 | 0.0170 (16) | 0.0344 (17) | 0.0091 (14) | 0.0089 (13) | 0.0014 (11) | 0.0011 (12) |
C4 | 0.0162 (16) | 0.0218 (15) | 0.0156 (15) | 0.0028 (12) | 0.0016 (12) | 0.0067 (12) |
C5 | 0.0129 (16) | 0.0212 (15) | 0.0145 (15) | 0.0022 (11) | −0.0015 (12) | 0.0012 (11) |
C6 | 0.0204 (17) | 0.0250 (16) | 0.0218 (16) | 0.0099 (13) | 0.0026 (13) | 0.0012 (12) |
C7 | 0.030 (2) | 0.042 (2) | 0.035 (2) | 0.0190 (16) | −0.0021 (16) | −0.0046 (16) |
C8 | 0.036 (2) | 0.040 (2) | 0.065 (3) | 0.0123 (17) | 0.0026 (19) | −0.0283 (19) |
C9 | 0.079 (3) | 0.054 (3) | 0.077 (3) | 0.040 (2) | 0.061 (3) | 0.029 (2) |
C10 | 0.0174 (16) | 0.0190 (15) | 0.0184 (15) | 0.0064 (12) | 0.0064 (12) | 0.0050 (12) |
C11 | 0.0124 (16) | 0.0267 (17) | 0.0170 (15) | −0.0024 (12) | 0.0030 (12) | −0.0021 (12) |
C12 | 0.0197 (16) | 0.0155 (15) | 0.0230 (16) | 0.0041 (12) | 0.0039 (13) | 0.0011 (12) |
O1 | 0.0268 (12) | 0.0224 (11) | 0.0241 (12) | 0.0005 (9) | 0.0032 (9) | −0.0097 (9) |
O2 | 0.0257 (12) | 0.0156 (11) | 0.0355 (13) | 0.0020 (9) | 0.0067 (10) | 0.0072 (9) |
O3 | 0.0413 (14) | 0.0292 (12) | 0.0274 (12) | 0.0044 (10) | 0.0216 (11) | 0.0055 (9) |
Mo1 | 0.01234 (14) | 0.01388 (13) | 0.01223 (13) | 0.00102 (10) | 0.00287 (9) | 0.00043 (10) |
C1—C2 | 1.418 (4) | C6—C7 | 1.536 (4) |
C1—C5 | 1.437 (4) | C7—H7A | 0.9800 |
C1—Mo1 | 2.318 (3) | C7—H7B | 0.9800 |
C1—H1 | 0.9500 | C7—H7C | 0.9800 |
C2—C3 | 1.406 (4) | C8—H8A | 0.9800 |
C2—Mo1 | 2.357 (3) | C8—H8B | 0.9800 |
C2—H2 | 0.9500 | C8—H8C | 0.9800 |
C3—C4 | 1.419 (4) | C9—H9A | 0.9800 |
C3—Mo1 | 2.381 (3) | C9—H9B | 0.9800 |
C3—H3 | 0.9500 | C9—H9C | 0.9800 |
C4—C5 | 1.419 (4) | C10—O1 | 1.158 (3) |
C4—Mo1 | 2.360 (3) | C10—Mo1 | 1.990 (3) |
C4—H4 | 0.9500 | C11—O2 | 1.151 (3) |
C5—C6 | 1.525 (4) | C11—Mo1 | 1.992 (3) |
C5—Mo1 | 2.356 (3) | C12—O3 | 1.154 (3) |
C6—C9 | 1.505 (4) | C12—Mo1 | 1.960 (3) |
C6—C8 | 1.522 (4) | ||
C2—C1—C5 | 108.7 (2) | C6—C8—H8B | 109.5 |
C2—C1—Mo1 | 73.84 (15) | H8A—C8—H8B | 109.5 |
C5—C1—Mo1 | 73.53 (15) | C6—C8—H8C | 109.5 |
C2—C1—H1 | 125.6 | H8A—C8—H8C | 109.5 |
C5—C1—H1 | 125.6 | H8B—C8—H8C | 109.5 |
Mo1—C1—H1 | 118.8 | C6—C9—H9A | 109.5 |
C3—C2—C1 | 107.8 (2) | C6—C9—H9B | 109.5 |
C3—C2—Mo1 | 73.69 (15) | H9A—C9—H9B | 109.5 |
C1—C2—Mo1 | 70.87 (15) | C6—C9—H9C | 109.5 |
C3—C2—H2 | 126.1 | H9A—C9—H9C | 109.5 |
C1—C2—H2 | 126.1 | H9B—C9—H9C | 109.5 |
Mo1—C2—H2 | 121.1 | O1—C10—Mo1 | 174.6 (2) |
C2—C3—C4 | 108.2 (3) | O2—C11—Mo1 | 173.1 (2) |
C2—C3—Mo1 | 71.79 (15) | O3—C12—Mo1 | 178.2 (2) |
C4—C3—Mo1 | 71.76 (15) | C12—Mo1—C10 | 79.64 (11) |
C2—C3—H3 | 125.9 | C12—Mo1—C11 | 76.04 (11) |
C4—C3—H3 | 125.9 | C10—Mo1—C11 | 106.46 (11) |
Mo1—C3—H3 | 122.2 | C12—Mo1—C1 | 87.50 (11) |
C3—C4—C5 | 108.9 (2) | C10—Mo1—C1 | 137.22 (10) |
C3—C4—Mo1 | 73.42 (15) | C11—Mo1—C1 | 109.68 (10) |
C5—C4—Mo1 | 72.33 (15) | C12—Mo1—C5 | 93.81 (10) |
C3—C4—H4 | 125.5 | C10—Mo1—C5 | 104.20 (10) |
C5—C4—H4 | 125.5 | C11—Mo1—C5 | 145.19 (10) |
Mo1—C4—H4 | 120.4 | C1—Mo1—C5 | 35.79 (9) |
C4—C5—C1 | 106.2 (2) | C12—Mo1—C2 | 115.65 (11) |
C4—C5—C6 | 125.8 (2) | C10—Mo1—C2 | 156.39 (10) |
C1—C5—C6 | 127.1 (3) | C11—Mo1—C2 | 95.11 (10) |
C4—C5—Mo1 | 72.64 (14) | C1—Mo1—C2 | 35.29 (9) |
C1—C5—Mo1 | 70.68 (14) | C5—Mo1—C2 | 58.97 (9) |
C6—C5—Mo1 | 129.98 (18) | C12—Mo1—C4 | 127.37 (10) |
C9—C6—C8 | 109.7 (3) | C10—Mo1—C4 | 98.49 (10) |
C9—C6—C5 | 112.4 (2) | C11—Mo1—C4 | 149.01 (10) |
C8—C6—C5 | 110.9 (2) | C1—Mo1—C4 | 58.45 (10) |
C9—C6—C7 | 109.3 (3) | C5—Mo1—C4 | 35.03 (9) |
C8—C6—C7 | 108.5 (3) | C2—Mo1—C4 | 58.06 (10) |
C5—C6—C7 | 106.1 (2) | C12—Mo1—C3 | 145.58 (11) |
C6—C7—H7A | 109.5 | C10—Mo1—C3 | 123.87 (10) |
C6—C7—H7B | 109.5 | C11—Mo1—C3 | 114.21 (10) |
H7A—C7—H7B | 109.5 | C1—Mo1—C3 | 58.09 (10) |
C6—C7—H7C | 109.5 | C5—Mo1—C3 | 58.36 (9) |
H7A—C7—H7C | 109.5 | C2—Mo1—C3 | 34.52 (10) |
H7B—C7—H7C | 109.5 | C4—Mo1—C3 | 34.82 (9) |
C6—C8—H8A | 109.5 | ||
C5—C1—C2—C3 | −0.9 (3) | C2—C1—C5—C4 | 1.6 (3) |
Mo1—C1—C2—C3 | 64.91 (18) | Mo1—C1—C5—C4 | −64.44 (17) |
C5—C1—C2—Mo1 | −65.81 (18) | C2—C1—C5—C6 | −167.9 (2) |
C1—C2—C3—C4 | −0.1 (3) | Mo1—C1—C5—C6 | 126.0 (3) |
Mo1—C2—C3—C4 | 62.92 (18) | C2—C1—C5—Mo1 | 66.01 (18) |
C1—C2—C3—Mo1 | −63.06 (18) | C4—C5—C6—C9 | 160.1 (3) |
C2—C3—C4—C5 | 1.2 (3) | C1—C5—C6—C9 | −32.3 (4) |
Mo1—C3—C4—C5 | 64.09 (18) | Mo1—C5—C6—C9 | 63.0 (4) |
C2—C3—C4—Mo1 | −62.93 (19) | C4—C5—C6—C8 | 37.0 (4) |
C3—C4—C5—C1 | −1.7 (3) | C1—C5—C6—C8 | −155.4 (3) |
Mo1—C4—C5—C1 | 63.12 (17) | Mo1—C5—C6—C8 | −60.1 (3) |
C3—C4—C5—C6 | 168.0 (2) | C4—C5—C6—C7 | −80.5 (3) |
Mo1—C4—C5—C6 | −127.2 (3) | C1—C5—C6—C7 | 87.0 (3) |
C3—C4—C5—Mo1 | −64.78 (18) | Mo1—C5—C6—C7 | −177.7 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O2i | 0.95 | 2.60 | 3.212 (3) | 123 |
C2—H2···O3ii | 0.95 | 2.52 | 3.429 (4) | 160 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+3/2, z+1/2. |
Acknowledgements
This work was supported by the Acad. M. Nagiev Institute of Catalysis and Inorganic Chemistry, Ministry of Science and Education of the Azerbaijan Republic, Western Caspian University (Azerbaijan) and Azerbaijan Medical University. The authors′ contributions are as follows. Conceptualization, IUL, MA and AB; synthesis, NZI and IUL; X-ray analysis, IUL and KIH; writing (review and editing of the manuscript) IUL and MA; funding acquisition, NZI, DBT, IUL and KIH; supervision, IUL, MA and AB.
References
Absolonová, M., Melounková, L., Vinklárek, J., Honzíček, J., Dostál, L. & Mrózek, O. (2021). ChemMedChem, 16, 1805–1813. Google Scholar
Adams, R. D., Collins, D. M. & Cotton, F. A. (1974). Inorg. Chem. 13, 1086–1090. CSD CrossRef CAS Web of Science Google Scholar
Bruker (2018). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Clegg, W., Compton, N. A., Errington, R. J. & Norman, N. C. (1988). Acta Cryst. C44, 568–570. CSD CrossRef Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gould, R. O., Barker, J. & Kilner, M. (1988). Acta Cryst. C44, 461–463. CSD CrossRef Web of Science IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hughes, R. P., Lomprey, J. R., Rheingold, A. L. & Yap, G. P. A. (1996). J. Organomet. Chem. 517, 63–70. CSD CrossRef CAS Google Scholar
Kharitonov, V. B., Muratov, D. V. & Loginov, D. A. (2022). Coord. Chem. Rev. 471, 214744. CrossRef Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Loginov, D. A., Shul'pina, L. S., Muratov, D. V. & Shul'pin, G. B. (2019). Coord. Chem. Rev. 387, 1–31. CrossRef CAS Google Scholar
Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763–4772. Web of Science CSD CrossRef Google Scholar
Mahmudov, K. T. & Pombeiro, A. J. L. (2023). Chem. Eur. J. 29, e202203861. CrossRef PubMed Google Scholar
Manning, A. R., Hackett, P., Birdwhistell, P. R. & Soye, P. (1990). Inorg. Synth. 28, 148–150. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.