research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal and mol­ecular structure of 2-methyl-1,4-phenyl­ene bis­­(3,5-di­bromo­benzoate)

crossmark logo

aDepartment of Chemistry & Chemistry Research Center, USAF Academy, Colorado Springs, CO 80840, USA
*Correspondence e-mail: nathan.weeks@afacademy.af.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 25 June 2024; accepted 11 July 2024; online 15 July 2024)

The aryl diester compound, 2-methyl-1,4-phenyl­ene bis­(3,5-di­bromo­benzoate), C21H12Br4O4, was synthesized by esterification of methyl hydro­quinone with 3,5-di­bromo­benzoic acid. A crystalline sample was obtained by cooling a sample of the melt (m.p. = 502 K/DSC) to room temperature. The mol­ecular structure consists of a central benzene ring with anti-3,5-di­bromo­benzoate groups symmetrically attached at the 1 and 4 positions and a methyl group attached at the 2 position of the central ring. In the crystal structure (space group P[\overline{1}]), mol­ecules of the title aryl diester are located on inversion centers imposing disorder of the methyl group and H atom across the central benzene ring. The crystal structure is consolidated by a network of C—H⋯Br hydrogen bonds in addition to weaker and offset ππ inter­actions involving the central benzene rings as well as the rings of the attached 3,5-di­bromo­benzoate groups.

1. Chemical context

Inverse vulcanization (InV) polymerization is an important solvent-less process for the synthesis of elastomeric materials from elemental sulfur and thermally stable organic co-monomers, both of which are often found as waste products of the chemical industry (Chung et al., 2013[Chung, W. J., Griebel, J. J., Kim, E. T., Yoon, H., Simmonds, A. G., Ji, H. J., Dirlam, P. T., Glass, R. S., Wie, J. J., Nguyen, N. A., Guralnick, B. W., Park, J., Somogyi, A., Theato, P., Mackay, M. E., Sung, Y. E., Char, K. & Pyun, J. (2013). Nat. Chem. 5, 518-524.]; Karunarathna et al., 2020[Karunarathna, M. S., Tennyson, A. G. & Smith, R. C. (2020). J. Mater. Chem. A, 8, 548-553.]). Recently, aryl halide co-monomers, including the title aryl diester, were investigated for un-catalyzed InV chemistry, and shown to react via a radical aryl sulfur polymerization (RASP) mechanism at temperatures > 493 K (Karunarathna et al., 2020[Karunarathna, M. S., Tennyson, A. G. & Smith, R. C. (2020). J. Mater. Chem. A, 8, 548-553.]; Thio­unn et al., 2020[Thiounn, T., Lauer, M. K., Karunarathna, M. S., Tennyson, A. G. & Smith, R. C. (2020). Sus. Chem, 1, 183-197.]). An advantage of the title aryl diester as a co-monomer for InV reactions is reflected by its conjugated aromaticity and attendant exceptional thermal stability (Td = 563 K/TGA). Further, a more recent study (Lauer et al., 2024[Lauer, M. K., Godman, N. P. & Iacono, S. T. (2024). ACS Macro Lett. 13, 40-46.]) demonstrated that successful InV reactions could be carried out at temperatures as low as 463 K, using the title aryl diester co-monomer in conjunction with a di­thio­carbamate (DTC) catalyst. The catalyzed reaction data were significant because they provided evidence for the possible involvement of anionic sulfur inter­mediates and expanded the possible scope of the InV reactions to more thermally sensitive co-monomers (Lauer et al., 2024[Lauer, M. K., Godman, N. P. & Iacono, S. T. (2024). ACS Macro Lett. 13, 40-46.]).

[Scheme 1]

2. Structural commentary

The aryl diester compound, 2-methyl-1,4-phenyl­ene bis­(3,5-di­bromo­benzoate), crystallizes in the space group P[\overline{1}] with one half mol­ecule per asymmetric unit. Mol­ecules lie on crystallographic inversion centers that impose disorder of the methyl group (C11H3) and an H atom (H10) across the central benzene ring (Fig. 1[link]). The two 3,5-di­bromo­benzoate end groups are attached to the central benzene ring in an anti fashion, with the planes of the 3,5-di­bromo­benzoate rings inclined at a dihedral angle of 54.53 (9)° with respect to the plane of the central benzene ring (Fig. 1[link]). The ester groups are nearly co-planar with their conjugated 3,5-di­bromo­phenyl rings, making a dihedral angle of only 8.21 (11)°, but inclined at a dihedral angle of 62.58 (10)° with respect to the central benzene ring (Fig. 1[link]). This compares well to the structure of the related 1,4-phenyl­ene dibenzoate, with the end group rings and ester groups tipped with respect to the central 1,4-benzene ring at dihedral angles of 55.29 (8) and 60.31 (9)°, respectively, and the ester groups with their conjugated end group rings tipped at only a small dihedral angle of 5.94 (8)° (Ganaie et al., 2016[Ganaie, J. A., Kumar, J., Butcher, R. J., Jasinski, J. P. & Gupta, S. K. (2016). J. Chem. Crystallogr. 46, 93-104.]).

[Figure 1]
Figure 1
Mol­ecular structure of 2-methyl-1,4-phenyl­ene bis­(3,5-di­bromo­benzoate), depicting the anti-position of the 3,5-di­bromo­benzoate end groups. The methyl group is shown in both positions, disordered across the central benzene ring in space group P[\overline{1}]. Displacement ellipsoids are shown at the 50% probability level; non-labeled atoms are generated by symmetry operation 1 − x, 2 − y, −z.

3. Supra­molecular features

Inter­molecular contacts of the title aryl diester involve hydrogen-bonding and weaker ring ππ inter­actions. Complementary end-to-end hydrogen bonding C5—H5⋯Br1 [3.12 (2) Å, Table 1[link]] between the 3,5-di­bromo­phenyl groups forms chains of aryl diester mol­ecules that run parallel to [011] (Fig. 2[link]). The planes between the 3,5-di­bromo­phenyl rings on adjacent mol­ecules in the chains are offset, giving a stair-step pattern of aryl diester mol­ecular links in the chains (Fig. 2[link]). Complementary C3—H3⋯Br1 inter­actions [3.02 (1) Å, Table 1[link]] extend along [100] and result in shorter side-to-side hydrogen bonding that cross-links the end-to-end chains forming a tri-periodic network (Fig. 2[link]). This arrangement places the Br2 and H7 atoms in positions that point towards the central benzene rings of adjacent mol­ecules and that are free of C—H⋯Br hydrogen-bonding inter­actions (Fig. 2[link]). The network of C—H⋯Br hydrogen bonds between Br1 and H3/H5 leaves a side-to-side packing of mol­ecules along [100] with all rings on adjacent mol­ecules oriented parallel (Fig. 3[link]). Weak ππ inter­actions are evident between these parallel rings with centroid-to-centroid (Cg⋯Cg) distances of 3.8875 (1) Å, but with their centroids shifted by 1.726 Å (3,5-di­bromo­phenyl rings) and 1.905 Å (central benzene rings). In the crystal structure of the related 1,4-phenyl­ene dibenzoate, three C—H⋯π inter­actions and one displaced ππ inter­action between the peripheral rings [Cg⋯Cg distance = 3.9590 (10) Å] were noted (Ganaie et al., 2016[Ganaie, J. A., Kumar, J., Butcher, R. J., Jasinski, J. P. & Gupta, S. K. (2016). J. Chem. Crystallogr. 46, 93-104.]). The presence of Br and the attendant network of stronger C—H⋯Br hydrogen bonds in the title aryl diester structure precludes C—H⋯π inter­actions, resulting in only displaced and weak ππ inter­actions between parallel rings.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Br1i 0.95 (1) 3.12 (2) 3.893 (2) 139 (2)
C3—H3⋯Br1ii 0.95 (1) 3.02 (1) 3.956 (2) 172 (2)
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x+2, -y+2, -z+1].
[Figure 2]
Figure 2
Hydrogen-bonding motif for 2-methyl-1,4-phenyl­ene bis­(3,5-di­bromo­benzoate), depicting complementary end-to-end [C5—H5⋯Br1, 3.12 (2) Å] and side-to-side [C3—H3⋯Br1, 3.02 (1) Å] C—H⋯Br inter­actions, in a view down [100]. Displacement ellipsoids are shown at the 50% probability level. [Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) −1 + x, −1 + y, z; (iii) 2 − x, 2 − y, 1 − z; (iv) 1 + x, 1 + y, z.]
[Figure 3]
Figure 3
Unit-cell overlay and depiction of the ππ inter­actions along [100] in the crystal structure of 2-methyl-1,4-phenyl­ene bis­(3,5-di­bromo­benzoate), giving parallel but slipped central 1,4-benzene rings (shaded green) and end group 3,5-di­bromo­phenyl rings (shaded blue). The centroids of the central benzene rings lie on inversion centers, giving equal Cg⋯Cg distances that correspond to the a lattice parameter [3.8875 (1) Å] with ring centroids shifted by 1.905 Å (central benzene rings) and 1.726 Å (3,5-di­bromo­phenyl rings). Displacement ellipsoids are shown at the 50% probability level.

4. Database survey

Five structurally related aryl ester compounds were found in the Cambridge Structure Database [CSD; web inter­face (CCDC 2017); Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]]. Of the three aryl diesters reported, two contain a central 1,4-benzene ring bound at both positions to either an unsubstituted benzoate group [CSD entry NADMUD (deposition number 1407716); Ganaie et al., 2016[Ganaie, J. A., Kumar, J., Butcher, R. J., Jasinski, J. P. & Gupta, S. K. (2016). J. Chem. Crystallogr. 46, 93-104.]] or to a p-tolyl benzoate group [CSD entry TAJDEN (deposition number 1265699); Ciajolo et al., 1991[Ciajolo, M. R., Sirigu, A., Tuzi, A. & Franek, I. (1991). Acta Cryst. C47, 106-109.]], and one contains a central 9,10-anthra­hydro­quinone ring bound at both positions to an unsubstituted benzoate group [CSD entry ANTHQB (deposition number 1103109); Iball & Mackay, 1962[Iball, J. & Mackay, K. J. H. (1962). Acta Cryst. 15, 148-156.]]. The remaining two hits are the monoesters, 4-bromo­phenyl benzoate [CSD entry QIXNER (deposition number 684565); Gowda et al., 2008[Gowda, B. T., Foro, S., Bibitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o771.]] and 4-meth­oxy­phenyl benzoate [CSD entry TIGVUB (deposition number 657773); Gowda et al., 2007[Gowda, B. T., Foro, S., Nayak, R. & Fuess, H. (2007). Acta Cryst. E63, o3507.]]. Hydrogen bonding was not observed in the crystal structure of 4-bromo­phenyl benzoate (Gowda et al., 2008[Gowda, B. T., Foro, S., Bibitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o771.]).

5. Synthesis and crystallization

The synthesis of 2-methyl-1,4-phenyl­ene bis­(3,5-di­bromo­benzoate) was carried out using a modified Steglich esterification procedure and was previously published (Lauer et al., 2024[Lauer, M. K., Godman, N. P. & Iacono, S. T. (2024). ACS Macro Lett. 13, 40-46.]; Jordan et al., 2021[Jordan, A., Whymark, K. D., Sydenham, J. & Sneddon, H. F. (2021). Green Chem. 23, 6405-6413.]). M.p. = 502 K/DSC, Td = 563 K/TGA). A crystalline sample was obtained by melting a sample of a white powder of 2-methyl-1,4-phenyl­ene bis­(3,5-di­bromo­benzoate) in a glass vial on a hot plate. The melt was allowed to cool to room temperature, forming a crystalline solid. Crystals suitable for single crystal X-ray diffraction were obtained by cutting into the solidified crystalline melt sample.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms, except H3, H5 and H10, were placed using a riding model with their positions constrained relative to their parent C atom using the appropriate HFIX command in SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]). Hydrogen atoms involved in C—H⋯Br hydrogen-bonding, H3 and H5, as well as H10 were placed from the electron-density map, and their C—H distances restrained (DFIX, C—H range 0.94–0.95 Å) at 0.95 Å with Uiso(H) = 1.2Ueq(C). Electron density corresponding to the disordered methyl group (C11) and H atom (H10) positions was obvious in the electron-density map. The occupancies of disordered atoms, H10 and C11, were set to 0.5, and H atoms attached to C11 (H11A, H11B, and H11C) were placed using a riding model (HFIX 137).

Table 2
Experimental details

Crystal data
Chemical formula C21H12Br4O4
Mr 647.95
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 3.8875 (1), 9.3118 (2), 14.7772 (3)
α, β, γ (°) 104.228 (2), 93.211 (2), 98.219 (2)
V3) 510.87 (2)
Z 1
Radiation type Cu Kα
μ (mm−1) 9.85
Crystal size (mm) 0.13 × 0.06 × 0.01
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix3000
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2024[Rigaku OD (2024). Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.543, 0.998
No. of measured, independent and observed [I > 2σ(I)] reflections 9500, 1892, 1848
Rint 0.022
(sin θ/λ)max−1) 0.605
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.048, 1.11
No. of reflections 1892
No. of parameters 147
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.35, −0.49
Computer programs: CrysAlis PRO (Rigaku OD, 2024[Rigaku OD (2024). Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

2-Methyl-1,4-phenylene bis(3,5-dibromobenzoate) top
Crystal data top
C21H12Br4O4Z = 1
Mr = 647.95F(000) = 310
Triclinic, P1Dx = 2.106 Mg m3
a = 3.8875 (1) ÅCu Kα radiation, λ = 1.54184 Å
b = 9.3118 (2) ÅCell parameters from 8434 reflections
c = 14.7772 (3) Åθ = 3.1–68.8°
α = 104.228 (2)°µ = 9.85 mm1
β = 93.211 (2)°T = 100 K
γ = 98.219 (2)°Plate, clear colourless
V = 510.87 (2) Å30.13 × 0.06 × 0.01 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix3000
diffractometer
1892 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source1848 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.022
Detector resolution: 10.0000 pixels mm-1θmax = 68.9°, θmin = 3.1°
ω scansh = 44
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2024)
k = 1111
Tmin = 0.543, Tmax = 0.998l = 1717
9500 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.019 w = 1/[σ2(Fo2) + (0.021P)2 + 0.7349P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.048(Δ/σ)max = 0.001
S = 1.11Δρmax = 0.35 e Å3
1892 reflectionsΔρmin = 0.49 e Å3
147 parametersExtinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
3 restraintsExtinction coefficient: 0.00125 (19)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.70739 (6)0.79521 (3)0.55753 (2)0.01735 (10)
Br20.10300 (6)0.36527 (3)0.25588 (2)0.01878 (10)
O10.7673 (5)1.00485 (19)0.24435 (12)0.0222 (4)
O20.3733 (4)0.84273 (18)0.13414 (11)0.0195 (4)
C10.5529 (6)0.8933 (3)0.22059 (16)0.0171 (5)
C20.4527 (6)0.7893 (3)0.28060 (16)0.0154 (5)
C30.5910 (6)0.8343 (3)0.37435 (16)0.0152 (5)
C40.5110 (6)0.7388 (3)0.43104 (16)0.0151 (4)
C50.3006 (6)0.6000 (3)0.39750 (17)0.0165 (5)
C60.1688 (6)0.5579 (3)0.30378 (17)0.0154 (5)
C70.2403 (6)0.6506 (3)0.24487 (16)0.0156 (5)
H70.1462650.6203090.1811070.019*
C80.3712 (6)1.0708 (3)0.08300 (17)0.0185 (5)
H80.2828461.1171840.1396590.022*
C90.4468 (6)0.9264 (3)0.06787 (16)0.0176 (5)
C100.5725 (6)0.8531 (3)0.01344 (17)0.0186 (5)
H100.611 (18)0.754 (3)0.019 (5)0.022*0.5
C110.6348 (14)0.6943 (5)0.0242 (4)0.0197 (10)0.5
H11A0.7432770.6607590.0823370.030*0.5
H11B0.4116360.6288360.0265160.030*0.5
H11C0.7899470.6898460.0293120.030*0.5
H50.249 (7)0.535 (3)0.4374 (17)0.024*
H30.742 (6)0.9274 (18)0.3950 (19)0.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01993 (15)0.01909 (14)0.01311 (14)0.00223 (10)0.00038 (9)0.00523 (9)
Br20.01717 (15)0.01470 (14)0.02246 (15)0.00116 (9)0.00003 (10)0.00357 (10)
O10.0260 (9)0.0214 (9)0.0175 (8)0.0055 (7)0.0024 (7)0.0080 (7)
O20.0247 (9)0.0187 (8)0.0141 (8)0.0039 (7)0.0037 (7)0.0077 (7)
C10.0191 (12)0.0186 (12)0.0141 (11)0.0042 (10)0.0014 (9)0.0044 (9)
C20.0147 (11)0.0160 (11)0.0165 (11)0.0039 (9)0.0032 (9)0.0051 (9)
C30.0148 (11)0.0158 (11)0.0153 (11)0.0026 (9)0.0019 (9)0.0041 (9)
C40.0136 (11)0.0193 (11)0.0141 (11)0.0045 (9)0.0028 (9)0.0058 (9)
C50.0172 (12)0.0165 (11)0.0180 (11)0.0049 (9)0.0037 (9)0.0068 (9)
C60.0127 (11)0.0138 (11)0.0197 (12)0.0018 (9)0.0030 (9)0.0041 (9)
C70.0141 (11)0.0188 (11)0.0142 (11)0.0036 (9)0.0006 (9)0.0042 (9)
C80.0187 (12)0.0204 (12)0.0145 (11)0.0005 (9)0.0020 (9)0.0033 (9)
C90.0176 (12)0.0209 (12)0.0143 (11)0.0016 (9)0.0031 (9)0.0084 (9)
C100.0192 (12)0.0163 (11)0.0189 (12)0.0007 (9)0.0046 (9)0.0047 (9)
C110.023 (3)0.018 (2)0.017 (2)0.005 (2)0.0006 (19)0.002 (2)
Geometric parameters (Å, º) top
Br1—C41.896 (2)C6—C71.381 (3)
Br2—C61.893 (2)C7—H70.9500
O1—C11.199 (3)C8—H80.9500
O2—C11.361 (3)C8—C91.385 (3)
O2—C91.411 (3)C8—C10i1.395 (3)
C1—C21.493 (3)C9—C101.381 (3)
C2—C31.397 (3)C10—H100.94 (2)
C2—C71.393 (3)C10—C111.504 (5)
C3—C41.380 (3)C11—H100.56 (2)
C3—H30.945 (10)C11—H11A0.9800
C4—C51.387 (3)C11—H11B0.9800
C5—C61.389 (3)C11—H11C0.9800
C5—H50.951 (10)
C1—O2—C9117.81 (18)C9—C8—H8120.6
O1—C1—O2124.3 (2)C9—C8—C10i118.7 (2)
O1—C1—C2124.8 (2)C10i—C8—H8120.6
O2—C1—C2110.85 (19)C8—C9—O2120.2 (2)
C3—C2—C1117.2 (2)C10—C9—O2116.5 (2)
C7—C2—C1122.0 (2)C10—C9—C8123.1 (2)
C7—C2—C3120.7 (2)C8i—C10—H10124 (4)
C2—C3—H3117.8 (18)C8i—C10—C11122.9 (3)
C4—C3—C2118.6 (2)C9—C10—C8i118.2 (2)
C4—C3—H3123.5 (18)C9—C10—H10118 (4)
C3—C4—Br1119.26 (18)C9—C10—C11118.9 (3)
C3—C4—C5122.0 (2)C11—C10—H101 (4)
C5—C4—Br1118.69 (17)C10—C11—H101 (8)
C4—C5—C6118.0 (2)C10—C11—H11A109.5
C4—C5—H5120.9 (18)C10—C11—H11B109.5
C6—C5—H5121.0 (18)C10—C11—H11C109.5
C5—C6—Br2118.44 (17)H10—C11—H11A110.7
C7—C6—Br2119.77 (18)H10—C11—H11B109.0
C7—C6—C5121.8 (2)H10—C11—H11C108.8
C2—C7—H7120.6H11A—C11—H11B109.5
C6—C7—C2118.8 (2)H11A—C11—H11C109.5
C6—C7—H7120.6H11B—C11—H11C109.5
Br1—C4—C5—C6177.72 (16)C2—C3—C4—C50.5 (3)
Br2—C6—C7—C2177.37 (17)C3—C2—C7—C60.1 (3)
O1—C1—C2—C37.4 (3)C3—C4—C5—C60.0 (3)
O1—C1—C2—C7170.4 (2)C4—C5—C6—Br2177.45 (17)
O2—C1—C2—C3173.95 (19)C4—C5—C6—C70.5 (3)
O2—C1—C2—C78.2 (3)C5—C6—C7—C20.5 (3)
O2—C9—C10—C8i176.3 (2)C7—C2—C3—C40.4 (3)
O2—C9—C10—C112.3 (4)C8—C9—C10—C8i0.6 (4)
C1—O2—C9—C865.1 (3)C8—C9—C10—C11178.0 (3)
C1—O2—C9—C10119.1 (2)C9—O2—C1—O10.6 (3)
C1—C2—C3—C4178.3 (2)C9—O2—C1—C2178.03 (19)
C1—C2—C7—C6177.7 (2)C10i—C8—C9—O2176.1 (2)
C2—C3—C4—Br1178.15 (16)C10i—C8—C9—C100.6 (4)
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···Br1ii0.95 (1)3.12 (2)3.893 (2)139 (2)
C3—H3···Br1iii0.95 (1)3.02 (1)3.956 (2)172 (2)
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+2, y+2, z+1.
 

Acknowledgements

The authors acknowledge the Air Force Office of Scientific Research (AFOSR) and the Defense Threat Reduction Agency (DTRA) for support through a memorandum of agreement with the US Air Force Academy. The authors also acknowledge Professor Charles E. Kriley of Grove City College PA for providing web CSD search results related to the title compound.

Funding information

Funding for this research was provided by: Air Force Office of Scientific Research (AFOSR) (grant No. 703-588-8487).

References

First citationChung, W. J., Griebel, J. J., Kim, E. T., Yoon, H., Simmonds, A. G., Ji, H. J., Dirlam, P. T., Glass, R. S., Wie, J. J., Nguyen, N. A., Guralnick, B. W., Park, J., Somogyi, A., Theato, P., Mackay, M. E., Sung, Y. E., Char, K. & Pyun, J. (2013). Nat. Chem. 5, 518–524.  CrossRef CAS PubMed Google Scholar
First citationCiajolo, M. R., Sirigu, A., Tuzi, A. & Franek, I. (1991). Acta Cryst. C47, 106–109.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGanaie, J. A., Kumar, J., Butcher, R. J., Jasinski, J. P. & Gupta, S. K. (2016). J. Chem. Crystallogr. 46, 93–104.  CrossRef CAS Google Scholar
First citationGowda, B. T., Foro, S., Bibitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o771.  CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nayak, R. & Fuess, H. (2007). Acta Cryst. E63, o3507.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIball, J. & Mackay, K. J. H. (1962). Acta Cryst. 15, 148–156.  CrossRef IUCr Journals Google Scholar
First citationJordan, A., Whymark, K. D., Sydenham, J. & Sneddon, H. F. (2021). Green Chem. 23, 6405–6413.  CrossRef CAS Google Scholar
First citationKarunarathna, M. S., Tennyson, A. G. & Smith, R. C. (2020). J. Mater. Chem. A, 8, 548–553.  CrossRef Google Scholar
First citationLauer, M. K., Godman, N. P. & Iacono, S. T. (2024). ACS Macro Lett. 13, 40-46.  CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2024). Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThiounn, T., Lauer, M. K., Karunarathna, M. S., Tennyson, A. G. & Smith, R. C. (2020). Sus. Chem, 1, 183–197.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds