research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Pyrazine-bridged polymetallic copper–iridium clusters

crossmark logo

aCentre for Hyperpolarisation in Magnetic Resonance, University of York, Heslington, United Kingdom, YO10 5NY, and bDepartment of Chemistry, University of York, Heslington, United Kingdom, YO10, 5DD
*Correspondence e-mail: simon.duckett@york.ac.uk

Edited by M. Weil, Vienna University of Technology, Austria (Received 1 July 2024; accepted 19 July 2024; online 27 July 2024)

Single crystals of the mol­ecular compound, {Cu20Ir6Cl8(C21H24N2)6(C4H4N2)3]·3.18CH3OH or [({Cu10Ir3}Cl4(IMes)3(pyrazine))2(pyrazine)]·3.18CH3OH [where IMes is 1,3-bis­(2,4,6-trimethylphen­yl)imidazol-2-yl­idene], with a unique heterometallic cluster have been prepared and the structure revealed using single-crystal X-ray diffraction. The mol­ecule is centrosymmetric with two {Cu10Ir3} cores bridged by a pyrazine ligand. The polymetallic cluster contains three stabilizing N-heterocyclic carbenes, four Cl ligands, and a non-bridging pyrazine ligand. Notably, the Cu—Ir core is arranged in an unusual shape containing 13 vertices, 22 faces, and 32 sides. The atoms within the trideca­metallic cluster are arranged in four planes, with 2, 4, 4, 3 metals in each plane. Ir atoms are present in alternate planes with an Ir atom featuring in the peripheral bimetallic plane, and two Ir atoms featuring on opposite sides of the non-adjacent tetra­metallic plane. The crystal contains two disordered methanol solvent mol­ecules with an additional region of non-modelled electron density corrected for using the SQUEEZE routine in PLATON [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18]. The given chemical formula and other crystal data do not take into account the unmodelled methanol solvent mol­ecule(s).

1. Chemical context

Polynuclear metallic clusters, particularly those featuring organic ligands, are highly important as they can appear as inter­mediates or decomposition products in many transition-metal-catalysed reactions. Metallic clusters can also exhibit properties between monometallic transition-metal complexes and higher order aggregates and nanoparticles (Tang & Zhao, 2020[Tang, J. & Zhao, L. (2020). Chem. Commun. 56, 1915-1925.]). Therefore, their synthesis, preparation, and analysis is highly important to advance current understanding on how such species can play a role in catalysis. Metal clusters based on Cu are particularly exciting as a wide range of CuxXyLz clusters have been reported, where X is typically a halide or hydride, and L is a thio­ester, phosphine, or N-heterocycle (Harvey & Knorr, 2016[Harvey, P. D. & Knorr, M. (2016). J. Inorg. Organomet. Polym. 26, 1174-1197.]; Dhayal et al., 2016[Dhayal, R. S., van Zyl, W. E. & Liu, C. W. (2016). Acc. Chem. Res. 49, 86-95.]; Graham et al., 2000[Graham, P. M., Pike, R. D., Sabat, M., Bailey, R. D. & Pennington, W. T. (2000). Inorg. Chem. 39, 5121-5132.]; Liu & Astruc, 2018[Liu, X. & Astruc, D. (2018). Coord. Chem. Rev. 359, 112-126.]; Troyano et al., 2021[Troyano, J., Zamora, F. & Delgado, S. (2021). Chem. Soc. Rev. 50, 4606-4628.]). There are also examples of heterometallic clusters containing Cu atoms mixed with a range of other transition metals such as Re, Fe, Ir, Os, Co, Mo, W, Ag, and Au (Sculfort & Braunstein, 2011[Sculfort, S. & Braunstein, P. (2011). Chem. Soc. Rev. 40, 2741-2760.]; Croizat et al., 2016[Croizat, P., Sculfort, S., Welter, R. & Braunstein, P. (2016). Organometallics, 35, 3949-3958.]; Hau et al., 2016[Hau, S. C. K., Yeung, M. C.-L., Yam, V. W.-W. & Mak, T. C. W. (2016). J. Am. Chem. Soc. 138, 13732-13739.]; Yip et al., 2007[Yip, S.-K., Chan, C.-L., Lam, W. H., Cheung, K.-K. & Yam, V. W.-W. (2007). Photochem. & Photobiol. Sci. 6, 365-371.]; Gao et al., 2024[Gao, J., Zhang, F. & Zhang, X. (2024). Adv. Sci. 11, 2400377.]; Zhang et al., 2023a[Zhang, Y., Zhang, J., Li, Z., Qin, Z., Sharma, S. & Li, G. (2023a). Commun. Chem. 6, 24.]). These mixed metal clusters provide a unique example to explore metalophilic inter­actions (Sculfort & Braunstein, 2011[Sculfort, S. & Braunstein, P. (2011). Chem. Soc. Rev. 40, 2741-2760.]) and often have novel spectroscopic properties (Yip et al., 2007[Yip, S.-K., Chan, C.-L., Lam, W. H., Cheung, K.-K. & Yam, V. W.-W. (2007). Photochem. & Photobiol. Sci. 6, 365-371.]; Zhang et al., 2023a[Zhang, Y., Zhang, J., Li, Z., Qin, Z., Sharma, S. & Li, G. (2023a). Commun. Chem. 6, 24.]) or catalytic activity (Gao et al., 2024[Gao, J., Zhang, F. & Zhang, X. (2024). Adv. Sci. 11, 2400377.]; Zhang et al., 2023a[Zhang, Y., Zhang, J., Li, Z., Qin, Z., Sharma, S. & Li, G. (2023a). Commun. Chem. 6, 24.]), particularly as Cu complexes find many uses in carbon–carbon and carbon–heteroatom bond formation. To this end, we were able to grow single crystals of a novel heterometallic cluster compound containing two {Cu10Ir3} units bridged by a pyrazine ligand, which was examined using X-ray diffraction studies.

[Scheme 1]

2. Structural commentary

The solvated mol­ecular title compound [({Cu10Ir3}Cl4(IMes)3(pyrazine))2(pyrazine)]·3.18CH3OH (where IMes is 1,3-bis­(2,4,6-trimethyl-phen­yl)imidazol-2-yl­idene) is centrosymmetric and contains two trideca­metallic {Cu10Ir3} clusters, stabilised by four Cl ligands, three N-heterocyclic carbene (IMes) ligands, and a pyrazine ligand, with a bridging pyrazine mol­ecule linking two of these [{Cu10Ir3}Cl4(IMes)3(pyrazine)] units (Fig. 1[link]). The {Cu10Ir3} cores are arranged in a geometry containing 13 vertices, 22 faces, and 32 sides with the atoms arranged in four planes with 2, 4, 4 and 3 metals in each plane (Fig. 2[link]). The majority of the core consists of Cu atoms, with two existing as naked atoms with only inter­actions to adjacent Cu and Ir atoms. Of the remaining eight Cu sites, four are bonded to Cl ligands that bridge two Cu atoms across different atomic planes within the metallic core. Two of the three Cu atoms in a peripheral plane are bonded to terminal Cl ligands, with the third ligated to a terminal pyrazine mol­ecule. Inter­estingly, a bridging pyrazine ligand is bonded to a Cu atom in a tetra­metallic plane and provides a link to another [{Cu10Ir3}Cl4(NHC)3(pyrazine)] unit, with the whole mol­ecule having a centre of inversion in the middle of the bridging pyrazine ring. Ir atoms are located in alternate planes with an Ir atom featuring in the peripheral bimetallic plane, and two Ir atoms featuring on opposite sides of the non-adjacent tetra­metallic plane. This arrangement is likely a consequence of the bulky carbene ligand attached to Ir. All 18 Cu—Cu distances range from 2.4916 (18) to 3.0417 (18) Å. All but three of these distances are shorter than the sum of the van der Waals radii of Cu (2.80 Å), and most are close to the sum of the Cu atomic radii (2.556 Å), which suggests strong metalophilic inter­actions within the cluster (Sculfort & Braunstein, 2011[Sculfort, S. & Braunstein, P. (2011). Chem. Soc. Rev. 40, 2741-2760.]). There appear to be no significant differences between the Cu—Cu and Ir—Cu bond lengths in the structure (2.66 ± 0.13 Å, n = 18 and 2.62 ± 0.07 Å, n = 16).

[Figure 1]
Figure 1
Mol­ecular structure of [(Cu10Ir3Cl4(IMes)3(pyrazine))2(pyrazine)]·3.18CH3OH, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms were omitted for clarity.
[Figure 2]
Figure 2
The trideca­metallic core of [(Cu10Ir3Cl4(IMes)3(pyrazine))2(pyrazine)]·3.18CH3OH, with displacement ellipsoids drawn at the 50% probability level. Note that only the donor atoms of the ligands attached to the polyatomic core are shown. The core is shown in two different orientations, rotated by 90° around the Ir1, Cu3, Cu4, Ir2, Ir3, Cu8, Cu9, Cu8, Cu9 plane. Atom labels marked in grey correspond to atoms hidden from view. The centrosymmetric compound contains two of these cores linked by a bridging pyrazine and therefore the two trideca­metallic units are equivalent by symmetry.

3. Supra­molecular features

The methanol solvent mol­ecules clearly fill voids left by the packing of [({Cu10Ir3}Cl4(IMes)3(pyrazine))2(pyrazine)] as the shortest inter­actions are between methanol and the three terminal CH3 groups of the IMes ligand. Long-range inter­actions between the mol­ecules of [({Cu10Ir3}Cl4(IMes)3(pyrazine))2(pyrazine)] involve the non-bridging pyrazine ligands on adjacent mol­ecules, with the shortest 2.327 Å inter­action between the two H65 atoms, and a 2.483 Å inter­action between the free pyrazine N4 and the H65 atom of a non-bridging pyrazine ligand on a neighbouring mol­ecule. This suggests that the pyrazine ligand is important in both linking the two trideca­metallic cores, and also packing the crystals together, which is unsurprising given its role in the formation of higher order polymers and metal–organic frameworks (Silva et al., 2023[Silva, A. F., Calhau, I. B., Gomes, A. C., Valente, A. A., Gonçalves, I. S. & Pillinger, M. (2023). ACS Biomater. Sci. Eng. 9, 1909-1918.]; Zhang et al., 2023b[Zhang, Y.-Z., Kong, X.-J., Zhou, W.-F., Li, C.-H., Hu, H., Hou, H., Liu, Z., Geng, L., Huang, H., Zhang, X., Zhang, D. & Li, J. (2023b). Appl. Mater. Interfaces, 15, 4208-4215.]; Kawamura et al., 2017[Kawamura, A., Greenwood, A. R., Filatov, A. S., Gallagher, A. T., Galli, G. & Anderson, J. S. (2017). Inorg. Chem. 56, 3349-3356.]). Long-range inter­actions between IMes ligands of different mol­ecules are also important with distances of 2.377 Å and 2.383 Å between pairs of ortho CH3 and para CH3 groups on the mesityl rings of adjacent mol­ecules (H19B/H41C and H20B and H42B). The crystal packing is shown in Fig. 3[link]. The hydroxyl hydrogen atom (H2A) of the partially occupied methanol solvent mol­ecule is hydrogen-bonded to the oxygen atom of the other disordered methanol mol­ecule (Table 1[link]). It should be noted, however, that the hydrogen atom is placed using a riding model as allowing free refinement of its coordinates gave an unfeasible result. The hydroxyl H atoms of the other methanol mol­ecules are likely to be hydrogen-bonded to other highly disordered solvent mol­ecules that were not modelled using the solvent mask (see Refinement).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1 0.84 1.87 2.62 (2) 148
[Figure 3]
Figure 3
Crystal packing of [(Cu10Ir3Cl4(IMes)3(pyrazine))2(pyrazine)]·3.18CH3OH shown in a view along the c axis. Displacement ellipsoids are drawn at the 50% probability level and hydrogen atoms were omitted for clarity.

4. Database survey

A search of the Cambridge Structure Database (CSD, Version 5.45, update November 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) did not reveal any comparable compounds with trideca­metallic polymetallic clusters. A few crystal structures for penta­tomic Cu–Ir clusters have been reported, but these contain cores with a trigonal–bipyramidal shape with either Cu3Ir2Lx (Rhodes et al., 1985[Rhodes, L. F., Huffman, J. C. & Caulton, K. G. (1985). J. Am. Chem. Soc. 107, 1759-1760.]) or Ir4CuLx (Adams et al., 2013[Adams, R. D., Chen, M., Elpitiya, G., Yang, X. & Zhang, Q. (2013). Organometallics, 32, 2416-2426.]) arrangements. Reported Cu—Ir distances are between 2.663 and 2.79 Å, which are generally longer than those in the cluster presented here [2.5227 (15) to 2.7478 (13) Å]. The short Cu—Ir distances suggest strong metal–metal inter­actions, and could indicate Cu=Ir bonds (Rhodes et al., 1985[Rhodes, L. F., Huffman, J. C. & Caulton, K. G. (1985). J. Am. Chem. Soc. 107, 1759-1760.]). There are many more examples of homometallic Cu clusters in the database, an analysis of 35 of these Cu—Cu bond lengths revealed an average inter­metallic distance of 2.95 ± 0.25 Å (mean ± 1 standard deviation), which is consistent with the inter Cu distances in the structure reported here (2.66 ± 0.13 Å), albeit slightly longer (Johnsson et al., 2000[Johnsson, M., Törnroos, K. W., Mila, F. & Millet, P. (2000). Chem. Mater. 12, 2853-2857.]; Rao et al., 1983[Rao, V. M., Sathyanarayana, D. N. & Manohar, H. (1983). J. Chem. Soc. Dalton Trans. pp. 2167-2173.]; Baumgartner et al., 1990[Baumgartner, M., Schmalle, H. & Dubler, E. (1990). Polyhedron, 9, 1155-1164.]). Similar to short Cu—Ir distances, this suggests that the Cu—Cu inter­actions are also strong and metalophillic.

5. Synthesis and crystallization

The pyrazine-bridged polymetallic Cu–Ir cluster compound was prepared by reaction of [Ir(Cl)(COD)(IMes)] (2.20 mg) [COD is cis,cis-1,5-cyclo­octa­diene and IMes is 1,3-bis­(2,4,6-trimethyl-phen­yl)imidazol-2-yl­idene] with pyrazine (2.52 mg) and H2 (3 bar) in methanol-d4 (0.6 ml) for 3–4 h at 298 K in a 5 mm NMR tube with a J. Youngs tap. At this point the pressure was released by opening the lid and Cu(OAc)2 (3.76 mg) in methanol-d4 (0.1 ml) was added to the solution. After being left for 1 h at room temperature the solution was cooled to 278 K in a refrigerator for several weeks to form single crystals, which were found by X-ray diffraction to be the title compound.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were placed using a riding model. The crystal contains disordered methanol solvent mol­ecules. One methanol mol­ecule was modelled over two sets of sites (C70, C72) with a common oxygen site (O1) in a refined ratio of 0.60:0.40 (3). Another methanol mol­ecule (C71, O2) was modelled as partially occupied with a refined occupancy of 0.59 (2). There was additional solvent present, but its associated electron density was difficult to model by using discrete atoms. Therefore the SQUEEZE routine (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) in PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) was used to remove the contribution of the electron density in the corresponding solvent region from the intensity data. A void with a volume of 430 Å3 was predicted containing 66 electrons per unit cell. This would be equivalent to 3.67 methanol mol­ecules. The given chemical formula and other crystal data do not take into account the unmodelled methanol solvent mol­ecule(s). The final structure model contains high residual electron density due to unresolved effects of the crystal having a minor twin present. Attempts to model this as two non-merohedral components were unsuccessful.

Table 2
Experimental details

Crystal data
Chemical formula {Cu20Ir6Cl8(C21H24N2)6(C4H4N2)3]·3.18CH4O
Mr 4876.63
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 111
a, b, c (Å) 12.5708 (3), 14.8757 (5), 23.1383 (7)
α, β, γ (°) 84.392 (3), 82.291 (2), 85.686 (2)
V3) 4258.8 (2)
Z 1
Radiation type Cu Kα
μ (mm−1) 12.93
Crystal size (mm) 0.15 × 0.12 × 0.07
 
Data collection
Diffractometer SuperNova, Dual, Cu at home/near, HyPix
Absorption correction Analytical [CrysAlis PRO (Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) using a multifaceted crystal model based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])]
Tmin, Tmax 0.222, 0.519
No. of measured, independent and observed [I > 2σ(I)] reflections 45533, 15184, 13473
Rint 0.046
(sin θ/λ)max−1) 0.597
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.134, 1.08
No. of reflections 15184
No. of parameters 919
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 3.01, −2.57
Computer programs: CrysAlis PRO (Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Ben Tickner BJT004 top
Crystal data top
{Cu20Ir6Cl8(C21H24N2)6(C4H4N2)3]·3.18CH4OZ = 1
Mr = 4876.63F(000) = 2345
Triclinic, P1Dx = 1.901 Mg m3
a = 12.5708 (3) ÅCu Kα radiation, λ = 1.54184 Å
b = 14.8757 (5) ÅCell parameters from 20996 reflections
c = 23.1383 (7) Åθ = 3.6–75.9°
α = 84.392 (3)°µ = 12.93 mm1
β = 82.291 (2)°T = 111 K
γ = 85.686 (2)°Block, clear orange
V = 4258.8 (2) Å30.15 × 0.12 × 0.07 mm
Data collection top
SuperNova, Dual, Cu at home/near, HyPix
diffractometer
15184 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source13473 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.046
Detector resolution: 10.0000 pixels mm-1θmax = 67.1°, θmin = 3.6°
ω scansh = 1315
Absorption correction: analytical
[CrysAlisPro (Rigaku OD, 2024) using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)]
k = 1717
Tmin = 0.222, Tmax = 0.519l = 2725
45533 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0427P)2 + 57.022P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
15184 reflectionsΔρmax = 3.01 e Å3
919 parametersΔρmin = 2.56 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The high residual density is due to unresolved effects of the crystal having a minor twin present. Attempts to model this as two non-merohedral components were unsuccessful.

The solvent was disordered and modelled as follows: One methanol was modelled in two positions with a common oxygen site in a refined ratio of 0.60:0.40 (3). Another methanol was partially occupied with a refined occupancy of 0.59 (2). There was additional solvent which was too disordered to model using discrete atoms. Therefore a solvent mask was used which predicted a void with a volume of 430 cubic angstroms containing 66 electrons per unit cell. This would be equivalent to 3.67 methanols.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C11.0318 (7)0.3061 (6)0.6817 (4)0.035 (2)
C21.1554 (9)0.4028 (7)0.6378 (5)0.048 (3)
H21.1976620.4389190.6086300.058*
C31.1621 (8)0.3952 (8)0.6941 (5)0.050 (3)
H31.2095640.4255770.7131070.060*
C41.0741 (8)0.3107 (7)0.7834 (5)0.044 (2)
C50.9968 (8)0.3610 (8)0.8182 (5)0.047 (3)
C60.9884 (10)0.3365 (10)0.8779 (6)0.064 (3)
H60.9393320.3708570.9034010.077*
C71.0488 (12)0.2642 (10)0.9020 (5)0.067 (4)
C81.1257 (10)0.2196 (10)0.8657 (5)0.059 (3)
H81.1706360.1722910.8819570.071*
C91.1393 (9)0.2419 (8)0.8060 (5)0.049 (3)
C101.2261 (9)0.1914 (8)0.7665 (5)0.051 (3)
H10A1.2552070.1379700.7888690.076*
H10B1.2840780.2314260.7517480.076*
H10C1.1947770.1723790.7333990.076*
C111.0327 (18)0.2366 (15)0.9680 (7)0.111 (7)
H11A1.0526590.2856200.9889770.167*
H11B1.0781200.1817180.9765910.167*
H11C0.9570850.2247770.9805750.167*
C120.9306 (10)0.4388 (9)0.7939 (6)0.061 (3)
H12A0.8611730.4183320.7873730.091*
H12B0.9682020.4638130.7565830.091*
H12C0.9187370.4854680.8215090.091*
C131.0378 (7)0.3438 (6)0.5732 (4)0.036 (2)
C140.9542 (8)0.4051 (6)0.5584 (4)0.036 (2)
C150.9159 (8)0.3985 (7)0.5062 (5)0.045 (3)
H150.8587380.4396250.4955760.054*
C160.9574 (8)0.3347 (7)0.4685 (5)0.042 (2)
C171.0410 (8)0.2763 (6)0.4834 (4)0.038 (2)
H171.0705980.2327050.4573940.045*
C181.0844 (7)0.2791 (6)0.5365 (4)0.033 (2)
C191.1739 (8)0.2120 (7)0.5515 (4)0.041 (2)
H19A1.1933990.2222730.5898410.061*
H19B1.2364960.2192800.5217180.061*
H19C1.1500740.1504530.5528690.061*
C200.9080 (11)0.3269 (9)0.4127 (6)0.060 (3)
H20A0.9154400.3832960.3872460.090*
H20B0.8316070.3156970.4227000.090*
H20C0.9452170.2765540.3922190.090*
C210.9017 (9)0.4742 (6)0.5987 (5)0.046 (3)
H21A0.9454740.4775580.6303050.070*
H21B0.8297690.4563110.6153400.070*
H21C0.8959050.5335350.5764650.070*
C220.5071 (7)0.5250 (6)0.7576 (4)0.033 (2)
C230.4786 (9)0.6775 (7)0.7541 (6)0.053 (3)
H230.4757730.7392950.7390840.063*
C240.4520 (10)0.6458 (8)0.8099 (6)0.055 (3)
H240.4254220.6801570.8419550.066*
C250.4475 (11)0.4919 (8)0.8646 (5)0.056 (3)
C260.3482 (10)0.4575 (8)0.8779 (6)0.056 (3)
C270.3347 (16)0.3967 (10)0.9276 (8)0.093 (6)
H270.2672930.3705510.9378880.111*
C280.4164 (18)0.3720 (11)0.9634 (7)0.088 (5)
C290.5119 (15)0.4109 (10)0.9491 (6)0.078 (4)
H290.5668220.3958110.9735700.094*
C300.5324 (11)0.4720 (9)0.9001 (5)0.058 (3)
C310.6401 (11)0.5102 (10)0.8842 (7)0.071 (4)
H31A0.6719980.5161380.9198950.107*
H31B0.6319530.5697820.8625760.107*
H31C0.6871150.4695350.8596020.107*
C320.397 (2)0.3010 (14)1.0156 (9)0.150 (12)
H32A0.4599820.2933091.0365950.226*
H32B0.3839770.2432511.0014800.226*
H32C0.3337900.3210821.0420010.226*
C330.2617 (12)0.4824 (11)0.8403 (8)0.082 (5)
H33A0.2898670.4741980.7994650.123*
H33B0.2365420.5458320.8438450.123*
H33C0.2016970.4436170.8528730.123*
C340.5373 (8)0.6118 (6)0.6598 (5)0.042 (2)
C350.4557 (8)0.6070 (7)0.6251 (5)0.045 (3)
C360.4837 (9)0.6099 (7)0.5651 (6)0.049 (3)
H360.4291760.6068130.5407310.059*
C370.5893 (10)0.6173 (7)0.5396 (5)0.050 (3)
C380.6675 (9)0.6261 (6)0.5761 (5)0.046 (3)
H380.7394900.6336670.5586590.056*
C390.6451 (8)0.6244 (6)0.6357 (5)0.041 (2)
C400.7302 (9)0.6340 (8)0.6749 (5)0.051 (3)
H40A0.7376060.5784550.7009680.076*
H40B0.7089240.6853060.6984120.076*
H40C0.7991550.6444720.6508000.076*
C410.6179 (11)0.6145 (8)0.4747 (6)0.060 (3)
H41A0.5579180.6420680.4547600.090*
H41B0.6322830.5514310.4655230.090*
H41C0.6821750.6480370.4615010.090*
C420.3415 (9)0.5954 (8)0.6536 (6)0.057 (3)
H42A0.3401750.5428980.6827400.085*
H42B0.2962460.5858100.6236450.085*
H42C0.3140010.6498190.6727880.085*
C430.5943 (7)0.0014 (6)0.7238 (4)0.0305 (19)
C440.4553 (7)0.0818 (6)0.7667 (5)0.035 (2)
H440.4087410.1140830.7958790.042*
C450.4444 (7)0.0675 (5)0.7096 (4)0.0320 (19)
H450.3892010.0877260.6906860.038*
C460.5480 (7)0.0158 (6)0.6220 (4)0.0295 (18)
C470.4926 (7)0.0967 (6)0.6037 (4)0.0298 (18)
C480.5177 (7)0.1302 (6)0.5460 (4)0.0322 (19)
H480.4811700.1849330.5325570.039*
C490.5936 (8)0.0878 (6)0.5071 (4)0.036 (2)
C500.6413 (7)0.0053 (7)0.5266 (4)0.036 (2)
H500.6916160.0259350.4999700.043*
C510.6184 (8)0.0330 (7)0.5833 (4)0.038 (2)
C520.6711 (9)0.1237 (7)0.6023 (5)0.043 (2)
H52A0.6511640.1376810.6444960.064*
H52B0.7494240.1216110.5937710.064*
H52C0.6469650.1706130.5810790.064*
C530.6235 (8)0.1308 (7)0.4459 (4)0.042 (2)
H53A0.6665020.1826020.4473600.064*
H53B0.5579150.1513840.4286010.064*
H53C0.6653870.0863500.4220880.064*
C540.4130 (7)0.1455 (6)0.6456 (4)0.0327 (19)
H54A0.4003050.2082390.6294480.039*
H54B0.4412720.1449470.6830670.039*
H54C0.3451500.1154060.6516160.039*
C550.5841 (8)0.0404 (7)0.8314 (4)0.038 (2)
C560.6601 (8)0.1098 (8)0.8483 (5)0.051 (3)
C570.6933 (10)0.1070 (11)0.9018 (6)0.069 (4)
H570.7426740.1539610.9144120.082*
C580.6599 (11)0.0406 (13)0.9385 (6)0.077 (5)
C590.5836 (10)0.0241 (10)0.9211 (5)0.062 (3)
H590.5560860.0683660.9470830.074*
C600.5452 (8)0.0276 (8)0.8679 (4)0.043 (2)
C610.4611 (9)0.0975 (7)0.8507 (5)0.047 (3)
H61A0.3902860.0723850.8593790.070*
H61B0.4756010.1155960.8086190.070*
H61C0.4622460.1503890.8726490.070*
C620.7038 (13)0.0410 (17)0.9968 (6)0.110 (8)
H62A0.7537870.0941161.0019530.165*
H62B0.6441390.0433131.0287520.165*
H62C0.7416090.0141280.9971530.165*
C630.6958 (9)0.1866 (8)0.8097 (6)0.062 (3)
H63A0.7469110.1648000.7764100.093*
H63B0.6330480.2076390.7953260.093*
H63C0.7305530.2366250.8325440.093*
C640.9285 (10)0.0325 (10)0.8800 (5)0.061 (3)
H640.8606230.0655690.8838870.073*
C650.9789 (11)0.0104 (10)0.9287 (5)0.066 (4)
H650.9441110.0278370.9652770.080*
C661.1209 (14)0.0494 (14)0.8739 (7)0.094 (6)
H661.1910300.0785500.8702610.112*
C671.0749 (11)0.0257 (11)0.8246 (6)0.073 (4)
H671.1150690.0337490.7875020.087*
C680.9250 (7)0.0683 (6)0.5015 (4)0.0310 (19)
H680.8713170.1168400.5010750.037*
C690.9720 (7)0.0375 (6)0.4489 (4)0.034 (2)
H690.9508120.0659520.4133530.041*
Cl10.9288 (2)0.18962 (18)0.68466 (16)0.0611 (8)
Cl21.18296 (19)0.01264 (18)0.66583 (12)0.0474 (6)
Cl30.7183 (2)0.23791 (17)0.87864 (10)0.0435 (5)
Cl40.6845 (2)0.29938 (16)0.55228 (10)0.0400 (5)
Cu10.60976 (12)0.36171 (9)0.63001 (6)0.0385 (3)
Cu20.61523 (12)0.31363 (9)0.81964 (6)0.0388 (3)
Cu30.60371 (10)0.22542 (8)0.72350 (6)0.0309 (3)
Cu40.74725 (10)0.33490 (8)0.71204 (6)0.0314 (3)
Cu50.76541 (10)0.19426 (9)0.78596 (6)0.0306 (3)
Cu60.74921 (10)0.22104 (8)0.63161 (5)0.0295 (3)
Cu70.90003 (10)0.06243 (9)0.75911 (6)0.0314 (3)
Cu80.84697 (11)0.06169 (9)0.69873 (6)0.0360 (3)
Cu91.05763 (10)0.09077 (9)0.67851 (6)0.0354 (3)
Cu100.88794 (10)0.08323 (8)0.62802 (5)0.0291 (3)
Ir10.53490 (3)0.39559 (3)0.73285 (2)0.03402 (11)
Ir20.72239 (3)0.07873 (2)0.71117 (2)0.02503 (10)
Ir30.91336 (3)0.21791 (2)0.69321 (2)0.02633 (10)
N11.0875 (6)0.3350 (6)0.7213 (4)0.0393 (19)
N21.0739 (6)0.3475 (5)0.6283 (4)0.0358 (17)
N30.9707 (7)0.0097 (6)0.8279 (4)0.044 (2)
N41.0731 (10)0.0340 (11)0.9270 (5)0.084 (4)
N50.4716 (7)0.5509 (6)0.8115 (4)0.045 (2)
N60.5108 (7)0.6043 (5)0.7225 (4)0.0420 (19)
N70.5481 (6)0.0404 (5)0.7756 (3)0.0339 (17)
N80.5311 (5)0.0165 (5)0.6833 (3)0.0283 (15)
N90.9528 (6)0.0319 (5)0.5529 (3)0.0306 (16)
O10.6658 (10)0.2014 (8)1.1082 (5)0.093 (4)
H1A0.6315500.1746571.1378410.140*0.60 (3)
H1B0.7135110.1729161.1261410.140*0.40 (3)
C710.789 (2)0.3806 (18)1.0273 (10)0.079 (9)0.59 (2)
H71A0.8417240.3650360.9940000.119*0.59 (2)
H71B0.7957940.4434411.0349880.119*0.59 (2)
H71C0.7163310.3738151.0181570.119*0.59 (2)
O20.8081 (17)0.3229 (12)1.0769 (7)0.079 (6)0.59 (2)
H2A0.7776510.2745611.0766620.119*0.59 (2)
C700.637 (4)0.169 (3)1.0558 (15)0.142 (14)0.60 (3)
H70A0.6877740.1892911.0220990.213*0.60 (3)
H70B0.5639920.1937021.0497690.213*0.60 (3)
H70C0.6384080.1029801.0601480.213*0.60 (3)
C720.711 (6)0.227 (5)1.047 (2)0.142 (14)0.40 (3)
H72A0.6610640.2131921.0203600.213*0.40 (3)
H72B0.7800380.1923711.0377130.213*0.40 (3)
H72C0.7226830.2917151.0417430.213*0.40 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.029 (5)0.034 (5)0.042 (5)0.001 (4)0.006 (4)0.007 (4)
C20.036 (6)0.045 (6)0.064 (7)0.024 (5)0.004 (5)0.005 (5)
C30.024 (5)0.071 (8)0.057 (7)0.014 (5)0.001 (4)0.016 (6)
C40.038 (6)0.050 (6)0.048 (6)0.014 (5)0.000 (4)0.022 (5)
C50.029 (5)0.063 (7)0.052 (6)0.009 (5)0.002 (4)0.021 (5)
C60.045 (7)0.087 (10)0.061 (8)0.002 (7)0.002 (6)0.031 (7)
C70.078 (9)0.083 (9)0.043 (6)0.019 (8)0.002 (6)0.019 (6)
C80.052 (7)0.076 (8)0.050 (7)0.006 (6)0.017 (5)0.005 (6)
C90.033 (5)0.064 (7)0.054 (6)0.005 (5)0.013 (5)0.013 (5)
C100.042 (6)0.059 (7)0.055 (6)0.005 (5)0.012 (5)0.019 (5)
C110.131 (17)0.143 (18)0.049 (8)0.026 (14)0.006 (9)0.009 (10)
C120.054 (7)0.060 (7)0.075 (8)0.006 (6)0.019 (6)0.032 (6)
C130.029 (5)0.031 (5)0.045 (5)0.007 (4)0.001 (4)0.001 (4)
C140.031 (5)0.022 (4)0.051 (6)0.009 (4)0.007 (4)0.008 (4)
C150.031 (5)0.039 (5)0.058 (6)0.003 (4)0.001 (5)0.014 (5)
C160.039 (6)0.033 (5)0.054 (6)0.013 (4)0.009 (5)0.009 (4)
C170.037 (5)0.032 (5)0.044 (5)0.008 (4)0.001 (4)0.002 (4)
C180.029 (5)0.023 (4)0.045 (5)0.009 (4)0.004 (4)0.006 (4)
C190.035 (5)0.042 (5)0.043 (5)0.001 (4)0.002 (4)0.001 (4)
C200.064 (8)0.056 (7)0.062 (7)0.001 (6)0.021 (6)0.000 (6)
C210.043 (6)0.026 (5)0.067 (7)0.005 (4)0.002 (5)0.002 (5)
C220.026 (4)0.020 (4)0.052 (5)0.000 (3)0.001 (4)0.007 (4)
C230.050 (7)0.032 (5)0.077 (8)0.002 (5)0.002 (6)0.011 (5)
C240.053 (7)0.039 (6)0.069 (8)0.013 (5)0.000 (6)0.012 (5)
C250.066 (8)0.046 (6)0.054 (7)0.001 (6)0.009 (6)0.017 (5)
C260.056 (7)0.043 (6)0.064 (7)0.010 (5)0.017 (6)0.014 (5)
C270.106 (14)0.057 (9)0.098 (12)0.014 (9)0.057 (11)0.016 (8)
C280.117 (15)0.070 (10)0.067 (10)0.006 (10)0.019 (10)0.011 (8)
C290.108 (13)0.066 (9)0.059 (8)0.012 (9)0.007 (8)0.020 (7)
C300.070 (8)0.053 (7)0.053 (7)0.005 (6)0.011 (6)0.012 (6)
C310.063 (9)0.068 (9)0.085 (10)0.002 (7)0.019 (7)0.013 (7)
C320.25 (3)0.088 (14)0.083 (13)0.019 (17)0.048 (17)0.022 (11)
C330.053 (8)0.087 (11)0.105 (12)0.025 (8)0.014 (8)0.022 (9)
C340.031 (5)0.027 (5)0.064 (7)0.003 (4)0.003 (5)0.005 (4)
C350.032 (5)0.029 (5)0.070 (7)0.001 (4)0.005 (5)0.011 (5)
C360.040 (6)0.034 (5)0.076 (8)0.007 (4)0.023 (5)0.009 (5)
C370.054 (7)0.027 (5)0.065 (7)0.004 (5)0.000 (6)0.005 (5)
C380.039 (6)0.027 (5)0.067 (7)0.000 (4)0.004 (5)0.006 (5)
C390.037 (5)0.019 (4)0.065 (7)0.004 (4)0.002 (5)0.002 (4)
C400.041 (6)0.042 (6)0.068 (7)0.005 (5)0.001 (5)0.007 (5)
C410.061 (8)0.047 (7)0.071 (8)0.007 (6)0.009 (6)0.001 (6)
C420.033 (6)0.053 (7)0.085 (9)0.006 (5)0.021 (6)0.016 (6)
C430.029 (5)0.023 (4)0.036 (5)0.010 (3)0.001 (4)0.003 (3)
C440.023 (4)0.024 (4)0.057 (6)0.011 (3)0.006 (4)0.004 (4)
C450.028 (5)0.018 (4)0.049 (5)0.011 (3)0.004 (4)0.004 (4)
C460.025 (4)0.024 (4)0.041 (5)0.001 (3)0.009 (4)0.003 (4)
C470.016 (4)0.033 (5)0.043 (5)0.005 (3)0.010 (4)0.007 (4)
C480.025 (4)0.033 (5)0.040 (5)0.000 (4)0.010 (4)0.006 (4)
C490.034 (5)0.036 (5)0.040 (5)0.009 (4)0.011 (4)0.008 (4)
C500.024 (4)0.043 (5)0.043 (5)0.006 (4)0.010 (4)0.011 (4)
C510.030 (5)0.037 (5)0.050 (6)0.000 (4)0.012 (4)0.018 (4)
C520.043 (6)0.034 (5)0.056 (6)0.011 (4)0.020 (5)0.014 (4)
C530.036 (5)0.050 (6)0.043 (5)0.007 (5)0.008 (4)0.006 (5)
C540.021 (4)0.026 (4)0.049 (5)0.002 (3)0.001 (4)0.003 (4)
C550.032 (5)0.037 (5)0.044 (5)0.011 (4)0.006 (4)0.013 (4)
C560.032 (5)0.059 (7)0.061 (7)0.021 (5)0.016 (5)0.035 (6)
C570.046 (7)0.090 (10)0.063 (8)0.013 (7)0.010 (6)0.041 (8)
C580.052 (8)0.138 (15)0.040 (7)0.034 (9)0.020 (6)0.039 (8)
C590.050 (7)0.098 (10)0.035 (6)0.027 (7)0.008 (5)0.005 (6)
C600.040 (6)0.053 (6)0.034 (5)0.017 (5)0.002 (4)0.009 (4)
C610.043 (6)0.044 (6)0.050 (6)0.011 (5)0.012 (5)0.005 (5)
C620.059 (9)0.22 (2)0.055 (8)0.038 (12)0.027 (7)0.021 (11)
C630.036 (6)0.047 (7)0.099 (10)0.002 (5)0.013 (6)0.020 (7)
C640.053 (7)0.084 (9)0.042 (6)0.020 (6)0.013 (5)0.009 (6)
C650.060 (8)0.097 (10)0.039 (6)0.021 (7)0.009 (5)0.009 (6)
C660.074 (10)0.139 (16)0.061 (9)0.037 (10)0.015 (8)0.004 (9)
C670.054 (8)0.103 (11)0.054 (7)0.040 (8)0.012 (6)0.001 (7)
C680.023 (4)0.027 (4)0.045 (5)0.001 (3)0.006 (4)0.011 (4)
C690.027 (5)0.036 (5)0.038 (5)0.001 (4)0.003 (4)0.001 (4)
Cl10.0457 (15)0.0331 (13)0.103 (2)0.0093 (11)0.0084 (15)0.0083 (14)
Cl20.0299 (12)0.0510 (14)0.0631 (15)0.0118 (10)0.0121 (11)0.0165 (12)
Cl30.0448 (13)0.0498 (13)0.0340 (11)0.0043 (11)0.0024 (10)0.0036 (10)
Cl40.0428 (13)0.0393 (12)0.0382 (11)0.0069 (10)0.0108 (10)0.0057 (9)
Cu10.0374 (8)0.0315 (7)0.0466 (8)0.0005 (6)0.0099 (6)0.0023 (6)
Cu20.0360 (8)0.0357 (7)0.0435 (8)0.0001 (6)0.0019 (6)0.0035 (6)
Cu30.0242 (6)0.0239 (6)0.0438 (7)0.0021 (5)0.0041 (5)0.0003 (5)
Cu40.0266 (7)0.0257 (6)0.0412 (7)0.0034 (5)0.0022 (5)0.0006 (5)
Cu50.0272 (7)0.0308 (6)0.0331 (6)0.0008 (5)0.0034 (5)0.0013 (5)
Cu60.0266 (6)0.0272 (6)0.0342 (7)0.0027 (5)0.0050 (5)0.0023 (5)
Cu70.0252 (6)0.0321 (7)0.0373 (7)0.0009 (5)0.0091 (5)0.0016 (5)
Cu80.0305 (7)0.0272 (6)0.0496 (8)0.0024 (5)0.0066 (6)0.0012 (6)
Cu90.0239 (7)0.0364 (7)0.0456 (8)0.0035 (5)0.0055 (6)0.0057 (6)
Cu100.0238 (6)0.0284 (6)0.0344 (7)0.0016 (5)0.0009 (5)0.0035 (5)
Ir10.0281 (2)0.02377 (19)0.0499 (2)0.00047 (15)0.00544 (17)0.00182 (16)
Ir20.02062 (18)0.02220 (17)0.03170 (19)0.00222 (13)0.00376 (14)0.00161 (13)
Ir30.02007 (18)0.02605 (18)0.03278 (19)0.00277 (14)0.00277 (14)0.00204 (14)
N10.030 (4)0.038 (4)0.050 (5)0.012 (3)0.003 (4)0.007 (4)
N20.025 (4)0.035 (4)0.047 (5)0.007 (3)0.002 (3)0.005 (3)
N30.036 (5)0.056 (5)0.039 (5)0.004 (4)0.013 (4)0.002 (4)
N40.064 (7)0.137 (12)0.046 (6)0.028 (8)0.015 (5)0.001 (7)
N50.043 (5)0.035 (4)0.057 (5)0.002 (4)0.003 (4)0.008 (4)
N60.040 (5)0.027 (4)0.057 (5)0.001 (3)0.001 (4)0.004 (4)
N70.033 (4)0.030 (4)0.037 (4)0.005 (3)0.002 (3)0.003 (3)
N80.015 (3)0.023 (3)0.047 (4)0.004 (3)0.007 (3)0.003 (3)
N90.025 (4)0.026 (4)0.041 (4)0.003 (3)0.000 (3)0.007 (3)
O10.110 (9)0.093 (8)0.066 (6)0.013 (7)0.012 (6)0.001 (6)
C710.086 (18)0.075 (16)0.061 (14)0.032 (14)0.015 (13)0.008 (12)
O20.109 (16)0.070 (11)0.063 (10)0.002 (10)0.026 (10)0.008 (8)
C700.19 (4)0.18 (4)0.075 (17)0.07 (3)0.04 (2)0.01 (2)
C720.19 (4)0.18 (4)0.075 (17)0.07 (3)0.04 (2)0.01 (2)
Geometric parameters (Å, º) top
C1—Ir32.032 (9)C47—C481.382 (13)
C1—N11.345 (13)C47—C541.495 (12)
C1—N21.381 (12)C48—H480.9500
C2—H20.9500C48—C491.382 (13)
C2—C31.311 (16)C49—C501.387 (14)
C2—N21.414 (13)C49—C531.506 (14)
C3—H30.9500C50—H500.9500
C3—N11.391 (13)C50—C511.382 (14)
C4—C51.396 (15)C51—C521.509 (13)
C4—C91.371 (17)C52—H52A0.9800
C4—N11.439 (14)C52—H52B0.9800
C5—C61.386 (18)C52—H52C0.9800
C5—C121.484 (17)C53—H53A0.9800
C6—H60.9500C53—H53B0.9800
C6—C71.39 (2)C53—H53C0.9800
C7—C81.369 (19)C54—H54A0.9800
C7—C111.531 (19)C54—H54B0.9800
C8—H80.9500C54—H54C0.9800
C8—C91.379 (17)C55—C561.416 (15)
C9—C101.529 (15)C55—C601.399 (16)
C10—H10A0.9800C55—N71.424 (13)
C10—H10B0.9800C56—C571.363 (19)
C10—H10C0.9800C56—C631.523 (19)
C11—H11A0.9800C57—H570.9500
C11—H11B0.9800C57—C581.37 (2)
C11—H11C0.9800C58—C591.38 (2)
C12—H12A0.9800C58—C621.523 (18)
C12—H12B0.9800C59—H590.9500
C12—H12C0.9800C59—C601.377 (16)
C13—C141.395 (14)C60—C611.491 (16)
C13—C181.389 (14)C61—H61A0.9800
C13—N21.418 (13)C61—H61B0.9800
C14—C151.374 (16)C61—H61C0.9800
C14—C211.509 (14)C62—H62A0.9800
C15—H150.9500C62—H62B0.9800
C15—C161.377 (16)C62—H62C0.9800
C16—C171.371 (14)C63—H63A0.9800
C16—C201.524 (16)C63—H63B0.9800
C17—H170.9500C63—H63C0.9800
C17—C181.414 (14)C64—H640.9500
C18—C191.500 (13)C64—C651.366 (16)
C19—H19A0.9800C64—N31.316 (15)
C19—H19B0.9800C65—H650.9500
C19—H19C0.9800C65—N41.309 (17)
C20—H20A0.9800C66—H660.9500
C20—H20B0.9800C66—C671.350 (19)
C20—H20C0.9800C66—N41.328 (19)
C21—H21A0.9800C67—H670.9500
C21—H21B0.9800C67—N31.370 (15)
C21—H21C0.9800C68—H680.9500
C22—Ir12.054 (8)C68—C691.384 (13)
C22—N51.350 (13)C68—N91.337 (12)
C22—N61.366 (12)C69—H690.9500
C23—H230.9500C69—N9i1.345 (12)
C23—C241.338 (18)Cl1—Cu82.127 (3)
C23—N61.377 (14)Cl2—Cu92.129 (3)
C24—H240.9500Cl3—Cu22.183 (3)
C24—N51.413 (14)Cl3—Cu52.290 (3)
C25—C261.370 (18)Cl4—Cu12.172 (3)
C25—C301.429 (19)Cl4—Cu62.287 (3)
C25—N51.449 (15)Cu1—Cu32.8138 (19)
C26—C271.39 (2)Cu1—Cu42.716 (2)
C26—C331.49 (2)Cu1—Cu62.6274 (18)
C27—H270.9500Cu1—Ir12.5227 (15)
C27—C281.41 (3)Cu2—Cu32.716 (2)
C28—C291.36 (3)Cu2—Cu42.8052 (19)
C28—C321.53 (2)Cu2—Cu52.5877 (18)
C29—H290.9500Cu2—Ir12.5338 (15)
C29—C301.39 (2)Cu3—Cu42.4916 (18)
C30—C311.49 (2)Cu3—Cu52.6364 (18)
C31—H31A0.9800Cu3—Cu62.6145 (18)
C31—H31B0.9800Cu3—Ir12.6325 (13)
C31—H31C0.9800Cu3—Ir22.5665 (13)
C32—H32A0.9800Cu4—Cu52.5860 (18)
C32—H32B0.9800Cu4—Cu62.6325 (18)
C32—H32C0.9800Cu4—Ir12.7478 (13)
C33—H33A0.9800Cu4—Ir32.6337 (13)
C33—H33B0.9800Cu5—Cu72.5597 (18)
C33—H33C0.9800Cu5—Ir22.6856 (13)
C34—C351.393 (16)Cu5—Ir32.6585 (13)
C34—C391.413 (14)Cu6—Cu102.5899 (17)
C34—N61.440 (14)Cu6—Ir22.6763 (12)
C35—C361.384 (17)Cu6—Ir32.6559 (13)
C35—C421.513 (15)Cu7—Cu82.5971 (19)
C36—H360.9500Cu7—Cu92.5615 (19)
C36—C371.387 (16)Cu7—Cu103.0417 (18)
C37—C381.400 (17)Cu7—Ir22.6089 (13)
C37—C411.499 (18)Cu7—Ir32.6462 (13)
C38—H380.9500Cu7—N31.992 (8)
C38—C391.368 (16)Cu8—Cu102.6155 (18)
C39—C401.517 (16)Cu8—Ir22.5304 (13)
C40—H40A0.9800Cu9—Cu102.5802 (18)
C40—H40B0.9800Cu9—Ir32.5350 (13)
C40—H40C0.9800Cu10—Ir22.6378 (13)
C41—H41A0.9800Cu10—Ir32.6847 (13)
C41—H41B0.9800Cu10—N92.014 (7)
C41—H41C0.9800O1—H1A0.8400
C42—H42A0.9800O1—H1B0.8400
C42—H42B0.9800O1—C701.45 (3)
C42—H42C0.9800O1—C721.48 (5)
C43—Ir22.022 (9)C71—H71A0.9800
C43—N71.372 (11)C71—H71B0.9800
C43—N81.363 (12)C71—H71C0.9800
C44—H440.9500C71—O21.40 (3)
C44—C451.340 (14)O2—H2A0.8400
C44—N71.408 (12)C70—H70A0.9800
C45—H450.9500C70—H70B0.9800
C45—N81.412 (11)C70—H70C0.9800
C46—C471.401 (12)C72—H72A0.9800
C46—C511.389 (13)C72—H72B0.9800
C46—N81.446 (12)C72—H72C0.9800
N1—C1—Ir3129.6 (7)N9i—C69—H69119.3
N1—C1—N2105.5 (8)Cu2—Cl3—Cu570.64 (8)
N2—C1—Ir3124.9 (7)Cu1—Cl4—Cu672.15 (8)
C3—C2—H2126.2Cl4—Cu1—Cu3106.82 (8)
C3—C2—N2107.6 (9)Cl4—Cu1—Cu4108.26 (9)
N2—C2—H2126.2Cl4—Cu1—Cu655.94 (7)
C2—C3—H3126.0Cl4—Cu1—Ir1165.57 (9)
C2—C3—N1108.1 (10)Cu4—Cu1—Cu353.52 (5)
N1—C3—H3126.0Cu6—Cu1—Cu357.31 (5)
C5—C4—N1117.9 (10)Cu6—Cu1—Cu459.00 (5)
C9—C4—C5123.0 (11)Ir1—Cu1—Cu358.81 (4)
C9—C4—N1119.1 (9)Ir1—Cu1—Cu463.14 (4)
C4—C5—C12122.8 (11)Ir1—Cu1—Cu6110.59 (6)
C6—C5—C4115.9 (11)Cl3—Cu2—Cu3111.84 (9)
C6—C5—C12121.3 (11)Cl3—Cu2—Cu4104.44 (9)
C5—C6—H6118.6Cl3—Cu2—Cu556.62 (7)
C7—C6—C5122.7 (11)Cl3—Cu2—Ir1166.10 (9)
C7—C6—H6118.6Cu3—Cu2—Cu453.62 (5)
C6—C7—C11120.9 (13)Cu5—Cu2—Cu359.56 (5)
C8—C7—C6118.3 (12)Cu5—Cu2—Cu457.14 (5)
C8—C7—C11120.7 (15)Ir1—Cu2—Cu360.07 (4)
C7—C8—H8119.2Ir1—Cu2—Cu461.70 (4)
C7—C8—C9121.5 (12)Ir1—Cu2—Cu5110.96 (6)
C9—C8—H8119.2Cu2—Cu3—Cu1104.92 (6)
C4—C9—C8118.4 (11)Cu4—Cu3—Cu161.23 (5)
C4—C9—C10121.2 (10)Cu4—Cu3—Cu265.02 (5)
C8—C9—C10120.4 (11)Cu4—Cu3—Cu560.49 (5)
C9—C10—H10A109.5Cu4—Cu3—Cu662.01 (5)
C9—C10—H10B109.5Cu4—Cu3—Ir164.79 (4)
C9—C10—H10C109.5Cu4—Cu3—Ir299.09 (5)
H10A—C10—H10B109.5Cu5—Cu3—Cu1120.76 (6)
H10A—C10—H10C109.5Cu5—Cu3—Cu257.80 (5)
H10B—C10—H10C109.5Cu6—Cu3—Cu157.76 (5)
C7—C11—H11A109.5Cu6—Cu3—Cu2125.79 (6)
C7—C11—H11B109.5Cu6—Cu3—Cu586.14 (5)
C7—C11—H11C109.5Cu6—Cu3—Ir1107.61 (5)
H11A—C11—H11B109.5Ir1—Cu3—Cu155.07 (4)
H11A—C11—H11C109.5Ir1—Cu3—Cu256.53 (4)
H11B—C11—H11C109.5Ir1—Cu3—Cu5106.43 (5)
C5—C12—H12A109.5Ir2—Cu3—Cu1119.07 (6)
C5—C12—H12B109.5Ir2—Cu3—Cu2117.60 (6)
C5—C12—H12C109.5Ir2—Cu3—Cu562.14 (4)
H12A—C12—H12B109.5Ir2—Cu3—Cu662.20 (4)
H12A—C12—H12C109.5Ir2—Cu3—Ir1163.87 (6)
H12B—C12—H12C109.5Cu1—Cu4—Cu2105.15 (6)
C14—C13—N2117.8 (9)Cu1—Cu4—Ir154.99 (4)
C18—C13—C14122.4 (10)Cu3—Cu4—Cu165.24 (5)
C18—C13—N2119.7 (9)Cu3—Cu4—Cu261.36 (5)
C13—C14—C21122.6 (10)Cu3—Cu4—Cu562.53 (5)
C15—C14—C13117.7 (9)Cu3—Cu4—Cu661.29 (5)
C15—C14—C21119.6 (9)Cu3—Cu4—Ir160.09 (4)
C14—C15—H15118.7Cu3—Cu4—Ir397.57 (5)
C14—C15—C16122.5 (9)Cu5—Cu4—Cu1126.68 (6)
C16—C15—H15118.7Cu5—Cu4—Cu257.19 (5)
C15—C16—C20120.5 (10)Cu5—Cu4—Cu686.80 (5)
C17—C16—C15118.7 (10)Cu5—Cu4—Ir1104.55 (5)
C17—C16—C20120.8 (10)Cu5—Cu4—Ir361.23 (4)
C16—C17—H17119.0Cu6—Cu4—Cu158.82 (5)
C16—C17—C18121.9 (9)Cu6—Cu4—Cu2121.51 (6)
C18—C17—H17119.0Cu6—Cu4—Ir1103.79 (5)
C13—C18—C17116.7 (9)Cu6—Cu4—Ir360.57 (4)
C13—C18—C19123.4 (9)Ir1—Cu4—Cu254.28 (4)
C17—C18—C19119.8 (9)Ir3—Cu4—Cu1117.58 (6)
C18—C19—H19A109.5Ir3—Cu4—Cu2117.81 (5)
C18—C19—H19B109.5Ir3—Cu4—Ir1157.65 (5)
C18—C19—H19C109.5Cl3—Cu5—Cu252.74 (7)
H19A—C19—H19B109.5Cl3—Cu5—Cu3111.15 (8)
H19A—C19—H19C109.5Cl3—Cu5—Cu4108.49 (8)
H19B—C19—H19C109.5Cl3—Cu5—Cu7124.87 (9)
C16—C20—H20A109.5Cl3—Cu5—Ir2143.50 (9)
C16—C20—H20B109.5Cl3—Cu5—Ir3141.38 (9)
C16—C20—H20C109.5Cu2—Cu5—Cu362.64 (5)
H20A—C20—H20B109.5Cu2—Cu5—Ir2117.95 (6)
H20A—C20—H20C109.5Cu2—Cu5—Ir3125.23 (6)
H20B—C20—H20C109.5Cu3—Cu5—Ir257.65 (4)
C14—C21—H21A109.5Cu3—Cu5—Ir393.50 (5)
C14—C21—H21B109.5Cu4—Cu5—Cu265.67 (5)
C14—C21—H21C109.5Cu4—Cu5—Cu356.98 (5)
H21A—C21—H21B109.5Cu4—Cu5—Ir293.78 (5)
H21A—C21—H21C109.5Cu4—Cu5—Ir360.27 (4)
H21B—C21—H21C109.5Cu7—Cu5—Cu2173.38 (7)
N5—C22—Ir1127.8 (7)Cu7—Cu5—Cu3116.42 (6)
N5—C22—N6104.1 (8)Cu7—Cu5—Cu4119.86 (6)
N6—C22—Ir1127.8 (7)Cu7—Cu5—Ir259.59 (4)
C24—C23—H23126.2Cu7—Cu5—Ir360.91 (4)
C24—C23—N6107.5 (10)Ir3—Cu5—Ir274.79 (3)
N6—C23—H23126.2Cl4—Cu6—Cu151.90 (7)
C23—C24—H24127.0Cl4—Cu6—Cu3110.10 (8)
C23—C24—N5105.9 (10)Cl4—Cu6—Cu4107.57 (8)
N5—C24—H24127.0Cl4—Cu6—Cu10125.49 (9)
C26—C25—C30123.6 (12)Cl4—Cu6—Ir2144.79 (8)
C26—C25—N5120.1 (12)Cl4—Cu6—Ir3140.09 (8)
C30—C25—N5116.3 (11)Cu1—Cu6—Cu462.18 (5)
C25—C26—C27116.1 (15)Cu1—Cu6—Ir2122.02 (6)
C25—C26—C33121.4 (12)Cu1—Cu6—Ir3120.01 (6)
C27—C26—C33122.5 (14)Cu3—Cu6—Cu164.93 (5)
C26—C27—H27118.5Cu3—Cu6—Cu456.70 (5)
C26—C27—C28123.0 (16)Cu3—Cu6—Ir258.02 (4)
C28—C27—H27118.5Cu3—Cu6—Ir394.07 (5)
C27—C28—C32120 (2)Cu4—Cu6—Ir292.94 (5)
C29—C28—C27118.2 (16)Cu4—Cu6—Ir359.74 (4)
C29—C28—C32122 (2)Cu10—Cu6—Cu1177.38 (7)
C28—C29—H29118.8Cu10—Cu6—Cu3117.42 (6)
C28—C29—C30122.4 (17)Cu10—Cu6—Cu4119.86 (6)
C30—C29—H29118.8Cu10—Cu6—Ir260.09 (4)
C25—C30—C31122.4 (12)Cu10—Cu6—Ir361.55 (4)
C29—C30—C25116.5 (14)Ir3—Cu6—Ir274.99 (3)
C29—C30—C31121.0 (14)Cu5—Cu7—Cu8120.17 (6)
C30—C31—H31A109.5Cu5—Cu7—Cu9119.11 (6)
C30—C31—H31B109.5Cu5—Cu7—Cu1097.15 (5)
C30—C31—H31C109.5Cu5—Cu7—Ir262.60 (4)
H31A—C31—H31B109.5Cu5—Cu7—Ir361.39 (4)
H31A—C31—H31C109.5Cu8—Cu7—Cu1054.58 (5)
H31B—C31—H31C109.5Cu8—Cu7—Ir258.16 (4)
C28—C32—H32A109.5Cu8—Cu7—Ir3109.79 (6)
C28—C32—H32B109.5Cu9—Cu7—Cu887.55 (6)
C28—C32—H32C109.5Cu9—Cu7—Cu1054.01 (5)
H32A—C32—H32B109.5Cu9—Cu7—Ir2108.44 (6)
H32A—C32—H32C109.5Cu9—Cu7—Ir358.23 (4)
H32B—C32—H32C109.5Ir2—Cu7—Cu1055.01 (3)
C26—C33—H33A109.5Ir2—Cu7—Ir376.28 (3)
C26—C33—H33B109.5Ir3—Cu7—Cu1055.81 (3)
C26—C33—H33C109.5N3—Cu7—Cu5111.3 (3)
H33A—C33—H33B109.5N3—Cu7—Cu8112.0 (3)
H33A—C33—H33C109.5N3—Cu7—Cu9103.8 (3)
H33B—C33—H33C109.5N3—Cu7—Cu10150.8 (3)
C35—C34—C39122.5 (10)N3—Cu7—Ir2145.4 (3)
C35—C34—N6118.9 (9)N3—Cu7—Ir3133.3 (3)
C39—C34—N6118.7 (10)Cl1—Cu8—Cu7127.85 (11)
C34—C35—C42119.9 (11)Cl1—Cu8—Cu10122.14 (11)
C36—C35—C34118.0 (10)Cl1—Cu8—Ir2170.41 (11)
C36—C35—C42122.1 (11)Cu7—Cu8—Cu1071.40 (5)
C35—C36—H36119.2Ir2—Cu8—Cu761.15 (4)
C35—C36—C37121.6 (11)Ir2—Cu8—Cu1061.65 (4)
C37—C36—H36119.2Cl2—Cu9—Cu7118.91 (10)
C36—C37—C38118.1 (11)Cl2—Cu9—Cu10118.20 (10)
C36—C37—C41120.2 (12)Cl2—Cu9—Ir3177.99 (10)
C38—C37—C41121.6 (11)Cu7—Cu9—Cu1072.54 (5)
C37—C38—H38118.5Ir3—Cu9—Cu762.56 (4)
C39—C38—C37123.1 (10)Ir3—Cu9—Cu1063.31 (4)
C39—C38—H38118.5Cu6—Cu10—Cu794.99 (5)
C34—C39—C40120.7 (10)Cu6—Cu10—Cu8118.77 (6)
C38—C39—C34116.5 (10)Cu6—Cu10—Ir261.58 (4)
C38—C39—C40122.8 (10)Cu6—Cu10—Ir360.43 (4)
C39—C40—H40A109.5Cu8—Cu10—Cu754.02 (5)
C39—C40—H40B109.5Cu8—Cu10—Ir257.59 (4)
C39—C40—H40C109.5Cu8—Cu10—Ir3108.06 (5)
H40A—C40—H40B109.5Cu9—Cu10—Cu6117.58 (6)
H40A—C40—H40C109.5Cu9—Cu10—Cu753.45 (5)
H40B—C40—H40C109.5Cu9—Cu10—Cu886.77 (6)
C37—C41—H41A109.5Cu9—Cu10—Ir2107.00 (5)
C37—C41—H41B109.5Cu9—Cu10—Ir357.52 (4)
C37—C41—H41C109.5Ir2—Cu10—Cu754.13 (3)
H41A—C41—H41B109.5Ir2—Cu10—Ir375.14 (3)
H41A—C41—H41C109.5Ir3—Cu10—Cu754.62 (3)
H41B—C41—H41C109.5N9—Cu10—Cu6123.1 (2)
C35—C42—H42A109.5N9—Cu10—Cu7141.8 (2)
C35—C42—H42B109.5N9—Cu10—Cu8102.9 (2)
C35—C42—H42C109.5N9—Cu10—Cu9100.7 (2)
H42A—C42—H42B109.5N9—Cu10—Ir2144.2 (2)
H42A—C42—H42C109.5N9—Cu10—Ir3140.1 (2)
H42B—C42—H42C109.5C22—Ir1—Cu1122.8 (3)
N7—C43—Ir2127.5 (7)C22—Ir1—Cu2101.9 (3)
N8—C43—Ir2127.6 (6)C22—Ir1—Cu3164.6 (3)
N8—C43—N7104.8 (8)C22—Ir1—Cu4115.7 (3)
C45—C44—H44126.1Cu1—Ir1—Cu2120.28 (5)
C45—C44—N7107.8 (8)Cu1—Ir1—Cu366.12 (4)
N7—C44—H44126.1Cu1—Ir1—Cu461.87 (4)
C44—C45—H45126.8Cu2—Ir1—Cu363.40 (4)
C44—C45—N8106.4 (8)Cu2—Ir1—Cu464.01 (4)
N8—C45—H45126.8Cu3—Ir1—Cu455.12 (4)
C47—C46—N8118.2 (8)C43—Ir2—Cu392.8 (2)
C51—C46—C47122.2 (9)C43—Ir2—Cu5124.8 (3)
C51—C46—N8119.6 (8)C43—Ir2—Cu6125.2 (2)
C46—C47—C54121.2 (8)C43—Ir2—Cu7130.7 (2)
C48—C47—C46116.9 (8)C43—Ir2—Cu889.9 (2)
C48—C47—C54121.9 (8)C43—Ir2—Cu10130.5 (3)
C47—C48—H48118.5Cu3—Ir2—Cu560.21 (4)
C49—C48—C47122.9 (9)Cu3—Ir2—Cu659.78 (4)
C49—C48—H48118.5Cu3—Ir2—Cu7117.17 (4)
C48—C49—C50117.7 (9)Cu3—Ir2—Cu10117.42 (4)
C48—C49—C53120.7 (9)Cu6—Ir2—Cu583.94 (4)
C50—C49—C53121.7 (9)Cu7—Ir2—Cu557.80 (4)
C49—C50—H50118.8Cu7—Ir2—Cu6103.93 (4)
C51—C50—C49122.4 (9)Cu7—Ir2—Cu1070.86 (4)
C51—C50—H50118.8Cu8—Ir2—Cu3177.35 (4)
C46—C51—C52121.9 (9)Cu8—Ir2—Cu5117.92 (4)
C50—C51—C46117.6 (9)Cu8—Ir2—Cu6118.69 (4)
C50—C51—C52120.5 (9)Cu8—Ir2—Cu760.68 (4)
C51—C52—H52A109.5Cu8—Ir2—Cu1060.76 (4)
C51—C52—H52B109.5Cu10—Ir2—Cu5104.60 (4)
C51—C52—H52C109.5Cu10—Ir2—Cu658.33 (4)
H52A—C52—H52B109.5C1—Ir3—Cu498.4 (3)
H52A—C52—H52C109.5C1—Ir3—Cu5126.9 (3)
H52B—C52—H52C109.5C1—Ir3—Cu6126.7 (3)
C49—C53—H53A109.5C1—Ir3—Cu7129.2 (3)
C49—C53—H53B109.5C1—Ir3—Cu988.4 (3)
C49—C53—H53C109.5C1—Ir3—Cu10128.4 (3)
H53A—C53—H53B109.5Cu4—Ir3—Cu558.50 (4)
H53A—C53—H53C109.5Cu4—Ir3—Cu659.69 (4)
H53B—C53—H53C109.5Cu4—Ir3—Cu7115.00 (4)
C47—C54—H54A109.5Cu4—Ir3—Cu10116.38 (4)
C47—C54—H54B109.5Cu5—Ir3—Cu10104.05 (4)
C47—C54—H54C109.5Cu6—Ir3—Cu584.87 (4)
H54A—C54—H54B109.5Cu6—Ir3—Cu1058.02 (4)
H54A—C54—H54C109.5Cu7—Ir3—Cu557.70 (4)
H54B—C54—H54C109.5Cu7—Ir3—Cu6103.47 (4)
C56—C55—N7118.5 (10)Cu7—Ir3—Cu1069.58 (4)
C60—C55—C56121.5 (10)Cu9—Ir3—Cu4173.20 (4)
C60—C55—N7120.0 (9)Cu9—Ir3—Cu5116.43 (4)
C55—C56—C63120.5 (10)Cu9—Ir3—Cu6116.80 (4)
C57—C56—C55116.8 (13)Cu9—Ir3—Cu759.21 (4)
C57—C56—C63122.6 (12)Cu9—Ir3—Cu1059.17 (4)
C56—C57—H57117.9C1—N1—C3110.4 (9)
C56—C57—C58124.1 (13)C1—N1—C4127.0 (8)
C58—C57—H57117.9C3—N1—C4122.6 (9)
C57—C58—C59117.2 (12)C1—N2—C2108.4 (8)
C57—C58—C62120.7 (16)C1—N2—C13127.5 (8)
C59—C58—C62122.0 (18)C2—N2—C13123.8 (8)
C58—C59—H59118.4C64—N3—C67114.9 (10)
C60—C59—C58123.2 (14)C64—N3—Cu7117.9 (7)
C60—C59—H59118.4C67—N3—Cu7124.4 (8)
C55—C60—C61120.7 (9)C65—N4—C66115.2 (11)
C59—C60—C55117.2 (11)C22—N5—C24111.0 (9)
C59—C60—C61122.0 (11)C22—N5—C25126.6 (8)
C60—C61—H61A109.5C24—N5—C25122.2 (9)
C60—C61—H61B109.5C22—N6—C23111.3 (9)
C60—C61—H61C109.5C22—N6—C34125.3 (8)
H61A—C61—H61B109.5C23—N6—C34123.2 (9)
H61A—C61—H61C109.5C43—N7—C44110.1 (8)
H61B—C61—H61C109.5C43—N7—C55126.4 (8)
C58—C62—H62A109.5C44—N7—C55123.5 (8)
C58—C62—H62B109.5C43—N8—C45111.0 (8)
C58—C62—H62C109.5C43—N8—C46124.5 (7)
H62A—C62—H62B109.5C45—N8—C46124.4 (7)
H62A—C62—H62C109.5C68—N9—C69i116.6 (8)
H62B—C62—H62C109.5C68—N9—Cu10120.5 (6)
C56—C63—H63A109.5C69i—N9—Cu10122.8 (6)
C56—C63—H63B109.5C70—O1—H1A109.5
C56—C63—H63C109.5C72—O1—H1B109.5
H63A—C63—H63B109.5H71A—C71—H71B109.5
H63A—C63—H63C109.5H71A—C71—H71C109.5
H63B—C63—H63C109.5H71B—C71—H71C109.5
C65—C64—H64118.9O2—C71—H71A109.5
N3—C64—H64118.9O2—C71—H71B109.5
N3—C64—C65122.3 (11)O2—C71—H71C109.5
C64—C65—H65118.6C71—O2—H2A109.5
N4—C65—C64122.8 (12)O1—C70—H70A109.5
N4—C65—H65118.6O1—C70—H70B109.5
C67—C66—H66118.3O1—C70—H70C109.5
N4—C66—H66118.3H70A—C70—H70B109.5
N4—C66—C67123.4 (14)H70A—C70—H70C109.5
C66—C67—H67119.8H70B—C70—H70C109.5
C66—C67—N3120.5 (13)O1—C72—H72A109.5
N3—C67—H67119.8O1—C72—H72B109.5
C69—C68—H68119.1O1—C72—H72C109.5
N9—C68—H68119.1H72A—C72—H72B109.5
N9—C68—C69121.9 (8)H72A—C72—H72C109.5
C68—C69—H69119.3H72B—C72—H72C109.5
N9i—C69—C68121.5 (9)
C2—C3—N1—C11.4 (13)C49—C50—C51—C52179.1 (9)
C2—C3—N1—C4179.6 (10)C51—C46—C47—C485.3 (13)
C3—C2—N2—C10.0 (12)C51—C46—C47—C54176.8 (8)
C3—C2—N2—C13174.9 (9)C51—C46—N8—C4385.6 (11)
C4—C5—C6—C73.0 (18)C51—C46—N8—C4597.1 (10)
C5—C4—C9—C82.0 (17)C53—C49—C50—C51177.0 (9)
C5—C4—C9—C10177.3 (10)C54—C47—C48—C49177.8 (8)
C5—C4—N1—C186.3 (13)C55—C56—C57—C581.8 (17)
C5—C4—N1—C392.5 (12)C56—C55—C60—C590.3 (14)
C5—C6—C7—C85 (2)C56—C55—C60—C61176.9 (9)
C5—C6—C7—C11176.8 (15)C56—C55—N7—C4389.4 (11)
C6—C7—C8—C94 (2)C56—C55—N7—C4493.1 (11)
C7—C8—C9—C40.4 (19)C56—C57—C58—C594 (2)
C7—C8—C9—C10179.7 (12)C56—C57—C58—C62178.1 (12)
C9—C4—C5—C60.7 (16)C57—C58—C59—C603.9 (19)
C9—C4—C5—C12176.5 (11)C58—C59—C60—C552.3 (17)
C9—C4—N1—C195.7 (13)C58—C59—C60—C61178.9 (11)
C9—C4—N1—C385.5 (13)C60—C55—C56—C570.0 (14)
C11—C7—C8—C9178.2 (15)C60—C55—C56—C63176.0 (9)
C12—C5—C6—C7179.8 (12)C60—C55—N7—C4390.0 (12)
C13—C14—C15—C160.3 (14)C60—C55—N7—C4487.5 (11)
C14—C13—C18—C171.7 (13)C62—C58—C59—C60177.8 (12)
C14—C13—C18—C19179.5 (8)C63—C56—C57—C58177.7 (12)
C14—C13—N2—C185.1 (12)C64—C65—N4—C665 (3)
C14—C13—N2—C288.8 (11)C65—C64—N3—C679 (2)
C14—C15—C16—C170.9 (15)C65—C64—N3—Cu7170.7 (12)
C14—C15—C16—C20176.6 (10)C66—C67—N3—C6411 (2)
C15—C16—C17—C180.9 (14)C66—C67—N3—Cu7171.4 (14)
C16—C17—C18—C130.4 (13)C67—C66—N4—C653 (3)
C16—C17—C18—C19178.3 (9)C69—C68—N9—C69i1.0 (14)
C18—C13—C14—C151.7 (13)C69—C68—N9—Cu10176.7 (7)
C18—C13—C14—C21178.7 (8)Ir1—C22—N5—C24173.9 (8)
C18—C13—N2—C193.6 (11)Ir1—C22—N5—C251.6 (16)
C18—C13—N2—C292.5 (11)Ir1—C22—N6—C23174.8 (8)
C20—C16—C17—C18176.6 (9)Ir1—C22—N6—C341.1 (14)
C21—C14—C15—C16177.4 (9)Ir2—C43—N7—C44175.2 (6)
C23—C24—N5—C221.3 (14)Ir2—C43—N7—C552.5 (13)
C23—C24—N5—C25177.1 (11)Ir2—C43—N8—C45175.4 (6)
C24—C23—N6—C221.1 (13)Ir2—C43—N8—C462.2 (12)
C24—C23—N6—C34174.9 (10)Ir3—C1—N1—C3179.5 (7)
C25—C26—C27—C281 (2)Ir3—C1—N1—C41.6 (15)
C26—C25—C30—C293.0 (18)Ir3—C1—N2—C2179.1 (7)
C26—C25—C30—C31179.6 (12)Ir3—C1—N2—C136.2 (13)
C26—C25—N5—C2285.4 (14)N1—C1—N2—C20.8 (10)
C26—C25—N5—C2489.7 (14)N1—C1—N2—C13175.5 (9)
C26—C27—C28—C291 (2)N1—C4—C5—C6178.6 (10)
C26—C27—C28—C32177.0 (14)N1—C4—C5—C121.4 (15)
C27—C28—C29—C302 (2)N1—C4—C9—C8179.8 (10)
C28—C29—C30—C250 (2)N1—C4—C9—C100.5 (15)
C28—C29—C30—C31177.1 (14)N2—C1—N1—C31.4 (11)
C30—C25—C26—C273.3 (18)N2—C1—N1—C4179.7 (9)
C30—C25—C26—C33178.2 (12)N2—C2—C3—N10.9 (13)
C30—C25—N5—C2293.7 (13)N2—C13—C14—C15177.0 (8)
C30—C25—N5—C2491.2 (13)N2—C13—C14—C210.0 (13)
C32—C28—C29—C30176.6 (15)N2—C13—C18—C17176.9 (8)
C33—C26—C27—C28179.6 (14)N2—C13—C18—C190.9 (13)
C34—C35—C36—C370.1 (15)N3—C64—C65—N41 (3)
C35—C34—C39—C383.9 (14)N4—C66—C67—N35 (3)
C35—C34—C39—C40176.9 (9)N5—C22—N6—C230.3 (11)
C35—C34—N6—C2286.5 (12)N5—C22—N6—C34175.6 (9)
C35—C34—N6—C2388.9 (13)N5—C25—C26—C27175.8 (11)
C35—C36—C37—C383.0 (15)N5—C25—C26—C332.7 (17)
C35—C36—C37—C41176.2 (10)N5—C25—C30—C29176.1 (10)
C36—C37—C38—C392.5 (15)N5—C25—C30—C310.5 (17)
C37—C38—C39—C340.8 (14)N6—C22—N5—C240.6 (11)
C37—C38—C39—C40180.0 (9)N6—C22—N5—C25176.2 (10)
C39—C34—C35—C363.4 (15)N6—C23—C24—N51.4 (14)
C39—C34—C35—C42178.8 (9)N6—C34—C35—C36176.9 (9)
C39—C34—N6—C2293.8 (12)N6—C34—C35—C420.9 (14)
C39—C34—N6—C2390.8 (12)N6—C34—C39—C38176.5 (8)
C41—C37—C38—C39176.6 (10)N6—C34—C39—C402.8 (13)
C42—C35—C36—C37177.6 (10)N7—C43—N8—C451.2 (9)
C44—C45—N8—C430.6 (10)N7—C43—N8—C46178.8 (7)
C44—C45—N8—C46178.2 (8)N7—C44—C45—N80.3 (10)
C45—C44—N7—C431.1 (10)N7—C55—C56—C57179.4 (9)
C45—C44—N7—C55178.9 (9)N7—C55—C56—C634.6 (13)
C46—C47—C48—C490.1 (13)N7—C55—C60—C59179.7 (9)
C47—C46—C51—C506.6 (13)N7—C55—C60—C613.7 (14)
C47—C46—C51—C52175.1 (8)N8—C43—N7—C441.4 (9)
C47—C46—N8—C4393.9 (10)N8—C43—N7—C55179.2 (8)
C47—C46—N8—C4583.4 (10)N8—C46—C47—C48174.2 (7)
C47—C48—C49—C503.8 (14)N8—C46—C47—C543.7 (12)
C47—C48—C49—C53175.6 (9)N8—C46—C51—C50172.9 (8)
C48—C49—C50—C512.4 (14)N8—C46—C51—C525.4 (13)
C49—C50—C51—C462.6 (14)N9—C68—C69—N9i1.0 (15)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.841.872.62 (2)148
 

Acknowledgements

We are extremely grateful to Dr Victoria Annis (University of York, UK) for the synthesis of the [IrCl(COD)(IMes)] precatalyst. We thank Professor Anne-Kathrin Duhme-Klair (University of York, UK) for helpful discussions.

Funding information

This work was funded by UK Research and Innovation (UKRI) under the UK governments Horizon Europe funding guarantee [grant No. EP/X023672/1].

References

First citationAdams, R. D., Chen, M., Elpitiya, G., Yang, X. & Zhang, Q. (2013). Organometallics, 32, 2416–2426.  CrossRef CAS Google Scholar
First citationBaumgartner, M., Schmalle, H. & Dubler, E. (1990). Polyhedron, 9, 1155–1164.  CrossRef CAS Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCroizat, P., Sculfort, S., Welter, R. & Braunstein, P. (2016). Organometallics, 35, 3949–3958.  CrossRef CAS Google Scholar
First citationDhayal, R. S., van Zyl, W. E. & Liu, C. W. (2016). Acc. Chem. Res. 49, 86–95.  CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGao, J., Zhang, F. & Zhang, X. (2024). Adv. Sci. 11, 2400377.  CrossRef Google Scholar
First citationGraham, P. M., Pike, R. D., Sabat, M., Bailey, R. D. & Pennington, W. T. (2000). Inorg. Chem. 39, 5121–5132.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHarvey, P. D. & Knorr, M. (2016). J. Inorg. Organomet. Polym. 26, 1174–1197.  CrossRef CAS Google Scholar
First citationHau, S. C. K., Yeung, M. C.-L., Yam, V. W.-W. & Mak, T. C. W. (2016). J. Am. Chem. Soc. 138, 13732–13739.  CrossRef CAS PubMed Google Scholar
First citationJohnsson, M., Törnroos, K. W., Mila, F. & Millet, P. (2000). Chem. Mater. 12, 2853–2857.  Web of Science CrossRef ICSD CAS Google Scholar
First citationKawamura, A., Greenwood, A. R., Filatov, A. S., Gallagher, A. T., Galli, G. & Anderson, J. S. (2017). Inorg. Chem. 56, 3349–3356.  CrossRef CAS PubMed Google Scholar
First citationLiu, X. & Astruc, D. (2018). Coord. Chem. Rev. 359, 112–126.  CrossRef CAS Google Scholar
First citationRao, V. M., Sathyanarayana, D. N. & Manohar, H. (1983). J. Chem. Soc. Dalton Trans. pp. 2167–2173.  CSD CrossRef Web of Science Google Scholar
First citationRhodes, L. F., Huffman, J. C. & Caulton, K. G. (1985). J. Am. Chem. Soc. 107, 1759–1760.  CrossRef CAS Google Scholar
First citationRigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSculfort, S. & Braunstein, P. (2011). Chem. Soc. Rev. 40, 2741–2760.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilva, A. F., Calhau, I. B., Gomes, A. C., Valente, A. A., Gonçalves, I. S. & Pillinger, M. (2023). ACS Biomater. Sci. Eng. 9, 1909–1918.  CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTang, J. & Zhao, L. (2020). Chem. Commun. 56, 1915–1925.  Web of Science CrossRef CAS Google Scholar
First citationTroyano, J., Zamora, F. & Delgado, S. (2021). Chem. Soc. Rev. 50, 4606–4628.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYip, S.-K., Chan, C.-L., Lam, W. H., Cheung, K.-K. & Yam, V. W.-W. (2007). Photochem. & Photobiol. Sci. 6, 365–371.  CrossRef CAS Google Scholar
First citationZhang, Y., Zhang, J., Li, Z., Qin, Z., Sharma, S. & Li, G. (2023a). Commun. Chem. 6, 24.  CrossRef PubMed Google Scholar
First citationZhang, Y.-Z., Kong, X.-J., Zhou, W.-F., Li, C.-H., Hu, H., Hou, H., Liu, Z., Geng, L., Huang, H., Zhang, X., Zhang, D. & Li, J. (2023b). Appl. Mater. Interfaces, 15, 4208–4215.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds