research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of four thio­glycosides involving carbamimido­thio­ate groups

crossmark logo

aGreen Chemistry Department, Chemical Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt, bChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and cInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-braunschweig.de

Edited by C. Schulzke, Universität Greifswald, Germany (Received 11 June 2024; accepted 1 July 2024; online 9 July 2024)

The compounds 2′,3′,4′,6′-tetra-O-acetyl-β-D-gluco­pyranosyl N′-cyano-N-phenyl­carbamimido­thio­ate (C22H25N3O9S, 5a), 2′,3′,4′,6′-tetra-O-acetyl-β-D-galacto­pyranosyl N′-cyano-N-phenyl­carbamimido­thio­ate, (C22H25N3O9S, 5b), 2′,3′,4′,6′-tetra-O-acetyl-β-D-galacto­pyranosyl N′-cyano-N-methyl­carbamimido­thio­ate (C17H23N3O9S, 5c), and 2′,3′,4′,6′-tetra-O-acetyl-β-D-galacto­pyranosyl N′-cyano-N-p-tolyl­carbamimido­thio­ate (C23H27N3O9S, 5d) all crystallize in P212121 with Z = 4. For all four structures, the configuration across the central (formal) C=N(CN) double bond of the carbamimido­thio­ate group is Z. The torsion angles C5—O1—C1—S (standard sugar numbering) are all close to 180°, confirming the β position of the substituent. Compound 5b involves an intra­molecular hydrogen bond N—H⋯O1; in 5c this contact is the weaker branch of a three-centre inter­action, whereas in 5a and 5d the H⋯O distances are much longer and do not represent significant inter­actions. The C—N bond lengths at the central carbon atom of the carbamimido­thio­ate group are almost equal. All C—O—C=O torsion angles of the acetyl groups correspond to a synperiplanar geometry, but otherwise all four mol­ecules display a high degree of conformational flexibility, with many widely differing torsion angles for equivalent groups. In the crystal packing, 5a, 5c and 5d form layer structures involving the classical hydrogen bond N—H⋯Ncyano and a variety of ‘weak’ hydrogen bonds C—H⋯O or C—H⋯S. The packing of 5b is almost featureless and involves a large number of borderline ‘weak’ hydrogen bonds. In an appendix, a potted history of wavelength preferences for structure determination is presented and it is recommended that, even for small organic crystals in non-centrosymmetric space groups, the use of Mo radiation should be considered.

1. Chemical context

Many synthetic nitro­gen heterocycles are utilized in medicinal chemistry (Azzam et al., 2023[Azzam, R. A., Elgemeie, G. H., Elboshi, H. A. & Jones, P. G. (2023). Acta Cryst. E79, 817-820.]; Elboshi et al., 2024[Elboshi, H. A., Azzam, R. A., Elgemeie, G. H. & Jones, P. G. (2024). Acta Cryst. E80, 289-291.]). Several of these have played an important role in the search for potent anti­viral drugs (Santos et al., 2021[Santos, G. C. dos, Martins, L. M., Bregadiolli, B. A., Moreno, V. F., da Silva-Filho, L. C. & da Silva, B. H. S. T. (2021). J. Heterocycl. Chem. 58, 2226-2260.]). As part of our program aimed at developing new, effective and straightforward procedures for the synthesis of anti­metabolites (Elgemeie et al., 1998a[Elgemeie, G. E. H., Farag, D. S. & Jones, P. G. (1998a). Acta Cryst. C54, 1466-1468.],b[Elgemeie, G. E. H., Fathy, N. M. & Jones, P. G. (1998b). Acta Cryst. C54, 1314-1316.], 2015[Elgemeie, G. H., Abouzeid, M. & Jones, P. G. (2015). Acta Cryst. E71, 104-106.], 2022[Elgemeie, G. H. & Mohamed-Ezzat, R. A. (2022). New Strategies Targeting Cancer Metabolism, edited by G. H. Elgemeie & R. A. Mohamed-Ezzat, pp. 1-619. Amsterdam: Elesevier. https://doi.org/10.1016/B978-0-12-821783-2.00010-8.]; Mohamed-Ezzat et al., 2024[Mohamed-Ezzat, R. A., Elgemeie, G. H. & Jones, P. G. (2024). Acta Cryst. E80, 120-124.]), we have described several effective syntheses of folic acid, pyrimidine nucleoside and mercaptopurine analogues. One of these (Elgemeie et al., 2015[Elgemeie, G. H., Abouzeid, M. & Jones, P. G. (2015). Acta Cryst. E71, 104-106.]) presented the synthesis and structure of a carbamimido­thio­ate, namely methyl N′-cyano-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-di­hydro-1H-pyrazol-4-yl)carbamimido­thio­ate. Recently, the synthesis of nucleoside anal­ogues and their integration into DNA sequences for the investigation of ligand–DNA and protein–DNA inter­actions has attracted increased attention (Dantsu et al., 2021[Dantsu, Y., Zhang, Y. & Zhang, W. (2021). Genes, 13, 46. https://doi.org/10.3390/genes13010046]). Numerous nucleoside derivatives that involve an alteration or removal of the functional groups of heterocyclic bases have been synthesized (Hammad et al., 2018[Hammad, S. F., Masoud, D. M., Elgemeie, G. H. & Jones, P. G. (2018). Acta Cryst. E74, 853-856.]; Masoud et al., 2017[Masoud, D. M., Hammad, S. F., Elgemeie, G. H. & Jones, P. G. (2017). Acta Cryst. E73, 1751-1754.]). The synthesis of oligo­deoxy­nucleotides with a single functional group at a preselected position, involving various novel thio­glycosides that demonstrate antagonistic activity, is made possible by such analogues (Pérez-Rentero et al., 2012[Pérez-Rentero, S., Grijalvo, S., Ferreira, R. & Eritja, R. (2012). Molecules, 17, 10026-10045.]; Warren et al., 1998[Warren, A. M., Murray, B. J. & Connolly, A. B. (1998). J. Mol. Biol. 279, 89-100.]). The use of di­hydro­pyridine thio­glycosides as substrates or inhibitors of glycosyl­ation of proteins was reported (Scala et al., 1997[Scala, S., Akhmed, K., Rao, U. S., Paull, K., Lan, L., Dickstein, B., Lee, J., Elgemeie, G. H., Stein, W. D. & Bates, S. E. P. (1997). Mol. Pharmacol. 51, 1024-1033.]). These results have made the synthesis of modified and acyclic thio­glycosides relevant in the quest for more potent agents (Elgemeie et al., 2017[Elgemeie, G. H., Fathy, N., Zaghary, W. & Farag, A. (2017). Nucleosides Nucleotides Nucleic Acids, 36, 198-212.]; Galmarini et al., 2003[Galmarini, C. M., Jordheim, L. & Dumontet, C. (2003). Expert Rev. Anticancer Ther. 3, 717-728.]).

This work reports the one-pot synthesis of glycosyl iso­thio­urea derivatives as a new class of acyclic thio­glycosides, the N′-cyano-N-(alkyl or ar­yl)carbamimido­thio­ates 5ad. The potassium 1-cyano-iso­thio­urea salts 3ac were chosen as the key reagents. The sequences of reactions are summarized in Fig. 1[link]. Cyanamide 1 was heated with substituted iso­thio­cyanate derivatives 2ac in KOH/EtOH to give the corresponding stable potassium N-substituted carbamimido­thio­ates 3ac. These salts reacted with 2,3,4,6-tetra-O-acetyl-α-D-gluco- or galacto­pyranosyl bromides 4a,b in DMF at room temperature to afford the corresponding S-glycosides 5ad in high yield. The structures of the compounds 5ad were established by their elemental analyses and spectroscopic data (see Synthesis and crystallization). For example, the 1H NMR spectra of 5a showed the anomeric proton as a doublet at δ 5.82 ppm; the other six glucose protons resonated at δ 4.05–5.39 ppm and the four acetyl groups appeared as four singlets at δ 1.92–2.05 ppm. The structures of compounds 5ad were unambiguously confirmed by single-crystal X-ray structure determinations, which are reported here.

[Scheme 1]
[Figure 1]
Figure 1
The reaction scheme for the syntheses of compounds 5ad.

2. Structural commentary

All four compounds 5ad crystallize solvent-free in space group P212121 with Z = 4. The mol­ecular structures are shown in Figs. 2[link]–5[link][link][link], with selected mol­ecular dimensions in Tables 1[link]–4[link][link][link]. For all four structures, the configuration across the formal double bond C15=N2 is Z, with the cyano group and the sulfur atom mutually cis, which avoids a steric ‘collision’ between the cyano and aryl groups (where present). The absolute configurations at C1–C5 are SRSSR for 5a and SRSRR for the other structures, the designations at C4 corresponding to the change of sugar from glucose in 5a to galactose in 5bd. The torsion angles C5—O1—C1—S1 are all close to 180°, confirming the β (equatorial) positions of the substituent at the sugar ring. The C1—S1 bond lengths are consistently longer than C15—S1, corresponding to the different hybridizations of the carbon atoms. Compound 5b involves an intra­molecular hydrogen bond from the NH group to the sugar oxygen atom O1, with H01⋯O1 = 2.11 (2) Å; in 5c the longer H01⋯O1 distance, 2.52 (3) Å, represents the weaker branch of a three-centre inter­action, whereas in 5a and 5d the H01⋯O1 distances are even longer at 2.84 (2) and 2.90 (2) Å, respectively, and the NH group is thus effectively only involved in inter­molecular hydrogen bonds (see Supra­molecular features).

Table 1
Selected geometric parameters (Å, °) for 5a[link]

C1—S1 1.8148 (6) C15—S1 1.7759 (6)
C15—N2 1.3117 (7) C16—N2 1.3260 (8)
C15—N1 1.3365 (7) C21—N1 1.4187 (8)
       
C15—S1—C1 100.24 (3)    
       
C2—C3—O3—C9 −97.88 (7) O9—C11—O4—C4 10.40 (10)
C3—O3—C9—O8 8.68 (12) C3—C4—O4—C11 102.50 (6)
C4—C5—C6—O6 45.31 (7) O10—C13—O6—C6 −3.73 (11)
N1—C15—S1—C1 57.56 (5) C5—C6—O6—C13 178.14 (6)
O1—C1—S1—C15 −101.53 (4) S1—C15—N1—C21 −170.91 (5)
S1—C1—O1—C5 179.34 (4) C22—C21—N1—C15 16.38 (10)
O7—C7—O2—C2 2.09 (14) S1—C15—N2—C16 8.22 (9)
C1—C2—O2—C7 135.56 (7)    

Table 2
Selected geometric parameters (Å, °) for 5b[link]

C1—S1 1.8117 (7) C15—S1 1.7613 (8)
C15—N2 1.3084 (10) C16—N2 1.3203 (11)
C15—N1 1.3382 (10) C21—N1 1.4250 (10)
       
C15—S1—C1 104.12 (3)    
       
C4—C5—C6—O6 −167.08 (6) O9—C11—O4—C4 2.34 (14)
N1—C15—S1—C1 16.99 (8) C3—C4—O4—C11 −108.49 (8)
O1—C1—S1—C15 −66.61 (5) O10—C13—O6—C6 7.97 (12)
S1—C1—O1—C5 −178.96 (5) C5—C6—O6—C13 151.83 (7)
O7—C7—O2—C2 −3.38 (14) S1—C15—N1—C21 −174.06 (7)
C1—C2—O2—C7 126.34 (7) C22—C21—N1—C15 46.92 (12)
O8—C9—O3—C3 1.08 (16) S1—C15—N2—C16 5.47 (12)
C2—C3—O3—C9 −137.99 (8)    

Table 3
Selected geometric parameters (Å, °) for 5c[link]

C1—S1 1.8093 (16) C15—S1 1.7628 (17)
C15—N1 1.316 (2) C16—N2 1.322 (2)
C15—N2 1.323 (2) C17—N1 1.458 (2)
       
C15—S1—C1 103.86 (8)    
       
C4—C5—C6—O6 −63.41 (17) O8—C9—O3—C3 −1.3 (3)
N1—C15—S1—C1 6.76 (16) C2—C3—O3—C9 −103.98 (17)
N2—C15—S1—C1 −176.51 (13) O9—C11—O4—C4 −2.9 (3)
O1—C1—S1—C15 −70.91 (12) C3—C4—O4—C11 −106.48 (16)
S1—C1—O1—C5 178.36 (10) O10—C13—O6—C6 1.7 (3)
O7—C7—O2—C2 −7.4 (2) C5—C6—O6—C13 123.04 (16)
C1—C2—O2—C7 108.23 (15) S1—C15—N2—C16 2.4 (2)

Table 4
Selected geometric parameters (Å, °) for 5d[link]

C1—S1 1.8090 (11) C15—S1 1.7593 (12)
C15—N2 1.3190 (15) C16—N2 1.3188 (16)
C15—N1 1.3311 (15) C21—N1 1.4388 (16)
       
C15—S1—C1 106.62 (5)    
       
C4—C5—C6—O6 −61.75 (13) O9—C11—O4—C4 −3.0 (2)
N1—C15—S1—C1 10.44 (12) C3—C4—O4—C11 −97.88 (12)
O1—C1—S1—C15 −83.66 (8) O10—C13—O6—C6 −2.8 (2)
S1—C1—O1—C5 −178.19 (7) C5—C6—O6—C13 −172.45 (11)
O7—C7—O2—C2 −1.84 (18) S1—C15—N1—C21 −176.54 (9)
C1—C2—O2—C7 100.94 (12) C22—C21—N1—C15 −50.03 (18)
O8—C9—O3—C3 12.60 (19) S1—C15—N2—C16 0.87 (17)
C2—C3—O3—C9 −142.63 (10)    
[Figure 2]
Figure 2
The mol­ecule of compound 5a in the crystal. Ellipsoids represent 50% probability levels. Only the major site of the disordered acetyl group at O3 (atoms C9, C10, O8) is shown.
[Figure 3]
Figure 3
The mol­ecule of compound 5b in the crystal. Ellipsoids represent 50% probability levels. The dashed line indicates an intra­molecular hydrogen bond.
[Figure 4]
Figure 4
The mol­ecule of compound 5c in the crystal. Ellipsoids represent 50% probability levels. The intra­molecular contact H01⋯O1, not drawn explicitly, is the weaker branch of a three-centre hydrogen bond (see Supra­molecular features).
[Figure 5]
Figure 5
The mol­ecule of compound 5d in the crystal. Ellipsoids represent 50% probability levels.

The carbamimido­thio­ate groups are consistently numbered as S1—C15 (—N1—Cxx)=N2—C16≡N3, where xx is 21 for the aryl substituents but 17 for the methyl substituent. The six atoms (excluding Cxx) are approximately coplanar, with r.m.s. deviations of 0.05, 0.03, 0.009 and 0.005 Å for 5ad in that order; the inter­planar angles to the aryl group are 20.04 (1), 47.89 (2) and 48.05 (4)°, respectively, for 5a, 5b and 5d. The small inter­planar angle for 5a is associated with a short intra­molecular H22⋯N2 contact of 2.34 Å. The sugar atom C1 lies 1.529 (1) Å out of the carbamimido­thio­ate plane for 5a, 0.541 (1) Å for 5b, 0.148 (2) Å for 5c and 0.321 (2) Å for 5d, corresponding to a wide range of C1—S1—C15—N1 torsion angles. The bond lengths are broadly as expected, in accordance with the different hybridizations of Cxx. The near equality of bond lengths for C15—N1 (the aryl- or methyl-substituted nitro­gen) and the formal double bond C15=N2 (the cyano-substituted nitro­gen) indicate a considerable degree of delocalization in this region, as do the angle sums at N1 (359–360°) and the sp2 angles at C15, N1 and N2. The C15—N1 bond is slightly longer (by ca 0.02 Å) than C15—N2 except for the N-methyl derivative 5c, where it is 0.07 Å shorter. The glucose derivative 5a, however, shows some appreciable differences; thus the angle S1—C15—N1, 115.89 (4)°, is narrow, while C15—N1—C21 is very wide at 128.26 (5)°. Also, the angle at sulfur is appreciably narrower for 5a, 100.24 (3)° compared to a mean value of 104.7° for 5bd. These differences, even between 5a and 5b, which have the same phenyl substituent at N1, can scarcely be attributed directly to the change of sugar, because the relevant atom C4 is quite remote from the affected carbamimido­thio­ate group. Similarly, the strong intra­molecular hydrogen bond in 5b is absent in 5a, but it is difficult to see how this would directly cause the observed differences.

A further explanation might be sought based on the torsion angles of the carbamimido­thio­ate groups. For all four compounds, the torsion angles S1—C15—N1—Cxx corres­pond to an anti­periplanar geometry, and S1—C15—N2—C16 to synperiplanar. For the three galactose derivatives 5bd, the torsion angles O1—C1—S1—C15 are roughly constant at about −70°, whereas for 5a the value is −101.53 (4)°; the groupings C1—S1—C15—N1 for 5bd are roughly synperiplanar (torsion angles 7–17°), but the value for 5a is 57.56 (5)°. Finally, the torsion angles C15—N1—C21—C22 are widely different for 5a, 5c and 5d, corresponding to different rotations of the aryl ring. Despite the many degrees of torsional freedom, it seems that the unusual values for some bond angles of 5a may tentatively be connected with its lack of synperiplanarity for the region C1—S1—C15—N1. Without detailed calculations, however, this is difficult to prove (and takes no account of packing effects, see following section).

In the acetyl­ated sugar moieties, all the C—O—C=O torsion angles of the acetyl groups correspond to a synperi­planar geometry, but otherwise these too display a high degree of conformational flexibility. For the galactoses, the torsion angles C3—C4—O4—C11, C1—C2—O2—C7 and (to a lesser extent) C2—C3—O3—C9 remain reasonably constant, but there are large differences in C4—C5—C6—O6, which is −167.08 (6)° for 5b, where the extended configuration is clear in Fig. 3[link], but −63.41 (17)° for 5c and −61.75 (13)° for 5d. The glucose derivative 5a necessarily deviates appreciably from 5bd in torsion angles involving the region at C4, where the configuration is reversed.

3. Supra­molecular features

All the compounds involve several potential hydrogen-bond acceptors A (nine oxygens, two nitro­gens and the sulfur; the nitrile nitro­gen atom is the acceptor for all three inter­molecular hydrogen bonds, see below) but only one classical hydrogen-bond donor (the NH group). This means that several C—H⋯A ‘weak’ hydrogen bonds might be expected, and this is indeed the case. For completeness, the hydrogen-bond tables (Tables 5[link]–8[link][link][link]) contain a number of borderline cases, not all of which are discussed. The packing diagrams are drawn to include only the shortest contacts, for the sake of clarity. The space group P212121 is well known for its propensity to provide complex three-dimensional packing patterns if the inter­actions involve more than one 21 axis.

Table 5
Hydrogen-bond geometry (Å, °) for 5a[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H01⋯N3i 0.845 (15) 2.118 (16) 2.9367 (8) 163.2 (15)
C1—H1⋯O10ii 1.00 2.31 3.3110 (8) 177
C3—H3⋯S1iii 1.00 2.93 3.8268 (6) 149
C10—H10A⋯O7iv 0.98 2.66 3.4036 (12) 133
C22—H22⋯N2 0.95 2.34 2.8979 (9) 117
C26—H26⋯O8v 0.95 2.54 3.2616 (10) 133
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-1, y, z]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (v) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 6
Hydrogen-bond geometry (Å, °) for 5b[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H01⋯O1 0.891 (19) 2.112 (19) 2.8910 (9) 145.5 (17)
C3—H3⋯N3i 1.00 2.54 3.4648 (12) 153
C6—H6B⋯O8ii 0.99 2.62 3.5823 (12) 164
C10—H10B⋯O6iii 0.98 2.59 3.5652 (14) 172
C10—H10C⋯O7iv 0.98 2.56 3.4276 (17) 148
C23—H23⋯N3v 0.95 2.51 3.2506 (13) 134
C25—H25⋯S1vi 0.95 2.90 3.7968 (10) 157
N1—H01⋯O10vii 0.891 (19) 2.675 (19) 2.9710 (11) 100.6 (13)
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (v) [-x+{\script{5\over 2}}, -y+1, z-{\script{1\over 2}}]; (vi) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (vii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Table 7
Hydrogen-bond geometry (Å, °) for 5c[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H01⋯O1 0.86 (3) 2.52 (3) 3.0637 (19) 122 (2)
N1—H01⋯N3i 0.86 (3) 2.14 (3) 2.880 (2) 144 (2)
C4—H4⋯O7i 1.00 2.41 3.225 (2) 138
C5—H5⋯N3i 1.00 2.47 3.258 (2) 136
C1—H1⋯O10ii 1.00 2.62 3.355 (2) 130
C8—H8C⋯O6ii 0.98 2.54 3.436 (2) 153
C8—H8B⋯O8iii 0.98 2.45 3.386 (3) 159
Symmetry codes: (i) [x-1, y, z]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+1, y, z].

Table 8
Hydrogen-bond geometry (Å, °) for 5d[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H01⋯N3i 0.87 (2) 2.15 (2) 2.9259 (16) 150 (2)
C14—H14A⋯O1i 0.98 2.47 3.4320 (18) 165
C4—H4⋯O7i 1.00 2.51 3.1985 (15) 126
C5—H5⋯N3i 1.00 2.52 3.2414 (17) 129
C1—H1⋯O10ii 1.00 2.37 3.2765 (16) 151
C25—H25⋯O9ii 0.95 2.59 3.4223 (19) 147
C10—H10A⋯O9iii 0.98 2.45 3.1038 (19) 124
C10—H10C⋯O3iv 0.98 2.63 3.4217 (17) 138
C12—H12A⋯O8iii 0.98 2.53 3.4790 (19) 164
Symmetry codes: (i) [x-1, y, z]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2].

In compound 5a, the classical hydrogen bond N1—H01⋯N3 and the ‘weak’ but short inter­action C1—H1⋯O10 combine via the 21 axis parallel to b to form a layer structure parallel to the ab plane (Fig. 6[link]). Because the layer is quite thick, a side view in projection parallel to the a axis is shown as Fig. 7[link] as an aid to inter­pretation.

[Figure 6]
Figure 6
Packing diagram of compound 5a viewed parallel to the c axis, showing one layer in the region z ≃ 0.25. Dashed lines indicate the hydrogen bonds H01⋯N3 (thick) and H1⋯O10 (thin). Hydrogen atoms not involved in hydrogen bonding are omitted for clarity. Two atoms are labelled to indicate the asymmetric unit.
[Figure 7]
Figure 7
The layer from Fig. 6[link] is shown here in projection parallel to the a axis.

The packing of compound 5b involves no strikingly short (< 2.5 Å) H—A contacts; the NH group is involved in an intra­molecular hydrogen bond (see above), and its inter­molecular contact to O10, at 2.68 (2) Å and with an angle of only 101 (1)° at H01, can probably be neglected. We were unable to construct a clearly assimilable packing diagram, but Fig. 8[link] shows the pattern generated by the contacts H25⋯S1, H10C⋯O7, H3⋯N3 and H23⋯N3.

[Figure 8]
Figure 8
Packing diagram of compound 5b viewed parallel to the a axis, showing the region x ≃ 0.75. Thin dashed lines indicate ‘weak’ hydrogen bonds. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity. Two atoms are labelled to indicate the asymmetric unit.

In compound 5c, the classical hydrogen bond H01⋯N3 combines with the four shortest ‘weak’ contacts to form a layer structure parallel to the ab plane (Fig. 9[link]), and the same is true for compound 5d (Fig. 11). Again, side views of the layers, in projection, are shown as Figs. 10[link][link] and 12[link], respectively.

[Figure 9]
Figure 9
Packing diagram of compound 5c viewed parallel to the c axis, showing one layer in the region z ≃ 0.25. Dashed lines indicate the hydrogen bonds H01⋯N3 (thick) and four H⋯O (thin). The longer contact H1⋯O10 is also present in this layer, but is omitted for clarity, as are hydrogen atoms not involved in hydrogen bonding. Two atoms are labelled to indicate the asymmetric unit.
[Figure 10]
Figure 10
The layer from Fig. 9[link] is shown here in projection parallel to the a axis.
[Figure 11]
Figure 11
Packing diagram of compound 5d viewed parallel to the c axis, showing one layer in the region z ≃ 0.75. Dashed lines indicate the hydrogen bonds H01⋯N3 (thick) and four H⋯O (thin). Hydrogen atoms not involved in hydrogen bonding are omitted for clarity. Two atoms are labelled to indicate the asymmetric unit.
[Figure 12]
Figure 12
The layer from Fig. 11[link] is shown here in projection parallel to the a axis.

4. Database survey

The searches employed the routine ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]), part of Version 2024.1.0 of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). A search for the acyclic residue Cany—S2—C3(—N2—C2—N1)—N3H—Cany, where the superscripts indicate coordination numbers, found (apart from our own structure, Elgemeie et al., 2015[Elgemeie, G. H., Abouzeid, M. & Jones, P. G. (2015). Acta Cryst. E71, 104-106.]; refcode TOZCES) seven structures, namely: methyl N-(4-chloro­phen­yl)-N′-cyano­carbamimido­thio­ate (refcode EDETAJ; Lu, 2007[Lu, Y.-X. (2007). Acta Cryst. E63, o3018.]); methyl N′-cyano-N-(4-meth­oxy­benz­yl)carbamimido­thio­ate and methyl N-(1-benzyl­piperidin-4-yl)-N′-cyano­carbamimido­thio­ate (OWAHIE and OWAHOK; Lu, 2011[Lu, Y. (2011). J. Chem. Crystallogr. 41, 1395-1399.]); methyl N′-cyano-N-(3-pyridinylmeth­yl)imido­thio­carbamate (XAZKIT; Lan et al., 2006[Lan, B.-J., Guo, P., Zou, Z.-G. & Lu, Y.-X. (2006). Acta Cryst. E62, o383-o385.]); methyl N-benzyl-N′-cyano­carbamimido­thio­ate and methyl N′-cyano-N-phenyl­carbamimido­thio­ate (FUZYIL and FUZXOQ; Wang et al., 2020[Wang, J.-L., Ma, S., Zhang, P.-Z., Jia, A.-Q. & Zhang, Q.-F. (2020). J. Chem. Crystallogr. 50, 295-302.]). In each case, the sulfur atom was bonded to a methyl group rather than the sugar residues in compounds 5ad. The structure of methyl N-(4-chloro­phen­yl)-N′-cyano­carb­amimido­thio­ate was reported again by Wang et al. (2020[Wang, J.-L., Ma, S., Zhang, P.-Z., Jia, A.-Q. & Zhang, Q.-F. (2020). J. Chem. Crystallogr. 50, 295-302.]; EDETAJ01); inspection of the data indicates that this is a new measurement of the same structure (and not a new polymorph). Six of the structures show a Z configuration across the formal C=N double bond, but TOZCES is E-configured, with the cyano and SMe groups mutually trans. The bond lengths (Å) in the central SCN2 moiety were: S—C 1.742–1.768, av. 1.749 (9); C—N(CN) 1.31–1.326, av. 1.317 (5); C—NHC 1.311–1.349, av. 1.327 (13). This corresponds reasonably well to our values of 1.7593–1.7759, av. 1.7646; 1.3084–1.323, av. 1.3305; and 1.316–1.3382, av. 1.3155 Å. The six atoms of the carbamimido­thio­ate group are essentially coplanar in all these structures (maximum mean deviation 0.039 Å), but in two cases (OWAHOK and XAZKIT) the methyl group at sulfur is rotated out of the plane (by 0.84 Å).

5. Synthesis and crystallization

General procedure for the synthesis of 5a–d

The reaction scheme is given in Fig. 1[link]. Cyanamide 1 (0.42 g, 0.01 mol) was added to a cold solution of potassium hydroxide (0.56 g, 0.01 mol) in absolute ethanol (20 mL) and the mixture was stirred for 10 min. The appropriate substituted iso­thio­cyanate derivative (2a, 2b or 2c; 0.01 mol), was then added gradually over a period of 15 min and the mixture was stirred at room temperature for 4 h, after which the reaction was complete. The solvent was evaporated under reduced pressure, and the residue was dissolved in DMF (15 mL). A solution of 2,3,4,6-tetra-O-acetyl-α-D-gluco- or galacto-pyranosyl bromide 4a or 4b (4.2 g, 0.01 mol) in DMF was then added dropwise over 30 min. Stirring was continued at room temperature until the reaction was judged complete by thin-layer chromatography (6–8 h). The mixture was poured into ice–water, and the resulting precipitate was collected by filtration, dried, and crystallized from ethanol to give compounds 5ad.

(Z)-2′,3′,4′,6′-Tetra-O-acetyl-β-D-gluco­pyranosyl N′-cyano-N-phenyl­carbamimido­thio­ate (5a)

Colourless crystals, yield 4.31 g (85%). M.p. 427–428 K; IR (KBr, cm−1) 3444 (NH), 3027 (aromatic CH), 2198 (CN), 1758 (4 × C=O), 1608 (C=N); 1H NMR (400 MHz, DMSO-d6): δ 1.92, 1.97, 2.00, 2.05 (4s, 12H, 4 × OAc), 4.05 (dd, 1H, J = 12.0, 1.6 Hz, H-6′), 4.15–4.22 (m, 2H, H-6", H-5′), 5.02–5.09 (m, 2H, H-3′, H-4′), 5.39 (t, 1H, J = 9.6 Hz, H-2′), 5.82 (d, 1H, J = 10.0 Hz, H-1′), 7.29 (t, 1H, J = 7.2 Hz, Ar-H), 7.43 (t, 2H, J = 8.4 Hz, Ar-H), 7.45 (d, 2H, J = 8.0 Hz, Ar-H), 10.51 (br. s, D2O exch., 1H, NH); 13C NMR (100 MHz, DMSO-d6): δ 20.73–20.86 (4 × CH3CO), 62.21 (C-6′), 68.06 (C-4′), 69.91 (C-2′), 73.07 (C-3′), 75.63 (C-5′), 81.66 (C-1′), 114.37 (CN), 124.30 (2C, Ar-C), 127.24 (Ar-C), 129.48 (2C, Ar-C), 137.44 (Ar-C), 163.57 (C=N), 169.77–170.46 (4 C=O). Analysis calculated for C22H25N3O9S (507.51): C 52.06, H 4.97, N 8.28, S 6.32. Found: C 52.16, H 4.88, N 8.18, S 6.22%.

(Z)-2′,3′,4′,6′-Tetra-O-acetyl-β-D-galacto­pyranosyl N′-cyano-N-phenyl­carbamimido­thio­ate (5b)

Colourless crystals, yield 4.52 g (89%). M.p. 453–454 K; IR (KBr, cm−1) 3440 (NH), 3023 (aromatic CH), 2221 (CN), 1724 (4 × C=O), 1592 (C=N); 1H NMR (400 MHz, DMSO-d6): δ 1.89, 1.99, 2.03, 2.05 (4s, 12H, 4 × OAc), 3.99–4.25 (m, 3H, H-6′, H-6", H-5′), 5.22–5.27 (m, 2H, H-4′, H-2′), 5.41 (dd, 1H, J = 9.4, 2.8 Hz, H-3′), 5.65 (d, 1H, J = 10.2 Hz, H-1′), 7.14 (br. t, 2H, J = 7.6 Hz, Ar-H), 7.44 (br. t, 2H, J = 8.2 Hz, Ar-H), 7.48 (br. d, 1H, J = 8.1Hz, Ar-H), 10.44 (s, D2O exch., 1H, NH). Analysis calculated for C22H25N3O9S (507.51): C 52.06, H 4.97, N 8.28, S 6.32. Found: C 52.18, H 4.80, N 8.15, S 6.32%.

(Z)-2′,3′,4′,6′-Tetra-O-acetyl-β-D-galacto­pyranosyl N′-cyano-N-methyl­carbamimido­thio­ate (5c)

Colourless crystals, yield 3.96 g (89%). M.p. 468–469 K; IR (KBr, cm−1) 3455 (NH), 2942 (CH), 2175 (CN), 1751 (4 × C=O), 1627 (C=N); 1H NMR (400 MHz, DMSO-d6): δ 2.01, 2.03, 2.07, 2.14 (4s,12H, 4 × OAc), 2.88 (d, 3H, J = 4.4 Hz, CH3), 4.02–4.09 (m, 2H, H-6′, H-6"), 4.37 (t, 1H, J = 6.0 Hz, H-5′), 5.09 (t, 1H, J = 10.0 Hz, H-2′), 5.26 (dd, 1H, J = 7.8, 3.2 Hz, H-3′), 3.37 (t, 1H, J = 2.8 Hz, H-4′), 5.57 (d, 1H, J = 10.0 Hz, H-1′), 8.42 (br. s, D2O exch., 1H, NH); 13C NMR (100 MHz, DMSO-d6): δ 20.77–20.97 (4 × CH3CO), 30.95 (CH3), 61.84 (C-6′), 67.03 (C-4′), 67.69 C-2′), 71.04 (C-3′), 74.76 (C-5′), 81.17 (C-1′), 115.46 (CN), 164.60 (C=N), 169.86–170.40 (4 C=O). Analysis calculated for C17H23N3O9S (445.44): C 45.84, H 5.20, N 9.43, S 7.20. Found: C 45.76, H 5.12, N 9.34, S 7.13%.

(Z)-2′,3′,4′,6′-Tetra-O-acetyl-β-D-galacto­pyranosyl N′-cyano-N-p-tolyl­carbamimido­thio­ate (5d)

Colourless crystals, yield 4.43 g (85%). M.p. 456–457 K; IR (KBr, cm−1) 3440 (NH), 3054 (aromatic CH), 2950 (CH), 2210 (CN), 1748 (4 × C=O), 1592 (C=N); 1H NMR (400 MHz, DMSO-d6): δ 1.91, 1.94, 2.01, 2.08 (4s, 12H, 4 × OAc), 2.30 (s, 3H, CH3), 4.07–4.12 (m, 2H, H-6′, H-6"), 4.41–4.48 (m, 1H, H-5′), 5.16 (t, 1H, J = 9.6 Hz, H-4′), 5.33 (t, 2H, J = 14.4, 9.6 Hz, H-3′, H-2′), 5.71 (d, 1H, J = 10.0 Hz, H-1′), 7.23 (d, 2H, J = 7.2 Hz, Ar-H), 7.39 (d, 2H, J = 6.4 Hz, Ar-H), 10.30 (br. s, D2O exch., 1H, NH). Analysis calculated for C23H27N3O9S (521.54): C 52.97, H 5.22, N 8.06, S 6.15. Found: C 52.88, H 5.15, N 8.16, S 6.10%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 9[link].

Table 9
Experimental details

  5a 5b 5c 5d 5dCu
Crystal data
Chemical formula C22H25N3O9S C22H25N3O9S C17H23N3O9S C23H27N3O9S C23H27N3O9S
Mr 507.51 507.51 445.44 521.53 521.53
Crystal system, space group Orthorhombic, P212121 Orthorhombic, P212121 Orthorhombic, P212121 Orthorhombic, P212121 Orthorhombic, P212121
Temperature (K) 100 100 100 100 100
a, b, c (Å) 7.11266 (11), 13.76500 (18), 24.3850 (3) 10.10503 (14), 14.5978 (2), 16.4256 (2) 7.34295 (7), 13.92258 (13), 21.07464 (18) 7.42044 (17), 14.9634 (4), 22.7580 (5) 7.41967 (5), 14.96519 (12), 22.75622 (16)
V3) 2387.44 (6) 2422.96 (6) 2154.52 (3) 2526.94 (11) 2526.78 (3)
Z 4 4 4 4 4
Radiation type Mo Kα Mo Kα Cu Kα Mo Kα Cu Kα
μ (mm−1) 0.19 0.19 1.81 0.18 1.63
Crystal size (mm) 0.22 × 0.20 × 0.12 0.3 × 0.2 × 0.2 0.18 × 0.08 × 0.06 0.15 × 0.05 × 0.04 0.15 × 0.05 × 0.04
 
Data collection
Diffractometer XtaLAB Synergy XtaLAB Synergy XtaLAB Synergy XtaLAB Synergy XtaLAB Synergy
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO, Version 1.171.42.100a. Other (earlier) versions were also used, but are not cited explicitly. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO, Version 1.171.42.100a. Other (earlier) versions were also used, but are not cited explicitly. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO, Version 1.171.42.100a. Other (earlier) versions were also used, but are not cited explicitly. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO, Version 1.171.42.100a. Other (earlier) versions were also used, but are not cited explicitly. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO, Version 1.171.42.100a. Other (earlier) versions were also used, but are not cited explicitly. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.873, 1.000 0.741, 1.000 0.694, 1.000 0.881, 1.000 0.781, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 316930, 19593, 17947 308676, 16031, 14496 101235, 4696, 4656 146926, 12241, 11008 122360, 5508, 5458
Rint 0.074 0.071 0.047 0.085 0.033
θ values (°) θmax = 44.9, θmin = 2.2 θmax = 41.4, θmin = 2.4 θmax = 80.4, θmin = 3.8 θmax = 36.3, θmin = 2.3 θmax = 80.6, θmin = 3.5
(sin θ/λ)max−1) 0.993 0.930 0.639 0.833 0.640
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.079, 1.06 0.031, 0.084, 1.06 0.024, 0.065, 1.05 0.036, 0.094, 1.04 0.023, 0.059, 1.04
No. of reflections 19593 16031 4696 12241 5508
No. of parameters 338 324 280 334 334
No. of restraints 6 0 0 0 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.48, −0.21 0.45, −0.18 0.21, −0.24 0.45, −0.21 0.22, −0.18
Absolute structure Flack x determined using 7711 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 6240 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 1977 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 4554 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 2334 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.000 (9) −0.002 (10) 0.000 (4) 0.005 (18) −0.004 (2)
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO, Version 1.171.42.100a. Other (earlier) versions were also used, but are not cited explicitly. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and XP, (Bruker, 1998[Bruker (1998). XP. Bruker Analytical X-Ray Instruments, Madison, Wisconsin, USA.]).

The hydrogen atoms of the NH groups were refined freely. The methyl groups were included as idealized rigid groups allowed to rotate but not tip (command ‘AFIX 137’), with C—H = 0.99 Å and H—C—H = 109.5°. Other hydrogen atoms were included using a riding model starting from calculated positions (C—Hmethyl­ene = 0.99, C—Hmethine = 1.00, C—Harom = 0.95 Å). The U(H) values were fixed at 1.5 × Ueq of the parent carbon atoms for the methyl group and 1.2 × Ueq for other hydrogens.

For compound 5a, the acetyl group at O3 (atoms C9, C10, O8) was disordered over two positions. The occupation factor of the minor component refined to 0.085 (2). Appropriate restraints were employed to improve refinement stability, but the dimensions of disordered groups (and particularly the minor components) should always be inter­preted with caution. In the discussion sections above, the minor component is not considered.

Badly fitting reflections were omitted as follows: 5a, seven reflections with deviations > 8σ; 5b, five reflections with deviations > 8σ; 5c, one reflection with deviation > 10σ; 5d, three reflections with deviations > 7σ.

7. Appendix: The choice of radiation type for X-ray measurements

The large and well-formed crystals of compounds 5a and 5b were clearly suitable for measurements using Mo Kα radiation; 5c consisted of smaller crystals, and one of these was measured with Cu radiation. For compound 5d, we originally recorded a dataset using Cu Kα radiation; data for this are given in Table 9[link] in the final column ‘5d(Cu)’. The reasons for this, and for preferring the Mo dataset (measured later with the same crystal), will be discussed here (together with a potted history of the fashions in X-ray wavelengths over the last 50 years, as experienced by PGJ) as they may be of general inter­est, in particular to younger crystallographers. One central criterion is the ability to determine absolute configuration (more generally ‘absolute structure’, see below) and the other, connected with this, is the need to collect data of adequate intensity.

The first automated four-circle diffractometers were introduced in the early 1970s, and the institute where I was working acquired such a diffractometer (shared by both chemistry departments) in 1974; the tubes were changed from copper (henceforth Cu) to molybdenum (henceforth Mo) radiation or vice versa every six months. These were the only types of X-ray tube generally available at the time. As an X-ray beginner, I was told that Cu radiation was used for organic structures and Mo radiation for inorganic structures. As I soon realised, this is an oversimplification; a more accurate formulation would be that Cu radiation is used for crystals that diffract less strongly and Mo for those that diffract more strongly, because Cu radiation has a higher intrinsic intensity (main beam intensities were much weaker then; the nominal diameter of the main beam for Mo measurements was ca 0.7 mm, and the chosen crystals were often of this size, unless they were highly absorbing materials, in order to maximize the measured intensities). This was brought home to me by a typical beginner’s mistake, my unwise measurement of a large crystal of the ‘organic’ compound sodium acetyl­phospho­nate acetic acid solvate using Cu radiation; the diffraction was extremely strong, but the absorption and (particularly) extinction effects were so pronounced that the structure was unusable, and had to be repeated using Mo radiation (Jones & Kennard, 1978[Jones, P. G. & Kennard, O. (1978). Acta Cryst. B34, 2309-2311.]), which, with its shorter wavelength, is absorbed less strongly. Like many oversimplifications, the assumption that inorganic materials (including metal complexes) diffract more strongly than organic materials has some validity; the scattering power of a crystal of a given size will depend on the number of electrons in the crystal, which in turn depends on the density, and densities are generally greater for inorganic materials (a second-order effect is that their U values tend to be lower).

One important reason for using Mo radiation is to reduce absorption effects, because absorption corrections at the time largely relied on face-indexing the crystals, a procedure that was often difficult or impossible. The quality of datasets increased significantly when the first generalized absorption correction methods became available; this major step was provided by Flack (1974[Flack, H. D. (1974). Acta Cryst. A30, 569-573.]), who introduced the ψ-scan method to diffractometry. Nowadays, the highly redundant datasets (see below) have made the ‘multi-scan’ (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) the method of choice. The use of Cu radiation decreased drastically during and after the 1970s, which is partly attributable to the more serious absorption effects, but also to the limited amount of data that could be measured; a complete sphere of Cu reflections was inaccessible because of the restricted geometry of bulky diffractometer components (typically, measurements above 2θ = 120° were difficult to obtain) and even a complete sphere of Cu data to the theoretical limit of 180° would only correspond to 2θ = 55° using Mo radiation. Routine measurements were usually conducted at room temperature with Mo radiation and 2θmax = 50°; above this value, significant intensity was difficult to detect for many organic and organometallic samples.

The other connection between Cu radiation and organic crystals is associated with enanti­omerically pure materials, of which many natural products constitute an important sub-class; the determination of absolute configuration, often of great importance for these materials, relies on the measurement of generally small intensity differences between Friedel opposite reflections hkl and −h, −k, −l, caused by the phenomenon ‘anomalous dispersion’ (perhaps not a well-chosen name, because physicists tell us that there is nothing anomalous about it); the longer the wavelength, the more pronounced are these effects. The correct absolute configuration should then give a better R value than the incorrect, inverted, structure. Measurable differences at the time could only be detected in the presence of heavy atoms (as a rule of thumb, elements of the fourth or higher periods), and the effects were generally unobservable for light-atom structures, so that it was often necessary to synthesize heavy-atom derivatives of natural products in order to determine their absolute configuration. It should also not be forgotten that direct methods in the early 1970s were still in their infancy and often unreliable (especially for weak datasets), and a heavy-atom derivative was often needed to solve the structure in the first place (by the Patterson method).

As an example of an old structure determination of a natural product, the peptide L-serylglycine (Jones et al., 1978[Jones, P. G., Falvello, L. & Kennard, O. (1978). Acta Cryst. B34, 2379-2381.]) shows the standard practices of the time. The structure was measured using Cu radiation (for a week) to a 2θmax value of only 116°. A total of 1186 intensities were measured, giving 713 unique data > 4σ(F); weak reflections were omitted from the measurement. Friedel opposites were presumably not merged, but the data are no longer directly available. The number of parameters is not given, but must have been roughly 125. There is no mention of the absolute configuration. From a modern viewpoint, albeit nearly 50 years on and with hindsight, this seems embarrassingly lackadaisical.

In general, any non-centrosymmetric structure must be compared with the corresponding inverted structure to ensure that the structure is correctly refined; the procedure is not confined to the space groups adopted by enanti­omerically pure materials (the ‘Sohncke’ space groups such as P212121; these were often informally and incorrectly called the ‘chiral’ space groups, but this name should now be used for the space groups that occur in pairs with opposite sense of the screw axis, such as P31 and P32 – formerly known as ‘enanti­omorphic’ space groups). The general procedure is now normally referred to as the ‘determination of absolute structure’, as suggested by Jones (1984a[Jones, P. G. (1984a). Acta Cryst. A40, 660-662.]), although the use of the word ‘absolute’ has correctly been questioned by Glazer & Stadnicka (1989[Glazer, A. M. & Stadnicka, K. (1989). Acta Cryst. A45, 234-238.]).

For datasets where the determination of absolute structure was not expected to succeed, some bad habits were common (Jones, 1984b[Jones, P. G. (1984b). Acta Cryst. A40, 663-668.], 1986[Jones, P. G. (1986). Acta Cryst. C42, 924-925.]); either the Friedel opposite reflections −h, −k, −l were not measured at all (because the space group, often determined only after data collection, was assumed to be centrosymmetric, or to save diffractometer time at a time when measurements were very slow by today’s standards), or the Friedel pairs hkl and −h, −k, −l were considered exactly equivalent and were merged (in SHELX using the command ‘MERG 3’, which is now effectively banned).

The determination of absolute structure/configuration relies on the existence of a method to test which configuration gives a significantly better fit. The ‘Hamilton R method’ (Hamilton, 1965[Hamilton, W. C. (1965). Acta Cryst. 18, 502-510.]) was the first statistical test to be generally used, but the results were capable of misinter­pretation. The first significant improvement was made by Rogers (1981[Rogers, D. (1981). Acta Cryst. A37, 734-741.]; see also Jones, 1984a[Jones, P. G. (1984a). Acta Cryst. A40, 660-662.]), by refining a factor η that multiplied the anomalous scattering parameters f". The correct structure should then give an η value of +1 and the incorrect (inverted) structure a value of −1. This method gave a standard deviation for η, so that the reliability of the determination could also be judged. The next improvement was introduced by Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]; reviewed by Watkin & Cooper, 2020[Watkin, D. J. & Cooper, R. I. (2020). Chemistry, 2, 796-804.]), using the parameter x to estimate the extent of inversion twinning, whereby both the parent structure and the inverted structure are present in the same crystal. This had mathematical advantages over the η method and became the accepted method of determining absolute configuration; a value of x = 0 indicated the correct structure and 1 the incorrect (inverted) structure. The latest improvement was provided by Parsons et al. (2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]; see also Parsons, 2017[Parsons, S. (2017). Tetrahedron Asymmetry, 28, 1304-1313.]), who used the quotients [(I+) − (I)]/[(I + ) + (I)] (where I+ is the intensity of hkl and I the intensity of −h, −k, −l) to improve the sensitivity with which the x parameter could be determined. The excellent review article by Linden (2017[Linden, A. (2017). Tetrahedron Asymmetry, 28, 1314-1320.]) on the determination of absolute structure was published just before the Parsons method became generally known.

In the 1990s, the use of area detectors increased the speed and precision of intensity measurements. Whereas the older ‘serial’ diffractometers measured one reflection at a time, and a dataset, even if consisting of only the independent data, took days or weeks to record, it was now possible to measure tens or hundreds of reflections per exposure (‘frame’). Datasets typically consist of hundreds of frames, whereby each reflection is measured many times; the redundancy leads to a statistical improvement in data precision (by merging many equivalents of each reflection) and enables the ‘multi-scan’ absorption correction. Continuous improvements in detector sensitivity and source intensity have brought measurement times down to hours rather than days.

The second, vital, development in the 1990s was the development of routine measurements at low temperature (without the restriction of severe icing problems). This is largely attributable to the efforts of Stalke. The advantages are well-known: the most important is the reduction of thermal motion, which in turn reduces the U values and thereby leads to an increase in the number and intensity of reflections that are available at higher angle (see e.g. Kottke & Stalke, 1993[Kottke, T. & Stalke, D. (1993). J. Appl. Cryst. 26, 615-619.], and references therein). In our opinion, any X-ray structure determination at room temperature (in the absence of extenuating circumstances such as phase changes at low temperature) represents a missed opportunity to collect good data. A recent issue of Acta Cryst. E contained 21 low-temperature and 16 room-temperature structures.

The third major change was the use of refinements based on F2 rather than F, and using all data, including the weak reflections; this was introduced into the SHELX program system in the 1990s (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.], 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.],b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]). It is fitting to pay tribute here to George Sheldrick, who has developed and maintained SHELX for some 50 years, and has always been quick to incorporate the newest developments (e.g. the Parsons method).

In the 2000s, the introduction of microsources, with typical beam diameters of 0.1–0.2 mm, for Cu radiation appreciably increased the available intensity. This had two important consequences. First, structures from weakly diffracting organic crystals with average dimensions as small as 10–50 µm, previously considered unmeasurable, could now be successfully determined (e.g. Abu-Zaied et al., 2024[Abu-Zaied, M. A., Mohamed-Ezzat, R. A., Elgemeie, G. H. & Jones, P. G. (2024). Acta Cryst. E80, 501-505.]); secondly, the anomalous scattering of oxygen atoms, previously regarded as negligible, was now often sufficient to determine the absolute structure reliably. The less bulky detectors and a favourable modified kappa geometry also meant that data could be collected to much higher angles (currently 2θmax ≃ 160°). This led to a renaissance in the use of Cu radiation.

It was first recognized by Escudero-Adán et al. (2014[Escudero-Adán, E. C., Benet-Buchholz, J. & Ballester, P. (2014). Acta Cryst. B70, 660-668.]) that the absolute configuration of light-atom structures could be determined reliably even using Mo radiation, if high-energy sources were used and the datasets were recorded at low temperature to higher (by the standards of the time) diffraction angles 2θ, typically 55°. The reason is that the anomalous scattering is approximately independent of 2θ, whereas the normal scattering decreases with increasing 2θ, so that the contribution of the anomalous scattering becomes more pronounced at high angles. The problem was that few light-atom structures diffracted to sufficiently high angles, but the Parsons method has made matters easier in this respect; thus we found that a steroid derivative, containing four oxygen atoms as anomalous scatterers, measured by us using a standard Mo source to 2θ = 61° (cholest-5-en-3-yl 3-formyl­phenyl carbonate, C35H50O4; refcode LUCVOX; Jones & Kuś, 2020[Jones, P. G. & Kuś, P. (2020). CSD Communication (refcode LUCVOX, CCDC 1990737). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc24tjbv.]), gave a correct (known) absolute configuration with x = 0.15 (16), whereas the x value without the Parsons modification had been indeterminate. The development of Mo microsources has helped further; with these, light-atom crystals can diffract significantly to 80° or more, and the absolute structure can then often be determined successfully with Mo radiation even for light-atom structures. The improvements in detector sensitivity have also made an important contribution.

Returning finally to the two datasets measured for 5d, we originally thought that the very small crystals would need to be measured using Cu radiation. Although the absolute configuration of this galactose derivative is known, a confirmation using X-ray methods is always welcome. The crystal diffracted so strongly with Cu radiation, however, that we decided to re-measure the same crystal using Mo radiation. For practical purposes, both measurements were designed to run until the following day; the measurement times were ca 6 h for the Cu dataset and 22 h for the Mo dataset. Both datasets could certainly have been measured significantly faster, had it been necessary. The diffraction pattern for Mo extended to (at least) 2θ = 72° (in our experience, the intensity statistics of the data reduction often indicate that significant intensity is still present at angles where no maxima can be recognised in the frames), and the Flack x parameter is unambiguous at 0.005 (18). [Of course, the presence of sulfur, which nowadays counts as a ‘heavy’ atom, greatly facilitates the determination of the x parameter; this is usually no problem with elements of the third period. A good example of a structure with no atom heavier than oxygen is L-arabinose, which we measured to 2θ = 157° using Mo radiation, and which gave an x value of 0.03 (11) (refcode ABINOS04; Jones, 2023[Jones, P. G. (2023). CSD Communication (refcode ABINOS04, CCDC 2251842). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc2fl72c.])]. The number of independent intensities is doubled compared to the Cu data (11008, cf. Cu 5508), so that the s.u.’s of mol­ecular dimensions are somewhat lower (by a factor of approximately [\sqrt2], as would be expected if other things are equal). Furthermore, despite the generally effective absorption corrections that are now employed, it should not be forgotten that absorption effects are lower with Mo radiation. We therefore prefer the Mo dataset for 5d, and would indeed recommend that, even for small organic crystals, the use of Mo radiation should not be dismissed out of hand. Both datasets are included here and are thus available to the inter­ested reader.

Supporting information


Computing details top

2',3',4',6'-Tetra-O-acetyl-β-D-glucopyranosyl N'-cyano-N-phenylcarbamimidothioate (5a) top
Crystal data top
C22H25N3O9SDx = 1.412 Mg m3
Mr = 507.51Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 133018 reflections
a = 7.11266 (11) Åθ = 2.2–45.1°
b = 13.76500 (18) ŵ = 0.19 mm1
c = 24.3850 (3) ÅT = 100 K
V = 2387.44 (6) Å3Tablet, colourless
Z = 40.22 × 0.20 × 0.12 mm
F(000) = 1064
Data collection top
XtaLAB Synergy
diffractometer
19593 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source17947 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.074
Detector resolution: 10.0000 pixels mm-1θmax = 44.9°, θmin = 2.2°
ω scansh = 1414
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
k = 2727
Tmin = 0.873, Tmax = 1.000l = 4848
316930 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.048P)2 + 0.0766P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.079(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.48 e Å3
19593 reflectionsΔρmin = 0.21 e Å3
338 parametersAbsolute structure: Flack x determined using 7711 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
6 restraintsAbsolute structure parameter: 0.000 (9)
Primary atom site location: dual
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.67902 (9)0.49177 (4)0.30041 (2)0.01352 (8)
H10.6076700.4698950.2673010.016*
C20.59604 (9)0.44485 (4)0.35209 (2)0.01403 (8)
H20.6813050.4554990.3841410.017*
C30.40161 (9)0.48626 (4)0.36397 (2)0.01407 (8)
H30.3093210.4612620.3364440.017*
O30.34163 (8)0.46062 (4)0.41825 (2)0.01747 (8)
O80.18714 (14)0.32864 (5)0.38655 (3)0.02920 (16)0.915 (2)
C90.22538 (12)0.38311 (5)0.42355 (3)0.01913 (13)0.915 (2)
C100.15689 (18)0.37581 (8)0.48172 (5)0.0293 (2)0.915 (2)
H10A0.2437880.3354240.5030060.044*0.915 (2)
H10B0.0314720.3463350.4821750.044*0.915 (2)
H10C0.1507500.4408940.4979070.044*0.915 (2)
O8'0.0406 (10)0.4496 (6)0.4126 (3)0.0240 (13)*0.085 (2)
C9'0.1765 (11)0.4345 (6)0.4407 (3)0.0173 (12)*0.085 (2)
C10'0.1820 (15)0.3951 (8)0.4982 (4)0.0233 (17)*0.085 (2)
H10D0.2892090.4232270.5178640.035*0.085 (2)
H10E0.1952080.3242690.4970110.035*0.085 (2)
H10F0.0652480.4121320.5172630.035*0.085 (2)
C40.40567 (8)0.59702 (4)0.36240 (2)0.01314 (7)
H40.4849440.6225060.3930620.016*
C50.48523 (9)0.63045 (4)0.30735 (2)0.01386 (8)
H50.4091770.6014670.2769900.017*
C60.49213 (9)0.73964 (4)0.30034 (3)0.01568 (9)
H6A0.5732730.7568400.2688150.019*
H6B0.3643350.7653140.2933630.019*
C70.63786 (13)0.27985 (5)0.37910 (3)0.02216 (13)
C80.62011 (18)0.17779 (6)0.35875 (4)0.0324 (2)
H8A0.4935570.1676910.3439180.049*
H8B0.6418080.1325280.3891190.049*
H8C0.7133320.1662680.3298820.049*
C110.16447 (10)0.66570 (5)0.41830 (3)0.01716 (9)
C120.04426 (12)0.68034 (7)0.42059 (4)0.02455 (13)
H11A0.0876650.7087230.3859800.037*
H11B0.0751910.7242420.4509180.037*
H11C0.1063710.6176210.4263850.037*
C130.58837 (10)0.87774 (4)0.35053 (3)0.01704 (9)
C140.65175 (12)0.91368 (5)0.40561 (3)0.02219 (12)
H14A0.6648110.8585620.4307590.033*
H14B0.5586080.9593360.4202040.033*
H14C0.7732110.9466220.4018390.033*
C150.93811 (8)0.42870 (4)0.22430 (2)0.01206 (7)
C161.00819 (10)0.26983 (4)0.23998 (3)0.01645 (9)
C210.87594 (8)0.50362 (4)0.13364 (2)0.01345 (8)
C220.84654 (10)0.41959 (5)0.10275 (3)0.01692 (9)
H220.8407880.3579980.1202480.020*
C230.82570 (12)0.42666 (6)0.04608 (3)0.02085 (11)
H230.8077470.3694850.0248980.025*
C240.83094 (14)0.51651 (7)0.02030 (3)0.02580 (14)
H240.8172160.5209200.0183750.031*
C250.85640 (16)0.59990 (6)0.05146 (3)0.02884 (16)
H250.8581500.6615150.0339200.035*
C260.87938 (13)0.59439 (5)0.10806 (3)0.02130 (11)
H260.8972120.6517720.1290690.026*
S10.92163 (2)0.45177 (2)0.29580 (2)0.01623 (3)
O10.67426 (7)0.59454 (3)0.30422 (2)0.01441 (7)
O20.58121 (9)0.34328 (3)0.34013 (2)0.01906 (8)
O40.21602 (7)0.63100 (4)0.36817 (2)0.01543 (7)
O60.56703 (8)0.78073 (3)0.35006 (2)0.01623 (7)
O70.69457 (18)0.30441 (5)0.42334 (3)0.0405 (2)
O90.27345 (10)0.68139 (5)0.45493 (3)0.02604 (11)
O100.55671 (11)0.92843 (4)0.31108 (3)0.02551 (11)
N10.89858 (8)0.50367 (3)0.19144 (2)0.01386 (7)
H010.898 (2)0.5583 (11)0.2072 (6)0.028 (4)*
N20.98973 (8)0.34357 (4)0.20540 (2)0.01468 (7)
N31.02603 (12)0.19911 (5)0.26556 (3)0.02431 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0178 (2)0.01183 (17)0.01096 (17)0.00272 (15)0.00130 (15)0.00107 (14)
C20.0204 (2)0.00989 (16)0.01183 (17)0.00177 (16)0.00138 (16)0.00075 (13)
C30.0183 (2)0.01066 (17)0.01323 (18)0.00019 (15)0.00076 (16)0.00004 (14)
O30.0228 (2)0.01426 (16)0.01539 (16)0.00305 (15)0.00414 (15)0.00120 (13)
O80.0446 (4)0.0185 (2)0.0244 (3)0.0130 (3)0.0016 (3)0.0010 (2)
C90.0250 (3)0.0126 (2)0.0198 (3)0.0017 (2)0.0019 (2)0.00355 (19)
C100.0409 (5)0.0214 (3)0.0256 (4)0.0045 (3)0.0118 (4)0.0057 (3)
C40.01485 (19)0.01058 (16)0.01398 (18)0.00118 (14)0.00102 (15)0.00005 (14)
C50.0158 (2)0.01188 (17)0.01390 (18)0.00211 (15)0.00130 (16)0.00081 (14)
C60.0188 (2)0.01234 (18)0.0159 (2)0.00268 (16)0.00159 (18)0.00251 (15)
C70.0364 (4)0.0122 (2)0.0179 (2)0.0047 (2)0.0072 (2)0.00379 (17)
C80.0528 (6)0.0112 (2)0.0332 (4)0.0038 (3)0.0116 (4)0.0020 (2)
C110.0204 (2)0.0134 (2)0.0176 (2)0.00282 (18)0.00212 (19)0.00011 (16)
C120.0197 (3)0.0261 (3)0.0278 (3)0.0027 (2)0.0066 (2)0.0009 (3)
C130.0180 (2)0.01118 (18)0.0219 (2)0.00189 (16)0.00122 (19)0.00177 (16)
C140.0245 (3)0.0162 (2)0.0259 (3)0.0002 (2)0.0045 (2)0.0019 (2)
C150.01312 (18)0.00960 (15)0.01346 (17)0.00101 (13)0.00051 (14)0.00093 (13)
C160.0212 (2)0.01096 (18)0.0171 (2)0.00392 (17)0.00095 (19)0.00014 (15)
C210.01434 (19)0.01211 (17)0.01390 (18)0.00085 (14)0.00055 (15)0.00071 (14)
C220.0216 (2)0.0149 (2)0.0143 (2)0.00132 (18)0.00154 (18)0.00077 (16)
C230.0257 (3)0.0224 (3)0.0144 (2)0.0003 (2)0.0011 (2)0.00121 (19)
C240.0355 (4)0.0277 (3)0.0142 (2)0.0006 (3)0.0007 (2)0.0038 (2)
C250.0463 (5)0.0212 (3)0.0190 (3)0.0003 (3)0.0002 (3)0.0072 (2)
C260.0317 (3)0.0137 (2)0.0184 (2)0.0010 (2)0.0007 (2)0.00354 (18)
S10.01891 (6)0.01705 (6)0.01272 (5)0.00635 (5)0.00441 (4)0.00329 (4)
O10.01621 (16)0.01094 (14)0.01608 (16)0.00274 (12)0.00068 (13)0.00052 (12)
O20.0298 (2)0.00939 (14)0.01796 (17)0.00238 (15)0.00270 (18)0.00127 (13)
O40.01475 (16)0.01583 (16)0.01572 (17)0.00233 (13)0.00017 (13)0.00029 (13)
O60.02063 (19)0.01058 (14)0.01749 (17)0.00061 (13)0.00200 (15)0.00184 (12)
O70.0826 (7)0.0213 (2)0.0174 (2)0.0096 (3)0.0058 (3)0.00543 (19)
O90.0288 (3)0.0292 (3)0.0201 (2)0.0075 (2)0.0032 (2)0.0089 (2)
O100.0360 (3)0.01366 (17)0.0269 (2)0.00210 (19)0.0068 (2)0.00636 (17)
N10.01859 (19)0.00905 (14)0.01394 (16)0.00104 (13)0.00146 (14)0.00041 (12)
N20.01933 (19)0.00998 (14)0.01473 (17)0.00311 (14)0.00178 (16)0.00016 (13)
N30.0364 (3)0.0139 (2)0.0227 (2)0.0072 (2)0.0012 (2)0.00323 (18)
Geometric parameters (Å, º) top
C1—O11.4180 (7)C8—H8A0.9800
C1—C21.5343 (8)C8—H8B0.9800
C1—S11.8148 (6)C8—H8C0.9800
C1—H11.0000C11—O91.2022 (10)
C2—O21.4321 (7)C11—O41.3627 (8)
C2—C31.5236 (9)C11—C121.4993 (11)
C2—H21.0000C12—H11A0.9800
C3—O31.4347 (8)C12—H11B0.9800
C3—C41.5254 (8)C12—H11C0.9800
C3—H31.0000C13—O101.2094 (9)
O3—C9'1.345 (8)C13—O61.3440 (8)
O3—C91.3560 (9)C13—C141.5007 (11)
O8—C91.2042 (11)C14—H14A0.9800
C9—C101.5033 (12)C14—H14B0.9800
C10—H10A0.9800C14—H14C0.9800
C10—H10B0.9800C15—N21.3117 (7)
C10—H10C0.9800C15—N11.3365 (7)
O8'—C9'1.204 (10)C15—S11.7759 (6)
C9'—C10'1.504 (12)C16—N31.1632 (9)
C10'—H10D0.9800C16—N21.3260 (8)
C10'—H10E0.9800C21—C221.3962 (9)
C10'—H10F0.9800C21—C261.3967 (9)
C4—O41.4346 (8)C21—N11.4187 (8)
C4—C51.5276 (8)C22—C231.3932 (9)
C4—H41.0000C22—H220.9500
C5—O11.4345 (8)C23—C241.3879 (11)
C5—C61.5135 (8)C23—H230.9500
C5—H51.0000C24—C251.3884 (13)
C6—O61.4400 (8)C24—H240.9500
C6—H6A0.9900C25—C261.3919 (11)
C6—H6B0.9900C25—H250.9500
C7—O71.2004 (11)C26—H260.9500
C7—O21.3519 (9)N1—H010.845 (15)
C7—C81.4952 (11)
O1—C1—C2110.91 (5)O7—C7—C8126.24 (7)
O1—C1—S1109.24 (4)O2—C7—C8110.39 (7)
C2—C1—S1106.79 (4)C7—C8—H8A109.5
O1—C1—H1109.9C7—C8—H8B109.5
C2—C1—H1109.9H8A—C8—H8B109.5
S1—C1—H1109.9C7—C8—H8C109.5
O2—C2—C3109.70 (5)H8A—C8—H8C109.5
O2—C2—C1105.78 (5)H8B—C8—H8C109.5
C3—C2—C1110.36 (5)O9—C11—O4123.78 (7)
O2—C2—H2110.3O9—C11—C12125.91 (7)
C3—C2—H2110.3O4—C11—C12110.31 (7)
C1—C2—H2110.3C11—C12—H11A109.5
O3—C3—C2110.69 (5)C11—C12—H11B109.5
O3—C3—C4105.95 (5)H11A—C12—H11B109.5
C2—C3—C4110.61 (5)C11—C12—H11C109.5
O3—C3—H3109.8H11A—C12—H11C109.5
C2—C3—H3109.8H11B—C12—H11C109.5
C4—C3—H3109.8O10—C13—O6123.05 (7)
C9'—O3—C3134.5 (3)O10—C13—C14125.28 (6)
C9—O3—C3117.56 (5)O6—C13—C14111.66 (6)
O8—C9—O3123.80 (7)C13—C14—H14A109.5
O8—C9—C10126.31 (8)C13—C14—H14B109.5
O3—C9—C10109.88 (7)H14A—C14—H14B109.5
C9—C10—H10A109.5C13—C14—H14C109.5
C9—C10—H10B109.5H14A—C14—H14C109.5
H10A—C10—H10B109.5H14B—C14—H14C109.5
C9—C10—H10C109.5N2—C15—N1122.54 (5)
H10A—C10—H10C109.5N2—C15—S1121.55 (4)
H10B—C10—H10C109.5N1—C15—S1115.89 (4)
O8'—C9'—O3115.0 (7)N3—C16—N2172.95 (7)
O8'—C9'—C10'127.9 (8)C22—C21—C26120.18 (6)
O3—C9'—C10'117.0 (7)C22—C21—N1123.61 (5)
C9'—C10'—H10D109.5C26—C21—N1116.19 (5)
C9'—C10'—H10E109.5C23—C22—C21119.55 (6)
H10D—C10'—H10E109.5C23—C22—H22120.2
C9'—C10'—H10F109.5C21—C22—H22120.2
H10D—C10'—H10F109.5C24—C23—C22120.58 (7)
H10E—C10'—H10F109.5C24—C23—H23119.7
O4—C4—C3107.79 (5)C22—C23—H23119.7
O4—C4—C5109.65 (5)C23—C24—C25119.49 (7)
C3—C4—C5109.28 (5)C23—C24—H24120.3
O4—C4—H4110.0C25—C24—H24120.3
C3—C4—H4110.0C24—C25—C26120.86 (7)
C5—C4—H4110.0C24—C25—H25119.6
O1—C5—C6107.81 (5)C26—C25—H25119.6
O1—C5—C4106.87 (5)C25—C26—C21119.31 (7)
C6—C5—C4114.23 (5)C25—C26—H26120.3
O1—C5—H5109.3C21—C26—H26120.3
C6—C5—H5109.3C15—S1—C1100.24 (3)
C4—C5—H5109.3C1—O1—C5111.70 (5)
O6—C6—C5107.87 (5)C7—O2—C2117.73 (5)
O6—C6—H6A110.1C11—O4—C4117.08 (5)
C5—C6—H6A110.1C13—O6—C6116.05 (5)
O6—C6—H6B110.1C15—N1—C21128.26 (5)
C5—C6—H6B110.1C15—N1—H01114.5 (10)
H6A—C6—H6B108.4C21—N1—H01116.9 (10)
O7—C7—O2123.37 (7)C15—N2—C16119.21 (6)
O1—C1—C2—O2171.22 (5)C23—C24—C25—C260.92 (16)
S1—C1—C2—O269.85 (5)C24—C25—C26—C210.25 (15)
O1—C1—C2—C352.63 (6)C22—C21—C26—C251.08 (12)
S1—C1—C2—C3171.56 (4)N1—C21—C26—C25179.45 (8)
O2—C2—C3—O377.33 (6)N2—C15—S1—C1123.75 (5)
C1—C2—C3—O3166.51 (5)N1—C15—S1—C157.56 (5)
O2—C2—C3—C4165.56 (5)O1—C1—S1—C15101.53 (4)
C1—C2—C3—C449.39 (6)C2—C1—S1—C15138.46 (4)
C2—C3—O3—C9'141.6 (5)C2—C1—O1—C563.21 (6)
C4—C3—O3—C9'98.5 (5)S1—C1—O1—C5179.34 (4)
C2—C3—O3—C997.88 (7)C6—C5—O1—C1169.35 (5)
C4—C3—O3—C9142.17 (6)C4—C5—O1—C167.42 (6)
C3—O3—C9—O88.68 (12)O7—C7—O2—C22.09 (14)
C3—O3—C9—C10172.23 (7)C8—C7—O2—C2177.59 (7)
C3—O3—C9'—O8'14.2 (10)C3—C2—O2—C7105.42 (7)
C3—O3—C9'—C10'168.7 (6)C1—C2—O2—C7135.56 (7)
O3—C3—C4—O465.90 (6)O9—C11—O4—C410.40 (10)
C2—C3—C4—O4174.10 (4)C12—C11—O4—C4169.32 (6)
O3—C3—C4—C5174.99 (5)C3—C4—O4—C11102.50 (6)
C2—C3—C4—C554.99 (6)C5—C4—O4—C11138.63 (5)
O4—C4—C5—O1179.85 (4)O10—C13—O6—C63.73 (11)
C3—C4—C5—O162.21 (6)C14—C13—O6—C6175.24 (6)
O4—C4—C5—C660.71 (6)C5—C6—O6—C13178.14 (6)
C3—C4—C5—C6178.65 (5)N2—C15—N1—C2110.42 (10)
O1—C5—C6—O673.30 (6)S1—C15—N1—C21170.91 (5)
C4—C5—C6—O645.31 (7)C22—C21—N1—C1516.38 (10)
C26—C21—C22—C231.71 (10)C26—C21—N1—C15165.31 (7)
N1—C21—C22—C23179.96 (6)N1—C15—N2—C16173.19 (6)
C21—C22—C23—C241.03 (12)S1—C15—N2—C168.22 (9)
C22—C23—C24—C250.28 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H01···N3i0.845 (15)2.118 (16)2.9367 (8)163.2 (15)
C1—H1···O10ii1.002.313.3110 (8)177
C3—H3···S1iii1.002.933.8268 (6)149
C10—H10A···O7iv0.982.663.4036 (12)133
C22—H22···N20.952.342.8979 (9)117
C26—H26···O8v0.952.543.2616 (10)133
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x1, y, z; (iv) x1/2, y+1/2, z+1; (v) x+1, y+1/2, z+1/2.
2',3',4',6'-Tetra-O-acetyl-β-D-galactopyranosyl N'-cyano-N-phenylcarbamimidothioate (5b) top
Crystal data top
C22H25N3O9SDx = 1.391 Mg m3
Mr = 507.51Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 135804 reflections
a = 10.10503 (14) Åθ = 2.4–41.4°
b = 14.5978 (2) ŵ = 0.19 mm1
c = 16.4256 (2) ÅT = 100 K
V = 2422.96 (6) Å3Tetrahedron, colourless
Z = 40.3 × 0.2 × 0.2 mm
F(000) = 1064
Data collection top
XtaLAB Synergy
diffractometer
16031 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source14496 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.071
Detector resolution: 10.0000 pixels mm-1θmax = 41.4°, θmin = 2.4°
ω scansh = 1818
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
k = 2626
Tmin = 0.741, Tmax = 1.000l = 3030
308676 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.0728P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.084(Δ/σ)max = 0.013
S = 1.06Δρmax = 0.45 e Å3
16031 reflectionsΔρmin = 0.18 e Å3
324 parametersAbsolute structure: Flack x determined using 6240 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.002 (10)
Primary atom site location: dual
Special details top

Geometry. The symmetry employed for this shelxl refinement is uniquely defined by the following loop, which should always be used as a source of symmetry information in preference to the above space-group names. They are only intended as comments.

Refinement. The symmetry employed for this shelxl refinement is uniquely defined by the following loop, which should always be used as a source of symmetry information in preference to the above space-group names. They are only intended as comments.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.78000 (7)0.30228 (5)0.74073 (4)0.01539 (10)
H10.8423340.2610310.7108620.018*
C20.73116 (7)0.25567 (5)0.81904 (5)0.01599 (10)
H20.6835100.3004710.8545640.019*
C30.64215 (8)0.17512 (5)0.79800 (5)0.01690 (11)
H30.6972540.1244940.7749070.020*
C40.53520 (7)0.20081 (5)0.73704 (5)0.01690 (11)
H40.4872930.1444130.7190050.020*
C50.60052 (7)0.24636 (5)0.66399 (5)0.01635 (10)
H50.6638850.2021930.6385820.020*
C60.50147 (8)0.27647 (6)0.60069 (5)0.01953 (12)
H6A0.4375400.2267010.5893140.023*
H6B0.4520200.3308920.6198760.023*
C70.86533 (9)0.24392 (6)0.93881 (5)0.02163 (13)
C80.98311 (11)0.19611 (8)0.97327 (7)0.02888 (17)
H8A0.9538310.1472111.0099590.043*
H8B1.0374090.2400531.0035790.043*
H8C1.0354930.1696570.9288990.043*
C90.57591 (10)0.05350 (6)0.88563 (6)0.02542 (16)
C100.51045 (16)0.03493 (8)0.96596 (9)0.0409 (3)
H10A0.5681150.0558281.0101810.061*
H10B0.4944790.0309860.9716100.061*
H10C0.4259930.0678020.9685330.061*
C110.32012 (8)0.23140 (7)0.78995 (5)0.02279 (14)
C120.23371 (10)0.30612 (9)0.82268 (7)0.0326 (2)
H12A0.2579460.3188500.8793290.049*
H12B0.1409230.2867980.8201850.049*
H12C0.2457000.3616300.7899410.049*
C130.51254 (8)0.28766 (6)0.45699 (5)0.01942 (12)
C140.60642 (10)0.29793 (8)0.38706 (6)0.02799 (17)
H14A0.6357660.3617910.3834600.042*
H14B0.5616860.2806390.3364070.042*
H14C0.6832470.2580940.3955530.042*
C150.93368 (7)0.44946 (5)0.68253 (5)0.01753 (11)
C161.07409 (8)0.53539 (6)0.75814 (5)0.02136 (13)
C210.94674 (8)0.44529 (5)0.53444 (5)0.01757 (11)
C221.08346 (8)0.44191 (6)0.52310 (5)0.02145 (13)
H221.1398900.4241600.5665830.026*
C231.13650 (10)0.46468 (7)0.44773 (6)0.02549 (15)
H231.2295540.4623780.4397530.031*
C241.05447 (12)0.49080 (6)0.38397 (5)0.02644 (17)
H241.0913690.5072080.3328120.032*
C250.91818 (11)0.49283 (7)0.39531 (5)0.02647 (16)
H250.8618210.5097300.3515230.032*
C260.86378 (9)0.47010 (6)0.47083 (5)0.02296 (13)
H260.7706430.4716230.4785970.028*
S10.86470 (2)0.40549 (2)0.77293 (2)0.01858 (4)
O10.67241 (5)0.32676 (4)0.68992 (4)0.01607 (9)
O20.84565 (6)0.21987 (4)0.85986 (4)0.01974 (10)
O30.58385 (7)0.14504 (4)0.87307 (4)0.02067 (11)
O40.44272 (6)0.26432 (4)0.77268 (4)0.01925 (9)
O60.57635 (6)0.29829 (5)0.52853 (4)0.02020 (10)
O70.79450 (9)0.29683 (8)0.97457 (6)0.0389 (2)
O80.61654 (11)0.00264 (5)0.83803 (6)0.0384 (2)
O90.28822 (9)0.15313 (7)0.77933 (7)0.0389 (2)
O100.39564 (7)0.27080 (5)0.45226 (5)0.02582 (13)
N10.88912 (7)0.42008 (5)0.61039 (4)0.01991 (11)
H010.8146 (19)0.3876 (13)0.6127 (12)0.035 (4)*
N21.02637 (8)0.51190 (5)0.68629 (5)0.02161 (12)
N31.12347 (9)0.56121 (7)0.81801 (6)0.02844 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0132 (2)0.0157 (2)0.0173 (2)0.00148 (19)0.00097 (19)0.00066 (19)
C20.0147 (2)0.0155 (2)0.0177 (2)0.0007 (2)0.00178 (19)0.0007 (2)
C30.0173 (3)0.0135 (2)0.0198 (3)0.0000 (2)0.0037 (2)0.0012 (2)
C40.0155 (2)0.0138 (2)0.0214 (3)0.0014 (2)0.0026 (2)0.0011 (2)
C50.0148 (2)0.0151 (2)0.0192 (3)0.0019 (2)0.0001 (2)0.0015 (2)
C60.0152 (2)0.0221 (3)0.0213 (3)0.0026 (2)0.0006 (2)0.0002 (2)
C70.0204 (3)0.0240 (3)0.0204 (3)0.0040 (3)0.0015 (2)0.0004 (2)
C80.0304 (4)0.0276 (4)0.0286 (4)0.0007 (3)0.0100 (3)0.0048 (3)
C90.0278 (4)0.0165 (3)0.0319 (4)0.0022 (3)0.0078 (3)0.0049 (3)
C100.0522 (7)0.0260 (4)0.0445 (6)0.0008 (4)0.0246 (6)0.0127 (4)
C110.0150 (3)0.0298 (4)0.0236 (3)0.0021 (3)0.0024 (2)0.0001 (3)
C120.0192 (3)0.0429 (6)0.0357 (5)0.0061 (3)0.0048 (3)0.0054 (4)
C130.0190 (3)0.0181 (3)0.0212 (3)0.0001 (2)0.0035 (2)0.0003 (2)
C140.0245 (4)0.0375 (5)0.0220 (3)0.0003 (3)0.0013 (3)0.0008 (3)
C150.0161 (3)0.0193 (3)0.0171 (2)0.0043 (2)0.0016 (2)0.0015 (2)
C160.0181 (3)0.0236 (3)0.0224 (3)0.0064 (3)0.0009 (2)0.0028 (2)
C210.0181 (3)0.0181 (3)0.0165 (2)0.0025 (2)0.0012 (2)0.0010 (2)
C220.0181 (3)0.0260 (3)0.0203 (3)0.0013 (3)0.0024 (2)0.0002 (3)
C230.0242 (3)0.0294 (4)0.0229 (3)0.0062 (3)0.0076 (3)0.0047 (3)
C240.0406 (5)0.0205 (3)0.0182 (3)0.0061 (3)0.0063 (3)0.0017 (2)
C250.0373 (5)0.0236 (3)0.0185 (3)0.0052 (3)0.0025 (3)0.0007 (3)
C260.0220 (3)0.0269 (3)0.0199 (3)0.0034 (3)0.0022 (3)0.0032 (3)
S10.01917 (7)0.02049 (8)0.01609 (7)0.00696 (6)0.00176 (6)0.00168 (6)
O10.01402 (18)0.0147 (2)0.0195 (2)0.00223 (16)0.00084 (16)0.00018 (17)
O20.0194 (2)0.0207 (2)0.0192 (2)0.00408 (19)0.00146 (18)0.00047 (18)
O30.0236 (3)0.0151 (2)0.0233 (2)0.00012 (19)0.0073 (2)0.00318 (18)
O40.01443 (19)0.0171 (2)0.0262 (2)0.00007 (16)0.00425 (19)0.00096 (19)
O60.0165 (2)0.0249 (3)0.0192 (2)0.0036 (2)0.00175 (17)0.00031 (19)
O70.0300 (4)0.0570 (6)0.0298 (4)0.0084 (4)0.0044 (3)0.0183 (4)
O80.0552 (6)0.0161 (3)0.0440 (4)0.0031 (3)0.0193 (4)0.0005 (3)
O90.0258 (3)0.0351 (4)0.0557 (5)0.0130 (3)0.0126 (4)0.0078 (4)
O100.0199 (2)0.0286 (3)0.0290 (3)0.0043 (2)0.0072 (2)0.0033 (2)
N10.0187 (2)0.0248 (3)0.0163 (2)0.0079 (2)0.00164 (19)0.0019 (2)
N20.0215 (3)0.0238 (3)0.0195 (3)0.0098 (2)0.0014 (2)0.0020 (2)
N30.0246 (3)0.0331 (4)0.0276 (3)0.0065 (3)0.0043 (3)0.0066 (3)
Geometric parameters (Å, º) top
C1—O11.4164 (9)C11—O91.1999 (13)
C1—C21.5366 (10)C11—O41.3588 (10)
C1—S11.8117 (7)C11—C121.4970 (15)
C1—H11.0000C12—H12A0.9800
C2—O21.4357 (10)C12—H12B0.9800
C2—C31.5203 (11)C12—H12C0.9800
C2—H21.0000C13—O101.2092 (11)
C3—O31.4354 (10)C13—O61.3492 (10)
C3—C41.5203 (11)C13—C141.4972 (13)
C3—H31.0000C14—H14A0.9800
C4—O41.4406 (9)C14—H14B0.9800
C4—C51.5223 (10)C14—H14C0.9800
C4—H41.0000C15—N21.3084 (10)
C5—O11.4445 (9)C15—N11.3382 (10)
C5—C61.5087 (11)C15—S11.7613 (8)
C5—H51.0000C16—N31.1653 (12)
C6—O61.4419 (10)C16—N21.3203 (11)
C6—H6A0.9900C21—C261.3877 (12)
C6—H6B0.9900C21—C221.3950 (12)
C7—O71.2057 (13)C21—N11.4250 (10)
C7—O21.3581 (10)C22—C231.3893 (12)
C7—C81.4912 (14)C22—H220.9500
C8—H8A0.9800C23—C241.3890 (15)
C8—H8B0.9800C23—H230.9500
C8—H8C0.9800C24—C251.3901 (17)
C9—O81.2048 (13)C24—H240.9500
C9—O31.3544 (11)C25—C261.3969 (13)
C9—C101.5007 (15)C25—H250.9500
C10—H10A0.9800C26—H260.9500
C10—H10B0.9800N1—H010.891 (19)
C10—H10C0.9800
O1—C1—C2111.00 (6)H10A—C10—H10C109.5
O1—C1—S1108.95 (5)H10B—C10—H10C109.5
C2—C1—S1106.00 (5)O9—C11—O4123.46 (9)
O1—C1—H1110.3O9—C11—C12126.11 (9)
C2—C1—H1110.3O4—C11—C12110.43 (8)
S1—C1—H1110.3C11—C12—H12A109.5
O2—C2—C3107.54 (6)C11—C12—H12B109.5
O2—C2—C1107.06 (6)H12A—C12—H12B109.5
C3—C2—C1110.01 (6)C11—C12—H12C109.5
O2—C2—H2110.7H12A—C12—H12C109.5
C3—C2—H2110.7H12B—C12—H12C109.5
C1—C2—H2110.7O10—C13—O6123.11 (8)
O3—C3—C4110.46 (6)O10—C13—C14126.16 (8)
O3—C3—C2106.51 (6)O6—C13—C14110.72 (7)
C4—C3—C2112.30 (6)C13—C14—H14A109.5
O3—C3—H3109.2C13—C14—H14B109.5
C4—C3—H3109.2H14A—C14—H14B109.5
C2—C3—H3109.2C13—C14—H14C109.5
O4—C4—C3110.63 (6)H14A—C14—H14C109.5
O4—C4—C5108.69 (6)H14B—C14—H14C109.5
C3—C4—C5108.58 (6)N2—C15—N1120.39 (7)
O4—C4—H4109.6N2—C15—S1119.82 (6)
C3—C4—H4109.6N1—C15—S1119.77 (6)
C5—C4—H4109.6N3—C16—N2174.12 (10)
O1—C5—C6107.47 (6)C26—C21—C22120.46 (8)
O1—C5—C4109.91 (6)C26—C21—N1118.67 (7)
C6—C5—C4112.51 (6)C22—C21—N1120.83 (7)
O1—C5—H5109.0C23—C22—C21119.52 (8)
C6—C5—H5109.0C23—C22—H22120.2
C4—C5—H5109.0C21—C22—H22120.2
O6—C6—C5106.42 (6)C24—C23—C22120.49 (9)
O6—C6—H6A110.4C24—C23—H23119.8
C5—C6—H6A110.4C22—C23—H23119.8
O6—C6—H6B110.4C23—C24—C25119.74 (8)
C5—C6—H6B110.4C23—C24—H24120.1
H6A—C6—H6B108.6C25—C24—H24120.1
O7—C7—O2122.93 (9)C24—C25—C26120.25 (9)
O7—C7—C8126.07 (9)C24—C25—H25119.9
O2—C7—C8110.99 (8)C26—C25—H25119.9
C7—C8—H8A109.5C21—C26—C25119.53 (9)
C7—C8—H8B109.5C21—C26—H26120.2
H8A—C8—H8B109.5C25—C26—H26120.2
C7—C8—H8C109.5C15—S1—C1104.12 (3)
H8A—C8—H8C109.5C1—O1—C5110.78 (6)
H8B—C8—H8C109.5C7—O2—C2118.03 (7)
O8—C9—O3123.51 (9)C9—O3—C3117.19 (7)
O8—C9—C10126.72 (9)C11—O4—C4116.66 (7)
O3—C9—C10109.78 (8)C13—O6—C6116.09 (6)
C9—C10—H10A109.5C15—N1—C21123.71 (7)
C9—C10—H10B109.5C15—N1—H01114.7 (12)
H10A—C10—H10B109.5C21—N1—H01121.4 (12)
C9—C10—H10C109.5C15—N2—C16118.99 (7)
O1—C1—C2—O2170.57 (6)O1—C1—S1—C1566.61 (5)
S1—C1—C2—O271.27 (6)C2—C1—S1—C15173.87 (5)
O1—C1—C2—C354.00 (8)C2—C1—O1—C562.61 (7)
S1—C1—C2—C3172.17 (5)S1—C1—O1—C5178.96 (5)
O2—C2—C3—O372.99 (7)C6—C5—O1—C1171.62 (6)
C1—C2—C3—O3170.74 (6)C4—C5—O1—C165.64 (7)
O2—C2—C3—C4165.98 (6)O7—C7—O2—C23.38 (14)
C1—C2—C3—C449.71 (8)C8—C7—O2—C2176.27 (7)
O3—C3—C4—O451.85 (8)C3—C2—O2—C7115.48 (7)
C2—C3—C4—O466.88 (8)C1—C2—O2—C7126.34 (7)
O3—C3—C4—C5171.05 (6)O8—C9—O3—C31.08 (16)
C2—C3—C4—C552.31 (8)C10—C9—O3—C3178.97 (10)
O4—C4—C5—O161.46 (8)C4—C3—O3—C999.81 (9)
C3—C4—C5—O158.94 (8)C2—C3—O3—C9137.99 (8)
O4—C4—C5—C658.25 (8)O9—C11—O4—C42.34 (14)
C3—C4—C5—C6178.66 (6)C12—C11—O4—C4177.24 (8)
O1—C5—C6—O671.79 (7)C3—C4—O4—C11108.49 (8)
C4—C5—C6—O6167.08 (6)C5—C4—O4—C11132.38 (7)
C26—C21—C22—C230.78 (13)O10—C13—O6—C67.97 (12)
N1—C21—C22—C23178.38 (8)C14—C13—O6—C6171.01 (8)
C21—C22—C23—C240.09 (14)C5—C6—O6—C13151.83 (7)
C22—C23—C24—C250.97 (14)N2—C15—N1—C217.25 (13)
C23—C24—C25—C261.00 (15)S1—C15—N1—C21174.06 (7)
C22—C21—C26—C250.76 (13)C26—C21—N1—C15135.44 (9)
N1—C21—C26—C25178.40 (8)C22—C21—N1—C1546.92 (12)
C24—C25—C26—C210.14 (14)N1—C15—N2—C16175.83 (9)
N2—C15—S1—C1164.31 (7)S1—C15—N2—C165.47 (12)
N1—C15—S1—C116.99 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H01···O10.891 (19)2.112 (19)2.8910 (9)145.5 (17)
C3—H3···N3i1.002.543.4648 (12)153
C6—H6B···O8ii0.992.623.5823 (12)164
C10—H10B···O6iii0.982.593.5652 (14)172
C10—H10C···O7iv0.982.563.4276 (17)148
C23—H23···N3v0.952.513.2506 (13)134
C25—H25···S1vi0.952.903.7968 (10)157
N1—H01···O10vii0.891 (19)2.675 (19)2.9710 (11)100.6 (13)
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y1/2, z+3/2; (iv) x1/2, y+1/2, z+2; (v) x+5/2, y+1, z1/2; (vi) x+3/2, y+1, z1/2; (vii) x+1/2, y+1/2, z+1.
2',3',4',6'-Tetra-O-acetyl-β-D-galactopyranosyl N'-cyano-N-methylcarbamimidothioate (5c) top
Crystal data top
C17H23N3O9SDx = 1.373 Mg m3
Mr = 445.44Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 79622 reflections
a = 7.34295 (7) Åθ = 3.8–80.0°
b = 13.92258 (13) ŵ = 1.81 mm1
c = 21.07464 (18) ÅT = 100 K
V = 2154.52 (3) Å3Lath, colourless
Z = 40.18 × 0.08 × 0.06 mm
F(000) = 936
Data collection top
XtaLAB Synergy
diffractometer
4696 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source4656 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.047
Detector resolution: 10.0000 pixels mm-1θmax = 80.4°, θmin = 3.8°
ω scansh = 98
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
k = 1717
Tmin = 0.694, Tmax = 1.000l = 2626
101235 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.0391P)2 + 0.5241P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.21 e Å3
4696 reflectionsΔρmin = 0.24 e Å3
280 parametersAbsolute structure: Flack x determined using 1977 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.000 (4)
Primary atom site location: dual
Special details top

Geometry. The symmetry employed for this shelxl refinement is uniquely defined by the following loop, which should always be used as a source of symmetry information in preference to the above space-group names. They are only intended as comments.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7245 (2)0.66817 (11)0.24727 (7)0.0175 (3)
H10.6476460.6220770.2226190.021*
C20.7436 (2)0.63486 (11)0.31640 (7)0.0175 (3)
H20.8214820.6808730.3407150.021*
C30.5550 (2)0.62966 (11)0.34555 (7)0.0186 (3)
H30.4816790.5789000.3237800.022*
C40.4581 (2)0.72607 (11)0.34056 (7)0.0185 (3)
H40.3291340.7193360.3551370.022*
C50.4620 (2)0.75995 (12)0.27171 (7)0.0190 (3)
H50.3861770.7154790.2454190.023*
C60.3941 (2)0.86165 (13)0.26249 (8)0.0220 (3)
H6A0.4653310.9067580.2890180.026*
H6B0.4067530.8810430.2175110.026*
C70.9950 (2)0.53207 (12)0.34050 (8)0.0212 (3)
C81.0445 (3)0.42928 (13)0.34965 (10)0.0297 (4)
H8A0.9856540.4048390.3881390.045*
H8B1.1769440.4234820.3538990.045*
H8C1.0034740.3918850.3129420.045*
C90.5360 (3)0.51546 (12)0.43004 (8)0.0230 (3)
C100.5724 (4)0.50524 (16)0.49966 (9)0.0377 (5)
H10A0.6990960.4853450.5061760.057*
H10B0.4905800.4567080.5175790.057*
H10C0.5514810.5669680.5207800.057*
C110.4671 (3)0.82059 (13)0.43472 (8)0.0261 (4)
C120.5824 (3)0.88888 (17)0.47181 (9)0.0372 (5)
H12A0.6987020.8581960.4822040.056*
H12B0.5191630.9065350.5110710.056*
H12C0.6047940.9467160.4464830.056*
C130.1541 (2)0.92475 (13)0.32696 (8)0.0221 (3)
C140.0443 (3)0.91212 (15)0.34173 (10)0.0327 (4)
H14A0.1096240.8938460.3030290.049*
H14B0.0939020.9726040.3580670.049*
H14C0.0588880.8616640.3737520.049*
C150.9103 (2)0.69674 (12)0.13212 (8)0.0181 (3)
C161.2166 (2)0.68567 (14)0.11683 (8)0.0249 (4)
C170.7119 (3)0.73704 (15)0.04334 (8)0.0285 (4)
H17A0.7702650.6893130.0158620.043*
H17B0.7622100.8007690.0342180.043*
H17C0.5804220.7373920.0354120.043*
S10.95046 (5)0.67585 (3)0.21342 (2)0.01798 (9)
O10.64503 (16)0.76112 (8)0.24695 (5)0.0186 (2)
O20.81975 (17)0.54006 (8)0.31925 (6)0.0189 (2)
O30.57416 (18)0.60665 (8)0.41145 (5)0.0217 (2)
O40.55196 (18)0.79518 (8)0.37979 (5)0.0202 (2)
O60.20487 (16)0.86283 (9)0.28113 (6)0.0221 (2)
O71.09046 (18)0.60030 (10)0.35057 (7)0.0316 (3)
O80.4844 (2)0.45319 (9)0.39517 (7)0.0297 (3)
O90.3195 (2)0.79158 (11)0.44988 (7)0.0380 (4)
O100.25533 (19)0.98057 (9)0.35237 (6)0.0279 (3)
N10.7460 (2)0.71274 (11)0.10956 (7)0.0217 (3)
H010.652 (4)0.7055 (19)0.1332 (13)0.040 (7)*
N21.0520 (2)0.70085 (11)0.09343 (6)0.0213 (3)
N31.3664 (2)0.67346 (17)0.13200 (8)0.0384 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0156 (7)0.0199 (7)0.0169 (7)0.0000 (6)0.0008 (6)0.0010 (6)
C20.0188 (8)0.0164 (7)0.0173 (7)0.0002 (6)0.0004 (6)0.0014 (6)
C30.0205 (8)0.0199 (7)0.0153 (7)0.0012 (7)0.0012 (6)0.0018 (5)
C40.0177 (7)0.0198 (7)0.0180 (7)0.0008 (6)0.0012 (6)0.0002 (6)
C50.0163 (7)0.0222 (7)0.0186 (7)0.0004 (7)0.0015 (6)0.0003 (6)
C60.0180 (8)0.0252 (8)0.0228 (8)0.0036 (6)0.0030 (6)0.0029 (6)
C70.0198 (8)0.0235 (8)0.0202 (7)0.0002 (6)0.0033 (6)0.0010 (6)
C80.0289 (9)0.0234 (8)0.0369 (9)0.0040 (8)0.0100 (8)0.0013 (7)
C90.0197 (8)0.0231 (8)0.0261 (8)0.0008 (7)0.0039 (7)0.0060 (6)
C100.0536 (14)0.0347 (10)0.0249 (9)0.0017 (10)0.0019 (9)0.0107 (7)
C110.0326 (9)0.0261 (8)0.0194 (7)0.0043 (8)0.0044 (7)0.0010 (6)
C120.0434 (12)0.0422 (11)0.0260 (9)0.0012 (10)0.0007 (8)0.0113 (8)
C130.0228 (8)0.0221 (8)0.0214 (7)0.0035 (7)0.0002 (7)0.0024 (6)
C140.0231 (9)0.0388 (10)0.0361 (10)0.0005 (8)0.0074 (8)0.0075 (8)
C150.0176 (8)0.0190 (7)0.0176 (7)0.0005 (6)0.0003 (6)0.0004 (6)
C160.0194 (8)0.0387 (10)0.0166 (7)0.0024 (7)0.0024 (6)0.0017 (7)
C170.0240 (9)0.0420 (10)0.0196 (8)0.0059 (8)0.0023 (7)0.0020 (8)
S10.01381 (17)0.02384 (18)0.01629 (17)0.00034 (15)0.00027 (14)0.00170 (13)
O10.0168 (5)0.0193 (5)0.0197 (5)0.0016 (4)0.0026 (4)0.0023 (4)
O20.0177 (6)0.0172 (5)0.0219 (6)0.0004 (4)0.0022 (4)0.0009 (4)
O30.0269 (6)0.0221 (5)0.0162 (5)0.0004 (5)0.0013 (5)0.0028 (4)
O40.0213 (5)0.0217 (5)0.0175 (5)0.0006 (5)0.0018 (5)0.0017 (4)
O60.0164 (5)0.0252 (6)0.0246 (6)0.0023 (5)0.0002 (5)0.0026 (5)
O70.0221 (7)0.0256 (6)0.0472 (8)0.0029 (5)0.0103 (6)0.0004 (6)
O80.0332 (7)0.0232 (6)0.0327 (7)0.0053 (5)0.0017 (6)0.0047 (5)
O90.0399 (8)0.0419 (8)0.0323 (7)0.0035 (7)0.0172 (7)0.0059 (6)
O100.0266 (7)0.0270 (6)0.0300 (7)0.0003 (5)0.0013 (5)0.0039 (5)
N10.0153 (7)0.0322 (7)0.0175 (7)0.0020 (6)0.0006 (6)0.0043 (6)
N20.0157 (7)0.0297 (7)0.0184 (6)0.0008 (6)0.0006 (5)0.0011 (5)
N30.0182 (7)0.0710 (13)0.0258 (7)0.0004 (9)0.0014 (6)0.0035 (9)
Geometric parameters (Å, º) top
C1—O11.4195 (19)C9—C101.498 (3)
C1—C21.535 (2)C10—H10A0.9800
C1—S11.8093 (16)C10—H10B0.9800
C1—H11.0000C10—H10C0.9800
C2—O21.4346 (19)C11—O91.200 (3)
C2—C31.517 (2)C11—O41.361 (2)
C2—H21.0000C11—C121.493 (3)
C3—O31.4321 (18)C12—H12A0.9800
C3—C41.523 (2)C12—H12B0.9800
C3—H31.0000C12—H12C0.9800
C4—O41.4438 (19)C13—O101.201 (2)
C4—C51.526 (2)C13—O61.347 (2)
C4—H41.0000C13—C141.500 (3)
C5—O11.4421 (19)C14—H14A0.9800
C5—C61.513 (2)C14—H14B0.9800
C5—H51.0000C14—H14C0.9800
C6—O61.444 (2)C15—N11.316 (2)
C6—H6A0.9900C15—N21.323 (2)
C6—H6B0.9900C15—S11.7628 (17)
C7—O71.199 (2)C16—N31.158 (3)
C7—O21.367 (2)C16—N21.322 (2)
C7—C81.489 (2)C17—N11.458 (2)
C8—H8A0.9800C17—H17A0.9800
C8—H8B0.9800C17—H17B0.9800
C8—H8C0.9800C17—H17C0.9800
C9—O81.198 (2)N1—H010.86 (3)
C9—O31.358 (2)
O1—C1—C2108.51 (12)O8—C9—C10126.05 (16)
O1—C1—S1108.74 (10)O3—C9—C10109.56 (15)
C2—C1—S1107.94 (11)C9—C10—H10A109.5
O1—C1—H1110.5C9—C10—H10B109.5
C2—C1—H1110.5H10A—C10—H10B109.5
S1—C1—H1110.5C9—C10—H10C109.5
O2—C2—C3107.15 (13)H10A—C10—H10C109.5
O2—C2—C1110.69 (13)H10B—C10—H10C109.5
C3—C2—C1108.38 (13)O9—C11—O4123.51 (18)
O2—C2—H2110.2O9—C11—C12125.92 (17)
C3—C2—H2110.2O4—C11—C12110.57 (17)
C1—C2—H2110.2C11—C12—H12A109.5
O3—C3—C2108.29 (13)C11—C12—H12B109.5
O3—C3—C4108.06 (13)H12A—C12—H12B109.5
C2—C3—C4110.90 (13)C11—C12—H12C109.5
O3—C3—H3109.9H12A—C12—H12C109.5
C2—C3—H3109.9H12B—C12—H12C109.5
C4—C3—H3109.9O10—C13—O6124.22 (17)
O4—C4—C3108.95 (13)O10—C13—C14125.75 (18)
O4—C4—C5109.25 (12)O6—C13—C14110.02 (16)
C3—C4—C5109.23 (13)C13—C14—H14A109.5
O4—C4—H4109.8C13—C14—H14B109.5
C3—C4—H4109.8H14A—C14—H14B109.5
C5—C4—H4109.8C13—C14—H14C109.5
O1—C5—C6104.46 (13)H14A—C14—H14C109.5
O1—C5—C4111.40 (13)H14B—C14—H14C109.5
C6—C5—C4113.90 (13)N1—C15—N2119.42 (15)
O1—C5—H5109.0N1—C15—S1122.16 (13)
C6—C5—H5109.0N2—C15—S1118.34 (13)
C4—C5—H5109.0N3—C16—N2174.04 (19)
O6—C6—C5107.00 (14)N1—C17—H17A109.5
O6—C6—H6A110.3N1—C17—H17B109.5
C5—C6—H6A110.3H17A—C17—H17B109.5
O6—C6—H6B110.3N1—C17—H17C109.5
C5—C6—H6B110.3H17A—C17—H17C109.5
H6A—C6—H6B108.6H17B—C17—H17C109.5
O7—C7—O2122.93 (16)C15—S1—C1103.86 (8)
O7—C7—C8126.55 (17)C1—O1—C5111.79 (12)
O2—C7—C8110.51 (14)C7—O2—C2117.09 (13)
C7—C8—H8A109.5C9—O3—C3117.96 (13)
C7—C8—H8B109.5C11—O4—C4116.22 (14)
H8A—C8—H8B109.5C13—O6—C6117.93 (14)
C7—C8—H8C109.5C15—N1—C17122.85 (15)
H8A—C8—H8C109.5C15—N1—H01120.6 (18)
H8B—C8—H8C109.5C17—N1—H01116.4 (18)
O8—C9—O3124.38 (16)C16—N2—C15118.82 (14)
O1—C1—C2—O2178.70 (12)S1—C1—O1—C5178.36 (10)
S1—C1—C2—O263.63 (14)C6—C5—O1—C1175.22 (13)
O1—C1—C2—C361.46 (16)C4—C5—O1—C161.38 (16)
S1—C1—C2—C3179.13 (11)O7—C7—O2—C27.4 (2)
O2—C2—C3—O365.42 (15)C8—C7—O2—C2171.72 (14)
C1—C2—C3—O3175.09 (12)C3—C2—O2—C7133.78 (14)
O2—C2—C3—C4176.17 (12)C1—C2—O2—C7108.23 (15)
C1—C2—C3—C456.69 (16)O8—C9—O3—C31.3 (3)
O3—C3—C4—O451.99 (17)C10—C9—O3—C3177.46 (16)
C2—C3—C4—O466.56 (16)C2—C3—O3—C9103.98 (17)
O3—C3—C4—C5171.26 (13)C4—C3—O3—C9135.83 (15)
C2—C3—C4—C552.72 (17)O9—C11—O4—C42.9 (3)
O4—C4—C5—O165.43 (17)C12—C11—O4—C4177.55 (15)
C3—C4—C5—O153.66 (17)C3—C4—O4—C11106.48 (16)
O4—C4—C5—C652.41 (19)C5—C4—O4—C11134.26 (15)
C3—C4—C5—C6171.50 (14)O10—C13—O6—C61.7 (3)
O1—C5—C6—O6174.83 (12)C14—C13—O6—C6177.37 (15)
C4—C5—C6—O663.41 (17)C5—C6—O6—C13123.04 (16)
N1—C15—S1—C16.76 (16)N2—C15—N1—C171.3 (3)
N2—C15—S1—C1176.51 (13)S1—C15—N1—C17175.39 (14)
O1—C1—S1—C1570.91 (12)N1—C15—N2—C16179.27 (17)
C2—C1—S1—C15171.56 (11)S1—C15—N2—C162.4 (2)
C2—C1—O1—C564.48 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H01···O10.86 (3)2.52 (3)3.0637 (19)122 (2)
N1—H01···N3i0.86 (3)2.14 (3)2.880 (2)144 (2)
C4—H4···O7i1.002.413.225 (2)138
C5—H5···N3i1.002.473.258 (2)136
C1—H1···O10ii1.002.623.355 (2)130
C8—H8C···O6ii0.982.543.436 (2)153
C8—H8B···O8iii0.982.453.386 (3)159
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+1/2; (iii) x+1, y, z.
2',3',4',6'-Tetra-O-acetyl-β-D-galactopyranosyl N'-cyano-N-p-tolylcarbamimidothioate (5d) top
Crystal data top
C23H27N3O9SDx = 1.371 Mg m3
Mr = 521.53Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 63582 reflections
a = 7.42044 (17) Åθ = 2.3–38.4°
b = 14.9634 (4) ŵ = 0.18 mm1
c = 22.7580 (5) ÅT = 100 K
V = 2526.94 (11) Å3Prism, colourless
Z = 40.15 × 0.05 × 0.04 mm
F(000) = 1096
Data collection top
XtaLAB Synergy
diffractometer
12241 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source11008 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.085
Detector resolution: 10.0000 pixels mm-1θmax = 36.3°, θmin = 2.3°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
k = 2424
Tmin = 0.881, Tmax = 1.000l = 3737
146926 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0589P)2 + 0.1217P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.094(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.45 e Å3
12241 reflectionsΔρmin = 0.21 e Å3
334 parametersAbsolute structure: Flack x determined using 4554 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.005 (18)
Primary atom site location: dual
Special details top

Geometry. The symmetry employed for this shelxl refinement is uniquely defined by the following loop, which should always be used as a source of symmetry information in preference to the above space-group names. They are only intended as comments.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.37733 (14)0.22950 (8)0.76889 (5)0.01328 (17)
H10.3056330.1781580.7532440.016*
C20.41195 (15)0.21795 (8)0.83531 (5)0.01282 (17)
H20.4936890.2661770.8499750.015*
C30.23143 (15)0.22161 (8)0.86735 (5)0.01317 (18)
H30.1564780.1683660.8569600.016*
C40.13113 (15)0.30760 (8)0.85209 (5)0.01346 (18)
H40.0087810.3070970.8705080.016*
C50.11397 (15)0.31525 (8)0.78577 (5)0.01416 (18)
H50.0369890.2653760.7707660.017*
C60.03836 (17)0.40360 (9)0.76458 (6)0.0189 (2)
H6A0.1147530.4536390.7783540.023*
H6B0.0343130.4049540.7211120.023*
C70.67169 (18)0.12911 (9)0.85531 (6)0.0180 (2)
C80.7319 (2)0.03566 (11)0.86740 (9)0.0312 (3)
H8A0.7120970.0216430.9089680.047*
H8B0.8604570.0299710.8582250.047*
H8C0.6627840.0059410.8429570.047*
C90.15614 (17)0.17555 (9)0.96477 (5)0.0169 (2)
C100.18293 (19)0.20008 (11)1.02776 (6)0.0230 (3)
H10A0.3090370.2169181.0341680.034*
H10B0.1527220.1488371.0526970.034*
H10C0.1046290.2505831.0377450.034*
C110.18220 (19)0.41801 (9)0.92642 (6)0.0196 (2)
C120.3059 (2)0.49047 (10)0.94601 (7)0.0233 (3)
H12A0.3937630.4661290.9738860.035*
H12B0.2359800.5378170.9651460.035*
H12C0.3692740.5151730.9119080.035*
C130.23441 (18)0.48185 (9)0.76781 (7)0.0205 (2)
C140.4220 (2)0.48191 (11)0.79243 (9)0.0291 (3)
H14A0.4883830.4302600.7771760.044*
H14B0.4837610.5370430.7807990.044*
H14C0.4164460.4784830.8353940.044*
C150.56188 (15)0.20458 (8)0.65971 (5)0.01335 (18)
C160.86849 (16)0.19725 (10)0.65229 (5)0.0178 (2)
C210.36887 (15)0.16707 (8)0.57647 (5)0.01467 (19)
C220.46087 (17)0.20570 (9)0.52958 (5)0.0180 (2)
H220.5443460.2527350.5362970.022*
C230.42959 (18)0.17486 (10)0.47281 (6)0.0199 (2)
H230.4941750.2006570.4410100.024*
C240.30585 (18)0.10711 (9)0.46155 (6)0.0187 (2)
C250.21309 (19)0.06976 (9)0.50905 (6)0.0189 (2)
H250.1275280.0236830.5022480.023*
C260.24442 (17)0.09919 (9)0.56619 (5)0.0172 (2)
H260.1810070.0729960.5981050.021*
C270.2693 (2)0.07582 (11)0.39971 (6)0.0270 (3)
H27A0.2622730.0104290.3990760.040*
H27B0.3670520.0956740.3738540.040*
H27C0.1549050.1010270.3860040.040*
S10.59555 (4)0.23470 (2)0.73362 (2)0.01528 (6)
O10.28752 (12)0.31129 (6)0.75797 (4)0.01475 (15)
O20.48923 (13)0.13189 (6)0.84644 (4)0.01579 (16)
O30.26992 (13)0.22212 (7)0.92918 (4)0.01660 (16)
O40.23358 (13)0.38279 (6)0.87373 (4)0.01566 (15)
O60.14014 (13)0.41145 (7)0.78837 (5)0.02144 (19)
O70.76619 (13)0.19386 (7)0.85272 (5)0.02141 (18)
O80.04661 (18)0.12360 (9)0.94637 (5)0.0309 (3)
O90.05355 (18)0.39191 (9)0.95381 (6)0.0328 (3)
O100.17235 (17)0.53562 (8)0.73421 (6)0.0301 (2)
N10.39889 (14)0.19629 (8)0.63591 (4)0.01517 (17)
H010.305 (3)0.1970 (15)0.6584 (10)0.029 (6)*
N20.70777 (13)0.19005 (8)0.62801 (4)0.01625 (18)
N31.01735 (16)0.20315 (10)0.66804 (5)0.0245 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0109 (4)0.0161 (4)0.0128 (4)0.0002 (4)0.0009 (3)0.0013 (4)
C20.0108 (4)0.0145 (4)0.0132 (4)0.0007 (4)0.0006 (3)0.0012 (3)
C30.0123 (4)0.0162 (4)0.0110 (4)0.0013 (4)0.0008 (3)0.0013 (3)
C40.0103 (4)0.0152 (4)0.0149 (4)0.0012 (4)0.0003 (3)0.0023 (4)
C50.0102 (4)0.0172 (5)0.0152 (4)0.0003 (4)0.0001 (3)0.0001 (4)
C60.0130 (4)0.0207 (5)0.0230 (5)0.0028 (4)0.0003 (4)0.0035 (4)
C70.0148 (5)0.0223 (5)0.0169 (5)0.0034 (4)0.0025 (4)0.0026 (4)
C80.0245 (7)0.0224 (6)0.0467 (9)0.0083 (5)0.0109 (7)0.0037 (6)
C90.0153 (5)0.0220 (5)0.0133 (4)0.0021 (4)0.0016 (4)0.0027 (4)
C100.0184 (5)0.0375 (7)0.0130 (5)0.0025 (5)0.0009 (4)0.0004 (5)
C110.0195 (5)0.0181 (5)0.0211 (5)0.0003 (4)0.0019 (4)0.0057 (4)
C120.0276 (7)0.0195 (5)0.0228 (6)0.0037 (5)0.0036 (5)0.0041 (5)
C130.0165 (5)0.0168 (5)0.0282 (6)0.0029 (4)0.0050 (5)0.0048 (5)
C140.0158 (6)0.0227 (6)0.0487 (9)0.0024 (5)0.0002 (6)0.0061 (6)
C150.0099 (4)0.0174 (5)0.0128 (4)0.0002 (4)0.0001 (3)0.0003 (3)
C160.0121 (4)0.0289 (6)0.0124 (4)0.0008 (4)0.0012 (3)0.0034 (4)
C210.0106 (4)0.0196 (5)0.0138 (4)0.0006 (4)0.0013 (3)0.0003 (4)
C220.0145 (5)0.0241 (6)0.0156 (5)0.0041 (4)0.0028 (4)0.0031 (4)
C230.0173 (5)0.0288 (6)0.0137 (5)0.0015 (5)0.0017 (4)0.0032 (4)
C240.0171 (5)0.0236 (6)0.0155 (5)0.0031 (4)0.0026 (4)0.0020 (4)
C250.0171 (5)0.0208 (5)0.0188 (5)0.0012 (4)0.0020 (4)0.0027 (4)
C260.0132 (5)0.0210 (5)0.0174 (5)0.0013 (4)0.0004 (4)0.0004 (4)
C270.0308 (7)0.0326 (7)0.0174 (5)0.0001 (6)0.0041 (5)0.0041 (5)
S10.01011 (10)0.02345 (13)0.01230 (10)0.00192 (10)0.00084 (8)0.00367 (9)
O10.0119 (3)0.0170 (4)0.0154 (4)0.0007 (3)0.0011 (3)0.0014 (3)
O20.0130 (3)0.0162 (4)0.0182 (4)0.0012 (3)0.0017 (3)0.0005 (3)
O30.0152 (4)0.0242 (4)0.0103 (3)0.0030 (3)0.0004 (3)0.0004 (3)
O40.0142 (4)0.0162 (4)0.0167 (4)0.0021 (3)0.0004 (3)0.0034 (3)
O60.0133 (4)0.0204 (4)0.0305 (5)0.0035 (3)0.0006 (4)0.0043 (4)
O70.0153 (4)0.0260 (5)0.0230 (4)0.0010 (4)0.0028 (3)0.0015 (4)
O80.0343 (6)0.0393 (6)0.0191 (4)0.0193 (5)0.0004 (4)0.0046 (4)
O90.0288 (6)0.0349 (6)0.0347 (6)0.0088 (5)0.0156 (5)0.0162 (5)
O100.0291 (5)0.0246 (5)0.0366 (6)0.0077 (4)0.0004 (5)0.0068 (5)
N10.0094 (4)0.0226 (5)0.0135 (4)0.0004 (4)0.0010 (3)0.0016 (3)
N20.0094 (4)0.0266 (5)0.0128 (4)0.0009 (4)0.0001 (3)0.0033 (4)
N30.0118 (4)0.0434 (7)0.0184 (5)0.0005 (5)0.0003 (3)0.0045 (5)
Geometric parameters (Å, º) top
C1—O11.4155 (15)C11—O41.3642 (16)
C1—C21.5431 (16)C11—C121.489 (2)
C1—S11.8090 (11)C12—H12A0.9800
C1—H11.0000C12—H12B0.9800
C2—O21.4322 (15)C12—H12C0.9800
C2—C31.5261 (16)C13—O101.2016 (19)
C2—H21.0000C13—O61.3484 (16)
C3—O31.4359 (14)C13—C141.501 (2)
C3—C41.5265 (17)C14—H14A0.9800
C3—H31.0000C14—H14B0.9800
C4—O41.4443 (14)C14—H14C0.9800
C4—C51.5190 (16)C15—N21.3190 (15)
C4—H41.0000C15—N11.3311 (15)
C5—O11.4361 (14)C15—S11.7593 (12)
C5—C61.5150 (17)C16—N31.1647 (16)
C5—H51.0000C16—N21.3188 (16)
C6—O61.4356 (16)C21—C221.3924 (17)
C6—H6A0.9900C21—C261.3927 (17)
C6—H6B0.9900C21—N11.4388 (16)
C7—O71.1975 (18)C22—C231.3913 (18)
C7—O21.3695 (16)C22—H220.9500
C7—C81.494 (2)C23—C241.3917 (19)
C8—H8A0.9800C23—H230.9500
C8—H8B0.9800C24—C251.3980 (19)
C8—H8C0.9800C24—C271.5078 (19)
C9—O81.2000 (18)C25—C261.3925 (18)
C9—O31.3617 (15)C25—H250.9500
C9—C101.4930 (18)C26—H260.9500
C10—H10A0.9800C27—H27A0.9800
C10—H10B0.9800C27—H27B0.9800
C10—H10C0.9800C27—H27C0.9800
C11—O91.2052 (18)N1—H010.87 (2)
O1—C1—C2110.32 (9)O9—C11—C12124.70 (13)
O1—C1—S1107.84 (8)O4—C11—C12111.86 (12)
C2—C1—S1106.88 (7)C11—C12—H12A109.5
O1—C1—H1110.6C11—C12—H12B109.5
C2—C1—H1110.6H12A—C12—H12B109.5
S1—C1—H1110.6C11—C12—H12C109.5
O2—C2—C3107.41 (9)H12A—C12—H12C109.5
O2—C2—C1109.91 (9)H12B—C12—H12C109.5
C3—C2—C1108.53 (9)O10—C13—O6123.03 (13)
O2—C2—H2110.3O10—C13—C14126.35 (13)
C3—C2—H2110.3O6—C13—C14110.62 (13)
C1—C2—H2110.3C13—C14—H14A109.5
O3—C3—C2107.09 (9)C13—C14—H14B109.5
O3—C3—C4108.39 (9)H14A—C14—H14B109.5
C2—C3—C4110.46 (9)C13—C14—H14C109.5
O3—C3—H3110.3H14A—C14—H14C109.5
C2—C3—H3110.3H14B—C14—H14C109.5
C4—C3—H3110.3N2—C15—N1120.52 (10)
O4—C4—C5108.92 (10)N2—C15—S1116.65 (9)
O4—C4—C3108.81 (9)N1—C15—S1122.82 (9)
C5—C4—C3109.29 (9)N3—C16—N2173.13 (13)
O4—C4—H4109.9C22—C21—C26119.94 (11)
C5—C4—H4109.9C22—C21—N1121.23 (11)
C3—C4—H4109.9C26—C21—N1118.83 (11)
O1—C5—C6103.17 (10)C23—C22—C21119.49 (12)
O1—C5—C4111.07 (9)C23—C22—H22120.3
C6—C5—C4114.40 (10)C21—C22—H22120.3
O1—C5—H5109.3C22—C23—C24121.51 (12)
C6—C5—H5109.3C22—C23—H23119.2
C4—C5—H5109.3C24—C23—H23119.2
O6—C6—C5107.04 (10)C23—C24—C25118.27 (11)
O6—C6—H6A110.3C23—C24—C27121.11 (13)
C5—C6—H6A110.3C25—C24—C27120.61 (13)
O6—C6—H6B110.3C26—C25—C24120.90 (12)
C5—C6—H6B110.3C26—C25—H25119.6
H6A—C6—H6B108.6C24—C25—H25119.6
O7—C7—O2123.16 (13)C25—C26—C21119.88 (12)
O7—C7—C8126.25 (13)C25—C26—H26120.1
O2—C7—C8110.58 (12)C21—C26—H26120.1
C7—C8—H8A109.5C24—C27—H27A109.5
C7—C8—H8B109.5C24—C27—H27B109.5
H8A—C8—H8B109.5H27A—C27—H27B109.5
C7—C8—H8C109.5C24—C27—H27C109.5
H8A—C8—H8C109.5H27A—C27—H27C109.5
H8B—C8—H8C109.5H27B—C27—H27C109.5
O8—C9—O3122.95 (12)C15—S1—C1106.62 (5)
O8—C9—C10125.76 (13)C1—O1—C5112.36 (9)
O3—C9—C10111.26 (12)C7—O2—C2116.69 (10)
C9—C10—H10A109.5C9—O3—C3117.18 (10)
C9—C10—H10B109.5C11—O4—C4116.97 (10)
H10A—C10—H10B109.5C13—O6—C6114.31 (11)
C9—C10—H10C109.5C15—N1—C21123.47 (10)
H10A—C10—H10C109.5C15—N1—H01119.4 (15)
H10B—C10—H10C109.5C21—N1—H01115.8 (16)
O9—C11—O4123.42 (13)C16—N2—C15119.97 (10)
O1—C1—C2—O2175.24 (9)N1—C15—S1—C110.44 (12)
S1—C1—C2—O267.78 (10)O1—C1—S1—C1583.66 (8)
O1—C1—C2—C358.03 (12)C2—C1—S1—C15157.73 (8)
S1—C1—C2—C3175.02 (7)C2—C1—O1—C561.80 (12)
O2—C2—C3—O368.38 (11)S1—C1—O1—C5178.19 (7)
C1—C2—C3—O3172.83 (9)C6—C5—O1—C1175.80 (10)
O2—C2—C3—C4173.79 (9)C4—C5—O1—C161.19 (12)
C1—C2—C3—C455.00 (12)O7—C7—O2—C21.84 (18)
O3—C3—C4—O452.67 (12)C8—C7—O2—C2178.96 (12)
C2—C3—C4—O464.35 (11)C3—C2—O2—C7141.16 (10)
O3—C3—C4—C5171.50 (9)C1—C2—O2—C7100.94 (12)
C2—C3—C4—C554.47 (12)O8—C9—O3—C312.60 (19)
O4—C4—C5—O162.60 (12)C10—C9—O3—C3165.63 (11)
C3—C4—C5—O156.15 (12)C2—C3—O3—C9142.63 (10)
O4—C4—C5—C653.69 (12)C4—C3—O3—C998.19 (12)
C3—C4—C5—C6172.44 (10)O9—C11—O4—C43.0 (2)
O1—C5—C6—O6177.48 (10)C12—C11—O4—C4175.80 (11)
C4—C5—C6—O661.75 (13)C5—C4—O4—C11143.06 (11)
C26—C21—C22—C231.10 (19)C3—C4—O4—C1197.88 (12)
N1—C21—C22—C23179.26 (12)O10—C13—O6—C62.8 (2)
C21—C22—C23—C241.1 (2)C14—C13—O6—C6176.91 (12)
C22—C23—C24—C250.4 (2)C5—C6—O6—C13172.45 (11)
C22—C23—C24—C27178.37 (13)N2—C15—N1—C213.38 (19)
C23—C24—C25—C260.4 (2)S1—C15—N1—C21176.54 (9)
C27—C24—C25—C26179.13 (13)C22—C21—N1—C1550.03 (18)
C24—C25—C26—C210.4 (2)C26—C21—N1—C15130.33 (13)
C22—C21—C26—C250.37 (19)N1—C15—N2—C16179.05 (13)
N1—C21—C26—C25179.98 (12)S1—C15—N2—C160.87 (17)
N2—C15—S1—C1169.48 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H01···N3i0.87 (2)2.15 (2)2.9259 (16)150 (2)
C14—H14A···O1i0.982.473.4320 (18)165
C4—H4···O7i1.002.513.1985 (15)126
C5—H5···N3i1.002.523.2414 (17)129
C1—H1···O10ii1.002.373.2765 (16)151
C25—H25···O9ii0.952.593.4223 (19)147
C10—H10A···O9iii0.982.453.1038 (19)124
C10—H10C···O3iv0.982.633.4217 (17)138
C12—H12A···O8iii0.982.533.4790 (19)164
Symmetry codes: (i) x1, y, z; (ii) x, y1/2, z+3/2; (iii) x+1/2, y+1/2, z+2; (iv) x1/2, y+1/2, z+2.
2',3',4',6'-Tetra-O-acetyl-β-D-galactopyranosyl N'-cyano-N-p-tolylcarbamimidothioate (5dCu) top
Crystal data top
C23H27N3O9SDx = 1.371 Mg m3
Mr = 521.53Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 90210 reflections
a = 7.41967 (5) Åθ = 3.5–80.0°
b = 14.96519 (12) ŵ = 1.63 mm1
c = 22.75622 (16) ÅT = 100 K
V = 2526.78 (3) Å3Prism, colourless
Z = 40.15 × 0.05 × 0.04 mm
F(000) = 1096
Data collection top
XtaLAB Synergy
diffractometer
5508 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source5458 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.033
Detector resolution: 10.0000 pixels mm-1θmax = 80.6°, θmin = 3.5°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
k = 1819
Tmin = 0.781, Tmax = 1.000l = 2828
122360 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0299P)2 + 0.7621P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.059(Δ/σ)max = 0.002
S = 1.04Δρmax = 0.22 e Å3
5508 reflectionsΔρmin = 0.18 e Å3
334 parametersAbsolute structure: Flack x determined using 2334 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.004 (2)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.37718 (19)0.22936 (11)0.76887 (7)0.0156 (3)
H10.3054630.1780290.7532200.019*
C20.4117 (2)0.21801 (10)0.83539 (6)0.0152 (3)
H20.4935410.2662360.8500110.018*
C30.2315 (2)0.22186 (10)0.86723 (6)0.0155 (3)
H30.1565950.1686230.8568070.019*
C40.1309 (2)0.30765 (11)0.85211 (7)0.0161 (3)
H40.0085920.3070590.8705710.019*
C50.1138 (2)0.31552 (11)0.78568 (7)0.0171 (3)
H50.0366700.2657110.7706400.020*
C60.0386 (2)0.40350 (11)0.76458 (8)0.0216 (3)
H6A0.1151470.4534740.7783480.026*
H6B0.0347060.4048280.7211020.026*
C70.6716 (2)0.12912 (12)0.85530 (7)0.0200 (3)
C80.7317 (3)0.03574 (13)0.86753 (10)0.0334 (4)
H8A0.7060420.0208030.9086200.050*
H8B0.8615160.0307690.8603190.050*
H8C0.6669420.0056500.8416840.050*
C90.1561 (2)0.17554 (11)0.96477 (7)0.0187 (3)
C100.1830 (2)0.20009 (13)1.02771 (7)0.0250 (4)
H10A0.3049480.2239271.0330970.038*
H10B0.1673810.1469421.0523480.038*
H10C0.0944930.2455311.0390340.038*
C110.1819 (2)0.41827 (11)0.92639 (8)0.0216 (3)
C120.3057 (3)0.49040 (12)0.94585 (8)0.0252 (4)
H12A0.3951730.4657000.9730580.038*
H12B0.2364420.5372420.9657390.038*
H12C0.3672230.5158430.9116150.038*
C130.2346 (2)0.48187 (11)0.76775 (8)0.0227 (3)
C140.4219 (3)0.48203 (13)0.79244 (10)0.0317 (4)
H14A0.4895440.4313640.7763570.048*
H14B0.4824620.5379270.7817670.048*
H14C0.4162790.4769010.8353330.048*
C150.5619 (2)0.20451 (10)0.65955 (7)0.0158 (3)
C160.8689 (2)0.19724 (12)0.65229 (7)0.0199 (3)
C210.3689 (2)0.16701 (11)0.57631 (7)0.0167 (3)
C220.4604 (2)0.20567 (12)0.52972 (7)0.0208 (3)
H220.5434540.2528600.5364840.025*
C230.4295 (2)0.17480 (12)0.47293 (7)0.0222 (3)
H230.4944410.2005140.4411810.027*
C240.3057 (2)0.10719 (11)0.46157 (7)0.0213 (3)
C250.2134 (2)0.06982 (12)0.50901 (7)0.0212 (3)
H250.1280930.0236300.5022220.025*
C260.2446 (2)0.09925 (11)0.56614 (7)0.0194 (3)
H260.1812040.0731100.5980690.023*
C270.2696 (3)0.07577 (14)0.39966 (8)0.0294 (4)
H27A0.2598410.0104680.3992170.044*
H27B0.3688520.0944150.3740260.044*
H27C0.1566220.1020270.3855240.044*
S10.59563 (5)0.23477 (3)0.73360 (2)0.01751 (9)
O10.28768 (14)0.31131 (7)0.75791 (5)0.0168 (2)
O20.48915 (15)0.13193 (8)0.84639 (5)0.0178 (2)
O30.26977 (15)0.22223 (8)0.92923 (5)0.0185 (2)
O40.23369 (15)0.38296 (7)0.87375 (5)0.0173 (2)
O60.14007 (16)0.41167 (8)0.78826 (6)0.0237 (3)
O70.76611 (16)0.19387 (9)0.85272 (5)0.0235 (3)
O80.0469 (2)0.12371 (10)0.94639 (6)0.0324 (3)
O90.0531 (2)0.39229 (10)0.95357 (7)0.0355 (3)
O100.17244 (19)0.53560 (9)0.73424 (7)0.0325 (3)
N10.39897 (18)0.19627 (9)0.63588 (6)0.0174 (3)
H010.302 (3)0.2023 (15)0.6577 (10)0.028 (6)*
N20.70775 (18)0.19009 (10)0.62802 (6)0.0185 (3)
N31.0174 (2)0.20304 (12)0.66802 (6)0.0267 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0132 (7)0.0195 (7)0.0143 (6)0.0002 (6)0.0015 (5)0.0016 (6)
C20.0140 (7)0.0164 (7)0.0153 (7)0.0020 (6)0.0000 (6)0.0018 (5)
C30.0149 (7)0.0199 (7)0.0119 (6)0.0012 (6)0.0003 (5)0.0012 (5)
C40.0125 (7)0.0180 (7)0.0178 (7)0.0019 (6)0.0009 (5)0.0029 (6)
C50.0124 (7)0.0211 (7)0.0177 (7)0.0003 (6)0.0002 (6)0.0003 (6)
C60.0156 (7)0.0249 (8)0.0242 (8)0.0016 (6)0.0002 (6)0.0027 (7)
C70.0166 (7)0.0266 (9)0.0167 (7)0.0031 (7)0.0026 (6)0.0040 (6)
C80.0270 (9)0.0255 (9)0.0476 (11)0.0081 (7)0.0101 (9)0.0044 (8)
C90.0157 (7)0.0229 (8)0.0176 (7)0.0033 (6)0.0018 (6)0.0026 (6)
C100.0215 (8)0.0375 (9)0.0161 (7)0.0034 (7)0.0011 (6)0.0003 (7)
C110.0224 (8)0.0205 (8)0.0219 (8)0.0011 (7)0.0015 (7)0.0047 (6)
C120.0290 (9)0.0224 (8)0.0243 (8)0.0034 (7)0.0028 (7)0.0041 (7)
C130.0202 (8)0.0193 (7)0.0287 (8)0.0027 (6)0.0057 (7)0.0050 (7)
C140.0193 (9)0.0263 (9)0.0494 (11)0.0034 (7)0.0007 (8)0.0064 (8)
C150.0142 (7)0.0178 (7)0.0155 (7)0.0002 (6)0.0001 (6)0.0005 (6)
C160.0166 (8)0.0304 (8)0.0127 (7)0.0013 (7)0.0030 (6)0.0040 (6)
C210.0127 (7)0.0212 (8)0.0161 (7)0.0028 (6)0.0020 (6)0.0005 (6)
C220.0162 (7)0.0257 (8)0.0206 (8)0.0033 (6)0.0034 (6)0.0023 (6)
C230.0186 (8)0.0312 (9)0.0167 (7)0.0003 (7)0.0013 (6)0.0047 (6)
C240.0192 (8)0.0255 (8)0.0193 (8)0.0046 (7)0.0028 (6)0.0015 (6)
C250.0180 (8)0.0229 (8)0.0228 (8)0.0000 (7)0.0027 (6)0.0021 (6)
C260.0149 (7)0.0236 (8)0.0197 (7)0.0000 (6)0.0003 (6)0.0007 (6)
C270.0328 (10)0.0346 (10)0.0210 (8)0.0002 (8)0.0038 (8)0.0037 (7)
S10.01212 (16)0.02639 (18)0.01402 (15)0.00190 (14)0.00099 (13)0.00383 (14)
O10.0138 (5)0.0192 (5)0.0174 (5)0.0005 (4)0.0012 (4)0.0011 (4)
O20.0156 (5)0.0184 (6)0.0194 (5)0.0016 (4)0.0014 (4)0.0005 (4)
O30.0168 (5)0.0263 (6)0.0123 (5)0.0028 (5)0.0005 (4)0.0010 (4)
O40.0157 (5)0.0182 (5)0.0181 (5)0.0022 (4)0.0004 (4)0.0032 (4)
O60.0149 (6)0.0233 (6)0.0329 (6)0.0027 (5)0.0007 (5)0.0042 (5)
O70.0167 (5)0.0289 (6)0.0248 (6)0.0009 (5)0.0029 (5)0.0015 (5)
O80.0355 (8)0.0406 (8)0.0210 (6)0.0190 (6)0.0005 (5)0.0048 (5)
O90.0311 (7)0.0386 (8)0.0367 (7)0.0096 (6)0.0157 (6)0.0168 (6)
O100.0309 (7)0.0272 (6)0.0394 (7)0.0075 (5)0.0010 (6)0.0071 (6)
N10.0119 (6)0.0248 (7)0.0156 (6)0.0003 (5)0.0006 (5)0.0016 (5)
N20.0119 (6)0.0283 (7)0.0154 (6)0.0005 (5)0.0009 (5)0.0028 (5)
N30.0148 (7)0.0465 (9)0.0187 (7)0.0009 (7)0.0006 (5)0.0054 (6)
Geometric parameters (Å, º) top
C1—O11.4168 (19)C11—O41.364 (2)
C1—C21.545 (2)C11—C121.485 (2)
C1—S11.8105 (15)C12—H12A0.9800
C1—H11.0000C12—H12B0.9800
C2—O21.4325 (18)C12—H12C0.9800
C2—C31.522 (2)C13—O101.200 (2)
C2—H21.0000C13—O61.347 (2)
C3—O31.4391 (17)C13—C141.499 (3)
C3—C41.524 (2)C14—H14A0.9800
C3—H31.0000C14—H14B0.9800
C4—O41.4472 (18)C14—H14C0.9800
C4—C51.522 (2)C15—N21.316 (2)
C4—H41.0000C15—N11.329 (2)
C5—O11.4382 (18)C15—S11.7628 (16)
C5—C61.508 (2)C16—N31.162 (2)
C5—H51.0000C16—N21.322 (2)
C6—O61.436 (2)C21—C221.385 (2)
C6—H6A0.9900C21—C261.390 (2)
C6—H6B0.9900C21—N11.442 (2)
C7—O71.198 (2)C22—C231.391 (2)
C7—O21.370 (2)C22—H220.9500
C7—C81.493 (2)C23—C241.390 (2)
C8—H8A0.9800C23—H230.9500
C8—H8B0.9800C24—C251.396 (2)
C8—H8C0.9800C24—C271.509 (2)
C9—O81.197 (2)C25—C261.392 (2)
C9—O31.362 (2)C25—H250.9500
C9—C101.492 (2)C26—H260.9500
C10—H10A0.9800C27—H27A0.9800
C10—H10B0.9800C27—H27B0.9800
C10—H10C0.9800C27—H27C0.9800
C11—O91.203 (2)N1—H010.88 (2)
O1—C1—C2110.21 (12)O9—C11—C12124.96 (16)
O1—C1—S1107.63 (10)O4—C11—C12111.67 (15)
C2—C1—S1106.90 (10)C11—C12—H12A109.5
O1—C1—H1110.7C11—C12—H12B109.5
C2—C1—H1110.7H12A—C12—H12B109.5
S1—C1—H1110.7C11—C12—H12C109.5
O2—C2—C3107.65 (12)H12A—C12—H12C109.5
O2—C2—C1109.67 (12)H12B—C12—H12C109.5
C3—C2—C1108.45 (12)O10—C13—O6122.86 (16)
O2—C2—H2110.3O10—C13—C14126.39 (17)
C3—C2—H2110.3O6—C13—C14110.75 (15)
C1—C2—H2110.3C13—C14—H14A109.5
O3—C3—C2107.07 (12)C13—C14—H14B109.5
O3—C3—C4108.34 (12)H14A—C14—H14B109.5
C2—C3—C4110.77 (12)C13—C14—H14C109.5
O3—C3—H3110.2H14A—C14—H14C109.5
C2—C3—H3110.2H14B—C14—H14C109.5
C4—C3—H3110.2N2—C15—N1120.77 (14)
O4—C4—C5108.77 (13)N2—C15—S1116.54 (12)
O4—C4—C3108.72 (12)N1—C15—S1122.69 (12)
C5—C4—C3109.29 (12)N3—C16—N2173.22 (16)
O4—C4—H4110.0C22—C21—C26120.15 (15)
C5—C4—H4110.0C22—C21—N1121.13 (14)
C3—C4—H4110.0C26—C21—N1118.72 (14)
O1—C5—C6103.30 (12)C21—C22—C23119.44 (15)
O1—C5—C4110.99 (12)C21—C22—H22120.3
C6—C5—C4114.51 (14)C23—C22—H22120.3
O1—C5—H5109.3C24—C23—C22121.54 (15)
C6—C5—H5109.3C24—C23—H23119.2
C4—C5—H5109.3C22—C23—H23119.2
O6—C6—C5107.22 (13)C23—C24—C25118.15 (15)
O6—C6—H6A110.3C23—C24—C27121.17 (16)
C5—C6—H6A110.3C25—C24—C27120.67 (16)
O6—C6—H6B110.3C26—C25—C24120.94 (16)
C5—C6—H6B110.3C26—C25—H25119.5
H6A—C6—H6B108.5C24—C25—H25119.5
O7—C7—O2123.14 (16)C21—C26—C25119.78 (15)
O7—C7—C8126.27 (16)C21—C26—H26120.1
O2—C7—C8110.58 (15)C25—C26—H26120.1
C7—C8—H8A109.5C24—C27—H27A109.5
C7—C8—H8B109.5C24—C27—H27B109.5
H8A—C8—H8B109.5H27A—C27—H27B109.5
C7—C8—H8C109.5C24—C27—H27C109.5
H8A—C8—H8C109.5H27A—C27—H27C109.5
H8B—C8—H8C109.5H27B—C27—H27C109.5
O8—C9—O3122.97 (15)C15—S1—C1106.58 (7)
O8—C9—C10125.85 (16)C1—O1—C5112.40 (11)
O3—C9—C10111.15 (14)C7—O2—C2116.73 (13)
C9—C10—H10A109.5C9—O3—C3117.27 (12)
C9—C10—H10B109.5C11—O4—C4116.87 (12)
H10A—C10—H10B109.5C13—O6—C6114.65 (14)
C9—C10—H10C109.5C15—N1—C21123.34 (13)
H10A—C10—H10C109.5C15—N1—H01120.3 (15)
H10B—C10—H10C109.5C21—N1—H01116.0 (15)
O9—C11—O4123.36 (16)C15—N2—C16120.18 (13)
O1—C1—C2—O2175.42 (11)N1—C15—S1—C110.56 (16)
S1—C1—C2—O267.89 (14)O1—C1—S1—C1583.79 (11)
O1—C1—C2—C358.12 (16)C2—C1—S1—C15157.82 (10)
S1—C1—C2—C3174.81 (10)C2—C1—O1—C561.91 (15)
O2—C2—C3—O368.36 (15)S1—C1—O1—C5178.15 (9)
C1—C2—C3—O3173.05 (12)C6—C5—O1—C1175.75 (13)
O2—C2—C3—C4173.70 (12)C4—C5—O1—C161.07 (16)
C1—C2—C3—C455.11 (16)O7—C7—O2—C22.0 (2)
O3—C3—C4—O452.97 (15)C8—C7—O2—C2178.69 (14)
C2—C3—C4—O464.20 (15)C3—C2—O2—C7141.14 (13)
O3—C3—C4—C5171.55 (12)C1—C2—O2—C7101.05 (15)
C2—C3—C4—C554.39 (16)O8—C9—O3—C312.5 (2)
O4—C4—C5—O162.77 (16)C10—C9—O3—C3165.64 (13)
C3—C4—C5—O155.79 (16)C2—C3—O3—C9142.40 (13)
O4—C4—C5—C653.70 (17)C4—C3—O3—C998.09 (15)
C3—C4—C5—C6172.26 (13)O9—C11—O4—C43.1 (2)
O1—C5—C6—O6177.48 (12)C12—C11—O4—C4175.72 (14)
C4—C5—C6—O661.70 (17)C5—C4—O4—C11142.86 (14)
C26—C21—C22—C231.3 (2)C3—C4—O4—C1198.22 (15)
N1—C21—C22—C23179.15 (15)O10—C13—O6—C63.0 (2)
C21—C22—C23—C241.4 (3)C14—C13—O6—C6176.98 (14)
C22—C23—C24—C250.7 (3)C5—C6—O6—C13172.35 (14)
C22—C23—C24—C27178.40 (17)N2—C15—N1—C213.4 (2)
C23—C24—C25—C260.1 (3)S1—C15—N1—C21176.61 (12)
C27—C24—C25—C26179.24 (16)C22—C21—N1—C1550.1 (2)
C22—C21—C26—C250.5 (2)C26—C21—N1—C15130.35 (17)
N1—C21—C26—C25179.94 (15)N1—C15—N2—C16179.01 (17)
C24—C25—C26—C210.2 (3)S1—C15—N2—C161.0 (2)
N2—C15—S1—C1169.42 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H01···N3i0.88 (2)2.13 (2)2.926 (2)151 (2)
C14—H14A···O1i0.982.483.433 (2)165
C4—H4···O7i1.002.503.1976 (19)126
C5—H5···N3i1.002.523.243 (2)129
C1—H1···O10ii1.002.373.274 (2)151
C25—H25···O9ii0.952.593.420 (2)147
C10—H10A···O9iii0.982.553.103 (2)116
C10—H10C···O3iv0.982.563.423 (2)147
C12—H12A···O8iii0.982.533.483 (2)163
Symmetry codes: (i) x1, y, z; (ii) x, y1/2, z+3/2; (iii) x+1/2, y+1/2, z+2; (iv) x1/2, y+1/2, z+2.
 

Acknowledgements

The authors acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig.

References

First citationAbu-Zaied, M. A., Mohamed-Ezzat, R. A., Elgemeie, G. H. & Jones, P. G. (2024). Acta Cryst. E80, 501–505.  CrossRef IUCr Journals Google Scholar
First citationAzzam, R. A., Elgemeie, G. H., Elboshi, H. A. & Jones, P. G. (2023). Acta Cryst. E79, 817–820.  CrossRef IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (1998). XP. Bruker Analytical X–Ray Instruments, Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDantsu, Y., Zhang, Y. & Zhang, W. (2021). Genes, 13, 46. https://doi.org/10.3390/genes13010046  Google Scholar
First citationElboshi, H. A., Azzam, R. A., Elgemeie, G. H. & Jones, P. G. (2024). Acta Cryst. E80, 289–291.  CrossRef IUCr Journals Google Scholar
First citationElgemeie, G. H., Abouzeid, M. & Jones, P. G. (2015). Acta Cryst. E71, 104–106.  CSD CrossRef IUCr Journals Google Scholar
First citationElgemeie, G. E. H., Farag, D. S. & Jones, P. G. (1998a). Acta Cryst. C54, 1466–1468.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationElgemeie, G. H., Fathy, N., Zaghary, W. & Farag, A. (2017). Nucleosides Nucleotides Nucleic Acids, 36, 198–212.  CrossRef CAS PubMed Google Scholar
First citationElgemeie, G. E. H., Fathy, N. M. & Jones, P. G. (1998b). Acta Cryst. C54, 1314–1316.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationElgemeie, G. H. & Mohamed-Ezzat, R. A. (2022). New Strategies Targeting Cancer Metabolism, edited by G. H. Elgemeie & R. A. Mohamed-Ezzat, pp. 1–619. Amsterdam: Elesevier. https://doi.org/10.1016/B978-0-12-821783-2.00010-8.  Google Scholar
First citationEscudero-Adán, E. C., Benet-Buchholz, J. & Ballester, P. (2014). Acta Cryst. B70, 660–668.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1974). Acta Cryst. A30, 569–573.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGalmarini, C. M., Jordheim, L. & Dumontet, C. (2003). Expert Rev. Anticancer Ther. 3, 717–728.  CrossRef PubMed CAS Google Scholar
First citationGlazer, A. M. & Stadnicka, K. (1989). Acta Cryst. A45, 234–238.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHamilton, W. C. (1965). Acta Cryst. 18, 502–510.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHammad, S. F., Masoud, D. M., Elgemeie, G. H. & Jones, P. G. (2018). Acta Cryst. E74, 853–856.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJones, P. G. (1984a). Acta Cryst. A40, 660–662.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJones, P. G. (1984b). Acta Cryst. A40, 663–668.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJones, P. G. (1986). Acta Cryst. C42, 924–925.  CrossRef CAS IUCr Journals Google Scholar
First citationJones, P. G. (2023). CSD Communication (refcode ABINOS04, CCDC 2251842). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc2fl72c.  Google Scholar
First citationJones, P. G., Falvello, L. & Kennard, O. (1978). Acta Cryst. B34, 2379–2381.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationJones, P. G. & Kennard, O. (1978). Acta Cryst. B34, 2309–2311.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationJones, P. G. & Kuś, P. (2020). CSD Communication (refcode LUCVOX, CCDC 1990737). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc24tjbv.  Google Scholar
First citationKottke, T. & Stalke, D. (1993). J. Appl. Cryst. 26, 615–619.  CrossRef Web of Science IUCr Journals Google Scholar
First citationLan, B.-J., Guo, P., Zou, Z.-G. & Lu, Y.-X. (2006). Acta Cryst. E62, o383–o385.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLinden, A. (2017). Tetrahedron Asymmetry, 28, 1314–1320.  Web of Science CrossRef CAS Google Scholar
First citationLu, Y. (2011). J. Chem. Crystallogr. 41, 1395–1399.  CrossRef CAS Google Scholar
First citationLu, Y.-X. (2007). Acta Cryst. E63, o3018.  CrossRef IUCr Journals Google Scholar
First citationMasoud, D. M., Hammad, S. F., Elgemeie, G. H. & Jones, P. G. (2017). Acta Cryst. E73, 1751–1754.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohamed-Ezzat, R. A., Elgemeie, G. H. & Jones, P. G. (2024). Acta Cryst. E80, 120–124.  CrossRef IUCr Journals Google Scholar
First citationParsons, S. (2017). Tetrahedron Asymmetry, 28, 1304–1313.  CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPérez-Rentero, S., Grijalvo, S., Ferreira, R. & Eritja, R. (2012). Molecules, 17, 10026–10045.  PubMed Google Scholar
First citationRigaku OD (2023). CrysAlis PRO, Version 1.171.42.100a. Other (earlier) versions were also used, but are not cited explicitly. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRogers, D. (1981). Acta Cryst. A37, 734–741.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSantos, G. C. dos, Martins, L. M., Bregadiolli, B. A., Moreno, V. F., da Silva–Filho, L. C. & da Silva, B. H. S. T. (2021). J. Heterocycl. Chem. 58, 2226–2260.  Google Scholar
First citationScala, S., Akhmed, K., Rao, U. S., Paull, K., Lan, L., Dickstein, B., Lee, J., Elgemeie, G. H., Stein, W. D. & Bates, S. E. P. (1997). Mol. Pharmacol. 51, 1024–1033.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, J.-L., Ma, S., Zhang, P.-Z., Jia, A.-Q. & Zhang, Q.-F. (2020). J. Chem. Crystallogr. 50, 295–302.  CrossRef CAS Google Scholar
First citationWarren, A. M., Murray, B. J. & Connolly, A. B. (1998). J. Mol. Biol. 279, 89–100.  CrossRef CAS PubMed Google Scholar
First citationWatkin, D. J. & Cooper, R. I. (2020). Chemistry, 2, 796–804.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds