research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of [1-(4-bromo­phen­yl)-1H-1,2,3-triazol-4-yl]methyl 2-(4-nitro­phen­­oxy)acetate

crossmark logo

aNamangan State University, Boburshoh str. 161, Namangan 160107, Uzbekistan, bAndijan Machine Building Institute, Bobur Shox Ave 56, Andijan 170119, Uzbekistan, cInstitute of the Chemistry of Plant Substances, Uzbekistan Academy of Sciences, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan, dNational University of Uzbekistan, University Str., 4, Tashkent 100174, Uzbekistan, and eUniversity of Geological Sciences, Olimlar Str. 64, Tashkent 100170, Uzbekistan
*Correspondence e-mail: hakimov1094@yahoo.com

Edited by A. S. Batsanov, University of Durham, United Kingdom (Received 26 April 2024; accepted 28 July 2024; online 31 July 2024)

The title compound, C17H13BrN4O5, was synthesized by a Cu2Br2-catalysed Meldal–Sharpless reaction between 4-nitro­phen­oxy­acetic acid propargyl ether and para-bromo­phenyl­azide, and characterized by X-ray structure determination and 1H NMR spectroscopy. The mol­ecules, with a near-perpendicular orientation of the bromo­phenyl-triazole and nitro­phen­oxy­acetate fragments, are connected into a three-dimensional network by inter­molecular C—H⋯O and C—H⋯N hydrogen bonds (confirmed by Hirshfeld surface analysis), ππ and Br–π inter­actions.

1. Chemical context

1,3-Dipolar cyclo­addition, a reaction between a 1,3-dipole and a dipolarophile to generate a five-membered ring, has been known since the early 20th century, following the discovery of 1,3-dipoles; its mechanism was studied and synthetic applications were developed in the 1960s, primarily through the work of Rolf Huisgen (Bertrand et al., 1994[Bertrand, G. & Wentrup, C. (1994). Angew. Chem. Int. Ed. Engl. 33, 527-545.]; Huisgen, 1963[Huisgen, R. (1963). Angew. Chem. Int. Ed. Engl. 2, 565-598.]). Meldal and Sharpless independently developed a copper(I)-catalysed version of the Huisgen cyclo­addition reaction (Tornøe et al., 2002[Tornøe, Ch. W., Christensen, C. & Meldal, M. (2002). J. Org. Chem. 67, 3057-3064.]; Rostovtsev et al., 2002[Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. (2002). Angew. Chem. Int. Ed. 41, 2596-2599.]), which earned the name of ‘click chemistry’ for its versatility. They found that only one isomer, 1,4-disubstituted 1,2,3-triazole, was formed from the cyclo­addition of terminal alkyne and organic azides under these conditions. The mechanism of the reaction and the role of the CuI salt were fully explained. Currently, 1,2,3-triazole derivatives are researched intensively because of their pharmacological and biological activity (Borgati et al., 2013[Borgati, Th. F., Alves, R. B., Teixeira, R. R., Freitas, R. P., Perdigão, Th. G., Silva, S. F., Santos, A. A. & Bastidas, A. J. O. (2013). J. Braz. Chem. Soc. 24, 953-961.]; Bozorov et al., 2019[Bozorov, Kh., Zhao, J. & Aisa, H. A. (2019). Bioorg. Med. Chem. 27, 3511-3531.]; Faraz et al., 2017[Faraz, Kh. M., Garima, V., Wasim, A., Akranth, M., Mumtoz, A. M., Mymoona, A., Asif, H., Misbahul, H. S., Mohammad, Sh. & Rashiduddin, H. S. (2017). Int. J. Drug Dev. Res, 9(2), 22-25.]; Li et al., 2015[Li, W., Zhou, X., Luan, Y. & Wang, J. (2015). RSC Adv. 5, 88816-88820.]). In the course these studies, we prepared the title compound 1 by the cross-ring reaction of 4-nitro­phen­oxy­acetic acid propargyl ether with para-bromo­phenyl­azide and characterized it by single-crystal X-ray diffraction and NMR spectroscopy.

[Scheme 1]

2. Structural commentary

Compound 1 crystallizes in the monoclinic space group P21/n, the asymmetric unit comprising one mol­ecule (Fig. 1[link]) which contains five planar fragments, namely a bromo­phenyl group, a 1-H-1,2,3-triazole ring, a CH2OC(=O)CH2O bridge, phenyl and nitro groups. The inter­planar angles between adjacent fragments in this succession are 23.5 (1), 80.3 (1), 19.3 (1) and 6.0 (2)°, respectively. The N17—C12—C11—O10 torsion angle is 97.3 (3)°.

[Figure 1]
Figure 1
The mol­ecular structure of 1 with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

Although the structure contains no classical strong hydrogen bonds, some inter­molecular C—H⋯O and C—H⋯N contacts (Table 1[link]) can be identified as hydrogen bonds by Hirshfeld surface analysis (vide infra). They link the mol­ecules into a three-dimensional network (Fig. 2[link]), complemented by ππ stacking between the triazole ring and the brominated phenyl ring [inter­planar angle of 8.76 (15)°, Cg1⋯Cg2 distance of 3.723 (16) Å and slippage of 0.917 Å], as well as C24—Br27⋯π inter­actions [Br27⋯Cg2 = 3.787 (11) Å] involving the same phenyl ring.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C26—H26⋯N17i 0.93 2.54 3.463 (3) 173
C5—H5⋯O16ii 0.93 2.56 3.493 (3) 176
C8—H8A⋯O16ii 0.97 2.51 3.195 (3) 128
C8—H8B⋯O14iii 0.97 2.54 3.427 (3) 153
C2—H2⋯O16iv 0.93 2.52 3.287 (3) 140
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+2, -y+1, -z+1]; (iv) [-x+2, -y+1, -z+2].
[Figure 2]
Figure 2
Crystal packing of 1, showing hydrogen bonds, π-π- and Br–π inter­actions as blue, green and red dotted lines, respectively. The centroids of the triazole (Cg1) and brominated phenyl (Cg2) rings are shown by blue and red circles, respectively. H atoms not participating in hydrogen bonds are omitted.

4. Hirshfeld surface analysis

A Hirshfeld surface analysis was performed using CrystalExplorer21 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The Hirshfeld surface of mol­ecule 1 mapped over dnorm is shown in Fig. 3[link]. The C—H⋯O and C—H⋯N contacts are represented by red spots on the dnorm surface, indicating close inter­actions (hydrogen bonds). The 2D fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]), show that inter­molecular H⋯H and O⋯H/H⋯O contacts make the largest contributions to the total Hirshfeld surface, 23.2% and 25.7%, respectively, other significant contributions being N⋯H/H⋯N (11.7%), Br⋯H/H⋯Br (5.6%) and C⋯H/H⋯C (11.1%) (Fig. 4[link]). The characteristic ‘spikes’ in the N⋯H/H⋯N and especially O⋯H/H⋯O plots are also indicative of hydrogen bonds.

[Figure 3]
Figure 3
Hirshfeld surface of 1 mapped over dnorm and close inter­molecular contacts.
[Figure 4]
Figure 4
Two-dimensional fingerprint plots of the inter­molecular contacts in 1.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.43, last update November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 1-(4-bromo­phen­yl)-1H-1,2,3-triazole unit, resulted in four hits, CSD refcodes CEWMID (Tireli et al., 2017[Tireli, M., Maračić, S., Lukin, S., Kulcsár, M. J., Žilić, D., Cetina, M., Halasz, I., Raić-Malić, S. & Užarević, K. (2017). Beilstein J. Org. Chem. 13, 2352-2363.]), HEHNAL (Boechat et al., 2012[Boechat, N., de Lourdes, G., Ferreira, M., Bastos, M. M., da Silva, G. P., Wardell, J. & Wardell, J. (2012). Z. Kristallogr. 227, 369-378.]), HOHVAD01 (Li et al., 2015[Li, W., Zhou, X., Luan, Y. & Wang, J. (2015). RSC Adv. 5, 88816-88820.]) and XABPIC (Singh et al., 2013[Singh, H., Sindhu, J. & Khurana, J. M. (2013). J. Iran. Chem. Soc. 10, 883-888.]). In these structures, the dihedral angles between the bromophenyl and triazole rings are comparable to those in the title compound.

6. Synthesis and crystallization

Synthesis of 1.

1.00 g (5 mmol) of para-bromo­phenyl­azide, 1.175 g (5 mmol) of prop-2-yn-1-yl-2-(4-nitro­phen­oxy) acetate, 0.10 g (0.32 mmol) of CuBr and 30 ml of toluene were placed into a flask with a reflux condenser, which was heated on an oil bath at the boiling point of toluene (383 K) for 6 h. The progress of the reaction was monitored by thin-layer chromatography. Over time, a precipitate began to form in the reaction mixture. After 6 h, the reaction was stopped and it was left overnight at room temperature. The precipitate was filtered, dried and recrystallized from ethanol, yielding 1.717 g (79.3%) of 1, m.p. 417–419 K, Rf = 0.55 (system benzene:methanol, 10:1). Colourless single crystals suitable for X-ray diffraction analysis were grown from ethanol at room temperature over two weeks.

In the 1H NMR spectrum (Fig. S1) of 1 in CDCl3 the protons of the methyl­ene groups C8H2 and C11H2 (see atom numbering in Fig. 1[link]) showed as 2H singlets at 4.76 and 5.43 ppm, respectively. Protons H1 and H5 of the 4-nitro­phen­oxy group gave a 2H doublet (J = 9.35 Hz) at 6.94 ppm, H2 and H4 a 2H doublet at 8.18 ppm (J = 9.2 Hz). Protons H22 and H26 of the 4-bromo­phenyl group give a 2H doublet (J = 9.1 Hz) at 7.59 ppm, H23 and H25 a 2H doublet at 7.66 ppm (J = 9.0 Hz). The sole proton of the triazole moiety shows a singlet signal at 8.03 ppm.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms attached to C were positioned geometrically, with C—H = 0.93 Å for aromatic or C—H = 0.97 Å for methyl­ene C atoms, and were refined as riding with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C17H13BrN4O5
Mr 433.22
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 17.3468 (3), 10.40583 (19), 9.87841 (16)
β (°) 99.4243 (16)
V3) 1759.07 (5)
Z 4
Radiation type Cu Kα
μ (mm−1) 3.54
Crystal size (mm) 0.6 × 0.4 × 0.2
 
Data collection
Diffractometer XtaLAB Synergy, Single source at home/near, HyPix3000
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.654, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 16655, 3401, 2758
Rint 0.044
(sin θ/λ)max−1) 0.616
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.094, 1.06
No. of reflections 3401
No. of parameters 244
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.53
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/1 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

[1-(4-Bromophenyl)-1H-1,2,3-triazol-4-yl]methyl 2-(4-nitrophenoxy)acetate top
Crystal data top
C17H13BrN4O5Dx = 1.636 Mg m3
Mr = 433.22Melting point: 419 K
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 17.3468 (3) ÅCell parameters from 5570 reflections
b = 10.40583 (19) Åθ = 2.6–70.8°
c = 9.87841 (16) ŵ = 3.54 mm1
β = 99.4243 (16)°T = 293 K
V = 1759.07 (5) Å3Prism, colourless
Z = 40.6 × 0.4 × 0.2 mm
F(000) = 872
Data collection top
XtaLAB Synergy, Single source at home/near, HyPix3000
diffractometer
2758 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.044
ω scansθmax = 71.6°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
h = 2121
Tmin = 0.654, Tmax = 1.000k = 1211
16655 measured reflectionsl = 1112
3401 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0412P)2 + 0.3925P]
where P = (Fo2 + 2Fc2)/3
3401 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.53 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br270.23315 (2)0.34083 (3)0.13747 (3)0.05876 (13)
C250.33490 (14)0.4068 (2)0.3824 (3)0.0435 (5)
H250.3126330.4879750.3682050.052*
O100.71928 (9)0.30539 (17)0.81015 (16)0.0444 (4)
O70.92280 (10)0.35886 (19)0.85518 (17)0.0513 (5)
O160.80463 (11)0.33428 (18)1.00422 (17)0.0526 (5)
N190.48779 (11)0.24275 (18)0.6241 (2)0.0393 (4)
O141.15099 (13)0.4209 (2)0.4317 (2)0.0723 (6)
O151.21345 (13)0.5260 (2)0.6045 (3)0.0725 (6)
N180.50303 (15)0.1230 (2)0.6747 (3)0.0599 (6)
N131.15860 (13)0.4594 (2)0.5506 (3)0.0531 (6)
N170.56280 (15)0.1328 (2)0.7739 (3)0.0629 (7)
C240.31006 (14)0.3080 (2)0.2928 (2)0.0423 (5)
C210.42602 (13)0.2639 (2)0.5120 (2)0.0377 (5)
C260.39253 (14)0.3849 (2)0.4926 (3)0.0413 (5)
H260.4090940.4508590.5540010.050*
C90.79074 (14)0.3230 (2)0.8828 (2)0.0382 (5)
C31.09852 (14)0.4243 (2)0.6322 (3)0.0449 (6)
C60.97995 (14)0.3746 (2)0.7767 (2)0.0424 (5)
C200.53775 (14)0.3271 (2)0.6942 (3)0.0429 (5)
H200.5389580.4155830.6813210.052*
C120.58587 (14)0.2570 (2)0.7874 (3)0.0434 (6)
C50.97409 (15)0.3327 (3)0.6420 (3)0.0463 (6)
H50.9300950.2876610.6009520.056*
C80.84817 (14)0.3220 (3)0.7848 (2)0.0441 (6)
H8A0.8509810.2365290.7466020.053*
H8B0.8313250.3811260.7099120.053*
C220.40085 (15)0.1648 (2)0.4226 (3)0.0441 (6)
H220.4235420.0839050.4363960.053*
C230.34185 (16)0.1861 (2)0.3127 (3)0.0466 (6)
H230.3237990.1195270.2529800.056*
C110.65520 (15)0.2966 (3)0.8875 (3)0.0505 (6)
H11A0.6461120.3790630.9279130.061*
H11B0.6666620.2335270.9602970.061*
C21.10697 (15)0.4614 (3)0.7680 (3)0.0503 (6)
H21.1521860.5026890.8099060.060*
C41.03377 (15)0.3580 (2)0.5696 (3)0.0470 (6)
H41.0303310.3305960.4791850.056*
C11.04753 (15)0.4362 (3)0.8399 (3)0.0521 (7)
H11.0523720.4604850.9314960.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br270.0594 (2)0.0613 (2)0.05047 (19)0.00121 (14)0.00636 (14)0.00058 (13)
C250.0436 (13)0.0356 (12)0.0504 (14)0.0032 (10)0.0049 (11)0.0015 (11)
O100.0324 (8)0.0594 (11)0.0399 (9)0.0027 (7)0.0020 (7)0.0041 (8)
O70.0361 (9)0.0798 (13)0.0372 (9)0.0098 (8)0.0034 (7)0.0045 (8)
O160.0471 (10)0.0738 (13)0.0352 (9)0.0019 (9)0.0019 (8)0.0010 (8)
N190.0348 (10)0.0323 (10)0.0506 (11)0.0024 (8)0.0067 (9)0.0047 (9)
O140.0652 (14)0.1000 (18)0.0563 (13)0.0045 (12)0.0239 (11)0.0074 (12)
O150.0580 (13)0.0667 (14)0.0988 (16)0.0162 (11)0.0307 (12)0.0042 (12)
N180.0595 (15)0.0357 (11)0.0773 (17)0.0009 (10)0.0099 (12)0.0114 (11)
N130.0463 (13)0.0515 (13)0.0643 (15)0.0071 (10)0.0171 (11)0.0111 (11)
N170.0587 (15)0.0465 (13)0.0766 (17)0.0007 (11)0.0093 (13)0.0150 (12)
C240.0385 (13)0.0472 (14)0.0414 (13)0.0027 (10)0.0070 (10)0.0002 (11)
C210.0331 (12)0.0379 (12)0.0429 (13)0.0016 (9)0.0090 (10)0.0016 (10)
C260.0402 (13)0.0347 (12)0.0484 (14)0.0008 (10)0.0057 (10)0.0034 (10)
C90.0350 (12)0.0378 (12)0.0403 (13)0.0009 (9)0.0014 (10)0.0057 (10)
C30.0389 (13)0.0449 (14)0.0519 (14)0.0052 (11)0.0104 (11)0.0037 (11)
C60.0349 (12)0.0521 (14)0.0400 (13)0.0002 (10)0.0059 (10)0.0004 (11)
C200.0354 (12)0.0362 (12)0.0567 (15)0.0028 (10)0.0058 (11)0.0029 (11)
C120.0333 (12)0.0481 (14)0.0496 (14)0.0001 (10)0.0094 (10)0.0033 (11)
C50.0384 (13)0.0558 (16)0.0430 (13)0.0045 (11)0.0020 (10)0.0057 (11)
C80.0365 (13)0.0562 (15)0.0377 (12)0.0058 (11)0.0007 (10)0.0024 (11)
C220.0446 (13)0.0359 (13)0.0529 (14)0.0034 (10)0.0115 (11)0.0036 (11)
C230.0519 (15)0.0425 (14)0.0455 (14)0.0045 (11)0.0084 (12)0.0093 (11)
C110.0380 (13)0.0693 (17)0.0448 (14)0.0007 (12)0.0086 (11)0.0038 (13)
C20.0368 (13)0.0553 (16)0.0576 (16)0.0071 (11)0.0040 (11)0.0067 (13)
C40.0441 (14)0.0547 (16)0.0422 (13)0.0015 (12)0.0071 (11)0.0054 (11)
C10.0438 (14)0.0692 (18)0.0430 (14)0.0045 (13)0.0061 (11)0.0098 (13)
Geometric parameters (Å, º) top
Br27—C241.892 (2)C9—C81.498 (3)
C25—H250.9300C3—C21.381 (4)
C25—C241.379 (3)C3—C41.376 (4)
C25—C261.371 (3)C6—C51.388 (3)
O10—C91.339 (3)C6—C11.391 (3)
O10—C111.451 (3)C20—H200.9300
O7—C61.365 (3)C20—C121.351 (3)
O7—C81.418 (3)C12—C111.485 (4)
O16—C91.190 (3)C5—H50.9300
N19—N181.353 (3)C5—C41.377 (4)
N19—C211.426 (3)C8—H8A0.9700
N19—C201.344 (3)C8—H8B0.9700
O14—N131.228 (3)C22—H220.9300
O15—N131.226 (3)C22—C231.383 (4)
N18—N171.309 (3)C23—H230.9300
N13—C31.464 (3)C11—H11A0.9700
N17—C121.353 (3)C11—H11B0.9700
C24—C231.385 (4)C2—H20.9300
C21—C261.387 (3)C2—C11.370 (3)
C21—C221.381 (3)C4—H40.9300
C26—H260.9300C1—H10.9300
C24—C25—H25120.1N17—C12—C11121.7 (2)
C26—C25—H25120.1C20—C12—N17108.0 (2)
C26—C25—C24119.8 (2)C20—C12—C11130.3 (2)
C9—O10—C11116.63 (19)C6—C5—H5120.2
C6—O7—C8116.33 (18)C4—C5—C6119.6 (2)
N18—N19—C21120.4 (2)C4—C5—H5120.2
C20—N19—N18109.9 (2)O7—C8—C9109.35 (19)
C20—N19—C21129.7 (2)O7—C8—H8A109.8
N17—N18—N19106.7 (2)O7—C8—H8B109.8
O14—N13—C3118.1 (2)C9—C8—H8A109.8
O15—N13—O14123.6 (2)C9—C8—H8B109.8
O15—N13—C3118.3 (2)H8A—C8—H8B108.3
N18—N17—C12109.5 (2)C21—C22—H22120.0
C25—C24—Br27119.41 (19)C21—C22—C23119.9 (2)
C25—C24—C23121.1 (2)C23—C22—H22120.0
C23—C24—Br27119.47 (19)C24—C23—H23120.5
C26—C21—N19119.5 (2)C22—C23—C24119.0 (2)
C22—C21—N19120.0 (2)C22—C23—H23120.5
C22—C21—C26120.5 (2)O10—C11—C12105.9 (2)
C25—C26—C21119.7 (2)O10—C11—H11A110.6
C25—C26—H26120.2O10—C11—H11B110.6
C21—C26—H26120.2C12—C11—H11A110.6
O10—C9—C8107.9 (2)C12—C11—H11B110.6
O16—C9—O10124.8 (2)H11A—C11—H11B108.7
O16—C9—C8127.3 (2)C3—C2—H2120.6
C2—C3—N13119.6 (2)C1—C2—C3118.8 (2)
C4—C3—N13118.7 (2)C1—C2—H2120.6
C4—C3—C2121.7 (2)C3—C4—C5119.4 (2)
O7—C6—C5124.1 (2)C3—C4—H4120.3
O7—C6—C1115.9 (2)C5—C4—H4120.3
C5—C6—C1120.0 (2)C6—C1—H1119.8
N19—C20—H20127.1C2—C1—C6120.4 (2)
N19—C20—C12105.8 (2)C2—C1—H1119.8
C12—C20—H20127.1
Br27—C24—C23—C22176.72 (19)C21—N19—N18—N17178.9 (2)
C25—C24—C23—C221.7 (4)C21—N19—C20—C12178.4 (2)
O10—C9—C8—O7171.6 (2)C21—C22—C23—C241.3 (4)
O7—C6—C5—C4177.3 (2)C26—C25—C24—Br27177.75 (18)
O7—C6—C1—C2177.3 (2)C26—C25—C24—C230.6 (4)
O16—C9—C8—O710.0 (4)C26—C21—C22—C230.1 (4)
N19—N18—N17—C120.1 (3)C9—O10—C11—C12171.2 (2)
N19—C21—C26—C25177.9 (2)C3—C2—C1—C60.1 (4)
N19—C21—C22—C23178.9 (2)C6—O7—C8—C9173.9 (2)
N19—C20—C12—N171.5 (3)C6—C5—C4—C30.2 (4)
N19—C20—C12—C11176.0 (2)C20—N19—N18—N171.0 (3)
O14—N13—C3—C2177.3 (3)C20—N19—C21—C2623.2 (4)
O14—N13—C3—C44.5 (4)C20—N19—C21—C22155.8 (2)
O15—N13—C3—C23.1 (4)C20—C12—C11—O1079.9 (3)
O15—N13—C3—C4175.0 (2)C5—C6—C1—C23.2 (4)
N18—N19—C21—C26156.9 (2)C8—O7—C6—C513.6 (4)
N18—N19—C21—C2224.1 (3)C8—O7—C6—C1166.9 (2)
N18—N19—C20—C121.6 (3)C22—C21—C26—C251.1 (3)
N18—N17—C12—C200.9 (3)C11—O10—C9—O161.6 (4)
N18—N17—C12—C11176.8 (2)C11—O10—C9—C8176.9 (2)
N13—C3—C2—C1175.2 (2)C2—C3—C4—C52.9 (4)
N13—C3—C4—C5175.2 (2)C4—C3—C2—C13.0 (4)
N17—C12—C11—O1097.3 (3)C1—C6—C5—C43.2 (4)
C24—C25—C26—C210.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C26—H26···N17i0.932.543.463 (3)173
C5—H5···O16ii0.932.563.493 (3)176
C8—H8A···O16ii0.972.513.195 (3)128
C8—H8B···O14iii0.972.543.427 (3)153
C2—H2···O16iv0.932.523.287 (3)140
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1/2, z1/2; (iii) x+2, y+1, z+1; (iv) x+2, y+1, z+2.
 

Acknowledgements

The authors thank the Institute of Bioorganic Chemistry of Academy Sciences of Uzbekistan, Tashkent, Uzbekistan for providing the single-crystal XRD facility.

References

First citationBertrand, G. & Wentrup, C. (1994). Angew. Chem. Int. Ed. Engl. 33, 527–545.  CrossRef Web of Science Google Scholar
First citationBoechat, N., de Lourdes, G., Ferreira, M., Bastos, M. M., da Silva, G. P., Wardell, J. & Wardell, J. (2012). Z. Kristallogr. 227, 369–378.  CrossRef CAS Google Scholar
First citationBorgati, Th. F., Alves, R. B., Teixeira, R. R., Freitas, R. P., Perdigão, Th. G., Silva, S. F., Santos, A. A. & Bastidas, A. J. O. (2013). J. Braz. Chem. Soc. 24, 953–961.  CAS Google Scholar
First citationBozorov, Kh., Zhao, J. & Aisa, H. A. (2019). Bioorg. Med. Chem. 27, 3511–3531.  CrossRef CAS PubMed Google Scholar
First citationFaraz, Kh. M., Garima, V., Wasim, A., Akranth, M., Mumtoz, A. M., Mymoona, A., Asif, H., Misbahul, H. S., Mohammad, Sh. & Rashiduddin, H. S. (2017). Int. J. Drug Dev. Res, 9(2), 22–25.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHuisgen, R. (1963). Angew. Chem. Int. Ed. Engl. 2, 565–598.  CrossRef Google Scholar
First citationLi, W., Zhou, X., Luan, Y. & Wang, J. (2015). RSC Adv. 5, 88816–88820.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. (2002). Angew. Chem. Int. Ed. 41, 2596–2599.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, H., Sindhu, J. & Khurana, J. M. (2013). J. Iran. Chem. Soc. 10, 883–888.  CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTireli, M., Maračić, S., Lukin, S., Kulcsár, M. J., Žilić, D., Cetina, M., Halasz, I., Raić-Malić, S. & Užarević, K. (2017). Beilstein J. Org. Chem. 13, 2352–2363.  CrossRef CAS PubMed Google Scholar
First citationTornøe, Ch. W., Christensen, C. & Meldal, M. (2002). J. Org. Chem. 67, 3057–3064.  PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds