research communications
Synthesis, H-1,2,3-triazol-4-yl]methyl 2-(4-nitrophenoxy)acetate
and Hirshfeld surface analysis of [1-(4-bromophenyl)-1aNamangan State University, Boburshoh str. 161, Namangan 160107, Uzbekistan, bAndijan Machine Building Institute, Bobur Shox Ave 56, Andijan 170119, Uzbekistan, cInstitute of the Chemistry of Plant Substances, Uzbekistan Academy of Sciences, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan, dNational University of Uzbekistan, University Str., 4, Tashkent 100174, Uzbekistan, and eUniversity of Geological Sciences, Olimlar Str. 64, Tashkent 100170, Uzbekistan
*Correspondence e-mail: hakimov1094@yahoo.com
The title compound, C17H13BrN4O5, was synthesized by a Cu2Br2-catalysed Meldal–Sharpless reaction between 4-nitrophenoxyacetic acid propargyl ether and para-bromophenylazide, and characterized by X-ray and 1H NMR spectroscopy. The molecules, with a near-perpendicular orientation of the bromophenyl-triazole and nitrophenoxyacetate fragments, are connected into a three-dimensional network by intermolecular C—H⋯O and C—H⋯N hydrogen bonds (confirmed by Hirshfeld surface analysis), π–π and Br–π interactions.
Keywords: crystal structure; 1,2,3-triazole; click chemistry; hydrogen bonds; Hirshfeld surface analysis.
CCDC reference: 2322358
1. Chemical context
1,3-Dipolar cycloaddition, a reaction between a 1,3-dipole and a dipolarophile to generate a five-membered ring, has been known since the early 20th century, following the discovery of 1,3-dipoles; its mechanism was studied and synthetic applications were developed in the 1960s, primarily through the work of Rolf Huisgen (Bertrand et al., 1994; Huisgen, 1963). Meldal and Sharpless independently developed a copper(I)-catalysed version of the Huisgen cycloaddition reaction (Tornøe et al., 2002; Rostovtsev et al., 2002), which earned the name of ‘click chemistry’ for its versatility. They found that only one isomer, 1,4-disubstituted 1,2,3-triazole, was formed from the cycloaddition of terminal alkyne and organic under these conditions. The mechanism of the reaction and the role of the CuI salt were fully explained. Currently, 1,2,3-triazole derivatives are researched intensively because of their pharmacological and biological activity (Borgati et al., 2013; Bozorov et al., 2019; Faraz et al., 2017; Li et al., 2015). In the course these studies, we prepared the title compound 1 by the cross-ring reaction of 4-nitrophenoxyacetic acid propargyl ether with para-bromophenylazide and characterized it by single-crystal X-ray diffraction and NMR spectroscopy.
2. Structural commentary
Compound 1 crystallizes in the monoclinic P21/n, the comprising one molecule (Fig. 1) which contains five planar fragments, namely a bromophenyl group, a 1-H-1,2,3-triazole ring, a CH2OC(=O)CH2O bridge, phenyl and nitro groups. The interplanar angles between adjacent fragments in this succession are 23.5 (1), 80.3 (1), 19.3 (1) and 6.0 (2)°, respectively. The N17—C12—C11—O10 torsion angle is 97.3 (3)°.
3. Supramolecular features
Although the structure contains no classical strong hydrogen bonds, some intermolecular C—H⋯O and C—H⋯N contacts (Table 1) can be identified as hydrogen bonds by Hirshfeld surface analysis (vide infra). They link the molecules into a three-dimensional network (Fig. 2), complemented by π–π stacking between the triazole ring and the brominated phenyl ring [interplanar angle of 8.76 (15)°, Cg1⋯Cg2 distance of 3.723 (16) Å and slippage of 0.917 Å], as well as C24—Br27⋯π interactions [Br27⋯Cg2 = 3.787 (11) Å] involving the same phenyl ring.
4. Hirshfeld surface analysis
A Hirshfeld surface analysis was performed using CrystalExplorer21 (Spackman et al., 2021). The Hirshfeld surface of molecule 1 mapped over dnorm is shown in Fig. 3. The C—H⋯O and C—H⋯N contacts are represented by red spots on the dnorm surface, indicating close interactions (hydrogen bonds). The 2D fingerprint plots (McKinnon et al., 2007), show that intermolecular H⋯H and O⋯H/H⋯O contacts make the largest contributions to the total Hirshfeld surface, 23.2% and 25.7%, respectively, other significant contributions being N⋯H/H⋯N (11.7%), Br⋯H/H⋯Br (5.6%) and C⋯H/H⋯C (11.1%) (Fig. 4). The characteristic ‘spikes’ in the N⋯H/H⋯N and especially O⋯H/H⋯O plots are also indicative of hydrogen bonds.
5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.43, last update November 2022; Groom et al., 2016) for the 1-(4-bromophenyl)-1H-1,2,3-triazole unit, resulted in four hits, CSD refcodes CEWMID (Tireli et al., 2017), HEHNAL (Boechat et al., 2012), HOHVAD01 (Li et al., 2015) and XABPIC (Singh et al., 2013). In these structures, the dihedral angles between the bromophenyl and triazole rings are comparable to those in the title compound.
6. Synthesis and crystallization
Synthesis of 1.
1.00 g (5 mmol) of para-bromophenylazide, 1.175 g (5 mmol) of prop-2-yn-1-yl-2-(4-nitrophenoxy) acetate, 0.10 g (0.32 mmol) of CuBr and 30 ml of toluene were placed into a flask with a reflux condenser, which was heated on an oil bath at the boiling point of toluene (383 K) for 6 h. The progress of the reaction was monitored by Over time, a precipitate began to form in the reaction mixture. After 6 h, the reaction was stopped and it was left overnight at room temperature. The precipitate was filtered, dried and recrystallized from ethanol, yielding 1.717 g (79.3%) of 1, m.p. 417–419 K, Rf = 0.55 (system benzene:methanol, 10:1). Colourless single crystals suitable for X-ray were grown from ethanol at room temperature over two weeks.
In the 1H NMR spectrum (Fig. S1) of 1 in CDCl3 the protons of the methylene groups C8H2 and C11H2 (see atom numbering in Fig. 1) showed as 2H singlets at 4.76 and 5.43 ppm, respectively. Protons H1 and H5 of the 4-nitrophenoxy group gave a 2H doublet (J = 9.35 Hz) at 6.94 ppm, H2 and H4 a 2H doublet at 8.18 ppm (J = 9.2 Hz). Protons H22 and H26 of the 4-bromophenyl group give a 2H doublet (J = 9.1 Hz) at 7.59 ppm, H23 and H25 a 2H doublet at 7.66 ppm (J = 9.0 Hz). The sole proton of the triazole moiety shows a singlet signal at 8.03 ppm.
7. Refinement
Crystal data, data collection and structure . H atoms attached to C were positioned geometrically, with C—H = 0.93 Å for aromatic or C—H = 0.97 Å for methylene C atoms, and were refined as riding with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2Supporting information
CCDC reference: 2322358
https://doi.org/10.1107/S2056989024007436/zv2035sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024007436/zv2035Isup3.hkl
Figure S1. 1H NMR spectra of compound 1. DOI: https://doi.org/10.1107/S2056989024007436/zv2035sup4.tif
Supporting information file. DOI: https://doi.org/10.1107/S2056989024007436/zv2035Isup4.cml
C17H13BrN4O5 | Dx = 1.636 Mg m−3 |
Mr = 433.22 | Melting point: 419 K |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 17.3468 (3) Å | Cell parameters from 5570 reflections |
b = 10.40583 (19) Å | θ = 2.6–70.8° |
c = 9.87841 (16) Å | µ = 3.54 mm−1 |
β = 99.4243 (16)° | T = 293 K |
V = 1759.07 (5) Å3 | Prism, colourless |
Z = 4 | 0.6 × 0.4 × 0.2 mm |
F(000) = 872 |
XtaLAB Synergy, Single source at home/near, HyPix3000 diffractometer | 2758 reflections with I > 2σ(I) |
Detector resolution: 10.0000 pixels mm-1 | Rint = 0.044 |
ω scans | θmax = 71.6°, θmin = 2.6° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2020) | h = −21→21 |
Tmin = 0.654, Tmax = 1.000 | k = −12→11 |
16655 measured reflections | l = −11→12 |
3401 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.094 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0412P)2 + 0.3925P] where P = (Fo2 + 2Fc2)/3 |
3401 reflections | (Δ/σ)max < 0.001 |
244 parameters | Δρmax = 0.27 e Å−3 |
0 restraints | Δρmin = −0.53 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br27 | 0.23315 (2) | 0.34083 (3) | 0.13747 (3) | 0.05876 (13) | |
C25 | 0.33490 (14) | 0.4068 (2) | 0.3824 (3) | 0.0435 (5) | |
H25 | 0.312633 | 0.487975 | 0.368205 | 0.052* | |
O10 | 0.71928 (9) | 0.30539 (17) | 0.81015 (16) | 0.0444 (4) | |
O7 | 0.92280 (10) | 0.35886 (19) | 0.85518 (17) | 0.0513 (5) | |
O16 | 0.80463 (11) | 0.33428 (18) | 1.00422 (17) | 0.0526 (5) | |
N19 | 0.48779 (11) | 0.24275 (18) | 0.6241 (2) | 0.0393 (4) | |
O14 | 1.15099 (13) | 0.4209 (2) | 0.4317 (2) | 0.0723 (6) | |
O15 | 1.21345 (13) | 0.5260 (2) | 0.6045 (3) | 0.0725 (6) | |
N18 | 0.50303 (15) | 0.1230 (2) | 0.6747 (3) | 0.0599 (6) | |
N13 | 1.15860 (13) | 0.4594 (2) | 0.5506 (3) | 0.0531 (6) | |
N17 | 0.56280 (15) | 0.1328 (2) | 0.7739 (3) | 0.0629 (7) | |
C24 | 0.31006 (14) | 0.3080 (2) | 0.2928 (2) | 0.0423 (5) | |
C21 | 0.42602 (13) | 0.2639 (2) | 0.5120 (2) | 0.0377 (5) | |
C26 | 0.39253 (14) | 0.3849 (2) | 0.4926 (3) | 0.0413 (5) | |
H26 | 0.409094 | 0.450859 | 0.554001 | 0.050* | |
C9 | 0.79074 (14) | 0.3230 (2) | 0.8828 (2) | 0.0382 (5) | |
C3 | 1.09852 (14) | 0.4243 (2) | 0.6322 (3) | 0.0449 (6) | |
C6 | 0.97995 (14) | 0.3746 (2) | 0.7767 (2) | 0.0424 (5) | |
C20 | 0.53775 (14) | 0.3271 (2) | 0.6942 (3) | 0.0429 (5) | |
H20 | 0.538958 | 0.415583 | 0.681321 | 0.052* | |
C12 | 0.58587 (14) | 0.2570 (2) | 0.7874 (3) | 0.0434 (6) | |
C5 | 0.97409 (15) | 0.3327 (3) | 0.6420 (3) | 0.0463 (6) | |
H5 | 0.930095 | 0.287661 | 0.600952 | 0.056* | |
C8 | 0.84817 (14) | 0.3220 (3) | 0.7848 (2) | 0.0441 (6) | |
H8A | 0.850981 | 0.236529 | 0.746602 | 0.053* | |
H8B | 0.831325 | 0.381126 | 0.709912 | 0.053* | |
C22 | 0.40085 (15) | 0.1648 (2) | 0.4226 (3) | 0.0441 (6) | |
H22 | 0.423542 | 0.083905 | 0.436396 | 0.053* | |
C23 | 0.34185 (16) | 0.1861 (2) | 0.3127 (3) | 0.0466 (6) | |
H23 | 0.323799 | 0.119527 | 0.252980 | 0.056* | |
C11 | 0.65520 (15) | 0.2966 (3) | 0.8875 (3) | 0.0505 (6) | |
H11A | 0.646112 | 0.379063 | 0.927913 | 0.061* | |
H11B | 0.666662 | 0.233527 | 0.960297 | 0.061* | |
C2 | 1.10697 (15) | 0.4614 (3) | 0.7680 (3) | 0.0503 (6) | |
H2 | 1.152186 | 0.502689 | 0.809906 | 0.060* | |
C4 | 1.03377 (15) | 0.3580 (2) | 0.5696 (3) | 0.0470 (6) | |
H4 | 1.030331 | 0.330596 | 0.479185 | 0.056* | |
C1 | 1.04753 (15) | 0.4362 (3) | 0.8399 (3) | 0.0521 (7) | |
H1 | 1.052372 | 0.460485 | 0.931496 | 0.063* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br27 | 0.0594 (2) | 0.0613 (2) | 0.05047 (19) | −0.00121 (14) | −0.00636 (14) | −0.00058 (13) |
C25 | 0.0436 (13) | 0.0356 (12) | 0.0504 (14) | 0.0032 (10) | 0.0049 (11) | 0.0015 (11) |
O10 | 0.0324 (8) | 0.0594 (11) | 0.0399 (9) | −0.0027 (7) | 0.0020 (7) | 0.0041 (8) |
O7 | 0.0361 (9) | 0.0798 (13) | 0.0372 (9) | −0.0098 (8) | 0.0034 (7) | −0.0045 (8) |
O16 | 0.0471 (10) | 0.0738 (13) | 0.0352 (9) | −0.0019 (9) | 0.0019 (8) | 0.0010 (8) |
N19 | 0.0348 (10) | 0.0323 (10) | 0.0506 (11) | 0.0024 (8) | 0.0067 (9) | 0.0047 (9) |
O14 | 0.0652 (14) | 0.1000 (18) | 0.0563 (13) | 0.0045 (12) | 0.0239 (11) | 0.0074 (12) |
O15 | 0.0580 (13) | 0.0667 (14) | 0.0988 (16) | −0.0162 (11) | 0.0307 (12) | −0.0042 (12) |
N18 | 0.0595 (15) | 0.0357 (11) | 0.0773 (17) | −0.0009 (10) | −0.0099 (12) | 0.0114 (11) |
N13 | 0.0463 (13) | 0.0515 (13) | 0.0643 (15) | 0.0071 (10) | 0.0171 (11) | 0.0111 (11) |
N17 | 0.0587 (15) | 0.0465 (13) | 0.0766 (17) | 0.0007 (11) | −0.0093 (13) | 0.0150 (12) |
C24 | 0.0385 (13) | 0.0472 (14) | 0.0414 (13) | −0.0027 (10) | 0.0070 (10) | 0.0002 (11) |
C21 | 0.0331 (12) | 0.0379 (12) | 0.0429 (13) | −0.0016 (9) | 0.0090 (10) | 0.0016 (10) |
C26 | 0.0402 (13) | 0.0347 (12) | 0.0484 (14) | −0.0008 (10) | 0.0057 (10) | −0.0034 (10) |
C9 | 0.0350 (12) | 0.0378 (12) | 0.0403 (13) | 0.0009 (9) | 0.0014 (10) | 0.0057 (10) |
C3 | 0.0389 (13) | 0.0449 (14) | 0.0519 (14) | 0.0052 (11) | 0.0104 (11) | 0.0037 (11) |
C6 | 0.0349 (12) | 0.0521 (14) | 0.0400 (13) | 0.0002 (10) | 0.0059 (10) | 0.0004 (11) |
C20 | 0.0354 (12) | 0.0362 (12) | 0.0567 (15) | −0.0028 (10) | 0.0058 (11) | 0.0029 (11) |
C12 | 0.0333 (12) | 0.0481 (14) | 0.0496 (14) | 0.0001 (10) | 0.0094 (10) | 0.0033 (11) |
C5 | 0.0384 (13) | 0.0558 (16) | 0.0430 (13) | −0.0045 (11) | 0.0020 (10) | −0.0057 (11) |
C8 | 0.0365 (13) | 0.0562 (15) | 0.0377 (12) | −0.0058 (11) | 0.0007 (10) | −0.0024 (11) |
C22 | 0.0446 (13) | 0.0359 (13) | 0.0529 (14) | 0.0034 (10) | 0.0115 (11) | −0.0036 (11) |
C23 | 0.0519 (15) | 0.0425 (14) | 0.0455 (14) | −0.0045 (11) | 0.0084 (12) | −0.0093 (11) |
C11 | 0.0380 (13) | 0.0693 (17) | 0.0448 (14) | 0.0007 (12) | 0.0086 (11) | 0.0038 (13) |
C2 | 0.0368 (13) | 0.0553 (16) | 0.0576 (16) | −0.0071 (11) | 0.0040 (11) | −0.0067 (13) |
C4 | 0.0441 (14) | 0.0547 (16) | 0.0422 (13) | 0.0015 (12) | 0.0071 (11) | −0.0054 (11) |
C1 | 0.0438 (14) | 0.0692 (18) | 0.0430 (14) | −0.0045 (13) | 0.0061 (11) | −0.0098 (13) |
Br27—C24 | 1.892 (2) | C9—C8 | 1.498 (3) |
C25—H25 | 0.9300 | C3—C2 | 1.381 (4) |
C25—C24 | 1.379 (3) | C3—C4 | 1.376 (4) |
C25—C26 | 1.371 (3) | C6—C5 | 1.388 (3) |
O10—C9 | 1.339 (3) | C6—C1 | 1.391 (3) |
O10—C11 | 1.451 (3) | C20—H20 | 0.9300 |
O7—C6 | 1.365 (3) | C20—C12 | 1.351 (3) |
O7—C8 | 1.418 (3) | C12—C11 | 1.485 (4) |
O16—C9 | 1.190 (3) | C5—H5 | 0.9300 |
N19—N18 | 1.353 (3) | C5—C4 | 1.377 (4) |
N19—C21 | 1.426 (3) | C8—H8A | 0.9700 |
N19—C20 | 1.344 (3) | C8—H8B | 0.9700 |
O14—N13 | 1.228 (3) | C22—H22 | 0.9300 |
O15—N13 | 1.226 (3) | C22—C23 | 1.383 (4) |
N18—N17 | 1.309 (3) | C23—H23 | 0.9300 |
N13—C3 | 1.464 (3) | C11—H11A | 0.9700 |
N17—C12 | 1.353 (3) | C11—H11B | 0.9700 |
C24—C23 | 1.385 (4) | C2—H2 | 0.9300 |
C21—C26 | 1.387 (3) | C2—C1 | 1.370 (3) |
C21—C22 | 1.381 (3) | C4—H4 | 0.9300 |
C26—H26 | 0.9300 | C1—H1 | 0.9300 |
C24—C25—H25 | 120.1 | N17—C12—C11 | 121.7 (2) |
C26—C25—H25 | 120.1 | C20—C12—N17 | 108.0 (2) |
C26—C25—C24 | 119.8 (2) | C20—C12—C11 | 130.3 (2) |
C9—O10—C11 | 116.63 (19) | C6—C5—H5 | 120.2 |
C6—O7—C8 | 116.33 (18) | C4—C5—C6 | 119.6 (2) |
N18—N19—C21 | 120.4 (2) | C4—C5—H5 | 120.2 |
C20—N19—N18 | 109.9 (2) | O7—C8—C9 | 109.35 (19) |
C20—N19—C21 | 129.7 (2) | O7—C8—H8A | 109.8 |
N17—N18—N19 | 106.7 (2) | O7—C8—H8B | 109.8 |
O14—N13—C3 | 118.1 (2) | C9—C8—H8A | 109.8 |
O15—N13—O14 | 123.6 (2) | C9—C8—H8B | 109.8 |
O15—N13—C3 | 118.3 (2) | H8A—C8—H8B | 108.3 |
N18—N17—C12 | 109.5 (2) | C21—C22—H22 | 120.0 |
C25—C24—Br27 | 119.41 (19) | C21—C22—C23 | 119.9 (2) |
C25—C24—C23 | 121.1 (2) | C23—C22—H22 | 120.0 |
C23—C24—Br27 | 119.47 (19) | C24—C23—H23 | 120.5 |
C26—C21—N19 | 119.5 (2) | C22—C23—C24 | 119.0 (2) |
C22—C21—N19 | 120.0 (2) | C22—C23—H23 | 120.5 |
C22—C21—C26 | 120.5 (2) | O10—C11—C12 | 105.9 (2) |
C25—C26—C21 | 119.7 (2) | O10—C11—H11A | 110.6 |
C25—C26—H26 | 120.2 | O10—C11—H11B | 110.6 |
C21—C26—H26 | 120.2 | C12—C11—H11A | 110.6 |
O10—C9—C8 | 107.9 (2) | C12—C11—H11B | 110.6 |
O16—C9—O10 | 124.8 (2) | H11A—C11—H11B | 108.7 |
O16—C9—C8 | 127.3 (2) | C3—C2—H2 | 120.6 |
C2—C3—N13 | 119.6 (2) | C1—C2—C3 | 118.8 (2) |
C4—C3—N13 | 118.7 (2) | C1—C2—H2 | 120.6 |
C4—C3—C2 | 121.7 (2) | C3—C4—C5 | 119.4 (2) |
O7—C6—C5 | 124.1 (2) | C3—C4—H4 | 120.3 |
O7—C6—C1 | 115.9 (2) | C5—C4—H4 | 120.3 |
C5—C6—C1 | 120.0 (2) | C6—C1—H1 | 119.8 |
N19—C20—H20 | 127.1 | C2—C1—C6 | 120.4 (2) |
N19—C20—C12 | 105.8 (2) | C2—C1—H1 | 119.8 |
C12—C20—H20 | 127.1 | ||
Br27—C24—C23—C22 | 176.72 (19) | C21—N19—N18—N17 | 178.9 (2) |
C25—C24—C23—C22 | −1.7 (4) | C21—N19—C20—C12 | −178.4 (2) |
O10—C9—C8—O7 | 171.6 (2) | C21—C22—C23—C24 | 1.3 (4) |
O7—C6—C5—C4 | 177.3 (2) | C26—C25—C24—Br27 | −177.75 (18) |
O7—C6—C1—C2 | −177.3 (2) | C26—C25—C24—C23 | 0.6 (4) |
O16—C9—C8—O7 | −10.0 (4) | C26—C21—C22—C23 | 0.1 (4) |
N19—N18—N17—C12 | 0.1 (3) | C9—O10—C11—C12 | −171.2 (2) |
N19—C21—C26—C25 | 177.9 (2) | C3—C2—C1—C6 | −0.1 (4) |
N19—C21—C22—C23 | −178.9 (2) | C6—O7—C8—C9 | −173.9 (2) |
N19—C20—C12—N17 | −1.5 (3) | C6—C5—C4—C3 | 0.2 (4) |
N19—C20—C12—C11 | 176.0 (2) | C20—N19—N18—N17 | −1.0 (3) |
O14—N13—C3—C2 | 177.3 (3) | C20—N19—C21—C26 | −23.2 (4) |
O14—N13—C3—C4 | −4.5 (4) | C20—N19—C21—C22 | 155.8 (2) |
O15—N13—C3—C2 | −3.1 (4) | C20—C12—C11—O10 | −79.9 (3) |
O15—N13—C3—C4 | 175.0 (2) | C5—C6—C1—C2 | 3.2 (4) |
N18—N19—C21—C26 | 156.9 (2) | C8—O7—C6—C5 | −13.6 (4) |
N18—N19—C21—C22 | −24.1 (3) | C8—O7—C6—C1 | 166.9 (2) |
N18—N19—C20—C12 | 1.6 (3) | C22—C21—C26—C25 | −1.1 (3) |
N18—N17—C12—C20 | 0.9 (3) | C11—O10—C9—O16 | −1.6 (4) |
N18—N17—C12—C11 | −176.8 (2) | C11—O10—C9—C8 | 176.9 (2) |
N13—C3—C2—C1 | 175.2 (2) | C2—C3—C4—C5 | 2.9 (4) |
N13—C3—C4—C5 | −175.2 (2) | C4—C3—C2—C1 | −3.0 (4) |
N17—C12—C11—O10 | 97.3 (3) | C1—C6—C5—C4 | −3.2 (4) |
C24—C25—C26—C21 | 0.8 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C26—H26···N17i | 0.93 | 2.54 | 3.463 (3) | 173 |
C5—H5···O16ii | 0.93 | 2.56 | 3.493 (3) | 176 |
C8—H8A···O16ii | 0.97 | 2.51 | 3.195 (3) | 128 |
C8—H8B···O14iii | 0.97 | 2.54 | 3.427 (3) | 153 |
C2—H2···O16iv | 0.93 | 2.52 | 3.287 (3) | 140 |
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x, −y+1/2, z−1/2; (iii) −x+2, −y+1, −z+1; (iv) −x+2, −y+1, −z+2. |
Acknowledgements
The authors thank the Institute of Bioorganic Chemistry of Academy Sciences of Uzbekistan, Tashkent, Uzbekistan for providing the single-crystal XRD facility.
References
Bertrand, G. & Wentrup, C. (1994). Angew. Chem. Int. Ed. Engl. 33, 527–545. CrossRef Web of Science Google Scholar
Boechat, N., de Lourdes, G., Ferreira, M., Bastos, M. M., da Silva, G. P., Wardell, J. & Wardell, J. (2012). Z. Kristallogr. 227, 369–378. CrossRef CAS Google Scholar
Borgati, Th. F., Alves, R. B., Teixeira, R. R., Freitas, R. P., Perdigão, Th. G., Silva, S. F., Santos, A. A. & Bastidas, A. J. O. (2013). J. Braz. Chem. Soc. 24, 953–961. CAS Google Scholar
Bozorov, Kh., Zhao, J. & Aisa, H. A. (2019). Bioorg. Med. Chem. 27, 3511–3531. CrossRef CAS PubMed Google Scholar
Faraz, Kh. M., Garima, V., Wasim, A., Akranth, M., Mumtoz, A. M., Mymoona, A., Asif, H., Misbahul, H. S., Mohammad, Sh. & Rashiduddin, H. S. (2017). Int. J. Drug Dev. Res, 9(2), 22–25. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Huisgen, R. (1963). Angew. Chem. Int. Ed. Engl. 2, 565–598. CrossRef Google Scholar
Li, W., Zhou, X., Luan, Y. & Wang, J. (2015). RSC Adv. 5, 88816–88820. CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. (2002). Angew. Chem. Int. Ed. 41, 2596–2599. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singh, H., Sindhu, J. & Khurana, J. M. (2013). J. Iran. Chem. Soc. 10, 883–888. CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tireli, M., Maračić, S., Lukin, S., Kulcsár, M. J., Žilić, D., Cetina, M., Halasz, I., Raić-Malić, S. & Užarević, K. (2017). Beilstein J. Org. Chem. 13, 2352–2363. CrossRef CAS PubMed Google Scholar
Tornøe, Ch. W., Christensen, C. & Meldal, M. (2002). J. Org. Chem. 67, 3057–3064. PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.