research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of 1,3-bis­­(acet­oxymeth­yl)-5-{[(4,6-di­methyl­pyridin-2-yl)amino]­methyl}-2,4,6-tri­ethyl­benzene

crossmark logo

aInstitut für Organische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, 09596 Freiberg/Sachsen, Germany, and bClinical Research Products Management Center (CRPMC) Bioservices, Thermo Fisher Scientific, 1055 First Street, Rockville/Maryland 20850, USA
*Correspondence e-mail: monika.mazik@chemie.tu-freiberg.de

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 24 July 2024; accepted 30 July 2024; online 13 August 2024)

In the crystal structure of the title compound, C26H36N2O4, the tripodal mol­ecule exists in a conformation in which the substituents attached to the central arene ring are arranged in an alternating order above and below the ring plane. The heterocyclic unit is inclined at an angle of 79.6 (1)° with respect to the plane of the benzene ring. In the crystal, the mol­ecules are connected via N—H⋯O bonds, forming infinite supra­molecular strands. Inter­strand association involves weak C—H⋯O and C—H⋯π inter­actions, with the pyridine ring acting as an acceptor in the latter case.

1. Chemical context

Recognition units based on 2-amino­pyridine have proved to be valuable building blocks for the construction of artificial carbohydrate receptors that act via non-covalent inter­actions (Mazik et al., 2004[Mazik, M., Radunz, W. & Boese, R. (2004). J. Org. Chem. 69, 7448-7462.], 2005[Mazik, M., Cavga, H. & Jones, P. G. (2005). J. Am. Chem. Soc. 127, 9045-9052.]; Mazik, 2009[Mazik, M. (2009). Chem. Soc. Rev. 38, 935-956.], 2012[Mazik, M. (2012). RSC Adv. 2, 2630-2642.]; Lippe & Mazik, 2015[Lippe, J. & Mazik, M. (2015). J. Org. Chem. 80, 1427-1439.]; Seidel et al., 2023[Seidel, P., Seichter, W. & Mazik, M. (2023). ChemistryOpen, 12, e202300019.]). Such units are able to participate in the formation of hydrogen-bonding motifs similar to those observed in natural complexes for the primary amide groups (side chains of asparagine and glutamine). The latter are used by carbohydrate-binding proteins in combination with other functional groups such as hy­droxy, carb­oxy, imidazolyl and isopropyl groups (side chains of serine, aspartic acid, histidine and valine, respectively). The use of a combination of different functional groups enables not only the formation of neutral and charge-reinforced hydrogen bonds, but also of C—H⋯π inter­actions and numerous van der Waals contacts, and is responsible for the observed binding selectivities and efficiencies of the proteins (Quiocho, 1989[Quiocho, F. A. (1989). Pure Appl. Chem. 61, 1293-1306.]; Sharon & Lis, 2007[Sharon, N. & Lis, H. (2007). Lectins, 2nd ed. Dordrecht: Springer.]; Gabius, 2009[Gabius, H.-J. (2009). The Sugar Code - Fundamentals of Glycosciences. Weinheim: Wiley-VCH.]; Gabius et al., 2011[Gabius, H.-J., André, S., Jiménez-Barbero, J., Romero, A. & Solís, D. (2011). Trends Biochem. Sci. 36, 298-313.]). Our studies with various acyclic and macrocyclic artificial receptors have also shown that selective and effective binding is favourably influenced by the involvement of different functional groups in the binding process. Among the acyclic receptor mol­ecules, 1,3,5-substituted 2,4,6-tri­alkyl­benzene derivatives have been studied particularly intensively (Lippe et al., 2015[Lippe, J., Seichter, W. & Mazik, M. (2015). Org. Biomol. Chem. 13, 11622-11632.]; Kaiser et al., 2019[Kaiser, S., Geffert, C. & Mazik, M. (2019). Eur. J. Org. Chem. pp. 7555-7562.]; Stapf et al., 2020a[Stapf, M., Seichter, W. & Mazik, M. (2020a). Eur. J. Org. Chem. pp. 4900-4915.]; Köhler et al., 2020[Köhler, L., Seichter, W. & Mazik, M. (2020). Eur. J. Org. Chem. pp. 7023-7034.], 2021[Köhler, L., Hübler, C., Seichter, W. & Mazik, M. (2021). RSC Adv. 11, 22221-22229.], 2024[Köhler, L., Kaiser, S. & Mazik, M. (2024). Nat. Prod. Commun. 19 (accepted). https://doi.org/10.1177/1934578X241258352]), and different binding properties have been observed depending on the nature of the receptor building blocks. In this article, we describe the crystal structure of 1,3-bis­(acet­oxy­meth­yl)-5-{[(4,6-di­methyl­pyridin-2-yl)amino]­meth­yl}-2,4,6-tri­ethyl­benzene, which is a precursor for the synthesis of a tri­ethyl­benzene derivative bearing a 2-amino­pyridine-based recognition moiety and two hy­droxy­methyl groups.

[Scheme 1]

2. Structural commentary

The crystal structure of the title compound, C26H36N2O4, was solved in the monoclinic space group P21/n with the asymmetric unit containing one mol­ecule. As shown in Fig. 1[link], the mol­ecule adopts a conformation in which the pyridinyl­amino moiety and the two acet­oxy groups are located on one side of the central benzene ring, whereas the ethyl substituents are directed to the opposite side of the ring plane (ababab arrangement; Das & Barbour, 2008a[Das, D. & Barbour, L. J. (2008a). J. Am. Chem. Soc. 130, 14032-14033.],b[Das, D. & Barbour, L. J. (2008b). Chem. Commun. pp. 5110-5112.], 2009[Das, D. & Barbour, L. J. (2009). Cryst. Growth Des. 9, 1599-1604.]; Koch et al., 2017[Koch, N., Seichter, W. & Mazik, M. (2017). CrystEngComm, 19, 3817-3833.]; Schulze et al., 2017[Schulze, M. M., Schwarzer, A. & Mazik, M. (2017). CrystEngComm, 19, 4003-4016.]). The mol­ecule exists in a strongly distorted conformation with torsion angles of −166.6 (1) (anti) and −121.3 (1)° (eclipsed) along the Car­yl—C—O—C sequences and an inter­planar angle of 79.6 (1)° between the aromatic rings. The conformation appears to be stabilized by an intra­molecular C—H⋯N hydrogen bond [d(H⋯N) = 2.65 Å] and a C—H⋯O bond [d(H⋯O) = 2.52 Å] involving the ethyl hydrogen atoms H25A, H25B and the acceptor positions N1 and O3 (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg represents the centroid of the C8–C12/N2 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.88 (1) 2.10 (1) 2.9776 (16) 173 (1)
C19—H19C⋯O2ii 0.98 2.61 3.1785 (18) 117
C14—H14BCgiii 0.98 2.73 3.5955 (17) 147
C25—H25A⋯N1 0.99 2.65 3.3598 (17) 128
C25—H25B⋯O3 0.99 2.52 3.2250 (15) 128
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x, -y+1, -z+1].
[Figure 1]
Figure 1
Perspective view of the title mol­ecule including atom labelling. Anisotropic displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

The crystal structure is composed of zigzag-like strands of N-H⋯O=C bonded mol­ecules [N1—H1⋯O4, 2.10 (1) Å, 173 (1)°], that extend parallel to the crystallographic b axis (Fig. 2[link]). Inter­strand association is confined to only one C—H⋯π contact (Nishio et al., 2009[Nishio, M., Umezawa, Y., Honda, K., Tsuboyama, S. & Suezawa, H. (2009). CrystEngComm, 11, 1757-1788.], 2012[Nishio, M., Umezawa, Y., Suezawa, H. & Tsuboyama, S. (2012). In The Importance of Pi-Interactions in Crystal Engineering: Frontiers in Crystal Engineering, edited by E. R. T. Tiekink and J. Zukerman-Schpector, pp. 1-40. Chichester: Wiley.]) per mol­ecule with the pyridine ring acting as an acceptor [C14—H14BCg, 2.73 Å, 147°] as well as a weak C—H⋯O bond (Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond. Oxford University Press.]) involving the oxygen atom O2 [C19—H19C⋯O2, 2.61 Å, 117°].

[Figure 2]
Figure 2
Packing diagram of the title compound. The N—H⋯O hydrogen bonds are shown as dashed lines.

4. Database survey

Our previous studies have shown that representatives of 1,3,5-substituted 2,4,6-tri­alkyl­benzenes with side arms bearing different functional groups have a better ability to discriminate between various carbohydrate substrates than compounds possessing identical functionalized side arms. In this context, the combination of 2-amino­pyridine-based building blocks with other functional groups was shown to provide compounds capable of acting as effective and selective carbohydrate receptors. The search in the Cambridge Structural Database (CSD, Version 5.45, update June 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for such mol­ecules with one or two pyridin-2-yl-amino­methyl unit(s) yielded thirteen hits. All crystal structures of the tri­ethyl­benzene derivatives listed below have in common that the tripodal mol­ecules adopt a conformation with an alternating arrangement of the substituents above and below the plane of the central benzene ring. The crystal structures of the monohydrate and the methanol solvate of {1-[(3,5-bis­{[(4,6-di­methyl­pyridin-2-yl)amino]­meth­yl}-2,4,6-tri­ethyl­benz­yl)amino]­cyclo­pent­yl}methanol (CADTAG, CADTEK; Stapf et al., 2020b[Stapf, M., Seichter, W. & Mazik, M. (2020b). Acta Cryst. E76, 1679-1683.]) as well as that of the methanol solvate of 1-{[N,N′-bis­(tert-but­oxy­carbon­yl)guanidino]meth­yl}-3,5-bis­{[(6-methyl­pyridin-2-yl)amino]­meth­yl}-2,4,6-tri­ethyl­benzene (HEXVAI; Mazik & Cavga, 2007[Mazik, M. & Cavga, H. (2007). J. Org. Chem. 72, 831-838.]) are composed of inversion-symmetric mol­ecular dimers in which the water or methanol mol­ecules are enclosed. Thus, the dimers are held together by solvent-mediated hydrogen bonds. In a similar way, the solvent-free crystal structures of 1,3-bis­{[N,N-bis­(2-hy­droxy­eth­yl)amino]­meth­yl}-5-{[(4,6-di­methyl­pyridin-2-yl)amino]­meth­yl}-2,4,6-tri­ethyl­benzene (BEFGAY; Stapf et al., 2022[Stapf, M., Schmidt, U., Seichter, W. & Mazik, M. (2022). Acta Cryst. E78, 825-828.]) and 1-{[N,N-bis­(eth­oxy­carbonyl­meth­yl)amino]­meth­yl}-3,5-bis­{[(6-methyl­pyridin-2-yl)amino]­meth­yl}-2,4,6-tri­methyl­benz­ene (KEGWID; Mazik & Cavga, 2006[Mazik, M. & Cavga, H. (2006). J. Org. Chem. 71, 2957-2963.]) also consist of centrosymmetric dimers as the smallest supra­molecular entity. In the crystal structure of 1,3-bis­{[N-(1,10-phenanthrolin-2-ylcarbon­yl)amino]­methyl-5-{[(4,6-di­methyl­pyridin-2-yl)amino]­meth­yl}-2,4,6-tri­ethyl­benzene (TUGVEX; Mazik et al., 2009[Mazik, M., Hartmann, A. & Jones, P. G. (2009). Chem. Eur. J. 15, 9147-9159.]), two water mol­ecules and one ethanol mol­ecule are accommodated in the binding pocket created by the heterocyclic units (one pyridinyl and two phenanthrolinyl groups) of the host mol­ecule. The related compound 1-{[N-(1,10-phen­an­throlin-2-ylcarbon­yl)amino]­meth­yl}-3,5-bis­{[(4,6-di­methyl­pyridin-2-yl)amino]­meth­yl}-2,4,6-tri­ethyl­benzene (ROKJEH, ROKJEH01; Mazik & Hartmann, 2008[Mazik, M. & Hartmann, A. (2008). J. Org. Chem. 73, 7444-7450.]; Mazik et al., 2009[Mazik, M., Hartmann, A. & Jones, P. G. (2009). Chem. Eur. J. 15, 9147-9159.]), possessing one phenanthrolinyl and two pyridinyl groups, encloses three water mol­ecules in the binding pocket. Both host–water/ethanol aggregates are stabilized by O—H⋯O, N—H⋯O and O—H⋯N hydrogen bonds. In the crystal structures of the formamide monosolvate and the n-propanol/H2O solvate of 1-{[2,6-bis­(hy­droxy­meth­yl)-4-methyl­phen­oxy]meth­yl}-3,5-bis­{[(4,6-di­methyl­pyridin-2-yl)amino]­meth­yl}-2,4,6-tri­ethyl­benzene (FIZDOL, FIZDUR; Stapf et al., 2023[Stapf, M., Schmidt, U., Seichter, W. & Mazik, M. (2023). Acta Cryst. E79, 1067-1071.]), the tripodal host mol­ecules adopt similar conformations despite the different solvent mol­ecules. 1-(Bromo­meth­yl)-3,5-bis­{[(4,6-di­methyl­pyridin-2-yl)amino]­meth­yl}-2,4,6-tri­ethyl­benzene was found to crystallize as a diethyl ether solvate (BIYTOT; Mazik & Kuschel, 2008[Mazik, M. & Kuschel, M. (2008). Chem. Eur. J. 14, 2405-2419.]), with the ether oxygen bound to one of the amino groups by hydrogen bonding. Finally, the crystal structures of triethylbenzene derivatives bearing one or two cationic moieties, namely 3-methylpyridinium group(s), in combination with 4,6-dimethylpyridin-2-yl unit(s) (hexafluorophosphate salts; ZITRAZ and ZITRON, respectively; Weisse et al., 2023[Weisse, A., Seichter, W. & Mazik, M. (2023). Molecules, 28, 6485-6503.]) should be mentioned.

5. Synthesis and crystallization

A suspension of 1,3-bis­(bromo­meth­yl)-5-{[(4,6-di­methyl­pyridin-2-yl)amino]­meth­yl}-2,4,6-tri­ethyl­benzene (0.30 g, 0.62 mmol) and anhydrous sodium acetate (0.42 g, 5.12 mmol) in acetic acid (3 mL) was stirred at 373 K for 12 h. The solvent was evaporated under reduced pressure. To the obtained white solid, water (3 mL) and CH2Cl2 (3 mL) were added. The aqueous phase was extracted twice with CH2Cl2 (5 mL). The combined organic extracts were treated with a saturated NaHCO3 solution (3 mL), washed with water (5 mL), dried (Na2SO4) and then concentrated. The pale yellow resin was recrystallized from methanol to give the title compound (0.17 g, 62%) as colourless crystals. Single crystals suitable for X-ray diffraction were obtained by slow evaporation from a solution of the title compound in N,N-di­methyl­acetamide.

Analytical data: m.p. 429–431 K; 1H NMR (500 MHz, CDCl3, ppm): δ = 1.18–1.22 (m, 9H, CH3), 2.09 (s, 6H, CH3), 2.24 (s, 3H, CH3), 2.36 (s, 3H, CH3), 2.76 (q, 6H, J = 7.6 Hz, CH2), 4.15 (br s, 1H, NH), 4.39 (d, 2H, J = 4.2 Hz, CH2), 5.21 (s, 4H, OCH2), 6.08 (s, 1H, ar­yl), 6.36 (s, 1H, ar­yl); 13C NMR (125 MHz, CDCl3, ppm): δ = 16.3, 16.5 (CH3), 21.0 (CH3), 21.1 (CH3), 22.8, 23.0 (CH2), 24.1 (CH3), 40.4 (NHCH2), 60.9 (OCH2), 103.5, 114.0, 130.0, 133.2, 145.4, 145.8, 148.9, 156.7, 158.1 (all ar­yl), 171.1 (C=O); MS (APCI): m/z calculated for C26H37N2O4: 441.3 [M + H]+, found 441.2. Elemental analysis for C26H36N2O4 (%): calculated C 70.88, H 8.24, N 6.36; found C 70.68, H 8.20, N 6.40. TLC: Rf = 0.41 [SiO2, toluene/ethyl acetate 3:1 (v/v)].

The educt, 1,3-bis­(bromo­meth­yl)-5-{[(4,6-di­methyl­pyridin-2-yl)amino]­meth­yl}-2,4,6-tri­ethyl­benzene, was synthesized according to the reported procedure (Weisse et al., 2023[Weisse, A., Seichter, W. & Mazik, M. (2023). Molecules, 28, 6485-6503.]).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The non-hydrogen atoms were refined anisotropically. All hydrogen atoms were positioned geometrically and refined isotropically using a riding model with C—H = 0.98–0.99 Å (alk­yl), 0.95 Å (ar­yl); Uiso(H) = 1.2–1.5Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C26H36N2O4
Mr 440.57
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 12.5184 (4), 9.1855 (2), 22.1339 (6)
β (°) 105.1331 (15)
V3) 2456.87 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.42 × 0.11 × 0.06
 
Data collection
Diffractometer Bruker Kappa APEXII CCD area detector
No. of measured, independent and observed [I > 2σ(I)] reflections 23620, 5984, 4634
Rint 0.031
(sin θ/λ)max−1) 0.663
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.120, 1.03
No. of reflections 5984
No. of parameters 300
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.40, −0.24
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

{3-[(Acetyloxy)methyl]-5-{[(4,6-dimethylpyridin-2-yl)amino]methyl}-2,4,6-triethylphenyl}methyl acetate top
Crystal data top
C26H36N2O4F(000) = 952
Mr = 440.57Dx = 1.191 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.5184 (4) ÅCell parameters from 6078 reflections
b = 9.1855 (2) Åθ = 2.4–28.3°
c = 22.1339 (6) ŵ = 0.08 mm1
β = 105.1331 (15)°T = 100 K
V = 2456.87 (12) Å3Needle, colourless
Z = 40.42 × 0.11 × 0.06 mm
Data collection top
Bruker Kappa APEXII CCD area detector
diffractometer
Rint = 0.031
phi and ω scansθmax = 28.1°, θmin = 2.8°
23620 measured reflectionsh = 1516
5984 independent reflectionsk = 1211
4634 reflections with I > 2σ(I)l = 2929
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0653P)2 + 0.589P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
5984 reflectionsΔρmax = 0.40 e Å3
300 parametersΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.57195 (8)0.63700 (10)0.27696 (5)0.0206 (2)
O20.75502 (8)0.62688 (10)0.28844 (5)0.0251 (2)
O30.11605 (8)0.87452 (10)0.19905 (4)0.0185 (2)
O40.13164 (10)0.90318 (11)0.10076 (4)0.0284 (2)
N10.27865 (10)0.66995 (12)0.44466 (5)0.0184 (2)
N20.22044 (10)0.74686 (12)0.53067 (5)0.0187 (2)
C10.35590 (11)0.83570 (12)0.38032 (5)0.0133 (2)
C20.45669 (10)0.79830 (12)0.36834 (6)0.0136 (2)
C30.47462 (10)0.83050 (12)0.30955 (6)0.0135 (2)
C40.39092 (11)0.89452 (12)0.26199 (6)0.0129 (2)
C50.28887 (10)0.92766 (12)0.27416 (5)0.0122 (2)
C60.27068 (10)0.89825 (12)0.33303 (5)0.0125 (2)
C70.33606 (11)0.80813 (13)0.44406 (6)0.0166 (3)
H7A0.40780.80610.47620.020*
H7B0.29110.88830.45450.020*
C80.23040 (11)0.63821 (14)0.49228 (6)0.0166 (3)
C90.16947 (12)0.71630 (15)0.57598 (6)0.0216 (3)
C100.12987 (12)0.58025 (16)0.58463 (6)0.0234 (3)
H100.09560.56370.61760.028*
C110.14056 (11)0.46587 (15)0.54437 (6)0.0205 (3)
C120.19076 (11)0.49616 (14)0.49736 (6)0.0186 (3)
H120.19860.42240.46870.022*
C130.15911 (15)0.84358 (17)0.61719 (7)0.0320 (4)
H13A0.23300.87610.64030.048*
H13B0.11720.81370.64680.048*
H13C0.12040.92360.59120.048*
C140.09729 (13)0.31615 (16)0.55260 (7)0.0262 (3)
H14A0.11760.24860.52320.039*
H14B0.01650.31970.54450.039*
H14C0.12960.28270.59550.039*
C150.54724 (11)0.72755 (14)0.41921 (6)0.0186 (3)
H15A0.59220.66340.39960.022*
H15B0.51300.66640.44590.022*
C160.62274 (12)0.84108 (16)0.46005 (7)0.0260 (3)
H16A0.65840.90000.43400.039*
H16B0.67950.79160.49250.039*
H16C0.57860.90430.47980.039*
C170.58334 (11)0.78884 (13)0.29743 (6)0.0176 (3)
H17A0.59940.85170.26450.021*
H17B0.64420.79920.33600.021*
C180.66651 (11)0.56814 (14)0.27606 (6)0.0182 (3)
C190.64560 (13)0.41217 (15)0.25739 (8)0.0301 (3)
H19A0.62590.40450.21160.045*
H19B0.58470.37480.27320.045*
H19C0.71250.35500.27510.045*
C200.41205 (11)0.93293 (13)0.19939 (6)0.0161 (3)
H20A0.34210.92460.16610.019*
H20B0.46560.86290.18990.019*
C210.45783 (12)1.08797 (14)0.19947 (7)0.0217 (3)
H21A0.40831.15670.21250.033*
H21B0.46291.11290.15730.033*
H21C0.53151.09320.22870.033*
C220.19501 (11)0.99175 (13)0.22362 (6)0.0154 (3)
H22A0.15821.07050.24120.018*
H22B0.22381.03320.18970.018*
C230.09262 (11)0.84169 (14)0.13812 (6)0.0171 (3)
C240.01268 (13)0.71748 (16)0.12222 (6)0.0248 (3)
H24A0.06130.75500.10190.037*
H24B0.01070.66560.16060.037*
H24C0.03630.65060.09370.037*
C250.16236 (11)0.93941 (13)0.34683 (6)0.0155 (2)
H25A0.14670.87080.37800.019*
H25B0.10160.93120.30800.019*
C260.16604 (12)1.09505 (14)0.37219 (7)0.0229 (3)
H26A0.22441.10250.41140.034*
H26B0.09451.11910.38000.034*
H26C0.18151.16310.34150.034*
H10.3047 (13)0.5952 (13)0.4283 (7)0.022 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0143 (5)0.0159 (5)0.0321 (5)0.0015 (3)0.0069 (4)0.0065 (4)
O20.0159 (5)0.0221 (5)0.0394 (6)0.0014 (4)0.0107 (4)0.0042 (4)
O30.0164 (5)0.0236 (5)0.0143 (4)0.0058 (4)0.0019 (3)0.0013 (3)
O40.0416 (7)0.0271 (5)0.0184 (5)0.0097 (5)0.0111 (4)0.0003 (4)
N10.0270 (7)0.0129 (5)0.0186 (5)0.0006 (4)0.0117 (5)0.0002 (4)
N20.0195 (6)0.0203 (5)0.0172 (5)0.0008 (4)0.0065 (4)0.0007 (4)
C10.0170 (6)0.0103 (5)0.0127 (5)0.0019 (4)0.0038 (4)0.0007 (4)
C20.0149 (6)0.0094 (5)0.0152 (6)0.0004 (4)0.0014 (5)0.0012 (4)
C30.0131 (6)0.0096 (5)0.0181 (6)0.0014 (4)0.0046 (5)0.0025 (4)
C40.0159 (6)0.0087 (5)0.0150 (6)0.0016 (4)0.0052 (5)0.0013 (4)
C50.0129 (6)0.0093 (5)0.0138 (5)0.0008 (4)0.0024 (4)0.0013 (4)
C60.0138 (6)0.0093 (5)0.0149 (6)0.0009 (4)0.0047 (4)0.0016 (4)
C70.0219 (7)0.0151 (6)0.0130 (6)0.0013 (5)0.0046 (5)0.0006 (4)
C80.0163 (7)0.0191 (6)0.0141 (6)0.0024 (5)0.0037 (5)0.0032 (5)
C90.0211 (7)0.0271 (7)0.0184 (6)0.0025 (5)0.0085 (5)0.0010 (5)
C100.0239 (8)0.0300 (7)0.0193 (6)0.0005 (6)0.0110 (5)0.0028 (5)
C110.0168 (7)0.0226 (7)0.0218 (6)0.0015 (5)0.0046 (5)0.0057 (5)
C120.0202 (7)0.0181 (6)0.0183 (6)0.0024 (5)0.0065 (5)0.0022 (5)
C130.0421 (10)0.0322 (8)0.0286 (8)0.0012 (7)0.0214 (7)0.0069 (6)
C140.0265 (8)0.0247 (7)0.0291 (7)0.0021 (6)0.0107 (6)0.0070 (6)
C150.0179 (7)0.0164 (6)0.0188 (6)0.0042 (5)0.0002 (5)0.0010 (5)
C160.0218 (8)0.0269 (7)0.0234 (7)0.0033 (6)0.0046 (5)0.0039 (6)
C170.0145 (6)0.0149 (6)0.0241 (6)0.0002 (5)0.0061 (5)0.0034 (5)
C180.0164 (7)0.0194 (6)0.0207 (6)0.0044 (5)0.0079 (5)0.0036 (5)
C190.0254 (8)0.0191 (7)0.0486 (9)0.0040 (6)0.0144 (7)0.0057 (6)
C200.0188 (7)0.0154 (6)0.0162 (6)0.0001 (5)0.0081 (5)0.0001 (5)
C210.0279 (8)0.0163 (6)0.0257 (7)0.0013 (5)0.0157 (6)0.0026 (5)
C220.0155 (6)0.0141 (6)0.0157 (6)0.0001 (5)0.0024 (5)0.0011 (4)
C230.0168 (7)0.0174 (6)0.0156 (6)0.0028 (5)0.0018 (5)0.0027 (5)
C240.0233 (8)0.0270 (7)0.0201 (6)0.0070 (6)0.0015 (5)0.0009 (5)
C250.0127 (6)0.0173 (6)0.0173 (6)0.0004 (5)0.0053 (5)0.0015 (5)
C260.0248 (8)0.0190 (6)0.0260 (7)0.0052 (5)0.0085 (6)0.0033 (5)
Geometric parameters (Å, º) top
O1—C181.3469 (16)C13—H13C0.9800
O1—C171.4619 (15)C14—H14A0.9800
O2—C181.1980 (17)C14—H14B0.9800
O3—C231.3377 (15)C14—H14C0.9800
O3—C221.4669 (15)C15—C161.5336 (19)
O4—C231.2051 (16)C15—H15A0.9900
N1—C81.3761 (16)C15—H15B0.9900
N1—C71.4603 (16)C16—H16A0.9800
N1—H10.878 (9)C16—H16B0.9800
N2—C81.3375 (17)C16—H16C0.9800
N2—C91.3511 (17)C17—H17A0.9900
C1—C21.3982 (18)C17—H17B0.9900
C1—C61.4073 (17)C18—C191.4952 (19)
C1—C71.5164 (16)C19—H19A0.9800
C2—C31.4083 (17)C19—H19B0.9800
C2—C151.5194 (17)C19—H19C0.9800
C3—C41.4057 (17)C20—C211.5349 (17)
C3—C171.5038 (18)C20—H20A0.9900
C4—C51.4060 (17)C20—H20B0.9900
C4—C201.5185 (16)C21—H21A0.9800
C5—C61.4063 (16)C21—H21B0.9800
C5—C221.5140 (16)C21—H21C0.9800
C6—C251.5137 (17)C22—H22A0.9900
C7—H7A0.9900C22—H22B0.9900
C7—H7B0.9900C23—C241.4977 (19)
C8—C121.4108 (18)C24—H24A0.9800
C9—C101.376 (2)C24—H24B0.9800
C9—C131.5092 (19)C24—H24C0.9800
C10—C111.406 (2)C25—C261.5322 (17)
C10—H100.9500C25—H25A0.9900
C11—C121.3770 (18)C25—H25B0.9900
C11—C141.5064 (19)C26—H26A0.9800
C12—H120.9500C26—H26B0.9800
C13—H13A0.9800C26—H26C0.9800
C13—H13B0.9800
C18—O1—C17115.95 (10)H15A—C15—H15B107.9
C23—O3—C22119.24 (10)C15—C16—H16A109.5
C8—N1—C7120.44 (10)C15—C16—H16B109.5
C8—N1—H1115.8 (11)H16A—C16—H16B109.5
C7—N1—H1116.1 (11)C15—C16—H16C109.5
C8—N2—C9117.18 (12)H16A—C16—H16C109.5
C2—C1—C6120.38 (11)H16B—C16—H16C109.5
C2—C1—C7120.69 (11)O1—C17—C3106.17 (10)
C6—C1—C7118.92 (11)O1—C17—H17A110.5
C1—C2—C3119.53 (11)C3—C17—H17A110.5
C1—C2—C15120.01 (11)O1—C17—H17B110.5
C3—C2—C15120.43 (11)C3—C17—H17B110.5
C4—C3—C2120.82 (11)H17A—C17—H17B108.7
C4—C3—C17120.35 (11)O2—C18—O1123.31 (12)
C2—C3—C17118.78 (11)O2—C18—C19125.41 (13)
C3—C4—C5118.95 (11)O1—C18—C19111.28 (12)
C3—C4—C20120.47 (11)C18—C19—H19A109.5
C5—C4—C20120.53 (11)C18—C19—H19B109.5
C4—C5—C6120.72 (11)H19A—C19—H19B109.5
C4—C5—C22120.75 (10)C18—C19—H19C109.5
C6—C5—C22118.50 (11)H19A—C19—H19C109.5
C5—C6—C1119.53 (11)H19B—C19—H19C109.5
C5—C6—C25120.62 (11)C4—C20—C21111.62 (10)
C1—C6—C25119.80 (11)C4—C20—H20A109.3
N1—C7—C1110.74 (10)C21—C20—H20A109.3
N1—C7—H7A109.5C4—C20—H20B109.3
C1—C7—H7A109.5C21—C20—H20B109.3
N1—C7—H7B109.5H20A—C20—H20B108.0
C1—C7—H7B109.5C20—C21—H21A109.5
H7A—C7—H7B108.1C20—C21—H21B109.5
N2—C8—N1117.44 (11)H21A—C21—H21B109.5
N2—C8—C12123.12 (12)C20—C21—H21C109.5
N1—C8—C12119.40 (11)H21A—C21—H21C109.5
N2—C9—C10123.30 (12)H21B—C21—H21C109.5
N2—C9—C13114.79 (12)O3—C22—C5107.84 (9)
C10—C9—C13121.90 (13)O3—C22—H22A110.1
C9—C10—C11119.53 (12)C5—C22—H22A110.1
C9—C10—H10120.2O3—C22—H22B110.1
C11—C10—H10120.2C5—C22—H22B110.1
C12—C11—C10117.74 (13)H22A—C22—H22B108.5
C12—C11—C14121.68 (13)O4—C23—O3124.38 (12)
C10—C11—C14120.58 (12)O4—C23—C24124.16 (12)
C11—C12—C8119.11 (12)O3—C23—C24111.45 (11)
C11—C12—H12120.4C23—C24—H24A109.5
C8—C12—H12120.4C23—C24—H24B109.5
C9—C13—H13A109.5H24A—C24—H24B109.5
C9—C13—H13B109.5C23—C24—H24C109.5
H13A—C13—H13B109.5H24A—C24—H24C109.5
C9—C13—H13C109.5H24B—C24—H24C109.5
H13A—C13—H13C109.5C6—C25—C26111.35 (11)
H13B—C13—H13C109.5C6—C25—H25A109.4
C11—C14—H14A109.5C26—C25—H25A109.4
C11—C14—H14B109.5C6—C25—H25B109.4
H14A—C14—H14B109.5C26—C25—H25B109.4
C11—C14—H14C109.5H25A—C25—H25B108.0
H14A—C14—H14C109.5C25—C26—H26A109.5
H14B—C14—H14C109.5C25—C26—H26B109.5
C2—C15—C16111.82 (10)H26A—C26—H26B109.5
C2—C15—H15A109.3C25—C26—H26C109.5
C16—C15—H15A109.3H26A—C26—H26C109.5
C2—C15—H15B109.3H26B—C26—H26C109.5
C16—C15—H15B109.3
C6—C1—C2—C33.27 (17)C7—N1—C8—N211.94 (18)
C7—C1—C2—C3177.42 (11)C7—N1—C8—C12170.12 (12)
C6—C1—C2—C15178.56 (11)C8—N2—C9—C101.1 (2)
C7—C1—C2—C150.75 (17)C8—N2—C9—C13179.11 (13)
C1—C2—C3—C42.52 (17)N2—C9—C10—C110.9 (2)
C15—C2—C3—C4179.31 (11)C13—C9—C10—C11179.24 (14)
C1—C2—C3—C17179.72 (11)C9—C10—C11—C120.1 (2)
C15—C2—C3—C172.11 (17)C9—C10—C11—C14179.63 (13)
C2—C3—C4—C50.69 (17)C10—C11—C12—C81.0 (2)
C17—C3—C4—C5177.86 (10)C14—C11—C12—C8179.52 (12)
C2—C3—C4—C20178.20 (10)N2—C8—C12—C110.9 (2)
C17—C3—C4—C204.63 (17)N1—C8—C12—C11178.70 (12)
C3—C4—C5—C60.39 (17)C1—C2—C15—C1688.79 (15)
C20—C4—C5—C6177.12 (10)C3—C2—C15—C1689.37 (14)
C3—C4—C5—C22177.83 (10)C18—O1—C17—C3166.61 (11)
C20—C4—C5—C224.67 (17)C4—C3—C17—O192.28 (13)
C4—C5—C6—C10.36 (17)C2—C3—C17—O184.94 (13)
C22—C5—C6—C1178.61 (10)C17—O1—C18—O23.15 (18)
C4—C5—C6—C25177.60 (11)C17—O1—C18—C19177.29 (11)
C22—C5—C6—C254.15 (16)C3—C4—C20—C2189.67 (14)
C2—C1—C6—C52.21 (17)C5—C4—C20—C2187.81 (14)
C7—C1—C6—C5178.47 (10)C23—O3—C22—C5121.28 (12)
C2—C1—C6—C25179.47 (11)C4—C5—C22—O3102.10 (12)
C7—C1—C6—C251.21 (16)C6—C5—C22—O376.15 (13)
C8—N1—C7—C1165.33 (11)C22—O3—C23—O40.62 (19)
C2—C1—C7—N195.56 (14)C22—O3—C23—C24178.70 (11)
C6—C1—C7—N183.76 (14)C5—C6—C25—C2688.44 (13)
C9—N2—C8—N1177.71 (12)C1—C6—C25—C2688.80 (14)
C9—N2—C8—C120.15 (19)
Hydrogen-bond geometry (Å, º) top
Cg represents the centroid of the C8–C12/N2 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.88 (1)2.10 (1)2.9776 (16)173 (1)
C19—H19C···O2ii0.982.613.1785 (18)117
C14—H14B···Cgiii0.982.733.5955 (17)147
C25—H25A···N10.992.653.3598 (17)128
C25—H25B···O30.992.523.2250 (15)128
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x, y+1, z+1.
 

Acknowledgements

Open Access Funding by the Publication Fund of the Technische Universität Bergakademie Freiberg is gratefully acknowledged.

References

First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDas, D. & Barbour, L. J. (2008a). J. Am. Chem. Soc. 130, 14032–14033.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDas, D. & Barbour, L. J. (2008b). Chem. Commun. pp. 5110–5112.  Web of Science CSD CrossRef Google Scholar
First citationDas, D. & Barbour, L. J. (2009). Cryst. Growth Des. 9, 1599–1604.  Web of Science CSD CrossRef CAS Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond. Oxford University Press.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGabius, H.-J. (2009). The Sugar Code – Fundamentals of Glycosciences. Weinheim: Wiley-VCH.  Google Scholar
First citationGabius, H.-J., André, S., Jiménez-Barbero, J., Romero, A. & Solís, D. (2011). Trends Biochem. Sci. 36, 298–313.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKaiser, S., Geffert, C. & Mazik, M. (2019). Eur. J. Org. Chem. pp. 7555–7562.  Web of Science CrossRef Google Scholar
First citationKoch, N., Seichter, W. & Mazik, M. (2017). CrystEngComm, 19, 3817–3833.  Web of Science CSD CrossRef CAS Google Scholar
First citationKöhler, L., Hübler, C., Seichter, W. & Mazik, M. (2021). RSC Adv. 11, 22221–22229.  Web of Science PubMed Google Scholar
First citationKöhler, L., Kaiser, S. & Mazik, M. (2024). Nat. Prod. Commun. 19 (accepted). https://doi.org/10.1177/1934578X241258352  Google Scholar
First citationKöhler, L., Seichter, W. & Mazik, M. (2020). Eur. J. Org. Chem. pp. 7023–7034.  Google Scholar
First citationLippe, J. & Mazik, M. (2015). J. Org. Chem. 80, 1427–1439.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLippe, J., Seichter, W. & Mazik, M. (2015). Org. Biomol. Chem. 13, 11622–11632.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMazik, M. (2009). Chem. Soc. Rev. 38, 935–956.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMazik, M. (2012). RSC Adv. 2, 2630–2642.  Web of Science CrossRef CAS Google Scholar
First citationMazik, M. & Cavga, H. (2006). J. Org. Chem. 71, 2957–2963.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMazik, M. & Cavga, H. (2007). J. Org. Chem. 72, 831–838.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMazik, M., Cavga, H. & Jones, P. G. (2005). J. Am. Chem. Soc. 127, 9045–9052.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMazik, M. & Hartmann, A. (2008). J. Org. Chem. 73, 7444–7450.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMazik, M., Hartmann, A. & Jones, P. G. (2009). Chem. Eur. J. 15, 9147–9159.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMazik, M. & Kuschel, M. (2008). Chem. Eur. J. 14, 2405–2419.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMazik, M., Radunz, W. & Boese, R. (2004). J. Org. Chem. 69, 7448–7462.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNishio, M., Umezawa, Y., Honda, K., Tsuboyama, S. & Suezawa, H. (2009). CrystEngComm, 11, 1757–1788.  Web of Science CrossRef CAS Google Scholar
First citationNishio, M., Umezawa, Y., Suezawa, H. & Tsuboyama, S. (2012). In The Importance of Pi-Interactions in Crystal Engineering: Frontiers in Crystal Engineering, edited by E. R. T. Tiekink and J. Zukerman-Schpector, pp. 1–40. Chichester: Wiley.  Google Scholar
First citationQuiocho, F. A. (1989). Pure Appl. Chem. 61, 1293–1306.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSchulze, M. M., Schwarzer, A. & Mazik, M. (2017). CrystEngComm, 19, 4003–4016.  Web of Science CSD CrossRef CAS Google Scholar
First citationSeidel, P., Seichter, W. & Mazik, M. (2023). ChemistryOpen, 12, e202300019.  Web of Science CSD CrossRef PubMed Google Scholar
First citationSharon, N. & Lis, H. (2007). Lectins, 2nd ed. Dordrecht: Springer.  Google Scholar
First citationStapf, M., Schmidt, U., Seichter, W. & Mazik, M. (2022). Acta Cryst. E78, 825–828.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStapf, M., Schmidt, U., Seichter, W. & Mazik, M. (2023). Acta Cryst. E79, 1067–1071.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStapf, M., Seichter, W. & Mazik, M. (2020a). Eur. J. Org. Chem. pp. 4900–4915.  Web of Science CSD CrossRef Google Scholar
First citationStapf, M., Seichter, W. & Mazik, M. (2020b). Acta Cryst. E76, 1679–1683.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWeisse, A., Seichter, W. & Mazik, M. (2023). Molecules, 28, 6485–6503.  Web of Science CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds