research communications
κN4)pyridine-κN]palladium(II) dimethylformamide monosolvate
and Hirshfeld surface analysis of dichlorido[2-(3-cyclopentyl-1,2,4-triazol-5-yl-aSSI "Institute for Single Crystals" of National Academy of Sciences of Ukraine, Nauki Ave 60, Kharkiv 61001, Ukraine, bV. I. Vernadskii Institute of General and Inorganic Chemistry of National, Academy of Sciences of Ukraine, Prospect Palladina 32/34, 03680 Kyiv, Ukraine, cDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 12, Hetman Pavlo Skoropadskyi st.,01033 Kyiv, Ukraine, and dEnamine Ltd. (www.enamine.net), Winston Churchill str. 78, 02094 Kyiv, Ukraine
*Correspondence e-mail: dyakvik@gmail.com
This study presents the synthesis, characterization and Hirshfeld surface analysis of the title mononuclear complex, [PdCl2(C12H14N4)]·C3H7NO. The compound crystalizes in the P21/c of the monoclinic system. The contains one neutral complex Pd(HLc-Pe)Cl2 [HLc-Pe is 2-(3-cyclopentyl-1,2,4-triazol-5-yl)pyridine] and one molecule of DMF as a solvate. The Pd atom has a square-planar coordination. In the crystal, molecules are linked by intermolecular N—H⋯O and C—H⋯N hydrogen bonds, forming layers parallel to the bc plane. A Hirshfeld surface analysis showed that the H⋯H contacts dominate the crystal packing with a contribution of 41.4%. The contribution of the N⋯H/H⋯N and H⋯O/O⋯H interactions is somewhat smaller, amounting to 12.4% and 5%, respectively.
Keywords: crystal structure; palladium(II); dichloropalladium; 1,2,4-triazole; Hirshfeld surface analysis.
CCDC reference: 2376338
1. Chemical context
In recent years, square-planar coordination compounds of d8 metals with N-containing ligands have been widely investigated as effective catalysts and pre-catalysts in organic transformations (Kumbhar, 2017; Zakharchenko et al., 2019; Jindabot et al., 2014; Jiao et al., 2020), components for optoelectronic devices (Cuerva et al., 2014, 2018, 2023; Cuerva, Campo, Cano & Schmidt, 2019; Cuerva, Campo, Cano & Lodeiro, 2019), and analogs of anticancer drugs (Abu-Surrah & Kettunen, 2006; Ouellette et al., 2019; Jakubowski et al., 2020; Zakharchenko et al., 2021; Ohorodnik et al., 2023). Concurrently, functionalized pyridyl-azole-based ligands have been used in coordination chemistry as chelating polydentate ligands for obtaining various types of metal complexes with potential applications in similar fields. Complexes of dichloropalladium with functionalized pyridyl-1,2,3-triazole ligands were shown to be effective pre-catalysts with a broad tolerance for cross-coupling reactions (Jindabot et al., 2014; Jiao et al., 2020). A series of metallomesogens of dihalide PdII and PtII compounds containing pyridyl-pyrazole ligands have been obtained in the context of the investigation of these complexes as 2D proton-conducting materials under anhydrous conditions (Cuerva et al., 2014, 2018; Cuerva, Campo, Cano, & Schmidt, 2019). In subsequent studies, coordination compounds of this type were used as building blocks (precursors) for the synthesis of metallomesogens with structural asymmetry, which extends the known ranges of mesophases (Cuerva et al., 2018, 2023; Cuerva, Campo, Cano, & Lodeiro, 2019). Furthermore, PtII metallomesogens exhibit photophysical multi-stimuli-responsive properties (Cuerva, Campo, Cano, & Lodeiro, 2019). The complexes of d8 metals with pyridyl-azole-based ligands have been explored in cancer therapy as analogues of cisplatin; their application is limited by the severe side effects and development of drug resistance. The combination of d8 metals and chelating pyridyl-azole-based ligands should lead to an increase in the stability of the corresponding complexes and to a decrease in hydrolysis in biological media and, as a result, to a decrease in the toxicity of the resulting compounds (Abu-Surrah & Kettunen, 2006). Previous studies demonstrated that the complexes of Pd and Pt with hydrophobic pyridyl-azole-based ligands have certain anticancer activity against various types of tumour cells in vitro (Ouellette et al., 2019; Jakubowski et al., 2020; Zakharchenko et al., 2021; Ohorodnik et al., 2023). Our previous research of six dichloride PdII complexes based on 5-substituted 3-(2-pyridyl)-5-alkyl-1,2,4-triazoles was reported. The evaluation of 1H NMR spectroscopic data was focused on three types of proton signals of ligands and complexes located near the coordination centre and discussed in the context of the influence that cycloalkyl substituents have on intramolecular interactions, being also supported by X-ray data for PdII complexes (Ivanova et al., 2024). We report herein the including characterization of the intermolecular contacts by Hirshfeld surface analysis, of a new mononuclear dichloropalladium(II) complex with 2-(3-cyclopentyl-1,2,4-triazol-5-yl)pyridine.
2. Structural commentary
The title compound crystalizes in the P21/c of the monoclinic system. The contains one neutral complex Pd(HLc-Pe)Cl2 [HLc-Pe is 2-(3-cyclopentyl-1,2,4-triazol-5-yl)pyridine] and one molecule of DMF as a solvate. The molecular structure of title compound is shown in Fig. 1.
The Pd atom has a square-planar environment formed by the bidentate coordination of two nitrogen atoms of the HLc-Pe ligand and two chlorine atoms. The deviation of the Pd atom from the mean-square plane defined by through the Cl1/Cl2/N1/N2 atoms (r.m.s.d. = 0.002 Å) is −0.0164 (11) Å. The Pd—N and Pd—Cl bond distances are 2.038 (3) and 2.061 (3) Å and 2.2811 (11) and 2.2837 (10) Å, respectively (Table 1). This structure of the title complex is in very good agreement with previously described Pd complexes with a similar coordination (Khomenko et al., 2009; Zakharchenko et al., 2021)
|
The five-membered ring is rotated relative to the plane of the pyridine-triazole fragment and is in the ac conformation relative to the C7—N4 bond of the triazole ring [the N4—C7—C8—C12 torsion angle is −91.1 (5)°]. The five-membered ring is in an Atom C8 deviates by 0.564 (8) Å from the mean square plane through the remaining ring atoms (r.m.s.d. = 0.04Å).
3. Supramolecular features
In the crystal, Pd(HLc-Pe)Cl2 complex molecules, and also molecules of the complex and molecules of DMF are linked by N—H⋯O and C—H⋯N hydrogen bonds (Table 2), forming layers parallel to the bc plane (Fig. 2).
4. Hirshfeld surface analysis and finger print plots
The intermolecular interactions in the dnorm property (Fig. 3) mapped over the Hirshfeld surface (Spackman & Jayatilaka, 2009), which was calculated using the CrystalExplorer21 program (Spackman et al., 2021). The strongest contacts, which are visualized on the Hirshfeld surface as the dark-red spots, correspond to the N—H⋯O hydrogen bond between the complex molecule and the DMF solvent molecule. The lighter red spots correspond to H⋯N/N⋯H interactions. The majority of the intermolecular interactions of the title compound are weak, and are represented in blue on the Hirshfeld surface.
of the title compound have been analysed by means of theFor further exploration of the intermolecular interactions, two-dimensional fingerprint plots (McKinnon et al., 2007) were generated, as shown in Fig. 4. The H⋯H interactions with a contribution of 41.4% have a significant effect on the consolidation in the solid state. The Cl⋯H/H⋯Cl (18.0%), N⋯H/H⋯N (12.4%), C⋯H/H⋯C (10.7%), O⋯H/H⋯O (5%), Cl⋯C/C⋯Cl (4.5%) and N⋯Cl/Cl⋯N (2.5%) interactions are less impactful in comparison.
5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.45, updated March 2024; Groom et al., 2016) found only eleven structures containing the Pd atom coordinated to two Cl atoms and a pyridine-triazole fragment. Of these, seven structures contain a 1,2,3-triazol fragment (Ervithayasuporn et al., 2015; Ervithayasuporn, 2016; Schweinfurth et al., 2011; Yano et al., 2012; Jindabot et al., 2014; Schweinfurth et al., 2009; Lang et al., 2012) and four structures contain a 1,2,4-triazol fragment (Khomenko et al., 2009; Zakharchenko et al., 2021; Ohorodnik et al., 2023). All of the structures have a square-planar coordination of the Pd atom. The Pd—N and Pd—Cl bond distances vary from 1.999 (2)–2.066 (3) Å and 2.264 (2)–2.293 (2)Å, respectively.
6. Synthesis and crystallization
To obtain the complex Pd(HLc-Pe)Cl2·DMF, 0.2 mmol of pre-synthesized Pd(HLc-Pe)Cl2 (Ivanova et al., 2024) was dissolved in 1 ml of DMF and salted out with 1 ml of MTBE (methyl tert-butyl ether) at room temperature for 72 h, affording yellow crystals. The crystals were collected by filtration.
Pd(HLc-Pe)Cl2. Yield 66%. m. p. >523 K decomp. 1H NMR (400 MHz, DMSO-d6) δ: 15.17 (br s, 1H, NH), 9.04 (d, J = 5.6 Hz, 1H, Py-H6), 8.28 (t, J = 7.7 Hz, 1H, Py-H4), 8.15 (d, J = 8.1 Hz, 1H, Py-H3), 7.76 (t, J = 6.0 Hz, 1H, Py-H5), 4.20 (m, 1H, H9), 2.15 (m, 2H, Hc-Pe), 1.78–1.62 (m, 6H, Hc-Pe) ppm (Fig. 5). IR (KBr, cm−1): 3457, 3250, 2945, 2873, 1621, 1543, 1470, 1287, 1090, 788, 723, 467 (Fig. 6). Elemental analysis: Analysis calculated for C12H14Cl2N4Pd (391.58): C, 36.81%; H, 3.60%; N, 14.31%. Found: C: 36.65% H: 3.52% N: 14.43%.
7. Refinement
Crystal data, data collection and structure . The H atoms were placed in calculated positions and refined using a riding model with Uiso(H) = nUeq of the (n = 1.5 for methyl groups and n = 1.2 for other hydrogen atoms). The Uij values of the C atoms of the five-membered ring were restrained to be similar to each other (within a standard deviation of 0.02 Å2).
details are summarized in Table 3Supporting information
CCDC reference: 2376338
https://doi.org/10.1107/S2056989024007801/ex2086sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024007801/ex2086Isup2.hkl
[PdCl2(C12H14N4)]·C3H7NO | F(000) = 936 |
Mr = 464.67 | Dx = 1.634 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.3964 (8) Å | Cell parameters from 6028 reflections |
b = 20.2572 (16) Å | θ = 2.3–30.3° |
c = 9.9822 (7) Å | µ = 1.28 mm−1 |
β = 96.358 (2)° | T = 296 K |
V = 1888.4 (3) Å3 | Block, orange |
Z = 4 | 0.4 × 0.2 × 0.15 mm |
Bruker APEXII CCD diffractometer | 3345 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.046 |
φ and ω scans | θmax = 27.5°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −12→11 |
Tmin = 0.533, Tmax = 0.746 | k = −23→26 |
13789 measured reflections | l = −10→12 |
4304 independent reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.051 | H-atom parameters constrained |
wR(F2) = 0.093 | w = 1/[σ2(Fo2) + (0.0356P)2 + 0.2719P] where P = (Fo2 + 2Fc2)/3 |
S = 1.12 | (Δ/σ)max = 0.002 |
4304 reflections | Δρmax = 0.64 e Å−3 |
219 parameters | Δρmin = −0.94 e Å−3 |
30 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Using Olex2 (Dolomanov et al., 2009), the structure was solved with the SHELXT (Sheldrick, 2018) structure solution program using Intrinsic Phasing and refined with the SHELXL (Sheldrick, 2015) refinement package. Full-matrix least-squares refinement against F2 in anisotropic approximation was used for non-hydrogen atoms. |
x | y | z | Uiso*/Ueq | ||
Pd1 | 0.14161 (3) | 0.51528 (2) | 0.63841 (3) | 0.02837 (10) | |
Cl1 | 0.17109 (12) | 0.61436 (5) | 0.53648 (11) | 0.0457 (3) | |
Cl2 | 0.06163 (12) | 0.56975 (5) | 0.81588 (11) | 0.0475 (3) | |
N1 | 0.1217 (3) | 0.42381 (15) | 0.7248 (3) | 0.0309 (7) | |
N2 | 0.2130 (3) | 0.45857 (15) | 0.4909 (3) | 0.0261 (7) | |
N3 | 0.2590 (4) | 0.35403 (16) | 0.4333 (3) | 0.0399 (8) | |
N4 | 0.2936 (4) | 0.39792 (16) | 0.3393 (3) | 0.0382 (8) | |
H4 | 0.328939 | 0.386935 | 0.266629 | 0.046* | |
C1 | 0.0774 (5) | 0.4111 (2) | 0.8460 (4) | 0.0450 (11) | |
H1 | 0.049967 | 0.446010 | 0.898062 | 0.054* | |
C2 | 0.0718 (5) | 0.3477 (2) | 0.8945 (5) | 0.0596 (14) | |
H2 | 0.040242 | 0.339994 | 0.978152 | 0.072* | |
C3 | 0.1129 (5) | 0.2958 (2) | 0.8188 (5) | 0.0582 (13) | |
H3 | 0.109421 | 0.252721 | 0.850674 | 0.070* | |
C4 | 0.1593 (5) | 0.3083 (2) | 0.6954 (4) | 0.0469 (11) | |
H4A | 0.188724 | 0.273951 | 0.642997 | 0.056* | |
C5 | 0.1612 (4) | 0.37237 (19) | 0.6510 (4) | 0.0330 (9) | |
C6 | 0.2103 (4) | 0.39271 (19) | 0.5233 (4) | 0.0312 (9) | |
C7 | 0.2667 (4) | 0.4598 (2) | 0.3727 (4) | 0.0313 (8) | |
C8 | 0.2970 (4) | 0.5186 (2) | 0.2913 (4) | 0.0344 (9) | |
H8 | 0.225634 | 0.552496 | 0.305020 | 0.041* | |
C9 | 0.2950 (5) | 0.5072 (2) | 0.1405 (4) | 0.0501 (11) | |
H9A | 0.345162 | 0.466919 | 0.122290 | 0.060* | |
H9B | 0.197656 | 0.504772 | 0.096855 | 0.060* | |
C10 | 0.3716 (6) | 0.5671 (3) | 0.0933 (5) | 0.0771 (16) | |
H10A | 0.420108 | 0.556242 | 0.015282 | 0.093* | |
H10B | 0.304162 | 0.602525 | 0.069144 | 0.093* | |
C11 | 0.4769 (6) | 0.5871 (3) | 0.2084 (6) | 0.0959 (19) | |
H11A | 0.468558 | 0.633999 | 0.225607 | 0.115* | |
H11B | 0.573529 | 0.578154 | 0.187875 | 0.115* | |
C12 | 0.4455 (5) | 0.5479 (3) | 0.3309 (5) | 0.0609 (13) | |
H12A | 0.445256 | 0.576371 | 0.409077 | 0.073* | |
H12B | 0.515995 | 0.513355 | 0.351091 | 0.073* | |
O1 | 0.4202 (4) | 0.33801 (18) | 0.1446 (3) | 0.0690 (10) | |
N5 | 0.6183 (4) | 0.28119 (17) | 0.1094 (4) | 0.0473 (9) | |
C13 | 0.5478 (6) | 0.3255 (2) | 0.1708 (4) | 0.0543 (13) | |
H13 | 0.598512 | 0.349448 | 0.239900 | 0.065* | |
C14 | 0.5465 (6) | 0.2439 (3) | −0.0011 (5) | 0.0778 (18) | |
H14A | 0.447518 | 0.256600 | −0.014784 | 0.117* | |
H14B | 0.553480 | 0.197671 | 0.019415 | 0.117* | |
H14C | 0.590723 | 0.252728 | −0.081424 | 0.117* | |
C15 | 0.7682 (6) | 0.2678 (3) | 0.1477 (6) | 0.0799 (18) | |
H15A | 0.803769 | 0.296598 | 0.220213 | 0.120* | |
H15B | 0.820744 | 0.275203 | 0.071894 | 0.120* | |
H15C | 0.779881 | 0.222732 | 0.176556 | 0.120* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pd1 | 0.02677 (15) | 0.02755 (16) | 0.03033 (17) | −0.00105 (13) | 0.00115 (11) | −0.00292 (13) |
Cl1 | 0.0606 (7) | 0.0298 (5) | 0.0473 (6) | −0.0059 (5) | 0.0080 (5) | −0.0003 (5) |
Cl2 | 0.0589 (7) | 0.0423 (6) | 0.0431 (6) | −0.0010 (5) | 0.0144 (5) | −0.0117 (5) |
N1 | 0.0259 (16) | 0.0341 (18) | 0.0317 (18) | 0.0024 (14) | −0.0002 (13) | −0.0026 (14) |
N2 | 0.0241 (15) | 0.0229 (15) | 0.0306 (17) | 0.0004 (13) | −0.0003 (13) | −0.0014 (13) |
N3 | 0.049 (2) | 0.0303 (19) | 0.042 (2) | 0.0047 (16) | 0.0135 (17) | −0.0008 (16) |
N4 | 0.046 (2) | 0.037 (2) | 0.0342 (19) | 0.0060 (16) | 0.0126 (16) | −0.0037 (15) |
C1 | 0.056 (3) | 0.048 (3) | 0.033 (2) | 0.005 (2) | 0.013 (2) | −0.001 (2) |
C2 | 0.077 (4) | 0.059 (3) | 0.046 (3) | 0.007 (3) | 0.020 (3) | 0.019 (2) |
C3 | 0.075 (4) | 0.039 (3) | 0.063 (3) | 0.007 (3) | 0.018 (3) | 0.022 (2) |
C4 | 0.057 (3) | 0.033 (2) | 0.052 (3) | 0.006 (2) | 0.012 (2) | 0.007 (2) |
C5 | 0.028 (2) | 0.033 (2) | 0.037 (2) | 0.0005 (17) | −0.0003 (17) | 0.0011 (18) |
C6 | 0.030 (2) | 0.028 (2) | 0.035 (2) | −0.0012 (17) | 0.0003 (17) | −0.0010 (17) |
C7 | 0.0252 (19) | 0.037 (2) | 0.032 (2) | 0.0006 (17) | 0.0019 (16) | 0.0001 (17) |
C8 | 0.0318 (19) | 0.040 (2) | 0.031 (2) | −0.0023 (18) | 0.0002 (16) | −0.0001 (18) |
C9 | 0.055 (3) | 0.062 (3) | 0.033 (2) | −0.005 (2) | 0.002 (2) | 0.005 (2) |
C10 | 0.077 (3) | 0.098 (4) | 0.056 (3) | −0.025 (3) | 0.008 (3) | 0.024 (3) |
C11 | 0.080 (4) | 0.124 (5) | 0.080 (4) | −0.046 (3) | −0.009 (3) | 0.043 (3) |
C12 | 0.051 (3) | 0.072 (3) | 0.056 (3) | −0.024 (3) | −0.009 (2) | 0.016 (3) |
O1 | 0.085 (3) | 0.071 (3) | 0.056 (2) | 0.029 (2) | 0.026 (2) | −0.0065 (18) |
N5 | 0.054 (2) | 0.034 (2) | 0.055 (2) | −0.0022 (18) | 0.0126 (19) | −0.0088 (17) |
C13 | 0.087 (4) | 0.043 (3) | 0.036 (3) | 0.009 (3) | 0.019 (3) | −0.002 (2) |
C14 | 0.066 (4) | 0.071 (4) | 0.095 (5) | 0.008 (3) | 0.000 (3) | −0.038 (3) |
C15 | 0.066 (4) | 0.059 (4) | 0.115 (5) | −0.006 (3) | 0.012 (4) | −0.028 (3) |
Pd1—Cl1 | 2.2811 (11) | C8—C12 | 1.528 (6) |
Pd1—Cl2 | 2.2837 (10) | C9—H9A | 0.9700 |
Pd1—N1 | 2.061 (3) | C9—H9B | 0.9700 |
Pd1—N2 | 2.038 (3) | C9—C10 | 1.511 (6) |
N1—C1 | 1.348 (5) | C10—H10A | 0.9700 |
N1—C5 | 1.352 (5) | C10—H10B | 0.9700 |
N2—C6 | 1.374 (5) | C10—C11 | 1.487 (7) |
N2—C7 | 1.334 (4) | C11—H11A | 0.9700 |
N3—N4 | 1.358 (4) | C11—H11B | 0.9700 |
N3—C6 | 1.312 (5) | C11—C12 | 1.514 (7) |
N4—H4 | 0.8600 | C12—H12A | 0.9700 |
N4—C7 | 1.328 (5) | C12—H12B | 0.9700 |
C1—H1 | 0.9300 | O1—C13 | 1.225 (6) |
C1—C2 | 1.376 (6) | N5—C13 | 1.308 (5) |
C2—H2 | 0.9300 | N5—C14 | 1.440 (6) |
C2—C3 | 1.376 (6) | N5—C15 | 1.444 (6) |
C3—H3 | 0.9300 | C13—H13 | 0.9300 |
C3—C4 | 1.375 (6) | C14—H14A | 0.9600 |
C4—H4A | 0.9300 | C14—H14B | 0.9600 |
C4—C5 | 1.373 (5) | C14—H14C | 0.9600 |
C5—C6 | 1.462 (5) | C15—H15A | 0.9600 |
C7—C8 | 1.487 (5) | C15—H15B | 0.9600 |
C8—H8 | 0.9800 | C15—H15C | 0.9600 |
C8—C9 | 1.522 (5) | ||
Cl1—Pd1—Cl2 | 89.29 (4) | C8—C9—H9A | 111.1 |
N1—Pd1—Cl1 | 177.27 (9) | C8—C9—H9B | 111.1 |
N1—Pd1—Cl2 | 93.27 (9) | H9A—C9—H9B | 109.0 |
N2—Pd1—Cl1 | 96.18 (9) | C10—C9—C8 | 103.5 (4) |
N2—Pd1—Cl2 | 174.47 (9) | C10—C9—H9A | 111.1 |
N2—Pd1—N1 | 81.25 (12) | C10—C9—H9B | 111.1 |
C1—N1—Pd1 | 126.8 (3) | C9—C10—H10A | 110.5 |
C1—N1—C5 | 118.3 (4) | C9—C10—H10B | 110.5 |
C5—N1—Pd1 | 115.0 (2) | H10A—C10—H10B | 108.7 |
C6—N2—Pd1 | 111.2 (2) | C11—C10—C9 | 106.1 (4) |
C7—N2—Pd1 | 144.6 (3) | C11—C10—H10A | 110.5 |
C7—N2—C6 | 104.2 (3) | C11—C10—H10B | 110.5 |
C6—N3—N4 | 102.1 (3) | C10—C11—H11A | 110.1 |
N3—N4—H4 | 123.9 | C10—C11—H11B | 110.1 |
C7—N4—N3 | 112.2 (3) | C10—C11—C12 | 108.0 (4) |
C7—N4—H4 | 123.9 | H11A—C11—H11B | 108.4 |
N1—C1—H1 | 119.3 | C12—C11—H11A | 110.1 |
N1—C1—C2 | 121.4 (4) | C12—C11—H11B | 110.1 |
C2—C1—H1 | 119.3 | C8—C12—H12A | 110.9 |
C1—C2—H2 | 120.1 | C8—C12—H12B | 110.9 |
C1—C2—C3 | 119.8 (4) | C11—C12—C8 | 104.4 (4) |
C3—C2—H2 | 120.1 | C11—C12—H12A | 110.9 |
C2—C3—H3 | 120.4 | C11—C12—H12B | 110.9 |
C4—C3—C2 | 119.2 (4) | H12A—C12—H12B | 108.9 |
C4—C3—H3 | 120.4 | C13—N5—C14 | 120.0 (4) |
C3—C4—H4A | 120.7 | C13—N5—C15 | 122.3 (4) |
C5—C4—C3 | 118.7 (4) | C14—N5—C15 | 117.7 (4) |
C5—C4—H4A | 120.7 | O1—C13—N5 | 125.2 (5) |
N1—C5—C4 | 122.6 (4) | O1—C13—H13 | 117.4 |
N1—C5—C6 | 113.0 (3) | N5—C13—H13 | 117.4 |
C4—C5—C6 | 124.4 (4) | N5—C14—H14A | 109.5 |
N2—C6—C5 | 119.6 (3) | N5—C14—H14B | 109.5 |
N3—C6—N2 | 113.7 (3) | N5—C14—H14C | 109.5 |
N3—C6—C5 | 126.6 (4) | H14A—C14—H14B | 109.5 |
N2—C7—C8 | 127.7 (4) | H14A—C14—H14C | 109.5 |
N4—C7—N2 | 107.8 (3) | H14B—C14—H14C | 109.5 |
N4—C7—C8 | 124.4 (3) | N5—C15—H15A | 109.5 |
C7—C8—H8 | 108.1 | N5—C15—H15B | 109.5 |
C7—C8—C9 | 116.0 (4) | N5—C15—H15C | 109.5 |
C7—C8—C12 | 113.2 (3) | H15A—C15—H15B | 109.5 |
C9—C8—H8 | 108.1 | H15A—C15—H15C | 109.5 |
C9—C8—C12 | 103.0 (3) | H15B—C15—H15C | 109.5 |
C12—C8—H8 | 108.1 | ||
Pd1—N1—C1—C2 | −178.4 (3) | C2—C3—C4—C5 | −0.8 (7) |
Pd1—N1—C5—C4 | 177.8 (3) | C3—C4—C5—N1 | 1.2 (7) |
Pd1—N1—C5—C6 | −0.1 (4) | C3—C4—C5—C6 | 178.8 (4) |
Pd1—N2—C6—N3 | −178.2 (3) | C4—C5—C6—N2 | −177.5 (4) |
Pd1—N2—C6—C5 | −0.5 (4) | C4—C5—C6—N3 | 0.0 (6) |
Pd1—N2—C7—N4 | 177.4 (3) | C5—N1—C1—C2 | −0.1 (6) |
Pd1—N2—C7—C8 | −1.0 (7) | C6—N2—C7—N4 | −0.1 (4) |
N1—C1—C2—C3 | 0.4 (8) | C6—N2—C7—C8 | −178.5 (3) |
N1—C5—C6—N2 | 0.4 (5) | C6—N3—N4—C7 | 0.1 (4) |
N1—C5—C6—N3 | 177.8 (4) | C7—N2—C6—N3 | 0.2 (4) |
N2—C7—C8—C9 | −154.3 (4) | C7—N2—C6—C5 | 178.0 (3) |
N2—C7—C8—C12 | 86.9 (5) | C7—C8—C9—C10 | −163.2 (4) |
N3—N4—C7—N2 | 0.0 (4) | C7—C8—C12—C11 | 158.7 (4) |
N3—N4—C7—C8 | 178.4 (3) | C8—C9—C10—C11 | 30.6 (6) |
N4—N3—C6—N2 | −0.2 (4) | C9—C8—C12—C11 | 32.7 (5) |
N4—N3—C6—C5 | −177.7 (4) | C9—C10—C11—C12 | −10.2 (7) |
N4—C7—C8—C9 | 27.7 (5) | C10—C11—C12—C8 | −14.2 (7) |
N4—C7—C8—C12 | −91.1 (5) | C12—C8—C9—C10 | −39.0 (5) |
C1—N1—C5—C4 | −0.7 (6) | C14—N5—C13—O1 | 1.9 (8) |
C1—N1—C5—C6 | −178.6 (3) | C15—N5—C13—O1 | −178.4 (5) |
C1—C2—C3—C4 | 0.0 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4···O1 | 0.86 | 1.85 | 2.679 (4) | 161 |
C3—H3···N3i | 0.93 | 2.66 | 3.471 (6) | 146 |
Symmetry code: (i) x, −y+1/2, z+1/2. |
References
Abu-Surrah, A. & Kettunen, M. (2006). Curr. Med. Chem. 13, 1337–1357. Web of Science PubMed CAS Google Scholar
Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cuerva, C., Campo, J. A., Cano, M. & Lodeiro, C. (2019). Chem. Eur. J. 25, 12046–12051. Web of Science CrossRef CAS PubMed Google Scholar
Cuerva, C., Campo, J. A., Cano, M. & Schmidt, R. (2019). J. Mater. Chem. C. 7, 10318–10330. Web of Science CSD CrossRef CAS Google Scholar
Cuerva, C., Campo, J. A., Cano, M., Schmidt, R. & Lodeiro, C. (2018). J. Mater. Chem. C. 6, 9723–9733. Web of Science CSD CrossRef CAS Google Scholar
Cuerva, C., Campo, J. A., Ovejero, P., Torres, M. R. & Cano, M. (2014). Dalton Trans. 43, 8849–8860. Web of Science CSD CrossRef CAS PubMed Google Scholar
Cuerva, C., Cano, M. & Schmidt, R. (2023). Dalton Trans. 52, 4684–4691. Web of Science CrossRef CAS PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ervithayasuporn, V. (2016). CSD Communication (CCDC 1053096). CCDC, Cambridge, England. Google Scholar
Ervithayasuporn, V., Kwanplod, K., Boonmak, J., Youngme, S. & Sangtrirutnugul, P. (2015). J. Catal. 332, 62–69. Web of Science CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Ivanova, H. V., Khomenko, D. M., Doroshchuk, R. O., Stoica, A.-C., Zakharchenko, B. V., Rusanova, J. A., Raspertova, I. V., Shova, S. & Lampeka, R. D. (2024). ChemistrySelect, https://doi. org/10.1002/slct. 202402258. Google Scholar
Jakubowski, M., Łakomska, I., Sitkowski, J., Pokrywczyńska, M., Dąbrowski, P., Framski, G. & Ostrowski, T. (2020). Polyhedron, 180, 114428. Web of Science CrossRef Google Scholar
Jiao, L.-Y., Yin, X.-M., Liu, S., Zhang, Z., Sun, M. & Ma, X.-X. (2020). Catal. Commun. 135, 105889. Web of Science CSD CrossRef Google Scholar
Jindabot, S., Teerachanan, K., Thongkam, P., Kiatisevi, S., Khamnaen, T., Phiriyawirut, P., Charoenchaidet, S., Sooksimuang, T., Kongsaeree, P. & Sangtrirutnugul, P. (2014). J. Organomet. Chem. 750, 35–40. Web of Science CSD CrossRef CAS Google Scholar
Khomenko, D. N., Doroschuk, R. A. & Lampeka, R. D. (2009). Ukr. J. Chem. 75, 30–33. CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Kumbhar, A. (2017). J. Organomet. Chem. 848, 22–88. Web of Science CrossRef CAS Google Scholar
Lang, C., Kiefer, C., Lejeune, E., Goldmann, A. S., Breher, F., Roesky, P. W. & Barner-Kowollik, C. (2012). Polym. Chem. 3, 2413–2420. Web of Science CSD CrossRef CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Ohorodnik, Y. M., Khomenko, D. M., Doroshchuk, R. O., Raspertova, I. V., Shova, S., Babak, M. V., Milunovic, M. N. M. & Lampeka, R. D. (2023). Inorg. Chim. Acta, 556, 121646. Web of Science CSD CrossRef Google Scholar
Ouellette, V., Côté, M.-F., Gaudreault, R. C., Tajmir-Riahi, H.-A. & Bérubé, G. (2019). Eur. J. Med. Chem. 179, 660–666. Web of Science CrossRef CAS PubMed Google Scholar
Schweinfurth, D., Pattacini, R., Strobel, S. & Sarkar, B. (2009). Dalton Trans. pp. 9291–9297. Web of Science CSD CrossRef Google Scholar
Schweinfurth, D., Strobel, S. & Sarkar, B. (2011). Inorg. Chim. Acta, 374, 253–260. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yano, S., Ohi, H., Ashizaki, M., Obata, M., Mikata, Y., Tanaka, R., Nishioka, T., Kinoshita, I., Sugai, Y., Okura, I., Ogura, S., Czaplewska, J. A., Gottschaldt, M., Schubert, U. S., Funabiki, T., Morimoto, K. & Nakai, M. (2012). Chem. Biodivers. 9, 1903–1915. Web of Science CSD CrossRef CAS PubMed Google Scholar
Zakharchenko, B. V., Khomenko, D. M., Doroschuk, R. O., Raspertova, I. V., Shova, S., Grebinyk, A. G., Grynyuk, I. I., Prylutska, S. V., Matyshevska, O. P., Slobodyanik, M. S., Frohme, M. & Lampeka, R. D. (2021). Chem. Pap. 75, 4899–4906. Web of Science CSD CrossRef CAS Google Scholar
Zakharchenko, B. V., Khomenko, D. M., Doroshchuk, R. O., Raspertova, I. V., Starova, V. S., Trachevsky, V. V., Shova, S., Severynovska, O. V., Martins, L. M. D. R. S., Pombeiro, A. J. L., Arion, V. B. & Lampeka, R. D. (2019). New J. Chem. 43, 10973–10984. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.