research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (1,4,7,10,13,16-hexa­oxa­cyclo­octa­decane-κ6O)potassium-μ-oxalato-tri­phenylstannate(IV), the first reported 18-crown-6-stabilized potassium salt of tri­phenyl­oxalatostannate

crossmark logo

aUniversity of the District of Columbia, Division of Sciences and Mathematics, 4200 Connecticut Avenue, NW, Washington DC, 20008, USA
*Correspondence e-mail: xsong@udc.edu

Edited by N. Alvarez Failache, Universidad de la Repüblica, Uruguay (Received 3 July 2024; accepted 6 August 2024; online 13 August 2024)

The title complex, (1,4,7,10,13,16-hexa­oxa­cyclo­octa­decane-1κ6O)(μ-oxalato-1κ2O1,O2:2κ2O1′,O2′)triphenyl-2κ3C-potassium(I)tin(IV), [KSn(C6H5)3(C2O4)(C12H24O6)] or K[18-Crown-6][(C6H5)3SnO4C2], was synthesized. The complex consists of a potassium cation coordinated to the six oxygen atoms of a crown ether mol­ecule and the two oxygen atoms of the oxalatotri­phenyl­stannate anion. It crystallizes in the monoclinic crystal system within the space group P21. The tin atom is coordinated by one chelating oxalate ligand and three phenyl groups, forming a cis-trigonal–bipyramidal geometry around the tin atom. The cations and anions form ion pairs, linked through carbonyl coordination to the potassium atoms. The crystal structure features C—H⋯O hydrogen bonds between the oxygen atoms of the oxalate group and the hydrogen atoms of the phenyl groups, resulting in an infinite chain structure extending along a-axis direction. The primary inter-chain inter­actions are van der Waals forces.

1. Chemical context

Organotin carboxyl­ates are one of the most significant classes of compounds, valued not only for their theoretical and structural properties but also for their industrial and agricultural applications (Zuckermann et al., 1976[Zuckermann, J. J. (1976). Adv. Chem. Series 157. Washington, DC: American Chemical Society.]). Organotin(IV) carboxyl­ates are particularly notable for their diverse and important biological activities, serving as anti­cancer, anti­viral, anti­bacterial, and anti­fungal agents, as well as wood preservatives and pesticides (Davies & Smith, 1980[Davies, A. G. & Smith, P. J. (1980). Adv. Inorg. Chem. Radiochem. 23, 1-77.]; Smith et al., 1978[Smith, P. J. (1978). Toxicological Data on Organotin Compounds. ITRI Publication 538. London: International Tin Research Institute.]; Thayer et al., 1984[Thayer, J. S. (1984). Organometallic Compounds and Living Organisms. Orlando: Academic Press.]; Blunden et al., 1985[Blunden, S. J., Cusack, P. & Hill, R. (1985). The Industrial Uses of Tin Chemicals. London: The Royal Society of Chemistry.]; Evans & Karpel, 1985[Evans, C. J. & Karpel, S. (1985). J. Organomet. Chem. 16.]; Angham et al., 2019[Angham, G. H., Khudheir, J., Dina, S. A. & Emad, Y. (2019). Systematic Reviews in Pharmacy, 10, 26-31.]; Talebi et al., 2023[Talebi, Z. A., Farhood, A. S. & Hadi, A. G. (2023). Int. J. Pharm. Bio Med. Sci. 3, 181-184.]). Metal complexes of di­carb­oxy­lic acids, such as oxalic acid, have garnered significant inter­est due to their promising magnetic and electrochemical properties. The appeal of oxalate-based coordination compounds lies in their high structural diversity, attributed to the oxalate ligand's ability to adopt 17 different coordination modes and function as a mono-, bi-, tri-, or tetra­dentate ligand (Krishnamurty & Harris, 1961[Krishnamurty, K. V. & Harris, G. M. (1961). Chem. Rev. 61, 213-246.]; Rao et al., 2004[Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466-1496.]). This results in a vast, yet largely unexplored, compositional area. Notably, there are very few reports of organotin complexes of oxalic acid in the literature.

The author has been inter­ested in designing and preparing ionic organotin complexes to improve aqueous solubility through ionization. Since the pioneering work of Pedersen (Pedersen, 1988[Pedersen, C. J. (1988). Angew. Chem. Int. Ed. Engl. 27, 1021-1027.]; Izatt, 2017[Izatt, R. M. (2017). Chem. Soc. Rev. 46, 2380-2384.]), crown ethers and their complexes with metal cations have attracted considerable attention. Their remarkable selectivity on metal cations, especially alkali and alkaline earth metal cations, is a topic of fundamental inter­est in both coordination chemistry and biological chemistry (Bajaj et al., 1988[Bajaj, A. V. & Poonia, N. S. (1988). Coord. Chem. Rev. 87, 55-213.]; Hay & Rustad, 1994[Hay, B. P. & Rustad, J. R. (1994). J. Am. Chem. Soc. 116, 6316-6326.]; Lehn et al., 1988[Lehn, J. M. (1988). Angew. Chem. Int. Ed. Engl. 27, 89-112.]; Lee et al., 1996[Lee, H. S., Yang, X. Q., McBreen, J., Choi, L. S. & Okamoto, Y. J. (1996). J. Electrochem. Soc. 143, 3825-3829.]). Literature reports show that crown ethers can be utilized in solid-solid and solid-liquid processes to capture alkali metal and ammonium cations in extended hydrogen-bonded networks formed by inorganic acid anions, such as hydrogen sulfate and di-hydrogen phosphate, as well as organic acid anions (Braga et al., 2005[Braga, D., Curzi, M., Lusi, M. & Grepioni, F. (2005). CrystEngComm, 7, 276-278.], 2007[Braga, D., Gandolfi, M., Lusi, M., Polito, M., Rubini, K. & Grepioni, F. (2007). Cryst. Growth Des. 7, 919-924.], 2008[Braga, D., Modena, E., Polito, M., Rubini, K. & Grepioni, F. (2008). New J. Chem. 32, 1718-1724.], 2009[Braga, D., d'Agostino, S., Polito, M., Rubini, K. & Grepioni, F. (2009). CrystEngComm, 11, 1994-2002.]). In this context, we present and discuss the crystal structure of a crown ether-stabilized potassium salt of oxalatotri­phenyl­stannate, 1.

[Scheme 1]

2. Structural commentary

The stannate anionic unit of the title compound 1 features a cis-tbp [Ph3Snox] anion, with Sn1—O1 measuring 2.071 (5) Å and Sn1—O2 measuring 2.290 (6) Å, and an O1—Sn1—O2 bond angle of 73.4 (2)° (Fig. 1[link]). This anion is coordinated via its two oxalate carbonyl groups (O3 and O4) to a K[18-crown-6] cation, with K1—O3 at 2.785 (7) Å, K1—O4 at 2.654 (6) Å, and an O3—K1—O4 bond angle of 61.3 (2)° (Fig. 1[link]). The oxalate acts as a bidentate ligand to both tin and potassium, forming two five-membered chelate rings that are coplanar, with a dihedral angle of approximately 0°.

[Figure 1]
Figure 1
The asymmetric unit and mol­ecular structure of crystal [(18-crown-6)K][SnPh3(ox)] (1) with anisotropic displacement ellipsoids set to the 50% probability level.

In the [Ph3Snox] portion, the axial Sn-O bond [Sn1—O2 at 2.290 (6) Å] is significantly longer than the equatorial Sn-O bond [Sn1—O1 at 2.071 (5) Å]. The bite angle of 73.4 (2)° is similar to those found in other chelated oxalato tri­phenyl­stannates (Ng et al., 1992[Ng, S. W., Kumar Das, V. G., Gielen, M. & Tiekink, E. R. T. (1992). Appl. Organomet. Chem. 6, 19-25.]; Ng & Kumar Das, 1993[Ng, S. W. & Kumar Das, V. G. (1993). J. Organomet. Chem. 456, 175-179.]; Ng, 1996[Ng, S. W. (1996). Acta Cryst. C52, 2990-2992.]). The axial Sn—C bond [Sn1—C7 at 2.188 (7) Å] is somewhat longer than the equatorial Sn—C bonds [Sn1—C1 at 2.136 (7) Å and Sn1—C13 at 2.138 (7) Å]. The axial structure is notably bent, with an O2—Sn1—C7 angle of 160.8 (3)°, and the Sn atom is displaced out of the equatorial plane [Σ angles at Sn = 354.9 (3)°] towards the axial C7 atom by 0.119 Å.

The oxalate group in the [Ph3Snox] ion consists of two similar carboxyl­ate (–COO) entities. Both bind to the Sn1 and K1 atoms, with slightly different C—O bond lengths: those bonded to tin [C—O = 1.266 (11) and 1.303 (10) Å] are slightly longer than those bonded to potassium [C—O = 1.233 (11) and 1.202 (10) Å]. The two negative charges appear to be delocalized over the four oxygen atoms in the oxalate group.

In the [K(18-crown-6)]+ complex cation, the potassium atom deviates by 0.614 Å from the root-mean-square plane of the six oxygen atoms in the 18-crown-6 ligand towards the oxalate group. This deviation is due to the coordination of two oxygens from the oxalate group. A similar observation has been reported in the literature (Gjikaj et al., 2005[Gjikaj, M., Adam, A., Duewel, M. & Brockner, W. (2005). Z. Kristallogr. 220, 67-68.]; Liebing et al., 2016[Liebing, P., Zaeni, A., Olbrich, F. & Edelmann, F. T. (2016). Acta Cryst. E72, 1757-1761.]; Sellin & Malischewski, 2019[Sellin, M. & Malischewski, M. (2019). Acta Cryst. E75, 1871-1874.]) when potassium has axial coordination to other heteroatoms. The K—O bond lengths with the 18-crown-6 ligand range from 2.802 (6) to 2.976 (6) Å, which are slightly longer than those reported for other [K(18-crown-6)]+ complexes in the literature. The increased average K—O bond length with 18-crown-6 is attributed to the strong coordination with the oxalate group, where the two K—O bond lengths with the oxalate group are 2.654 (6) Å and 2.785 (7) Å. The coordination number of the K+ cation is 8. The coordination polyhedron of the potassium cation can be described as a distorted hexa­gonal pyramid with a bifurcated vertex at the O3 and O4 atoms.

3. Supra­molecular features

The title complex 1 exhibits a supra­molecular structure that is consolidated by two weak inter­molecular hydrogen bonds: C4—H4⋯O1 and C16—H16⋯O1, with C⋯O distances of 3.360 (11) and 3.332 (9) Å, respectively (Fig. 2[link]; symmetry codes as in Table 1[link]). These inter­molecular hydrogen bonds result in the formation of a ‘shoulder-to-shoulder’ arrangement of the complex mol­ecules, creating a supra­molecular layer parallel to the (001) plane, as depicted in Figs. 3[link] and 4[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.95 2.42 3.360 (11) 172
C16—H16⋯O1ii 0.95 2.41 3.332 (9) 165
Symmetry codes: (i) [x+1, y, z]; (ii) [x, y, z+1].
[Figure 2]
Figure 2
Crystal packing in the crystal structure showing C—H⋯O hydrogen bonds, denoted by dashed lines, between neighboring mol­ecules.
[Figure 3]
Figure 3
Partial packing plot of 1 along the b axis showing the 1-D chain formed through C—H⋯O hydrogen bonding.
[Figure 4]
Figure 4
Packing plot of 1 viewed approximately along [001] showing a layer of mol­ecules perpendicular to the c axis.

In supra­molecular chemistry, weak hydrogen bonds such as C—H⋯π and ππ inter­actions play significant roles in the structural integrity of crystal structures (Meyer et al., 2003[Meyer, E. A., Castellano, R. K. & Diederich, F. (2003). Angew. Chem. Int. Ed. 42, 1210-1250.]; Nishio, 2004[Nishio, M. (2004). CrystEngComm, 6, 130-158.]). The effectiveness of these inter­actions is primarily influenced by the distance between the hydrogen atom of the C—H bond and the plane of the aromatic ring, which should be less than 2.9 Å (the combined van der Waals radii), and the C—H⋯π access angles, ideally ranging from 140 to 180° (Takahashi et al., 2001[Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomoda, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421-2430.]).

In the crystal under investigation, relatively weak C—H⋯π inter­actions are observed. The analysis of these inter­actions reveals C—H⋯centroid phenyl distances of 2.936 and 2.937 Å (for H26A⋯C11) and distances of 2.937 and 2.949 Å (for H27B⋯C13). The corresponding access angles are 158° for C1 and 162° for C13. Despite the parallel alignment of phenyl groups (C7–C12) along the (101) direction, significant ππ inter­actions are absent. This is attributed to a large separation distance of 7.006 Å between the planes, which greatly exceeds the critical distance of 4 Å, and an inter-centroid distance of 9.406 Å, surpassing the 6 Å threshold (Ninković et al., 2011[Ninković, D. B., Janjić, G. V., Veljković, D. Ž., Sredojević, D. N. & Zarić, S. D. (2011). ChemPhysChem, 12, 3511-3514.]).

4. Database survey

A survey of the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]; Conquest version 2024.1.0, Build 401958; Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) reveals thirteen reports of oxalatotri­phenyl­stannate compounds with ammonium ions as counter-ions. Examples include di-iso-propyl­ammonium (Ng & Hook, 1999[Ng, S. W. & Hook, J. M. (1999). Acta Cryst. C55, 310-312.]), di-cyclo-hexyl­ammonium (Ng & Rae, 2000[Ng, S. W. & Rae, A. D. (2000). Z. Kristallogr. 215, 199-204.]), di­benzyl­ammonium (Gueye et al., 2012[Gueye, N., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2012). Acta Cryst. E68, m854-m855.]), and di-iso-butyl­ammonium (Thorpe et al., 2013[Thorpe, D., Callejas, A., Royzman, D., Pike, R. D., Eng, G. & Song, X. (2013). J. Coord. Chem. 66, 3647-3659.]). A further search for metal salts of tri­phenyl­stannate came out with one hit, in which a sodium salt of tri­phenyl­stannate named sodium bis­[2-(3′,6′,9′-trioxadec­yl)-1,2-dicarba-closododeca­boane-1-carboxyl­ato]tri­phenyl­stannate was reported (Bregadze et al., 2004[Bregadze, V. I., Glazun, S. A., Petrovskii, P. V., Starikova, Z. A., Buyanovskaya, A. G., Takazova, R. U., Gielen, M., de Vos, D., Kemmer, M., Biesemans, M. & Willem, R. (2004). Appl. Organom Chem. 18, 191-194.]). In this reported stannate, the sodium ion is stabilized by coordination to the carbonyl oxygen and five oxygen atoms of trioxadecyl substituents. In contrast, in the title compound 1, the potassium salt of tri­phenyl­stannate is described for the first time, where the potassium ion is primarily stabilized through coordination to 18-crown-6.

5. Synthesis and crystallization

The title coordination complex of tri­phenyl­tin was synthesized by reacting 1 mmol of oxalic acid, 1 mmol of potassium bicarbonate, 1 mmol of 18-crown-6, and 1 mmol of tri­phenyl­tin hydroxide in 30 mL of ethanol. The mixture was refluxed at 373 K with stirring for 1 h. The resulting solution, which was slightly cloudy, was filtered to yield a clear ethanol solution. This filtrate was then allowed to evaporate slowly at 300 K over the course of one week, resulting in colorless crystals suitable for X-ray diffraction analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms in compound 1 were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93 Å (ring H atoms) and 0.97 Å (methyl­ene H atoms), and N—H distances of 0.98 Å, with Uiso(H) values of 1.2Ueq of the parent atoms. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement. The Friedel fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences. Ther crystal studied was refined as a two-component twin. Completeness statistics refer to single and composite reflections containing twin component 1 only.

Table 2
Experimental details

Crystal data
Chemical formula [KSn(C6H5)3(C2O4)(C12H24O6)]
Mr 741.42
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c (Å) 9.4060 (3), 19.3779 (4), 9.4225 (3)
β (°) 97.925 (2)
V3) 1701.02 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.93
Crystal size (mm) 0.06 × 0.06 × 0.03 × 0.02 (radius)
 
Data collection
Diffractometer Rigaku XtaLAB Synergy-S dual wavelength Mo/Cu
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.913, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 15412, 7113, 6792
Rint 0.040
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.105, 1.08
No. of reflections 7113
No. of parameters 398
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.28, −0.52
Absolute structure Flack x determined using 2807 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.08 (3)
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a)[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.], SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

(1,4,7,10,13,16-Hexaoxacyclooctadecane-1κ6O)(µ-oxalato-1κ2O1,O2:2κ2O1',O2')triphenyl-2κ3C-potassium(I)tin(IV) top
Crystal data top
[KSn(C6H5)3(C2O4)(C12H24O6)]F(000) = 760
Mr = 741.42Dx = 1.448 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 9.4060 (3) ÅCell parameters from 9822 reflections
b = 19.3779 (4) Åθ = 2.9–31.1°
c = 9.4225 (3) ŵ = 0.93 mm1
β = 97.925 (2)°T = 100 K
V = 1701.02 (8) Å3Block, colorless
Z = 20.06 × 0.06 × 0.03 × 0.02 (radius) mm
Data collection top
Rigaku XtaLAB Synergy-S dual wavelength Mo/Cu
diffractometer
7113 independent reflections
Radiation source: microfocus sealed X-ray tube, Rigaku PhotonJet-S6792 reflections with I > 2σ(I)
Mirror optics monochromatorRint = 0.040
Detector resolution: 10.0000 pixels mm-1θmax = 27.5°, θmin = 2.9°
ω scansh = 1211
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2022)
k = 2325
Tmin = 0.913, Tmax = 1.000l = 1110
15412 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0708P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.105(Δ/σ)max < 0.001
S = 1.08Δρmax = 1.28 e Å3
7113 reflectionsΔρmin = 0.52 e Å3
398 parametersAbsolute structure: Flack x determined using 2807 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.08 (3)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.41008 (5)0.58376 (2)0.45935 (5)0.02209 (12)
O10.2517 (6)0.5552 (3)0.2950 (6)0.0223 (10)
O20.3969 (8)0.4658 (3)0.4651 (8)0.0369 (16)
O30.2847 (9)0.3760 (4)0.3470 (9)0.0484 (19)
O40.1482 (7)0.4720 (3)0.1562 (7)0.0312 (14)
C10.6233 (8)0.5741 (5)0.4077 (8)0.0256 (19)
C20.7115 (10)0.5176 (4)0.4492 (9)0.0306 (18)
H20.6771390.4803780.5005640.037*
C30.8536 (11)0.5166 (5)0.4135 (11)0.039 (2)
H30.9139850.4783410.4418710.047*
C40.9046 (10)0.5691 (5)0.3399 (10)0.040 (3)
H41.0006170.5681460.3191640.048*
C50.8163 (11)0.6238 (5)0.2954 (12)0.038 (2)
H50.8507590.6596270.2402930.045*
C60.6788 (9)0.6274 (4)0.3295 (10)0.0280 (17)
H60.6206100.6663310.3000600.034*
C70.3592 (8)0.6911 (4)0.4013 (9)0.0211 (15)
C80.4450 (8)0.7424 (4)0.4748 (8)0.0237 (15)
H80.5195930.7294950.5484540.028*
C90.4225 (8)0.8126 (4)0.4413 (8)0.0232 (14)
H90.4802640.8469320.4929620.028*
C100.3137 (8)0.8314 (4)0.3306 (8)0.0225 (15)
H100.2986090.8786410.3058330.027*
C110.2278 (9)0.7806 (4)0.2571 (9)0.0265 (16)
H110.1526930.7932700.1837180.032*
C120.2525 (9)0.7106 (4)0.2917 (9)0.0246 (16)
H120.1955050.6761870.2393770.030*
C130.3708 (7)0.5795 (7)0.6773 (8)0.0273 (15)
C140.2974 (10)0.6343 (5)0.7297 (9)0.0282 (17)
H140.2620580.6708150.6672570.034*
C150.2754 (11)0.6360 (5)0.8732 (11)0.038 (2)
H150.2263040.6737580.9085930.046*
C160.3256 (8)0.5824 (8)0.9638 (8)0.0354 (17)
H160.3109810.5833661.0615080.042*
C170.3963 (10)0.5280 (6)0.9124 (10)0.038 (2)
H170.4297100.4914480.9756280.045*
C180.4207 (9)0.5247 (5)0.7686 (9)0.0307 (18)
H180.4695740.4866270.7341400.037*
C190.2277 (8)0.4908 (4)0.2599 (9)0.0227 (15)
C200.3101 (10)0.4379 (4)0.3672 (10)0.0287 (16)
K10.10867 (17)0.33895 (8)0.09631 (17)0.0219 (3)
O50.0911 (6)0.4275 (3)0.0971 (6)0.0229 (11)
O60.1562 (6)0.3828 (3)0.1682 (6)0.0248 (12)
O70.0356 (7)0.2587 (4)0.2852 (7)0.0275 (15)
O80.2230 (7)0.2108 (3)0.2005 (7)0.0292 (12)
O90.2918 (8)0.2593 (4)0.0621 (8)0.0294 (16)
O100.1753 (6)0.3845 (3)0.1714 (6)0.0250 (12)
C210.1744 (9)0.4682 (4)0.0123 (9)0.0258 (16)
H21A0.2418530.4978890.0751430.031*
H21B0.1105420.4983150.0532530.031*
C220.2558 (11)0.4209 (6)0.0720 (11)0.029 (2)
H22A0.3198670.4478710.1260440.035*
H22B0.3156640.3890150.0067640.035*
C230.2230 (12)0.3420 (6)0.2648 (12)0.035 (2)
H23A0.2868490.3074140.2112480.042*
H23B0.2817010.3715180.3197850.042*
C240.1089 (10)0.3064 (4)0.3645 (9)0.0276 (17)
H24A0.0401790.3408350.4116970.033*
H24B0.1525380.2817310.4397260.033*
C250.0662 (11)0.2172 (5)0.3752 (10)0.035 (2)
H25A0.0164380.1900380.4424440.042*
H25B0.1379480.2472480.4319860.042*
C260.1389 (11)0.1701 (4)0.2836 (10)0.0339 (19)
H26A0.2012460.1373660.3442160.041*
H26B0.0667090.1433130.2198690.041*
C270.2983 (11)0.1707 (5)0.1108 (11)0.039 (2)
H27A0.2297280.1444940.0419010.047*
H27B0.3613440.1373770.1689620.047*
C280.3872 (10)0.2180 (5)0.0311 (11)0.036 (2)
H28A0.4493350.2474420.0995520.044*
H28B0.4490590.1905290.0244550.044*
C290.3694 (10)0.3065 (5)0.1418 (11)0.035 (2)
H29A0.4392720.2809560.1913820.043*
H29B0.4225660.3404980.0761770.043*
C300.2618 (11)0.3427 (5)0.2491 (10)0.032 (2)
H30A0.3115470.3716310.3135220.038*
H30B0.2015630.3085480.3079510.038*
C310.0763 (10)0.4239 (5)0.2660 (10)0.027 (2)
H31A0.0102500.3928840.3269330.032*
H31B0.1284540.4525110.3290630.032*
C320.0073 (9)0.4696 (4)0.1780 (8)0.0253 (16)
H32A0.0593980.4984120.1126340.030*
H32B0.0709020.5005310.2418530.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0258 (2)0.01459 (18)0.0242 (2)0.0024 (3)0.00227 (13)0.0011 (3)
O10.026 (3)0.016 (2)0.024 (3)0.002 (2)0.0018 (19)0.001 (2)
O20.045 (4)0.016 (3)0.043 (4)0.001 (3)0.018 (3)0.001 (3)
O30.061 (5)0.022 (3)0.053 (5)0.004 (3)0.024 (3)0.002 (3)
O40.034 (3)0.025 (3)0.031 (3)0.003 (2)0.007 (2)0.002 (2)
C10.027 (3)0.021 (5)0.027 (3)0.014 (3)0.005 (3)0.001 (3)
C20.038 (5)0.020 (4)0.030 (5)0.006 (3)0.007 (3)0.003 (3)
C30.036 (5)0.034 (5)0.043 (5)0.023 (4)0.008 (4)0.012 (4)
C40.030 (4)0.046 (8)0.044 (5)0.001 (4)0.005 (3)0.022 (5)
C50.039 (5)0.032 (5)0.043 (6)0.002 (4)0.013 (4)0.010 (4)
C60.028 (4)0.020 (4)0.035 (5)0.012 (3)0.000 (3)0.003 (3)
C70.022 (4)0.012 (3)0.030 (5)0.002 (3)0.004 (3)0.005 (3)
C80.024 (4)0.023 (4)0.024 (4)0.006 (3)0.005 (3)0.001 (3)
C90.028 (4)0.020 (3)0.023 (4)0.001 (3)0.006 (3)0.001 (3)
C100.032 (4)0.008 (3)0.027 (4)0.002 (3)0.000 (3)0.002 (3)
C110.035 (4)0.018 (3)0.024 (4)0.002 (3)0.008 (3)0.002 (3)
C120.030 (4)0.013 (4)0.028 (5)0.004 (3)0.003 (3)0.002 (3)
C130.026 (3)0.028 (4)0.027 (3)0.005 (5)0.001 (2)0.001 (5)
C140.038 (5)0.022 (4)0.023 (4)0.004 (3)0.001 (3)0.004 (3)
C150.039 (5)0.040 (5)0.038 (5)0.010 (4)0.012 (4)0.005 (4)
C160.039 (4)0.034 (4)0.032 (4)0.016 (6)0.004 (3)0.009 (6)
C170.038 (5)0.041 (5)0.030 (4)0.015 (4)0.006 (3)0.017 (4)
C180.027 (4)0.029 (4)0.035 (5)0.008 (3)0.001 (3)0.000 (4)
C190.021 (4)0.020 (4)0.027 (4)0.001 (3)0.003 (3)0.004 (3)
C200.032 (5)0.020 (4)0.029 (5)0.001 (3)0.010 (3)0.004 (3)
K10.0241 (7)0.0168 (7)0.0240 (8)0.0005 (5)0.0001 (5)0.0004 (5)
O50.026 (3)0.017 (2)0.026 (3)0.000 (2)0.0027 (19)0.0001 (19)
O60.022 (3)0.020 (3)0.032 (3)0.002 (2)0.003 (2)0.001 (2)
O70.033 (4)0.026 (3)0.023 (3)0.003 (3)0.002 (2)0.001 (3)
O80.039 (3)0.017 (3)0.030 (3)0.000 (2)0.002 (2)0.001 (2)
O90.026 (3)0.026 (3)0.037 (4)0.004 (3)0.007 (3)0.003 (3)
O100.030 (3)0.018 (3)0.026 (3)0.002 (2)0.002 (2)0.002 (2)
C210.023 (4)0.021 (4)0.031 (4)0.009 (3)0.004 (3)0.001 (3)
C220.027 (5)0.032 (5)0.029 (5)0.000 (4)0.006 (4)0.002 (4)
C230.039 (5)0.028 (5)0.042 (5)0.007 (4)0.018 (4)0.001 (4)
C240.041 (5)0.015 (4)0.027 (4)0.006 (3)0.007 (3)0.004 (3)
C250.048 (5)0.031 (4)0.025 (4)0.002 (4)0.001 (4)0.012 (4)
C260.045 (5)0.018 (4)0.035 (5)0.003 (4)0.005 (4)0.011 (3)
C270.047 (6)0.029 (5)0.040 (5)0.014 (4)0.004 (4)0.002 (4)
C280.028 (4)0.030 (4)0.049 (6)0.014 (4)0.001 (4)0.003 (4)
C290.029 (4)0.025 (4)0.054 (6)0.000 (4)0.011 (4)0.005 (4)
C300.041 (5)0.031 (5)0.025 (4)0.005 (4)0.013 (4)0.003 (4)
C310.032 (5)0.019 (4)0.027 (5)0.007 (3)0.000 (4)0.001 (3)
C320.028 (4)0.026 (4)0.020 (4)0.003 (3)0.002 (3)0.003 (3)
Geometric parameters (Å, º) top
Sn1—O12.071 (5)K1—O72.845 (7)
Sn1—O22.290 (6)K1—O82.827 (6)
Sn1—C12.136 (7)K1—O92.878 (7)
Sn1—C72.188 (7)K1—O102.823 (6)
Sn1—C132.138 (7)O5—C211.430 (9)
O1—C191.303 (10)O5—C321.425 (9)
O2—C201.266 (11)O6—C221.418 (12)
O3—C201.233 (11)O6—C231.417 (11)
O3—K12.785 (7)O7—C241.426 (10)
O4—C191.202 (10)O7—C251.435 (11)
O4—K12.654 (6)O8—C261.425 (11)
C1—C21.397 (12)O8—C271.408 (11)
C1—C61.411 (13)O9—C281.415 (11)
C2—H20.9500O9—C291.443 (12)
C2—C31.422 (14)O10—C301.421 (11)
C3—H30.9500O10—C311.419 (11)
C3—C41.356 (15)C21—H21A0.9900
C4—H40.9500C21—H21B0.9900
C4—C51.376 (14)C21—C221.493 (13)
C5—H50.9500C22—H22A0.9900
C5—C61.377 (13)C22—H22B0.9900
C6—H60.9500C23—H23A0.9900
C7—C81.401 (11)C23—H23B0.9900
C7—C121.389 (11)C23—C241.494 (14)
C8—H80.9500C24—H24A0.9900
C8—C91.406 (10)C24—H24B0.9900
C9—H90.9500C25—H25A0.9900
C9—C101.405 (11)C25—H25B0.9900
C10—H100.9500C25—C261.486 (13)
C10—C111.396 (11)C26—H26A0.9900
C11—H110.9500C26—H26B0.9900
C11—C121.407 (10)C27—H27A0.9900
C12—H120.9500C27—H27B0.9900
C13—C141.394 (15)C27—C281.508 (15)
C13—C181.406 (14)C28—H28A0.9900
C14—H140.9500C28—H28B0.9900
C14—C151.396 (13)C29—H29A0.9900
C15—H150.9500C29—H29B0.9900
C15—C161.385 (16)C29—C301.502 (14)
C16—H160.9500C30—H30A0.9900
C16—C171.370 (18)C30—H30B0.9900
C17—H170.9500C31—H31A0.9900
C17—C181.407 (13)C31—H31B0.9900
C18—H180.9500C31—C321.506 (13)
C19—C201.567 (11)C32—H32A0.9900
K1—O52.976 (6)C32—H32B0.9900
K1—O62.802 (6)
O1—Sn1—O273.4 (2)O8—K1—O958.88 (19)
O1—Sn1—C1114.0 (3)O9—K1—O5111.35 (18)
O1—Sn1—C787.6 (3)O10—K1—O558.09 (15)
O1—Sn1—C13120.4 (3)O10—K1—O7156.01 (19)
C1—Sn1—O288.5 (3)O10—K1—O8117.67 (18)
C1—Sn1—C7101.9 (3)O10—K1—O958.80 (19)
C1—Sn1—C13120.5 (3)C21—O5—K1108.9 (4)
C7—Sn1—O2160.8 (3)C32—O5—K1108.0 (4)
C13—Sn1—O285.5 (4)C32—O5—C21111.7 (6)
C13—Sn1—C7102.5 (4)C22—O6—K1122.3 (5)
C19—O1—Sn1121.9 (5)C23—O6—K1118.3 (6)
C20—O2—Sn1116.1 (5)C23—O6—C22112.9 (7)
C20—O3—K1117.5 (6)C24—O7—K1106.3 (5)
C19—O4—K1121.4 (5)C24—O7—C25112.6 (7)
C2—C1—Sn1123.1 (7)C25—O7—K1109.8 (5)
C2—C1—C6118.1 (7)C26—O8—K1117.6 (5)
C6—C1—Sn1118.8 (6)C27—O8—K1118.3 (5)
C1—C2—H2120.5C27—O8—C26112.8 (6)
C1—C2—C3119.1 (8)C28—O9—K1110.8 (5)
C3—C2—H2120.5C28—O9—C29111.0 (7)
C2—C3—H3119.3C29—O9—K1108.2 (5)
C4—C3—C2121.4 (8)C30—O10—K1119.7 (5)
C4—C3—H3119.3C31—O10—K1121.5 (5)
C3—C4—H4120.2C31—O10—C30110.8 (7)
C3—C4—C5119.5 (9)O5—C21—H21A110.0
C5—C4—H4120.2O5—C21—H21B110.0
C4—C5—H5119.5O5—C21—C22108.6 (7)
C4—C5—C6121.0 (9)H21A—C21—H21B108.3
C6—C5—H5119.5C22—C21—H21A110.0
C1—C6—H6119.6C22—C21—H21B110.0
C5—C6—C1120.8 (8)O6—C22—C21108.5 (7)
C5—C6—H6119.6O6—C22—H22A110.0
C8—C7—Sn1117.3 (5)O6—C22—H22B110.0
C12—C7—Sn1123.7 (6)C21—C22—H22A110.0
C12—C7—C8118.9 (7)C21—C22—H22B110.0
C7—C8—H8119.5H22A—C22—H22B108.4
C7—C8—C9121.1 (7)O6—C23—H23A110.0
C9—C8—H8119.5O6—C23—H23B110.0
C8—C9—H9120.3O6—C23—C24108.5 (8)
C10—C9—C8119.3 (7)H23A—C23—H23B108.4
C10—C9—H9120.3C24—C23—H23A110.0
C9—C10—H10120.1C24—C23—H23B110.0
C11—C10—C9119.8 (7)O7—C24—C23109.1 (7)
C11—C10—H10120.1O7—C24—H24A109.9
C10—C11—H11120.0O7—C24—H24B109.9
C10—C11—C12120.0 (7)C23—C24—H24A109.9
C12—C11—H11120.0C23—C24—H24B109.9
C7—C12—C11120.9 (8)H24A—C24—H24B108.3
C7—C12—H12119.6O7—C25—H25A109.9
C11—C12—H12119.6O7—C25—H25B109.9
C14—C13—Sn1118.1 (7)O7—C25—C26108.9 (7)
C14—C13—C18119.9 (7)H25A—C25—H25B108.3
C18—C13—Sn1122.0 (7)C26—C25—H25A109.9
C13—C14—H14119.8C26—C25—H25B109.9
C13—C14—C15120.5 (8)O8—C26—C25108.3 (7)
C15—C14—H14119.8O8—C26—H26A110.0
C14—C15—H15120.1O8—C26—H26B110.0
C16—C15—C14119.7 (9)C25—C26—H26A110.0
C16—C15—H15120.1C25—C26—H26B110.0
C15—C16—H16120.0H26A—C26—H26B108.4
C17—C16—C15120.0 (8)O8—C27—H27A109.9
C17—C16—H16120.0O8—C27—H27B109.9
C16—C17—H17119.1O8—C27—C28108.8 (8)
C16—C17—C18121.7 (9)H27A—C27—H27B108.3
C18—C17—H17119.1C28—C27—H27A109.9
C13—C18—C17118.1 (9)C28—C27—H27B109.9
C13—C18—H18121.0O9—C28—C27107.8 (8)
C17—C18—H18121.0O9—C28—H28A110.1
O1—C19—C20114.2 (7)O9—C28—H28B110.1
O4—C19—O1124.3 (8)C27—C28—H28A110.1
O4—C19—C20121.5 (8)C27—C28—H28B110.1
O2—C20—C19113.8 (7)H28A—C28—H28B108.5
O3—C20—O2128.3 (8)O9—C29—H29A110.2
O3—C20—C19117.9 (8)O9—C29—H29B110.2
O3—K1—O5128.47 (19)O9—C29—C30107.7 (8)
O3—K1—O699.3 (2)H29A—C29—H29B108.5
O3—K1—O783.7 (2)C30—C29—H29A110.2
O3—K1—O877.22 (19)C30—C29—H29B110.2
O3—K1—O9104.4 (2)O10—C30—C29107.5 (7)
O3—K1—O10119.8 (2)O10—C30—H30A110.2
O4—K1—O361.30 (19)O10—C30—H30B110.2
O4—K1—O568.16 (17)C29—C30—H30A110.2
O4—K1—O675.94 (18)C29—C30—H30B110.2
O4—K1—O7117.6 (2)H30A—C30—H30B108.5
O4—K1—O8138.06 (19)O10—C31—H31A110.0
O4—K1—O9123.7 (2)O10—C31—H31B110.0
O4—K1—O1081.05 (18)O10—C31—C32108.5 (7)
O6—K1—O557.71 (16)H31A—C31—H31B108.4
O6—K1—O759.86 (18)C32—C31—H31A110.0
O6—K1—O8119.38 (18)C32—C31—H31B110.0
O6—K1—O9154.6 (2)O5—C32—C31109.2 (6)
O6—K1—O10115.80 (18)O5—C32—H32A109.8
O7—K1—O5112.53 (18)O5—C32—H32B109.8
O7—K1—O9113.74 (19)C31—C32—H32A109.8
O8—K1—O5153.77 (17)C31—C32—H32B109.8
O8—K1—O759.61 (19)H32A—C32—H32B108.3
Sn1—O1—C19—O4171.7 (6)K1—O3—C20—C196.8 (13)
Sn1—O1—C19—C209.4 (10)K1—O4—C19—O1179.9 (6)
Sn1—O2—C20—O3179.5 (10)K1—O4—C19—C201.3 (11)
Sn1—O2—C20—C190.0 (11)K1—O5—C21—C2259.3 (7)
Sn1—C1—C2—C3178.2 (6)K1—O5—C32—C3160.9 (7)
Sn1—C1—C6—C5179.2 (7)K1—O6—C22—C2135.7 (10)
Sn1—C7—C8—C9178.1 (5)K1—O6—C23—C2429.9 (9)
Sn1—C7—C12—C11178.2 (7)K1—O7—C24—C2365.7 (7)
Sn1—C13—C14—C15176.6 (7)K1—O7—C25—C2660.8 (8)
Sn1—C13—C18—C17176.8 (6)K1—O8—C26—C2537.5 (9)
O1—C19—C20—O25.7 (12)K1—O8—C27—C2838.8 (9)
O1—C19—C20—O3174.8 (9)K1—O9—C28—C2759.3 (8)
O4—C19—C20—O2175.4 (9)K1—O9—C29—C3064.4 (8)
O4—C19—C20—O34.2 (14)K1—O10—C30—C2934.4 (9)
C1—C2—C3—C40.2 (13)K1—O10—C31—C3233.9 (8)
C2—C1—C6—C50.1 (13)O5—C21—C22—O663.9 (9)
C2—C3—C4—C51.7 (14)O6—C23—C24—O765.8 (9)
C3—C4—C5—C62.7 (15)O7—C25—C26—O866.3 (9)
C4—C5—C6—C11.8 (14)O8—C27—C28—O966.0 (10)
C6—C1—C2—C31.1 (12)O9—C29—C30—O1066.4 (9)
C7—C8—C9—C101.1 (11)O10—C31—C32—O564.5 (8)
C8—C7—C12—C111.7 (13)C21—O5—C32—C31179.4 (7)
C8—C9—C10—C111.1 (11)C22—O6—C23—C24177.8 (7)
C9—C10—C11—C121.5 (13)C23—O6—C22—C21173.2 (8)
C10—C11—C12—C71.8 (14)C24—O7—C25—C26179.0 (7)
C12—C7—C8—C91.4 (12)C25—O7—C24—C23174.0 (7)
C13—C14—C15—C160.7 (14)C26—O8—C27—C28178.2 (8)
C14—C13—C18—C171.0 (12)C27—O8—C26—C25179.2 (8)
C14—C15—C16—C170.1 (14)C28—O9—C29—C30173.8 (7)
C15—C16—C17—C180.3 (14)C29—O9—C28—C27179.6 (8)
C16—C17—C18—C130.2 (13)C30—O10—C31—C32177.4 (7)
C18—C13—C14—C151.3 (13)C31—O10—C30—C29176.3 (7)
K1—O3—C20—O2172.6 (9)C32—O5—C21—C22178.5 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.952.423.360 (11)172
C16—H16···O1ii0.952.413.332 (9)165
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1.
 

Funding information

Financial assistance from the National Science Foundation (NSF grants #2117621, #1622811 and #1833656), and the University of the District of Columbia (UDC) is gratefully acknowledged.

References

First citationAngham, G. H., Khudheir, J., Dina, S. A. & Emad, Y. (2019). Systematic Reviews in Pharmacy, 10, 26–31.  Google Scholar
First citationBajaj, A. V. & Poonia, N. S. (1988). Coord. Chem. Rev. 87, 55–213.  CrossRef CAS Web of Science Google Scholar
First citationBlunden, S. J., Cusack, P. & Hill, R. (1985). The Industrial Uses of Tin Chemicals. London: The Royal Society of Chemistry.  Google Scholar
First citationBraga, D., Curzi, M., Lusi, M. & Grepioni, F. (2005). CrystEngComm, 7, 276–278.  Web of Science CSD CrossRef CAS Google Scholar
First citationBraga, D., d'Agostino, S., Polito, M., Rubini, K. & Grepioni, F. (2009). CrystEngComm, 11, 1994–2002.  Web of Science CSD CrossRef CAS Google Scholar
First citationBraga, D., Gandolfi, M., Lusi, M., Polito, M., Rubini, K. & Grepioni, F. (2007). Cryst. Growth Des. 7, 919–924.  Web of Science CSD CrossRef CAS Google Scholar
First citationBraga, D., Modena, E., Polito, M., Rubini, K. & Grepioni, F. (2008). New J. Chem. 32, 1718–1724.  Web of Science CSD CrossRef CAS Google Scholar
First citationBregadze, V. I., Glazun, S. A., Petrovskii, P. V., Starikova, Z. A., Buyanovskaya, A. G., Takazova, R. U., Gielen, M., de Vos, D., Kemmer, M., Biesemans, M. & Willem, R. (2004). Appl. Organom Chem. 18, 191–194.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDavies, A. G. & Smith, P. J. (1980). Adv. Inorg. Chem. Radiochem. 23, 1–77.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEvans, C. J. & Karpel, S. (1985). J. Organomet. Chem. 16.  Google Scholar
First citationGjikaj, M., Adam, A., Duewel, M. & Brockner, W. (2005). Z. Kristallogr. 220, 67–68.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGueye, N., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2012). Acta Cryst. E68, m854–m855.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationHay, B. P. & Rustad, J. R. (1994). J. Am. Chem. Soc. 116, 6316–6326.  CrossRef CAS Web of Science Google Scholar
First citationIzatt, R. M. (2017). Chem. Soc. Rev. 46, 2380–2384.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKrishnamurty, K. V. & Harris, G. M. (1961). Chem. Rev. 61, 213–246.  CrossRef CAS Web of Science Google Scholar
First citationLee, H. S., Yang, X. Q., McBreen, J., Choi, L. S. & Okamoto, Y. J. (1996). J. Electrochem. Soc. 143, 3825–3829.  CrossRef CAS Web of Science Google Scholar
First citationLehn, J. M. (1988). Angew. Chem. Int. Ed. Engl. 27, 89–112.  CrossRef Web of Science Google Scholar
First citationLiebing, P., Zaeni, A., Olbrich, F. & Edelmann, F. T. (2016). Acta Cryst. E72, 1757–1761.  CSD CrossRef IUCr Journals Google Scholar
First citationMeyer, E. A., Castellano, R. K. & Diederich, F. (2003). Angew. Chem. Int. Ed. 42, 1210–1250.  Web of Science CrossRef CAS Google Scholar
First citationNg, S. W. (1996). Acta Cryst. C52, 2990–2992.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNg, S. W. & Hook, J. M. (1999). Acta Cryst. C55, 310–312.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNg, S. W. & Kumar Das, V. G. (1993). J. Organomet. Chem. 456, 175–179.  CAS Google Scholar
First citationNg, S. W., Kumar Das, V. G., Gielen, M. & Tiekink, E. R. T. (1992). Appl. Organomet. Chem. 6, 19–25.  CSD CrossRef CAS Web of Science Google Scholar
First citationNg, S. W. & Rae, A. D. (2000). Z. Kristallogr. 215, 199–204.  Web of Science CSD CrossRef CAS Google Scholar
First citationNinković, D. B., Janjić, G. V., Veljković, D. Ž., Sredojević, D. N. & Zarić, S. D. (2011). ChemPhysChem, 12, 3511–3514.  Web of Science PubMed Google Scholar
First citationNishio, M. (2004). CrystEngComm, 6, 130–158.  Web of Science CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPedersen, C. J. (1988). Angew. Chem. Int. Ed. Engl. 27, 1021–1027.  CrossRef Web of Science Google Scholar
First citationRao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496.  Web of Science CrossRef CAS Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSellin, M. & Malischewski, M. (2019). Acta Cryst. E75, 1871–1874.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, P. J. (1978). Toxicological Data on Organotin Compounds. ITRI Publication 538. London: International Tin Research Institute.  Google Scholar
First citationTakahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomoda, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430.  Web of Science CrossRef CAS Google Scholar
First citationTalebi, Z. A., Farhood, A. S. & Hadi, A. G. (2023). Int. J. Pharm. Bio Med. Sci. 3, 181–184.  CrossRef Google Scholar
First citationThayer, J. S. (1984). Organometallic Compounds and Living Organisms. Orlando: Academic Press.  Google Scholar
First citationThorpe, D., Callejas, A., Royzman, D., Pike, R. D., Eng, G. & Song, X. (2013). J. Coord. Chem. 66, 3647–3659.  Web of Science CSD CrossRef CAS Google Scholar
First citationZuckermann, J. J. (1976). Adv. Chem. Series 157. Washington, DC: American Chemical Society.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds