research communications
Synthesis, H-1,2,4-triazole-3,5-diyl)diacetate
and Hirshfeld surface analysis of a new copper(II) complex based on diethyl 2,2′-(4aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine, and b"PetruPoni" Institute of Macromolecular Chemistry, Aleea Gr., Ghica Voda 41A, 700487 Iasi, Romania
*Correspondence e-mail: oleksandr.vynohradov@knu.ua
The title compound, bis[μ-2,2′-(4H-1,2,4-triazole-3,5-diyl)diacetato]bis[diaquacopper(II)] dihydrate, [Cu2(C6H5N3O4)2(H2O)4]·2H2O, is a dinuclear octahedral CuII triazole-based complex. The central copper atoms are hexa-coordinated by two nitrogen atoms in the equatorial positions, two equatorial oxygen atoms of two carboxylate substituents in position 3 and 5 of the 1,2,4-triazole ring, and two axial oxygen atoms of two water molecules. Two additional solvent water molecules are linked to the title molecule by O—H⋯N and O⋯H—O hydrogen bonds. The is built up from the parallel packing of discrete supramolecular chains running along the a-axis direction. Hirshfeld surface analysis suggests that the most important contributions to the surface contacts are from H⋯O/O⋯H (53.5%), H⋯H (28.1%), O⋯O (6.3%) and H⋯C/C⋯H (6.2%) interactions. The crystal studied was twinned by a twofold rotation around [100].
Keywords: copper; copper(II) complex; crystal structure; 1,2,4-triazole; Hirshfeld surface analysis.
CCDC reference: 2378887
1. Chemical context
1,2,4-Triazole-based organic compounds have been widely used as ligands for the synthesis of transition-metal complexes (Haasnoot, 2000; Aromí et al., 2011; Farooq, 2021). Depending on the substituents on the azole core, the title ligands can coordinate not only in a monodentate manner (Cudziło et al., 2011; Zaleski et al., 2005), but also as a linker binding two metal ions (Drabent et al., 2001; Zhang et al., 2005) and thus play an important role in the design of new polynuclear coordination compounds. In particular, copper(II) coordination compounds based on 1,2,4-triazoles have attracted the interest of chemists due to their magnetic properties (Petrenko et al., 2020; Kaase et al., 2014), bioactivity (Hernández-Gil et al., 2013; Ferrer et al., 2004) and catalysis (Thorseth et al., 2013; Li et al., 2015). Dinuclear copper(II) complexes can promote single- and double-strand DNA cleavage in both aerobic and anaerobic conditions (Li et al., 2010). Being much cheaper than most metals, copper(II) coordination compounds are promising substances for exploration as catalysts. Previously we reported that a dinuclear CuII complex based on 5-methyl-3-(2-pyridyl)-1,2,4-triazole as a ligand can selectively catalyse the oxidation of styrene towards benzaldehyde and of cyclohexane to KA oil (a mixture of cyclohexanol and cyclohexanone; Petrenko et al., 2021). Finally, CuII complexes can exhibit urease inhibitory activities (Xu et al., 2015). Since dinuclear copper(II) complexes with triazole bridges can exhibit catalytic properties, we decided to continue our research in this direction. Herein, we describe the synthesis, and results of Hirshfeld surface analysis of the title compound, [Cu2(C6H5N3O4)2(H2O)4]·2H2O, which potentially exhibits catalytic, inhibitory, and magnetic properties.
2. Structural commentary
The title compound (Fig. 1), a dinuclear copper(II) 1,2,4-triazole-based complex, crystallizes in the monoclinic, P21/n The consists of one copper(II) ion, one 4H-1,2,4-triazole-3,5-dicarboxylate ligand, two coordinated water molecules and one solvent water molecule. The structure of the title compound can be described as a neutral complex of formula [Cu2(C6H5N3O4)2(H2O)4]·2H2O in which the triazole ligand is coordinated in a tetradentate way. The CuII ion has a distorted N2O4 octahedral geometry formed by two nitrogen atoms in the equatorial positions with Cu1—N1 = 1.982 (3) Å and Cu1—N2i [symmetry code: (i) −x + 1, −y + 1, −z + 1)] = 1.990 (4) Å bond distances, two equatorial oxygen atoms of two carboxylate substituents in position 3 and 5 of the triazole ring [Cu1—O1 = 1.962 (3) Å and Cu1—O3i = 1.974 (3) Å], and two axial oxygen atoms of two water molecules with Cu1—O1W = 2.497 (3) Å and Cu1—O2W = 2.484 (3) Å bond distances. The Cu1—Cu1i intermetallic distance in the complex molecule is 3.9866 (15) Å. Two copper atoms bridged by two 4H-1,2,4-triazole-3,5-dicarboxylate ligands form a non-planar six-membered bimetallic ring. In addition, four six-membered non-planar chelate rings are formed due to the presence of carboxylate substituents at the 3 and 5 positions of the 1,2,4-triazole rings. There are medium strength intermolecular O—H⋯O hydrogen bonds between the main compound and solvent water molecules. Intermolecular N—H⋯O and C—H⋯O hydrogen bonds between two complex molecules are also observed (Table 1).
3. Supramolecular features
The a-axis direction with a Cu⋯Cu separation of 6.5248 (11) Å (Fig. 2). Within the chain, the complex molecules interact through O—H⋯O hydrogen bonds, while the association with the interstitial water molecules occurs via O—H⋯O and N—H⋯O hydrogen bonds (Fig. 3, Table 1).
is built up from the parallel packing of discrete supramolecular chains running along the4. Database survey
A search of the Cambridge Structural Database (CSD version 5.41, update of November 2021; Groom et al., 2016) for the Cu2(C2N3)2O4 moiety (two 1,2,4-triazole ring skeletons connected via two Cu atoms; each copper atom is coordinated by two oxygen atoms) revealed 48 hits. Most similar to the title compound are dinuclear copper(II) complexes with following database refcodes: COCZAV (Ferrer et al., 1999), DODRET and DODRIX (Prins et al., 1985), FIVGEY (Matthews et al., 2003), JOZXAX (van Koningsbruggen et al., 1992) and VALZOA (Doroschuk, 2016). All coordination compounds have many common characteristics, but there are also some minor differences between them. All these dinuclear copper(II) complexes contain two 1,2,4-triazole-based ligands. The triazole derivatives have two substituents at positions 3 and 5 of the triazole ring. The substituents containing donor atoms also participate in coordination with the copper atom. These ligands exhibit bridging functions and link two copper atoms at distances in the range of 3.85 to 4.09 Å. Two six-coordinated copper atoms are involved in the formation of a six-membered ring. There are two water molecules in the axial positions of the central copper atom in the title compound and the compound JOZXAX. In other complexes, one axial position in the geometric environment of the copper atom is occupied by a water molecule, while the second axial position is typically occupied by an anion of an inorganic salt. The title compound crystallizes in the monoclinic P21/n Five complexes crystallized in the triclinic, P while JOZXAX crystallized in the monoclinic C2/c space group.
5. Hirshfeld surface analysis
The Hirshfeld surface analysis was performed and the associated two-dimensional fingerprint plots were generated using Crystal Explorer 17.5 software (Spackman et al., 2021), with a standard resolution of the three-dimensional dnorm surfaces (shown in Figs. 4 and 5). The dark-red spots arise as a result of short interatomic contacts and represent negative dnorm values on the surface, while the other weaker intermolecular interactions appear as light-red spots. The Hirshfeld surfaces mapped over dnorm are shown for the H⋯O/O⋯H, H⋯H, O⋯O, H⋯C/C⋯H, H⋯N/N⋯H and O⋯C/C⋯O contacts (Fig. 6), the overall two-dimensional fingerprint plot and the decomposed two-dimensional fingerprint plots are given in Fig. 7. Two pairs of N3—H3⋯O4 interatomic contacts with lengths of 1.696 Å are the shortest. The most significant contributions to the overall crystal packing are from H⋯O/O⋯H (53.5%), H⋯H (28.1%), O⋯O (6.3%) and H⋯C/C⋯H (6.2%) contacts. The predominance of contributions from H⋯H and H⋯O contacts to the overall crystal packing is typical not only for the title compound and other dinuclear copper(II) complexes with triazole-containing ligands but also of copper(II) coordination compounds with azole-based ligands in general. There is a small contribution from H⋯N/N⋯H (3.5%) and O⋯C/C⋯O (2.3%) weak intermolecular contacts. The relative percentage contributions to the overall Hirshfeld surface by elements: H⋯all atoms = 55.4%, O⋯all atoms = 35.6%, C⋯all atoms = 6.1%, N⋯all atoms = 3.0% and Cu⋯all atoms = 0%. In addition, quantitative physical properties of the Hirshfeld surface for this compound were obtained, such as molecular volume (444.48 Å3), surface area (384.06 Å2), globularity (0.733) and asphericity (0.063). The asphericity value for the title compound at 0.063 is close to zero, indicating a near isotropic nature. The globularity value (0.733) is less than one, suggesting a modest deviation from a spherical surface and indicating that this molecular surface is more structured compared to a sphere.
6. Synthesis and crystallization
[Cu2(HL)2(H2O)4]·2H2O. An aqueous solution (2 ml) of Cu(NO3)2·6H2O (0.296 g, 1 mmol) was added to 2 ml of an aqueous solution of ethyl 2,2′-(1H-1,2,4-triazole-3,5-diyl)diacetate (0.241 g, 1 mmol) to give a clear blue solution. The blue crystals that precipitated after 2 days were filtered off, washed with water, and dried in air (Kiseleva et al., 1990). Yield 0.247 g (82.18%). IR data (in KBr, cm−1): 3404, 3224, 1638, 1620, 1606, 1568, 1540, 1454, 1418, 1400, 1386, 1274, 1250, 1052, 956, 752, 644, 578. Analysis calculated for C12H22Cu2N6O14 (601.43): C, 23.96%; H, 3.69%; N, 13.97%. Found: C, 23.88%; H, 3.72%; N, 13.88%.
7. Refinement
Crystal data, data collection and structure . The crystal studied was twinned by a twofold rotation around [100]. The corresponding HKLF5 generated by the CrysAlis program was used for The O- and N-bound hydrogen atoms were identified in difference-Fourier maps and refined isotropically with positional restraints. All other H atoms were placed in calculated positions and refined using a riding model with C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2Supporting information
CCDC reference: 2378887
https://doi.org/10.1107/S2056989024008259/oi2010sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024008259/oi2010Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024008259/oi2010Isup3.cdx
FT-IR spectrum of the title compound. DOI: https://doi.org/10.1107/S2056989024008259/oi2010sup4.jpg
Powder X-ray diffraction pattern of the title compound. DOI: https://doi.org/10.1107/S2056989024008259/oi2010sup5.jpg
[Cu2(C6H5N3O4)2(H2O)4]·2H2O | F(000) = 612 |
Mr = 601.44 | Dx = 2.026 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 6.5176 (13) Å | Cell parameters from 833 reflections |
b = 9.4854 (19) Å | θ = 2.5–28.3° |
c = 15.967 (2) Å | µ = 2.25 mm−1 |
β = 93.035 (15)° | T = 200 K |
V = 985.7 (3) Å3 | Prism, clear intense green |
Z = 2 | 0.56 × 0.37 × 0.33 × 0.22 (radius) mm |
Xcalibur, Eos diffractometer | 1969 reflections with I > 2σ(I) |
Detector resolution: 16.1593 pixels mm-1 | Rint = 0.053 |
ω scans | θmax = 29.2°, θmin = 2.5° |
Absorption correction: for a sphere (CrysAlisPro; Rigaku OD, 2024) | h = −8→8 |
Tmin = 0.488, Tmax = 0.498 | k = −12→12 |
2569 measured reflections | l = −21→21 |
2569 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.096 | w = 1/[σ2(Fo2) + (0.0483P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max = 0.001 |
2569 reflections | Δρmax = 0.63 e Å−3 |
159 parameters | Δρmin = −0.53 e Å−3 |
18 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component twin. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.48120 (9) | 0.59062 (7) | 0.61179 (3) | 0.01441 (17) | |
O1 | 0.4081 (5) | 0.7706 (4) | 0.66289 (18) | 0.0196 (8) | |
O1W | 0.8274 (4) | 0.6812 (4) | 0.57854 (18) | 0.0176 (8) | |
H1WA | 0.849334 | 0.760096 | 0.605348 | 0.026* | |
H1WB | 0.826653 | 0.704497 | 0.525777 | 0.026* | |
O2 | 0.3198 (5) | 0.9950 (4) | 0.67791 (19) | 0.0167 (8) | |
O2W | 0.1424 (5) | 0.4979 (4) | 0.65012 (18) | 0.0220 (8) | |
H2WA | 0.058325 | 0.553892 | 0.624170 | 0.033* | |
H2WB | 0.134335 | 0.500812 | 0.704360 | 0.033* | |
O3 | 0.3906 (5) | 0.4446 (3) | 0.27539 (18) | 0.0181 (8) | |
O3W | 0.8739 (6) | 0.7755 (4) | 0.4147 (2) | 0.0255 (9) | |
H3WA | 0.888191 | 0.700243 | 0.386753 | 0.038* | |
H3WB | 0.812698 | 0.836952 | 0.383823 | 0.038* | |
O4 | 0.3227 (4) | 0.5597 (3) | 0.15734 (18) | 0.0148 (8) | |
N1 | 0.3931 (5) | 0.6605 (4) | 0.4985 (2) | 0.0110 (9) | |
N2 | 0.4400 (5) | 0.6031 (4) | 0.42206 (19) | 0.0104 (8) | |
N3 | 0.3370 (5) | 0.8181 (4) | 0.4021 (2) | 0.0115 (9) | |
H3 | 0.302775 | 0.898014 | 0.377062 | 0.014* | |
C1 | 0.3396 (6) | 0.8877 (6) | 0.6350 (3) | 0.0114 (11) | |
C2 | 0.2603 (7) | 0.8982 (5) | 0.5444 (3) | 0.0190 (12) | |
H2A | 0.108417 | 0.894494 | 0.543222 | 0.023* | |
H2B | 0.298467 | 0.992262 | 0.523253 | 0.023* | |
C3 | 0.3309 (6) | 0.7904 (6) | 0.4839 (3) | 0.0112 (11) | |
C4 | 0.4041 (6) | 0.7029 (5) | 0.3657 (3) | 0.0126 (11) | |
C5 | 0.4403 (7) | 0.6970 (5) | 0.2737 (3) | 0.0134 (11) | |
H5A | 0.587709 | 0.714517 | 0.265692 | 0.016* | |
H5B | 0.360820 | 0.773275 | 0.244772 | 0.016* | |
C6 | 0.3793 (6) | 0.5556 (6) | 0.2329 (3) | 0.0145 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0258 (3) | 0.0090 (3) | 0.0082 (2) | 0.0024 (3) | −0.0025 (2) | 0.0000 (3) |
O1 | 0.0343 (19) | 0.0125 (18) | 0.0119 (15) | 0.0043 (18) | 0.0005 (15) | −0.0056 (15) |
O1W | 0.0274 (17) | 0.013 (2) | 0.0122 (15) | −0.0017 (18) | −0.0028 (13) | −0.0004 (17) |
O2 | 0.0299 (18) | 0.0093 (19) | 0.0107 (16) | 0.0032 (18) | 0.0007 (14) | −0.0018 (15) |
O2W | 0.0337 (19) | 0.019 (2) | 0.0129 (16) | 0.012 (2) | −0.0023 (14) | 0.0013 (17) |
O3 | 0.034 (2) | 0.008 (2) | 0.0124 (16) | −0.0008 (17) | −0.0041 (14) | 0.0030 (15) |
O3W | 0.038 (2) | 0.017 (2) | 0.0212 (17) | 0.000 (2) | −0.0018 (16) | −0.0045 (19) |
O4 | 0.0280 (17) | 0.010 (2) | 0.0061 (15) | −0.0003 (16) | −0.0051 (12) | 0.0013 (15) |
N1 | 0.0183 (19) | 0.008 (2) | 0.0063 (17) | −0.0002 (19) | −0.0012 (15) | 0.0007 (17) |
N2 | 0.0103 (16) | 0.015 (2) | 0.0066 (14) | 0.003 (2) | 0.0029 (14) | −0.0029 (19) |
N3 | 0.019 (2) | 0.008 (2) | 0.0077 (18) | 0.0014 (19) | −0.0009 (15) | 0.0053 (18) |
C1 | 0.013 (2) | 0.017 (3) | 0.0041 (19) | −0.003 (2) | 0.0056 (16) | 0.000 (2) |
C2 | 0.026 (3) | 0.013 (3) | 0.018 (2) | 0.005 (3) | 0.0021 (18) | −0.001 (3) |
C3 | 0.014 (2) | 0.012 (3) | 0.007 (2) | 0.000 (2) | −0.0001 (17) | 0.004 (2) |
C4 | 0.014 (2) | 0.013 (3) | 0.012 (2) | −0.003 (2) | 0.0015 (18) | 0.003 (2) |
C5 | 0.019 (2) | 0.010 (3) | 0.011 (2) | 0.001 (2) | −0.0012 (19) | −0.001 (2) |
C6 | 0.011 (2) | 0.018 (3) | 0.016 (2) | 0.004 (2) | 0.0031 (17) | −0.001 (2) |
Cu1—O1 | 1.962 (3) | O4—C6 | 1.243 (5) |
Cu1—O1W | 2.497 (3) | N1—N2 | 1.385 (4) |
Cu1—O2W | 2.484 (3) | N1—C3 | 1.314 (6) |
Cu1—O3i | 1.974 (3) | N2—C4 | 1.319 (5) |
Cu1—N1 | 1.982 (3) | N3—H3 | 0.8800 |
Cu1—N2i | 1.990 (4) | N3—C3 | 1.336 (5) |
O1—C1 | 1.269 (5) | N3—C4 | 1.323 (6) |
O1W—H1WA | 0.8703 | C1—C2 | 1.514 (6) |
O1W—H1WB | 0.8707 | C2—H2A | 0.9900 |
O2—C1 | 1.238 (5) | C2—H2B | 0.9900 |
O2W—H2WA | 0.8546 | C2—C3 | 1.495 (6) |
O2W—H2WB | 0.8709 | C4—C5 | 1.502 (5) |
O3—C6 | 1.253 (5) | C5—H5A | 0.9900 |
O3W—H3WA | 0.8491 | C5—H5B | 0.9900 |
O3W—H3WB | 0.8489 | C5—C6 | 1.534 (6) |
O1—Cu1—O1W | 91.79 (13) | C4—N2—N1 | 106.2 (4) |
O1—Cu1—O2W | 88.11 (12) | C3—N3—H3 | 126.4 |
O1—Cu1—O3i | 82.43 (13) | C4—N3—H3 | 126.4 |
O1—Cu1—N1 | 91.35 (14) | C4—N3—C3 | 107.1 (4) |
O1—Cu1—N2i | 171.18 (13) | O1—C1—C2 | 119.3 (4) |
O2W—Cu1—O1W | 177.86 (9) | O2—C1—O1 | 124.8 (4) |
O3i—Cu1—O1W | 84.77 (12) | O2—C1—C2 | 115.8 (5) |
O3i—Cu1—O2W | 93.10 (12) | C1—C2—H2A | 107.8 |
O3i—Cu1—N1 | 167.83 (15) | C1—C2—H2B | 107.8 |
O3i—Cu1—N2i | 89.34 (13) | H2A—C2—H2B | 107.1 |
N1—Cu1—O1W | 84.98 (13) | C3—C2—C1 | 118.1 (4) |
N1—Cu1—O2W | 97.16 (13) | C3—C2—H2A | 107.8 |
N1—Cu1—N2i | 97.31 (14) | C3—C2—H2B | 107.8 |
N2i—Cu1—O1W | 90.61 (13) | N1—C3—N3 | 109.5 (4) |
N2i—Cu1—O2W | 89.17 (13) | N1—C3—C2 | 129.0 (4) |
C1—O1—Cu1 | 134.8 (3) | N3—C3—C2 | 121.5 (4) |
Cu1—O1W—H1WA | 108.5 | N2—C4—N3 | 110.2 (4) |
Cu1—O1W—H1WB | 109.5 | N2—C4—C5 | 127.5 (4) |
H1WA—O1W—H1WB | 104.5 | N3—C4—C5 | 122.2 (4) |
Cu1—O2W—H2WA | 102.5 | C4—C5—H5A | 108.9 |
Cu1—O2W—H2WB | 109.6 | C4—C5—H5B | 108.9 |
H2WA—O2W—H2WB | 113.0 | C4—C5—C6 | 113.5 (4) |
C6—O3—Cu1i | 130.3 (3) | H5A—C5—H5B | 107.7 |
H3WA—O3W—H3WB | 109.5 | C6—C5—H5A | 108.9 |
N2—N1—Cu1 | 127.3 (3) | C6—C5—H5B | 108.9 |
C3—N1—Cu1 | 123.1 (3) | O3—C6—C5 | 119.8 (4) |
C3—N1—N2 | 107.0 (4) | O4—C6—O3 | 123.9 (5) |
N1—N2—Cu1i | 132.4 (3) | O4—C6—C5 | 116.2 (4) |
C4—N2—Cu1i | 121.1 (3) | ||
Cu1—O1—C1—O2 | −173.2 (3) | N2—N1—C3—N3 | −0.2 (5) |
Cu1—O1—C1—C2 | 11.6 (7) | N2—N1—C3—C2 | 179.4 (4) |
Cu1i—O3—C6—O4 | 168.2 (3) | N2—C4—C5—C6 | 41.1 (6) |
Cu1i—O3—C6—C5 | −11.0 (6) | N3—C4—C5—C6 | −142.1 (4) |
Cu1—N1—N2—Cu1i | 24.3 (5) | C1—C2—C3—N1 | 26.4 (7) |
Cu1—N1—N2—C4 | −161.7 (3) | C1—C2—C3—N3 | −154.0 (4) |
Cu1—N1—C3—N3 | 162.8 (3) | C3—N1—N2—Cu1i | −173.6 (3) |
Cu1—N1—C3—C2 | −17.6 (7) | C3—N1—N2—C4 | 0.4 (5) |
Cu1i—N2—C4—N3 | 174.4 (3) | C3—N3—C4—N2 | 0.2 (5) |
Cu1i—N2—C4—C5 | −8.4 (6) | C3—N3—C4—C5 | −177.1 (4) |
O1—C1—C2—C3 | −21.3 (6) | C4—N3—C3—N1 | 0.0 (5) |
O2—C1—C2—C3 | 163.0 (4) | C4—N3—C3—C2 | −179.7 (4) |
N1—N2—C4—N3 | −0.4 (5) | C4—C5—C6—O3 | −30.0 (6) |
N1—N2—C4—C5 | 176.8 (4) | C4—C5—C6—O4 | 150.8 (4) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O4ii | 0.87 | 1.91 | 2.762 (5) | 165 |
O1W—H1WB···O3W | 0.87 | 1.94 | 2.797 (5) | 169 |
O2W—H2WA···O1Wiii | 0.85 | 2.03 | 2.880 (4) | 170 |
O2W—H2WB···O2iv | 0.87 | 1.89 | 2.744 (4) | 167 |
N3—H3···O4v | 0.88 | 1.81 | 2.670 (5) | 165 |
C5—H5B···O3v | 0.99 | 2.32 | 3.257 (6) | 158 |
Symmetry codes: (ii) x+1/2, −y+3/2, z+1/2; (iii) x−1, y, z; (iv) −x+1/2, y−1/2, −z+3/2; (v) −x+1/2, y+1/2, −z+1/2. |
Footnotes
‡Additional address: Enamine Ltd., Winston Churchill Street 78, Kyiv 02094, Ukraine.
Funding information
Funding for this research was provided by grants 22BF037–06 obtained from the Ministry of Education and Science of Ukraine.
References
Aromí, G., Barrios, L. A., Roubeau, O. & Gamez, P. (2011). Coord. Chem. Rev. 255, 485–546. Google Scholar
Cudziło, S., Trzciński, W., Nita, M., Michalik, S., Krompiec, S., Kruszyński, R. & Kusz, J. (2011). Propellants Explos. Pyrotech. 36, 151–159. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Doroschuk, R. (2016). Acta Cryst. E72, 486–488. CSD CrossRef IUCr Journals Google Scholar
Drabent, K. & Ciunik, Z. (2001). Chem. Commun. pp. 1254–1255. CrossRef Google Scholar
Farooq, T. (2021). Advances in Triazole Chemistry, pp. 201–221. Amsterdam: Elsevier. ISBN: 978-0-12-817113-4. Google Scholar
Ferrer, S., Ballesteros, R., Sambartolomé, A., González, M., Alzuet, G., Borrás, J. & Liu, M. (2004). J. Inorg. Biochem. 98, 1436–1446. Web of Science CSD CrossRef PubMed CAS Google Scholar
Ferrer, S., van Koningsbruggen, P. J., Haasnoot, J. G., Reedijk, J., Kooijman, H., Spek, A. L., Lezama, L., Arif, A. M. & Miller, J. S. (1999). J. Chem. Soc. Dalton Trans. 23, 4269–4276. CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Haasnoot, J. G. (2000). Coord. Chem. Rev. 200–202, 131–185. Web of Science CrossRef CAS Google Scholar
Hernández-Gil, J., Ferrer, S., Cabedo, N., López-Gresa, M. P., Castiñeiras, A. & Lloret, F. (2013). J. Inorg. Biochem. 125, 50–63. PubMed Google Scholar
Kaase, D., Gotzmann, C., Rein, S., Lan, Y., Kacprzak, S. & Klingele, J. (2014). Inorg. Chem. 53, 5546–5555. Web of Science CSD CrossRef CAS PubMed Google Scholar
Kiseleva, V. V., Gakh, A. A. & Fainzil'berg, A. A. (1990). Izv. Akad. Nauk SSSR Ser. Khim. 39, 1888–1895. Google Scholar
Koningsbruggen, P. J. van, Haasnoot, J. G., de Graaff, R. A. G., Reedijk, J. & Slingerland, S. (1992). Acta Cryst. C48, 1923–1926. CSD CrossRef Web of Science IUCr Journals Google Scholar
Li, D.-D., Tian, J.-L., Gu, W., Liu, X. & Yan, S.-P. (2010). J. Inorg. Biochem. 104(2), 171–179. CrossRef Google Scholar
Li, L., Ju, W.-W., Tao, J.-Q., Xin, R., Wang, J. & Xu, X.-J. (2015). J. Mol. Struct. 1096, 142–146. CrossRef CAS Google Scholar
Matthews, C. J., Horton, P. N. & Hursthouse, M. B. (2003). University of Southampton, Report Archive, 986. Google Scholar
Petrenko, Y. P., Khomenko, D. M., Doroshchuk, R. O., Shova, S., Novitchi, G., Piasta, K., Gumienna-Kontecka, E. & Lampeka, R. D. (2020). Inorg. Chim. Acta, 500, 119216. Web of Science CSD CrossRef Google Scholar
Petrenko, Y. P., Piasta, K., Khomenko, D. M., Doroshchuk, R. O., Shova, S., Novitchi, G., Toporivska, Y., Gumienna-Kontecka, E., Martins, L. M. D. R. S. & Lampeka, R. D. (2021). RSC Adv. 11, 23442–23449. Web of Science CSD CrossRef CAS PubMed Google Scholar
Prins, R., Birker, P. J. M. W. L., Haasnoot, J. G., Verschoor, G. C. & Reedijk, J. (1985). Inorg. Chem. 24, 4128–4133. CSD CrossRef CAS Web of Science Google Scholar
Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Thorseth, M. A., Tornow, C. E., Tse, E. C. M. & Gewirth, A. A. (2013). Coord. Chem. Rev. 257, 130–139. CrossRef CAS Google Scholar
Xu, Y.-P., Chen, Y.-H., Chen, Z.-J., Qin, J., Qian, S.-S. & Zhu, H.-L. (2015). Eur. J. Inorg. Chem. pp. 2076–2084. CrossRef Google Scholar
Zaleski, J., Gabryszewski, M. & Zarychta, B. (2005). Acta Cryst. C61, m151–m154. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Zhang, J.-P., Lin, Y.-Y., Huang, X.-C. & Chen, X.-M. (2005). J. Am. Chem. Soc. 127, 5495–5506. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.