research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of a new copper(II) complex based on di­ethyl 2,2′-(4H-1,2,4-triazole-3,5-di­yl)di­acetate

crossmark logo

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine, and b"PetruPoni" Institute of Macromolecular Chemistry, Aleea Gr., Ghica Voda 41A, 700487 Iasi, Romania
*Correspondence e-mail: oleksandr.vynohradov@knu.ua

Edited by S.-L. Zheng, Harvard University, USA (Received 15 July 2024; accepted 21 August 2024; online 30 August 2024)

The title compound, bis­[μ-2,2′-(4H-1,2,4-triazole-3,5-di­yl)di­acetato]­bis­[di­aqua­copper(II)] dihydrate, [Cu2(C6H5N3O4)2(H2O)4]·2H2O, is a dinuclear octa­hedral CuII triazole-based complex. The central copper atoms are hexa-coordinated by two nitro­gen atoms in the equatorial positions, two equatorial oxygen atoms of two carboxyl­ate substituents in position 3 and 5 of the 1,2,4-triazole ring, and two axial oxygen atoms of two water mol­ecules. Two additional solvent water mol­ecules are linked to the title mol­ecule by O—H⋯N and O⋯H—O hydrogen bonds. The crystal structure is built up from the parallel packing of discrete supra­molecular chains running along the a-axis direction. Hirshfeld surface analysis suggests that the most important contributions to the surface contacts are from H⋯O/O⋯H (53.5%), H⋯H (28.1%), O⋯O (6.3%) and H⋯C/C⋯H (6.2%) inter­actions. The crystal studied was twinned by a twofold rotation around [100].

1. Chemical context

1,2,4-Triazole-based organic compounds have been widely used as ligands for the synthesis of transition-metal complexes (Haasnoot, 2000[Haasnoot, J. G. (2000). Coord. Chem. Rev. 200-202, 131-185.]; Aromí et al., 2011[Aromí, G., Barrios, L. A., Roubeau, O. & Gamez, P. (2011). Coord. Chem. Rev. 255, 485-546.]; Farooq, 2021[Farooq, T. (2021). Advances in Triazole Chemistry, pp. 201-221. Amsterdam: Elsevier. ISBN: 978-0-12-817113-4.]). Depending on the substituents on the azole core, the title ligands can coordinate not only in a monodentate manner (Cudziło et al., 2011[Cudziło, S., Trzciński, W., Nita, M., Michalik, S., Krompiec, S., Kruszyński, R. & Kusz, J. (2011). Propellants Explos. Pyrotech. 36, 151-159.]; Zaleski et al., 2005[Zaleski, J., Gabryszewski, M. & Zarychta, B. (2005). Acta Cryst. C61, m151-m154.]), but also as a linker binding two metal ions (Drabent et al., 2001[Drabent, K. & Ciunik, Z. (2001). Chem. Commun. pp. 1254-1255.]; Zhang et al., 2005[Zhang, J.-P., Lin, Y.-Y., Huang, X.-C. & Chen, X.-M. (2005). J. Am. Chem. Soc. 127, 5495-5506.]) and thus play an important role in the design of new polynuclear coordination compounds. In particular, copper(II) coordin­ation compounds based on 1,2,4-triazoles have attracted the inter­est of chemists due to their magnetic properties (Petrenko et al., 2020[Petrenko, Y. P., Khomenko, D. M., Doroshchuk, R. O., Shova, S., Novitchi, G., Piasta, K., Gumienna-Kontecka, E. & Lampeka, R. D. (2020). Inorg. Chim. Acta, 500, 119216.]; Kaase et al., 2014[Kaase, D., Gotzmann, C., Rein, S., Lan, Y., Kacprzak, S. & Klingele, J. (2014). Inorg. Chem. 53, 5546-5555.]), bioactivity (Hernández-Gil et al., 2013[Hernández-Gil, J., Ferrer, S., Cabedo, N., López-Gresa, M. P., Castiñeiras, A. & Lloret, F. (2013). J. Inorg. Biochem. 125, 50-63.]; Ferrer et al., 2004[Ferrer, S., Ballesteros, R., Sambartolomé, A., González, M., Alzuet, G., Borrás, J. & Liu, M. (2004). J. Inorg. Biochem. 98, 1436-1446.]) and catalysis (Thorseth et al., 2013[Thorseth, M. A., Tornow, C. E., Tse, E. C. M. & Gewirth, A. A. (2013). Coord. Chem. Rev. 257, 130-139.]; Li et al., 2015[Li, L., Ju, W.-W., Tao, J.-Q., Xin, R., Wang, J. & Xu, X.-J. (2015). J. Mol. Struct. 1096, 142-146.]). Dinuclear copper(II) complexes can promote single- and double-strand DNA cleavage in both aerobic and anaerobic conditions (Li et al., 2010[Li, D.-D., Tian, J.-L., Gu, W., Liu, X. & Yan, S.-P. (2010). J. Inorg. Biochem. 104(2), 171-179.]). Being much cheaper than most metals, copper(II) coordination compounds are promising substances for exploration as catalysts. Previously we reported that a dinuclear CuII complex based on 5-methyl-3-(2-pyrid­yl)-1,2,4-triazole as a ligand can selectively catalyse the oxidation of styrene towards benzaldehyde and of cyclo­hexane to KA oil (a mixture of cyclo­hexa­nol and cyclo­hexa­none; Petrenko et al., 2021[Petrenko, Y. P., Piasta, K., Khomenko, D. M., Doroshchuk, R. O., Shova, S., Novitchi, G., Toporivska, Y., Gumienna-Kontecka, E., Martins, L. M. D. R. S. & Lampeka, R. D. (2021). RSC Adv. 11, 23442-23449.]). Finally, CuII complexes can exhibit urease inhibitory activities (Xu et al., 2015[Xu, Y.-P., Chen, Y.-H., Chen, Z.-J., Qin, J., Qian, S.-S. & Zhu, H.-L. (2015). Eur. J. Inorg. Chem. pp. 2076-2084.]). Since dinuclear copper(II) complexes with triazole bridges can exhibit catalytic properties, we decided to continue our research in this direction. Herein, we describe the synthesis, crystal structure, and results of Hirshfeld surface analysis of the title compound, [Cu2(C6H5N3O4)2(H2O)4]·2H2O, which potentially exhibits catalytic, inhibitory, and magnetic properties.

[Scheme 1]

2. Structural commentary

The title compound (Fig. 1[link]), a dinuclear copper(II) 1,2,4-triazole-based complex, crystallizes in the monoclinic, P21/n space group. The asymmetric unit consists of one copper(II) ion, one 4H-1,2,4-triazole-3,5-di­carboxyl­ate ligand, two coordinated water mol­ecules and one solvent water mol­ecule. The structure of the title compound can be described as a neutral complex of formula [Cu2(C6H5N3O4)2(H2O)4]·2H2O in which the triazole ligand is coordinated in a tetra­dentate way. The CuII ion has a distorted N2O4 octa­hedral geometry formed by two nitro­gen atoms in the equatorial positions with Cu1—N1 = 1.982 (3) Å and Cu1—N2i [symmetry code: (i) −x + 1, −y + 1, −z + 1)] = 1.990 (4) Å bond distances, two equatorial oxygen atoms of two carboxyl­ate substituents in position 3 and 5 of the triazole ring [Cu1—O1 = 1.962 (3) Å and Cu1—O3i = 1.974 (3) Å], and two axial oxygen atoms of two water mol­ecules with Cu1—O1W = 2.497 (3) Å and Cu1—O2W = 2.484 (3) Å bond distances. The Cu1—Cu1i inter­metallic distance in the complex mol­ecule is 3.9866 (15) Å. Two copper atoms bridged by two 4H-1,2,4-triazole-3,5-di­carboxyl­ate ligands form a non-planar six-membered bimetallic ring. In addition, four six-membered non-planar chelate rings are formed due to the presence of carboxyl­ate substituents at the 3 and 5 positions of the 1,2,4-triazole rings. There are medium strength inter­molecular O—H⋯O hydrogen bonds between the main compound and solvent water mol­ecules. Inter­molecular N—H⋯O and C—H⋯O hydrogen bonds between two complex mol­ecules are also observed (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O4i 0.87 1.91 2.762 (5) 165
O1W—H1WB⋯O3W 0.87 1.94 2.797 (5) 169
O2W—H2WA⋯O1Wii 0.85 2.03 2.880 (4) 170
O2W—H2WB⋯O2iii 0.87 1.89 2.744 (4) 167
N3—H3⋯O4iv 0.88 1.81 2.670 (5) 165
C5—H5B⋯O3iv 0.99 2.32 3.257 (6) 158
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x-1, y, z]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

The crystal structure is built up from the parallel packing of discrete supra­molecular chains running along the a-axis direction with a Cu⋯Cu separation of 6.5248 (11) Å (Fig. 2[link]). Within the chain, the complex mol­ecules inter­act through O—H⋯O hydrogen bonds, while the association with the inter­stitial water mol­ecules occurs via O—H⋯O and N—H⋯O hydrogen bonds (Fig. 3[link], Table 1[link]).

[Figure 2]
Figure 2
One-dimensional supra­molecular chain running parallel to the a axis and viewed along the b axis. Solvent water mol­ecules are shown in green, O—H⋯O and O—H⋯N hydrogen bonds are shown as red and blue dotted lines, respectively.
[Figure 3]
Figure 3
Partial view of the crystal packing showing hydrogen-bond contacts between adjacent mol­ecules.

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.41, update of November 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the Cu2(C2N3)2O4 moiety (two 1,2,4-triazole ring skeletons connected via two Cu atoms; each copper atom is coordinated by two oxygen atoms) revealed 48 hits. Most similar to the title compound are dinuclear copper(II) complexes with following database refcodes: COCZAV (Ferrer et al., 1999[Ferrer, S., van Koningsbruggen, P. J., Haasnoot, J. G., Reedijk, J., Kooijman, H., Spek, A. L., Lezama, L., Arif, A. M. & Miller, J. S. (1999). J. Chem. Soc. Dalton Trans. 23, 4269-4276.]), DODRET and DODRIX (Prins et al., 1985[Prins, R., Birker, P. J. M. W. L., Haasnoot, J. G., Verschoor, G. C. & Reedijk, J. (1985). Inorg. Chem. 24, 4128-4133.]), FIVGEY (Matthews et al., 2003[Matthews, C. J., Horton, P. N. & Hursthouse, M. B. (2003). University of Southampton, Crystal Structure Report Archive, 986.]), JOZXAX (van Koningsbruggen et al., 1992[Koningsbruggen, P. J. van, Haasnoot, J. G., de Graaff, R. A. G., Reedijk, J. & Slingerland, S. (1992). Acta Cryst. C48, 1923-1926.]) and VALZOA (Doroschuk, 2016[Doroschuk, R. (2016). Acta Cryst. E72, 486-488.]). All coordination compounds have many common characteristics, but there are also some minor differences between them. All these dinuclear copper(II) complexes contain two 1,2,4-triazole-based ligands. The triazole derivatives have two substituents at positions 3 and 5 of the triazole ring. The substituents containing donor atoms also participate in coordination with the copper atom. These ligands exhibit bridging functions and link two copper atoms at distances in the range of 3.85 to 4.09 Å. Two six-coordinated copper atoms are involved in the formation of a six-membered ring. There are two water mol­ecules in the axial positions of the central copper atom in the title compound and the compound JOZXAX. In other complexes, one axial position in the geometric environment of the copper atom is occupied by a water mol­ecule, while the second axial position is typically occupied by an anion of an inorganic salt. The title compound crystallizes in the monoclinic P21/n space group. Five complexes crystallized in the triclinic, P[\overline{1}] space group, while JOZXAX crystallized in the monoclinic C2/c space group.

5. Hirshfeld surface analysis

The Hirshfeld surface analysis was performed and the associated two-dimensional fingerprint plots were generated using Crystal Explorer 17.5 software (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]), with a standard resolution of the three-dimensional dnorm surfaces (shown in Figs. 4[link] and 5[link]). The dark-red spots arise as a result of short inter­atomic contacts and represent negative dnorm values on the surface, while the other weaker inter­molecular inter­actions appear as light-red spots. The Hirshfeld surfaces mapped over dnorm are shown for the H⋯O/O⋯H, H⋯H, O⋯O, H⋯C/C⋯H, H⋯N/N⋯H and O⋯C/C⋯O contacts (Fig. 6[link]), the overall two-dimensional fingerprint plot and the decomposed two-dimensional fingerprint plots are given in Fig. 7. Two pairs of N3—H3⋯O4 inter­atomic contacts with lengths of 1.696 Å are the shortest. The most significant contributions to the overall crystal packing are from H⋯O/O⋯H (53.5%), H⋯H (28.1%), O⋯O (6.3%) and H⋯C/C⋯H (6.2%) contacts. The predominance of contributions from H⋯H and H⋯O contacts to the overall crystal packing is typical not only for the title compound and other dinuclear copper(II) complexes with triazole-containing ligands but also of copper(II) coordination compounds with azole-based ligands in general. There is a small contribution from H⋯N/N⋯H (3.5%) and O⋯C/C⋯O (2.3%) weak inter­molecular contacts. The relative percentage contributions to the overall Hirshfeld surface by elements: H⋯all atoms = 55.4%, O⋯all atoms = 35.6%, C⋯all atoms = 6.1%, N⋯all atoms = 3.0% and Cu⋯all atoms = 0%. In addition, qu­anti­tative physical properties of the Hirshfeld surface for this compound were obtained, such as mol­ecular volume (444.48 Å3), surface area (384.06 Å2), globularity (0.733) and asphericity (0.063). The asphericity value for the title compound at 0.063 is close to zero, indicating a near isotropic nature. The globularity value (0.733) is less than one, suggesting a modest deviation from a spherical surface and indicating that this mol­ecular surface is more structured compared to a sphere.

[Figure 4]
Figure 4
(a) Two projections of the Hirshfeld surfaces mapped over dnorm showing the inter­molecular inter­actions within the mol­ecule and (b) an illustration of selected O—H⋯O and O—H⋯N inter­actions depicted by green and yellow dashed lines, respectively.
[Figure 5]
Figure 5
Hirshfeld surface representations with the function dnorm plotted onto the surface for the different inter­actions.
[Figure 6]
Figure 6
The overall two-dimensional fingerprint plot and those delineated into specified inter­actions.

6. Synthesis and crystallization

[Cu2(HL)2(H2O)4]·2H2O. An aqueous solution (2 ml) of Cu(NO3)2·6H2O (0.296 g, 1 mmol) was added to 2 ml of an aqueous solution of ethyl 2,2′-(1H-1,2,4-triazole-3,5-di­yl)di­acetate (0.241 g, 1 mmol) to give a clear blue solution. The blue crystals that precipitated after 2 days were filtered off, washed with water, and dried in air (Kiseleva et al., 1990[Kiseleva, V. V., Gakh, A. A. & Fainzil'berg, A. A. (1990). Izv. Akad. Nauk SSSR Ser. Khim. 39, 1888-1895.]). Yield 0.247 g (82.18%). IR data (in KBr, cm−1): 3404, 3224, 1638, 1620, 1606, 1568, 1540, 1454, 1418, 1400, 1386, 1274, 1250, 1052, 956, 752, 644, 578. Analysis calculated for C12H22Cu2N6O14 (601.43): C, 23.96%; H, 3.69%; N, 13.97%. Found: C, 23.88%; H, 3.72%; N, 13.88%.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The crystal studied was twinned by a twofold rotation around [100]. The corresponding HKLF5 generated by the CrysAlis program was used for refinement. The O- and N-bound hydrogen atoms were identified in difference-Fourier maps and refined isotropically with positional restraints. All other H atoms were placed in calculated positions and refined using a riding model with C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula [Cu2(C6H5N3O4)2(H2O)4]·2H2O
Mr 601.44
Crystal system, space group Monoclinic, P21/n
Temperature (K) 200
a, b, c (Å) 6.5176 (13), 9.4854 (19), 15.967 (2)
β (°) 93.035 (15)
V3) 985.7 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.25
Crystal size (mm) 0.56 × 0.37 × 0.33 × 0.22 (radius)
 
Data collection
Diffractometer Xcalibur, Eos
Absorption correction For a sphere (CrysAlis PRO; Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.488, 0.498
No. of measured, independent and observed [I > 2σ(I)] reflections 2569, 2569, 1969
Rint 0.053
(sin θ/λ)max−1) 0.686
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.096, 1.00
No. of reflections 2569
No. of parameters 159
No. of restraints 18
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.63, −0.53
Computer programs: CrysAlis PRO (Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Bis[µ-2,2'-(4H-1,2,4-triazole-3,5-diyl)diacetato]bis[diaquacopper(II)] dihydrate top
Crystal data top
[Cu2(C6H5N3O4)2(H2O)4]·2H2OF(000) = 612
Mr = 601.44Dx = 2.026 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.5176 (13) ÅCell parameters from 833 reflections
b = 9.4854 (19) Åθ = 2.5–28.3°
c = 15.967 (2) ŵ = 2.25 mm1
β = 93.035 (15)°T = 200 K
V = 985.7 (3) Å3Prism, clear intense green
Z = 20.56 × 0.37 × 0.33 × 0.22 (radius) mm
Data collection top
Xcalibur, Eos
diffractometer
1969 reflections with I > 2σ(I)
Detector resolution: 16.1593 pixels mm-1Rint = 0.053
ω scansθmax = 29.2°, θmin = 2.5°
Absorption correction: for a sphere
(CrysAlisPro; Rigaku OD, 2024)
h = 88
Tmin = 0.488, Tmax = 0.498k = 1212
2569 measured reflectionsl = 2121
2569 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0483P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
2569 reflectionsΔρmax = 0.63 e Å3
159 parametersΔρmin = 0.53 e Å3
18 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.48120 (9)0.59062 (7)0.61179 (3)0.01441 (17)
O10.4081 (5)0.7706 (4)0.66289 (18)0.0196 (8)
O1W0.8274 (4)0.6812 (4)0.57854 (18)0.0176 (8)
H1WA0.8493340.7600960.6053480.026*
H1WB0.8266530.7044970.5257770.026*
O20.3198 (5)0.9950 (4)0.67791 (19)0.0167 (8)
O2W0.1424 (5)0.4979 (4)0.65012 (18)0.0220 (8)
H2WA0.0583250.5538920.6241700.033*
H2WB0.1343350.5008120.7043600.033*
O30.3906 (5)0.4446 (3)0.27539 (18)0.0181 (8)
O3W0.8739 (6)0.7755 (4)0.4147 (2)0.0255 (9)
H3WA0.8881910.7002430.3867530.038*
H3WB0.8126980.8369520.3838230.038*
O40.3227 (4)0.5597 (3)0.15734 (18)0.0148 (8)
N10.3931 (5)0.6605 (4)0.4985 (2)0.0110 (9)
N20.4400 (5)0.6031 (4)0.42206 (19)0.0104 (8)
N30.3370 (5)0.8181 (4)0.4021 (2)0.0115 (9)
H30.3027750.8980140.3770620.014*
C10.3396 (6)0.8877 (6)0.6350 (3)0.0114 (11)
C20.2603 (7)0.8982 (5)0.5444 (3)0.0190 (12)
H2A0.1084170.8944940.5432220.023*
H2B0.2984670.9922620.5232530.023*
C30.3309 (6)0.7904 (6)0.4839 (3)0.0112 (11)
C40.4041 (6)0.7029 (5)0.3657 (3)0.0126 (11)
C50.4403 (7)0.6970 (5)0.2737 (3)0.0134 (11)
H5A0.5877090.7145170.2656920.016*
H5B0.3608200.7732750.2447720.016*
C60.3793 (6)0.5556 (6)0.2329 (3)0.0145 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0258 (3)0.0090 (3)0.0082 (2)0.0024 (3)0.0025 (2)0.0000 (3)
O10.0343 (19)0.0125 (18)0.0119 (15)0.0043 (18)0.0005 (15)0.0056 (15)
O1W0.0274 (17)0.013 (2)0.0122 (15)0.0017 (18)0.0028 (13)0.0004 (17)
O20.0299 (18)0.0093 (19)0.0107 (16)0.0032 (18)0.0007 (14)0.0018 (15)
O2W0.0337 (19)0.019 (2)0.0129 (16)0.012 (2)0.0023 (14)0.0013 (17)
O30.034 (2)0.008 (2)0.0124 (16)0.0008 (17)0.0041 (14)0.0030 (15)
O3W0.038 (2)0.017 (2)0.0212 (17)0.000 (2)0.0018 (16)0.0045 (19)
O40.0280 (17)0.010 (2)0.0061 (15)0.0003 (16)0.0051 (12)0.0013 (15)
N10.0183 (19)0.008 (2)0.0063 (17)0.0002 (19)0.0012 (15)0.0007 (17)
N20.0103 (16)0.015 (2)0.0066 (14)0.003 (2)0.0029 (14)0.0029 (19)
N30.019 (2)0.008 (2)0.0077 (18)0.0014 (19)0.0009 (15)0.0053 (18)
C10.013 (2)0.017 (3)0.0041 (19)0.003 (2)0.0056 (16)0.000 (2)
C20.026 (3)0.013 (3)0.018 (2)0.005 (3)0.0021 (18)0.001 (3)
C30.014 (2)0.012 (3)0.007 (2)0.000 (2)0.0001 (17)0.004 (2)
C40.014 (2)0.013 (3)0.012 (2)0.003 (2)0.0015 (18)0.003 (2)
C50.019 (2)0.010 (3)0.011 (2)0.001 (2)0.0012 (19)0.001 (2)
C60.011 (2)0.018 (3)0.016 (2)0.004 (2)0.0031 (17)0.001 (2)
Geometric parameters (Å, º) top
Cu1—O11.962 (3)O4—C61.243 (5)
Cu1—O1W2.497 (3)N1—N21.385 (4)
Cu1—O2W2.484 (3)N1—C31.314 (6)
Cu1—O3i1.974 (3)N2—C41.319 (5)
Cu1—N11.982 (3)N3—H30.8800
Cu1—N2i1.990 (4)N3—C31.336 (5)
O1—C11.269 (5)N3—C41.323 (6)
O1W—H1WA0.8703C1—C21.514 (6)
O1W—H1WB0.8707C2—H2A0.9900
O2—C11.238 (5)C2—H2B0.9900
O2W—H2WA0.8546C2—C31.495 (6)
O2W—H2WB0.8709C4—C51.502 (5)
O3—C61.253 (5)C5—H5A0.9900
O3W—H3WA0.8491C5—H5B0.9900
O3W—H3WB0.8489C5—C61.534 (6)
O1—Cu1—O1W91.79 (13)C4—N2—N1106.2 (4)
O1—Cu1—O2W88.11 (12)C3—N3—H3126.4
O1—Cu1—O3i82.43 (13)C4—N3—H3126.4
O1—Cu1—N191.35 (14)C4—N3—C3107.1 (4)
O1—Cu1—N2i171.18 (13)O1—C1—C2119.3 (4)
O2W—Cu1—O1W177.86 (9)O2—C1—O1124.8 (4)
O3i—Cu1—O1W84.77 (12)O2—C1—C2115.8 (5)
O3i—Cu1—O2W93.10 (12)C1—C2—H2A107.8
O3i—Cu1—N1167.83 (15)C1—C2—H2B107.8
O3i—Cu1—N2i89.34 (13)H2A—C2—H2B107.1
N1—Cu1—O1W84.98 (13)C3—C2—C1118.1 (4)
N1—Cu1—O2W97.16 (13)C3—C2—H2A107.8
N1—Cu1—N2i97.31 (14)C3—C2—H2B107.8
N2i—Cu1—O1W90.61 (13)N1—C3—N3109.5 (4)
N2i—Cu1—O2W89.17 (13)N1—C3—C2129.0 (4)
C1—O1—Cu1134.8 (3)N3—C3—C2121.5 (4)
Cu1—O1W—H1WA108.5N2—C4—N3110.2 (4)
Cu1—O1W—H1WB109.5N2—C4—C5127.5 (4)
H1WA—O1W—H1WB104.5N3—C4—C5122.2 (4)
Cu1—O2W—H2WA102.5C4—C5—H5A108.9
Cu1—O2W—H2WB109.6C4—C5—H5B108.9
H2WA—O2W—H2WB113.0C4—C5—C6113.5 (4)
C6—O3—Cu1i130.3 (3)H5A—C5—H5B107.7
H3WA—O3W—H3WB109.5C6—C5—H5A108.9
N2—N1—Cu1127.3 (3)C6—C5—H5B108.9
C3—N1—Cu1123.1 (3)O3—C6—C5119.8 (4)
C3—N1—N2107.0 (4)O4—C6—O3123.9 (5)
N1—N2—Cu1i132.4 (3)O4—C6—C5116.2 (4)
C4—N2—Cu1i121.1 (3)
Cu1—O1—C1—O2173.2 (3)N2—N1—C3—N30.2 (5)
Cu1—O1—C1—C211.6 (7)N2—N1—C3—C2179.4 (4)
Cu1i—O3—C6—O4168.2 (3)N2—C4—C5—C641.1 (6)
Cu1i—O3—C6—C511.0 (6)N3—C4—C5—C6142.1 (4)
Cu1—N1—N2—Cu1i24.3 (5)C1—C2—C3—N126.4 (7)
Cu1—N1—N2—C4161.7 (3)C1—C2—C3—N3154.0 (4)
Cu1—N1—C3—N3162.8 (3)C3—N1—N2—Cu1i173.6 (3)
Cu1—N1—C3—C217.6 (7)C3—N1—N2—C40.4 (5)
Cu1i—N2—C4—N3174.4 (3)C3—N3—C4—N20.2 (5)
Cu1i—N2—C4—C58.4 (6)C3—N3—C4—C5177.1 (4)
O1—C1—C2—C321.3 (6)C4—N3—C3—N10.0 (5)
O2—C1—C2—C3163.0 (4)C4—N3—C3—C2179.7 (4)
N1—N2—C4—N30.4 (5)C4—C5—C6—O330.0 (6)
N1—N2—C4—C5176.8 (4)C4—C5—C6—O4150.8 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4ii0.871.912.762 (5)165
O1W—H1WB···O3W0.871.942.797 (5)169
O2W—H2WA···O1Wiii0.852.032.880 (4)170
O2W—H2WB···O2iv0.871.892.744 (4)167
N3—H3···O4v0.881.812.670 (5)165
C5—H5B···O3v0.992.323.257 (6)158
Symmetry codes: (ii) x+1/2, y+3/2, z+1/2; (iii) x1, y, z; (iv) x+1/2, y1/2, z+3/2; (v) x+1/2, y+1/2, z+1/2.
 

Footnotes

Additional address: Enamine Ltd., Winston Churchill Street 78, Kyiv 02094, Ukraine.

Funding information

Funding for this research was provided by grants 22BF037–06 obtained from the Ministry of Education and Science of Ukraine.

References

First citationAromí, G., Barrios, L. A., Roubeau, O. & Gamez, P. (2011). Coord. Chem. Rev. 255, 485–546.  Google Scholar
First citationCudziło, S., Trzciński, W., Nita, M., Michalik, S., Krompiec, S., Kruszyński, R. & Kusz, J. (2011). Propellants Explos. Pyrotech. 36, 151–159.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDoroschuk, R. (2016). Acta Cryst. E72, 486–488.  CSD CrossRef IUCr Journals Google Scholar
First citationDrabent, K. & Ciunik, Z. (2001). Chem. Commun. pp. 1254–1255.  CrossRef Google Scholar
First citationFarooq, T. (2021). Advances in Triazole Chemistry, pp. 201–221. Amsterdam: Elsevier. ISBN: 978-0-12-817113-4.  Google Scholar
First citationFerrer, S., Ballesteros, R., Sambartolomé, A., González, M., Alzuet, G., Borrás, J. & Liu, M. (2004). J. Inorg. Biochem. 98, 1436–1446.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFerrer, S., van Koningsbruggen, P. J., Haasnoot, J. G., Reedijk, J., Kooijman, H., Spek, A. L., Lezama, L., Arif, A. M. & Miller, J. S. (1999). J. Chem. Soc. Dalton Trans. 23, 4269–4276.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHaasnoot, J. G. (2000). Coord. Chem. Rev. 200–202, 131–185.  Web of Science CrossRef CAS Google Scholar
First citationHernández-Gil, J., Ferrer, S., Cabedo, N., López-Gresa, M. P., Castiñeiras, A. & Lloret, F. (2013). J. Inorg. Biochem. 125, 50–63.  PubMed Google Scholar
First citationKaase, D., Gotzmann, C., Rein, S., Lan, Y., Kacprzak, S. & Klingele, J. (2014). Inorg. Chem. 53, 5546–5555.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKiseleva, V. V., Gakh, A. A. & Fainzil'berg, A. A. (1990). Izv. Akad. Nauk SSSR Ser. Khim. 39, 1888–1895.  Google Scholar
First citationKoningsbruggen, P. J. van, Haasnoot, J. G., de Graaff, R. A. G., Reedijk, J. & Slingerland, S. (1992). Acta Cryst. C48, 1923–1926.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationLi, D.-D., Tian, J.-L., Gu, W., Liu, X. & Yan, S.-P. (2010). J. Inorg. Biochem. 104(2), 171–179.  CrossRef Google Scholar
First citationLi, L., Ju, W.-W., Tao, J.-Q., Xin, R., Wang, J. & Xu, X.-J. (2015). J. Mol. Struct. 1096, 142–146.  CrossRef CAS Google Scholar
First citationMatthews, C. J., Horton, P. N. & Hursthouse, M. B. (2003). University of Southampton, Crystal Structure Report Archive, 986.  Google Scholar
First citationPetrenko, Y. P., Khomenko, D. M., Doroshchuk, R. O., Shova, S., Novitchi, G., Piasta, K., Gumienna-Kontecka, E. & Lampeka, R. D. (2020). Inorg. Chim. Acta, 500, 119216.  Web of Science CSD CrossRef Google Scholar
First citationPetrenko, Y. P., Piasta, K., Khomenko, D. M., Doroshchuk, R. O., Shova, S., Novitchi, G., Toporivska, Y., Gumienna-Kontecka, E., Martins, L. M. D. R. S. & Lampeka, R. D. (2021). RSC Adv. 11, 23442–23449.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPrins, R., Birker, P. J. M. W. L., Haasnoot, J. G., Verschoor, G. C. & Reedijk, J. (1985). Inorg. Chem. 24, 4128–4133.  CSD CrossRef CAS Web of Science Google Scholar
First citationRigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThorseth, M. A., Tornow, C. E., Tse, E. C. M. & Gewirth, A. A. (2013). Coord. Chem. Rev. 257, 130–139.  CrossRef CAS Google Scholar
First citationXu, Y.-P., Chen, Y.-H., Chen, Z.-J., Qin, J., Qian, S.-S. & Zhu, H.-L. (2015). Eur. J. Inorg. Chem. pp. 2076–2084.  CrossRef Google Scholar
First citationZaleski, J., Gabryszewski, M. & Zarychta, B. (2005). Acta Cryst. C61, m151–m154.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZhang, J.-P., Lin, Y.-Y., Huang, X.-C. & Chen, X.-M. (2005). J. Am. Chem. Soc. 127, 5495–5506.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds