research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(β-alaninium) tetra­bromidoplumbate

crossmark logo

aInstitute of Applied Problems of Physics, NAS of Armenia, 25 Nersessyan Str., 0014 Yerevan, Armenia, and bInstitute of Mineralogy and Crystallography, University of Vienna, Josef-Holaubek-Platz 2, A-1090 Vienna, Austria
*Correspondence e-mail: itonoyan1@gmail.com

Edited by L. Suescun, Universidad de la República, Uruguay (Received 10 June 2024; accepted 5 August 2024; online 9 August 2024)

The title compound, poly[bis­(β-alaninium) [[di­bromido­plumbate]-di-μ-di­bromido]] {(C2H8NO2)2[PbBr4]}n or (β-AlaH)2PbBr4, crystallizes in the monoclinic space group P21/n. The (PbBr4)2− anion is located on a general position and has a two-dimensional polymeric structure. The Pb center is holodirected. The supra­molecular network is mainly based on O—H⋯Br, N—H⋯Br and N—H⋯O hydrogen bonds.

1. Chemical context

As plumbiferous compounds are commonly toxic, they are unfavorable for photovoltaic devices. Nonetheless, they have other important applications such as white-light-emitting materials (Peng et al., 2018[Peng, C., Zhuang, Z., Yang, H., Zhang, G. & Fei, H. (2018). Chem. Sci. 9, 1627-1633.]), luminescent sensing (Wang et al., 2019[Wang, J., Gao, L., Zhang, J., Zhao, L., Wang, X., Niu, X., Fan, L. & Hu, T. (2019). Cryst. Growth Des. 19, 630-637.]; Wang, 2020[Wang, L. (2020). J. Inorg. Organomet. Polym. 30, 291-298.]; Martínez-Casado et al., 2012[Martínez-Casado, F. J., Cañadillas-Delgado, L., Cucinotta, F., Guerrero-Martínez, A., Ramos Riesco, M., Marchese, L. & Rodríguez Cheda, J. A. (2012). CrystEngComm, 14, 2660-2668.]), ferroelectric materials (Gao et al., 2017[Gao, R., Reyes-Lillo, S. E., Xu, R., Dasgupta, A., Dong, Y., Dedon, L. R., Kim, J., Saremi, S., Chen, Z., Serrao, C. R., Zhou, H., Neaton, J. B. & Martin, L. W. (2017). Chem. Mater. 29, 6544-6551.]), non-linear optical materials (Chen et al., 2020[Chen, X., Jo, H. & Ok, K. M. (2020). Angew. Chem. Int. Ed. 59, 7514-7520.]) and semiconductors (Terpstra et al., 1997[Terpstra, H. J., De Groot, R. A. & Haas, C. (1997). J. Phys. Chem. Solids, 58, 561-566.]). Lead-containing materials also are attractive from a stereochemical point of view. The Pb2+ ion has a 6s2 electron pair, which is crucial for the stereochemistry of PbII. When the 6s2 electron pair takes part in hybridization between the s and p orbitals, the lead atom is stereochemically active and has a hemidirected coordination, otherwise the lead atom exhibits a regular coordination sphere (Casas et al., 2006[Casas, J. S., Sordo, J. & Vidarte, M. J. (2006). Lead(II) coordination chemistry in the solid state. In Lead: Chemistry, Analytical Aspects, Environmental Impact and Health Effects, 1st ed., edited by J. S. Casas & J. Sordo, pp. 41-72. Amsterdam, The Netherlands: Elsevier.]; Seth et al., 2018[Seth, S. K., Bauzá, A., Mahmoudi, G., Stilinović, V., López-Torres, E., Zaragoza, G., Keramidas, A. D. & Frontera, A. (2018). Cryst­EngComm, 20, 5033-5044.]).

Our research group has been studying various amino acid salts for a long time (Fleck & Petrosyan, 2014[Fleck, M. & Petrosyan, A. M. (2014). Salts of Amino Acids: Crystallization, Structure and Properties. Dordrecht: Springer. https://doi.org/10.1007/978-3-319-06299-0]), and we assumed that amino acids could also be used to synthesize organic–inorganic hybrid materials. After the successful synthesis of (GlyH)PbBr3 (Tonoyan et al., 2024[Tonoyan, G. S., Giester, G., Ghazaryan, V. V., Badalyan, A. Y., Chilingaryan, R. Yu., Margaryan, A. A., Mkrtchyan, A. H. & Petrosyan, A. M. (2024). III Intern. Scientific School-Conference on Acoustophysics named after Academician A. R. Mkrtchyan, Book of Abstracts, p. 23., Yerevan-Sevan, Armenia. https://school.iapp.am/wp-content/uploads/2024/06/Book-of-Abstract-Sevan-2024.pdf]), efforts were focused on obtaining (GlyH)PbI3 and related phases. Later, it was attempted to synthesize salts of β-alanine in the same manner; however, instead of (β-AlaH)PbBr3, crystals of (β-AlaH)2PbBr4 were formed.

[Scheme 1]

In (β-AlaH)2PbBr4 the anion is slightly distorted and the Pb—Br bond lengths range from 2.8952 (3) to 3.2714 (2) Å. This indicates that the PbII center is not stereochemically active and the anion has holodirected stereochemistry. Recently a paper was published (Zu et al., 2023[Zu, H.-Y., Fan, C.-C., Liu, C.-D., Jing, C.-Q., Chai, C.-Y., Liang, B.-D., Han, X.-B. & Zhang, W. (2023). Chem. Mater. 35, 5854-5863.]) in which the authors investigated the relationship between the structures and optoelectronic properties of [(HOOCnH2n−2NH3)2]PbBr4 (n = 3–8) crystals, also including (β-AlaH)2PbBr4 (see also Cazals et al., 2024[Cazals, C., Mercier, N., Allain, M., Massuyeau, F. & Gautier, R. (2024). Cryst. Growth Des. 24, 1880-1887.]). In our work, we focused on characterizing the structure from a stereochemical point of view, discussing the PbII character in a structure solved using XRD data collected at 200 K.

2. Structural commentary

The title compound (β-AlaH)2PbBr4 crystallizes in the monoclinic space group P21/n. The asymmetric unit contains one formula unit. The mol­ecular arrangement is shown in Fig. 1[link]. As can be seen from the dihedral angles (Table 1[link]), both β-alaninium cations have the most common gauche conformation (Fleck et al., 2012[Fleck, M., Ghazaryan, V. V. & Petrosyan, A. M. (2012). J. Mol. Struct. 1019, 91-96.]).

Table 1
Selected geometric parameters (Å, °)

Pb1—Br1 3.0589 (4) Pb1—Br2i 3.2714 (2)
Pb1—Br3 2.9230 (4) Pb1—Br4 2.9477 (3)
Pb1—Br2 2.8952 (3) Pb1—Br4ii 3.0591 (3)
       
Br1—Pb1—Br2 88.107 (9) Br2i—Pb1—Br4ii 81.63 (1)
Br1—Pb1—Br2i 80.90 (1) Br3—Pb1—Br2 87.836 (9)
Br1—Pb1—Br4 87.683 (8) Br3—Pb1—Br4 92.596 (8)
Br1—Pb1—Br4ii 89.760 (8) Br3—Pb1—Br4ii 90.472 (8)
Br2—Pb1—Br4 90.568 (9) Pb1—Br2—Pb1iii 168.87 (1)
Br2—Pb1—Br4ii 96.645 (9) Pb1—Br2i—Pb1i 168.87 (1)
Br2i—Pb1—Br4 90.75 (1) Pb1—Br4—Pb1iv 168.90 (1)
       
O1A—C1A—C2A—C3a −164.4 (2) O1B—C1B—C2B—C3B 171.4 (2)
C1A—C2A—C3A—N1A −62.9 (3) C1B—C2B—C3B—N1B 59.7 (3)
Symmetry codes: (i) [x-1, y, z]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+1, y, z]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
Mol­ecular structure of (β-AlaH)2PbBr4. Displacement ellipsoids are shown at the 50% probability level. Symmetry codes: (i) x − 1, y, z; (ii) −x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}]; (iii) x + 1, y, z; (iv) −x + [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}].

The Pb2+ centers of the anion exhibit a holodirected six-coordination with an octa­hedral geometry. Therefore, for neighboring bromine atoms, the Br—Pb—Br angles are close to right angles, varying from 80.90 (1) to 103.14 (1)° (Table 1[link]). The lead atom forms three partial covalent bonds Pb1—Br2, Pb1—Br3, and Pb1—Br4, and also three coordination bonds with partial covalent character Pb1—Br1, Pb1—Br2i and Pb1—Br4ii (Table 1[link]). Despite the range of Pb1—Br distances, the average value of 3.0259 Å is close to the average value of 3.0310 Å in PbBr6 octa­hedra, regardless of the anion, for 284 structures in the Cambridge Structural Database (CSD2023.2.0, version 5.45, November update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The PbBr6 octa­hedra form a 2D structure with four shared vertices: Br2, Br2i, Br4, and Br4ii (Fig. 2[link]). The octa­hedra share only vertices, not edges nor faces. The two terminal opposite atoms Br1 and Br3 are located on the surfaces of the layer and the octa­hedra are arranged in such a way that the angles of the Pb—Br—Pb bridges are close to linear (Table 1[link]), which leads to square-shaped voids between the octa­hedra.

[Figure 2]
Figure 2
2D structure of the PbBr4 anion viewed along the c axis. Part of the anion is shown in an octa­hedral style. Symmetry codes: (i) x − 1, y, z; (ii) −x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}]; (iii) x + 1, y, z; (iv) −x + [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}].

3. Supra­molecular features

The packing in the crystal together with the hydrogen-bond network is shown in Fig. 3[link]. The anionic layers are parallel to the (001) plane, with an inter­layer distance of 11.026 (1) Å. The β-alaninium cations are positioned between the anionic layers with the amino and carboxyl groups oriented towards those layers. The β-alaninium cations cross-link neighboring layers of anions through hydrogen bonds between terminal bromine atoms and NH3+, and OH groups (Table 2[link]). Each carboxyl group forms one O—H⋯Br hydrogen bond, while the ammonium groups form two and three N—H⋯Br hydrogen bonds. Intra­molecular N1A—H11A⋯O2A and N1B—H12B⋯O2B hydrogen bonds are present in the β-alaninium moieties (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯Br3ii 0.90 (2) 2.35 (3) 3.241 (2) 171 (4)
N1A—H11A⋯O2A 0.91 2.18 2.853 (3) 130
N1A—H12A⋯Br1v 0.91 2.73 3.619 (2) 166
N1A—H13A⋯Br1vi 0.91 2.58 3.445 (2) 159
O1B—H1B⋯Br1v 0.88 (2) 2.32 (3) 3.188 (2) 167 (4)
N1B—H11B⋯Br3vii 0.91 2.49 3.343 (2) 157
N1B—H12B⋯Br1iii 0.91 2.76 3.484 (2) 137
N1B—H12B⋯O2B 0.91 2.17 2.839 (3) 129
N1B—H13B⋯Br4vii 0.91 2.56 3.407 (2) 155
Symmetry codes: (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+1, y, z]; (v) [-x+1, -y+1, -z+1]; (vi) [-x, -y+1, -z+1]; (vii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Packing diagram of the structure of (β-AlaH)2PbBr4 viewed along the a axis. Hydrogen bonds are shown as dotted lines.

4. Database survey

A survey of the Cambridge Structural Database (CSD2023.2.0, version 5.45, November update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed 320 structures containing PbBr4. There were 91 duplicate structures solved at different temperatures, and several inappropriate structures; thus, overall 224 structures were considered. Among them, the title compound was found with refcode YINFIO (Zu et al., 2023[Zu, H.-Y., Fan, C.-C., Liu, C.-D., Jing, C.-Q., Chai, C.-Y., Liang, B.-D., Han, X.-B. & Zhang, W. (2023). Chem. Mater. 35, 5854-5863.]), determined at room temperature.

In the structures, the (PbBr4)2− anion can be in discrete 0D, polymeric 1D, and 2D forms. 0D anions are present in a pseudotrigonal–bipyramidal geometry (Fig. 4[link]a: ARAJUB, Lin et al., 2019[Lin, H., Zhou, C., Chaaban, M., Xu, L.-J., Zhou, Y., Neu, J., Worku, M., Berkwits, E., He, Q., Lee, S., Lin, X., Siegrist, T., Du, M.-H. & Ma, B. (2019). Materials Lett. 1, 594-598.]; BOKYAF, Han 2024[Han, J. (2024). CSD Communication (refcode BOKYAF, CCDC 2293047). CCDC, Cambridge, England. https://doi. org/10.5517/ccdc. csd. cc2gz38v]; YIQPAP, Gröger et al., 2002[Gröger, H., Lode, C., Vollmer, H., Krautscheid, H. & Lebedkin, S. (2002). Z. Anorg. Allg. Chem. 628, 57-62.]) and in a trigonal–pyramidal geometry (Fig. 4[link]b: UVELIT, Gong et al., 2021[Gong, L., Huang, F., Zhang, Z., Zhong, Y., Jin, J., Du, K.-Z. & Huang, X. (2021). Chem. Eng. J. 424, 130544.]).

[Figure 4]
Figure 4
The (PbBr4)2− anion geometries. Note that one more 2D form is missing here as it is shown in Fig. 2[link]. The numbers of CCD structures for a given type of anion are indicated.

A 1D structure anion may consist of either PbBr5 square-pyramids (3 structures) or PbBr6 octa­hedra (16 structures). The square-pyramids are alternately connected by a shared bromine atom, with three bromine atoms remaining terminal. Chains can be linear (Fig. 4[link]c: RUSBUF, Lv et al., 2020[Lv, J.-N., Zeng, L.-R., Ma, J.-Q. & Yue, C. (2020). Inorg. Chem. Commun. 117, 107973.]) or zigzag (Fig. 4[link]d: SOHYAS, Li et al., 2019[Li, X., Guo, P., Kepenekian, M., Hadar, I., Katan, C., Even, J., Stoumpos, C. C., Schaller, R. D. & Kanatzidis, M. G. (2019). Chem. Mater. 31, 3582-3590.]). Octa­hedral PbBr6 monomers can attach two, three or four adjacent octa­hedra, have four or three shared bromine atoms, and two or three terminal atoms. Chains can be linear (Fig. 4[link]e: COKYIO, Zhang et al., 2024[Zhang, L.-L., Ding, Q., Wang, P., Zhang, Y., Liu, Q.-Y., Wang, Y.-L. & Luo, J. (2024). Inorg. Chem. Front. 11, 3618-3625.]), zigzag (Fig. 4[link]f: CEKYIE, Fu et al., 2022[Fu, P., Quintero, M. A., Welton, C., Li, X., Cucco, B., De Siena, M. C., Even, J., Volonakis, G., Kepenekian, M., Liu, R., Laing, C. C., Klepov, V., Liu, Y., Dravid, V. P., Manjunatha Reddy, G. N., Li, C. & Kanatzidis, M. G. (2022). Chem. Mater. 34, 9685-9698.]), V-shaped (Fig. 4[link]g: FERGER, Yuan et al., 2017[Yuan, Z., Zhou, C., Tian, Y., Shu, Y., Messier, J., Wang, J. C., van de Burgt, L. J., Kountouriotis, K., Xin, Y., Holt, E., Schanze, K., Clark, R., Siegrist, T. & Ma, B. (2017). Nat. Commun. 8, 14051.]), and double (Fig. 4[link]h: HENLAR, Jin et al., 2022[Jin, K.-H., Zhang, Y., Li, K., Sun, M.-E., Dong, X.-Y., Wang, Q. & Zang, S.-Q. (2022). Angew. Chem. Int. Ed. 61, e202205317.]).

When each monomer has four adjacent monomers attached, and each pair of adjacent monomers shares one bromine atom, a 2D structure is formed (195 structures). Each lead atom has two terminal bromine atoms in the 2D structure of the anion. There are two main options, depending on the terminal atoms. When terminal atoms are trans positioned, a planar arrangement of octa­hedra is formed. In our case, the Pb—Br—Pb angles are close to linear (Table 1[link], Fig. 2[link]). An ideal form of this is a rare centrosymmetric anion in the structure of COJKIZ01 (Long et al., 2024[Long, L., Huang, Z., Xu, Z.-K., Gan, T., Qin, Y., Chen, Z. & Wang, Z.-X. (2024). Inorg. Chem. Front. 11, 845-852.]) with 180° Pb—Br—Pb angles, and square-shaped voids between the octa­hedra. There are 36 structures with square or near square voids, and this is the second most common geometry at 16%. In other cases, the Pb—Br—Pb angles differ from 180°, and values down to 139° can be encountered, causing rhombic voids (Fig. 4[link]i: TAKZAK, Zhang, et al., 2020[Zhang, H.-Y., Zhang, Z.-X., Song, X.-J., Chen, X.-G. & Xiong, R.-G. (2020). J. Am. Chem. Soc. 142, 20208-20215.]; OBAYAV, Zhang et al., 2021[Zhang, M., Li, M., You, X., Wei, Z., Rao, W., Wang, L. & Cai, H. (2021). J. Solid State Chem. 302, 122409.]). This geometry is found in the prevailing number of structures, 141, almost 63%. However, in the case of cis positioning of terminal atoms, the anion has a zigzag arrangement of octa­hedra, forming stacked layers. Two-stacked layers can be formed having linear Pb—Br—Pb angles (Fig. 4[link]g: SOHYAS01, Li et al., 2019[Li, X., Guo, P., Kepenekian, M., Hadar, I., Katan, C., Even, J., Stoumpos, C. C., Schaller, R. D. & Kanatzidis, M. G. (2019). Chem. Mater. 31, 3582-3590.]) or obtuse angles in the range of 164–148° (Fig. 4[link]k: RICBEO01, RICBEO02, Drozdowski et al., 2023[Drozdowski, D., Fedoruk, K., Kabanski, A., Maczka, M., Sieradzki, A. & Gagor, A. (2023). J. Mater. Chem. C. 11, 4907-4915.]; Fig. 4[link]l: NIZQAP, Li et al., 2008[Li, Y., Zheng, G. & Lin, J. (2008). Eur. J. Inorg. Chem. pp. 1689-1692.]). One structure has layers arranged in a zigzag manner that contain octa­hedra with both trans- and cis-positioned terminal bromine atoms (Fig. 4[link]m: UBUFEG, Guo et al., 2021[Guo, Y.-Y., Elliott, C., McNulty, J. A., Cordes, D. B., Slawin, A. M. Z. & Lightfoot, P. (2021). Eur. J. Inorg. Chem. pp. 3404-3411.]).

5. Synthesis and crystallization

As initial reagents, we used amino acid β-alanine (99% NT) and hydro­bromic acid (48%) purchased from Sigma-Aldrich and lead (reactive grade). Initially, an excess volume of hydro­bromic acid was added to a preliminary weighted amount of lead. When the reaction between them was completed (when no H2 gas is released), the unreacted lead was removed by filtration, dried and weighed. The qu­anti­ties of lead(II) bromide (PbBr2) obtained and unreacted acid (HBr) in the filtrate were calculated. The appropriate amount of β-alanine was added to it and mixed to achieve a final solution with a 1:1:6 molar ratio of β-Ala, PbBr2 and HBr, respectively. Instead of the desired compound (β-AlaH)PbBr3, (β-AlaH)2PbBr4 was obtained as yellow crystals (Fig. 5[link]).

[Figure 5]
Figure 5
Yellow crystals of (β-AlaH)2PbBr4 under the microscope.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms were treated as riding on their parent atoms [C—H = 0.99 Å, N—H = 0.91 Å; Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(N)] except those of the carboxyl groups, which were refined with the restraint Uiso(H) = 1.5Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula (C3H8NO2)2[PbBr4]
Mr 707.04
Crystal system, space group Monoclinic, P21/n
Temperature (K) 200
a, b, c (Å) 6.1377 (4), 11.9291 (8), 22.1508 (14)
β (°) 95.402 (2)
V3) 1614.62 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 20.35
Crystal size (mm) 0.20 × 0.18 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.346, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 53070, 6172, 5328
Rint 0.046
(sin θ/λ)max−1) 0.770
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.044, 1.07
No. of reflections 6172
No. of parameters 163
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.51, −1.16
Computer programs: APEX5 Bruker (2024[Bruker (2024). APEX5. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]).

Supporting information


Computing details top

Poly[bis(β-alaninium) [[dibromidoplumbate]-di-µ-dibromido]] top
Crystal data top
(C3H8NO2)2[PbBr4]F(000) = 1280
Mr = 707.04Dx = 2.909 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.1377 (4) ÅCell parameters from 9846 reflections
b = 11.9291 (8) Åθ = 3.4–32.8°
c = 22.1508 (14) ŵ = 20.35 mm1
β = 95.402 (2)°T = 200 K
V = 1614.62 (18) Å3Plate, yellow
Z = 40.20 × 0.18 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
5328 reflections with I > 2σ(I)
φ and ω scansRint = 0.046
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 33.2°, θmin = 1.9°
Tmin = 0.346, Tmax = 0.747h = 99
53070 measured reflectionsk = 1818
6172 independent reflectionsl = 3333
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.044 w = 1/[σ2(Fo2) + (0.0092P)2 + 2.110P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.003
6172 reflectionsΔρmax = 1.51 e Å3
163 parametersΔρmin = 1.16 e Å3
2 restraintsExtinction correction: SHELXL2019/2 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00134 (4)
Special details top

Experimental. A selected fragment of a crystal was mounted on a MiTeGen loop with silicone grease and examined by single crystal X-ray diffraction at 200 K on a Bruker APEX II diffractometer equipped with a CCD area detector, an Incoatec Microfocus Source IµS (30 W, multilayer mirror, Mo-Kα) and an Oxford Cryosystems Cryostream 800 Plus LT device. Several sets of phi- and omega-scans with 2° scanwidth were combined at a crystal-detector distances of 40 mm to achieve respective full sphere data up to 65° 2θ. Data handling with integration and absorption correction by evaluation of multi-scans was done with the Bruker Apex5 suite (Bruker, 2024). The structure was solved by direct methods (Sheldrick, 2015a); subsequent difference Fourier syntheses and least-squares refinements yielded the positions of the remaining atoms using the SHELX software (Sheldrick, 2015b) implemented in the ShelXle GUI tool (Hübschle et al. 2011). Non-hydrogen atoms were refined with independent anisotropic displacement parameters.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.28160 (2)0.48657 (2)0.24772 (2)0.01445 (3)
Br10.29433 (4)0.47456 (2)0.38595 (2)0.02132 (6)
Br20.75530 (4)0.48144 (3)0.26094 (2)0.02559 (6)
Br30.30325 (5)0.49665 (2)0.11657 (2)0.02542 (6)
Br40.28669 (5)0.73272 (2)0.25942 (2)0.02607 (7)
O1A0.3047 (4)0.05338 (17)0.52622 (10)0.0313 (5)
H1A0.278 (6)0.046 (3)0.4858 (11)0.047*
O2A0.1232 (3)0.21235 (17)0.50427 (9)0.0269 (4)
C1A0.2260 (4)0.1520 (2)0.54084 (12)0.0186 (5)
C2A0.2849 (5)0.1821 (2)0.60573 (12)0.0200 (5)
H21A0.4413450.2035530.6111800.024*
H22A0.2658660.1152050.6311890.024*
C3A0.1492 (5)0.2771 (2)0.62751 (14)0.0239 (6)
H31A0.0074600.2561730.6219050.029*
H32A0.1891590.2891000.6713820.029*
N1A0.1826 (4)0.38366 (19)0.59418 (12)0.0258 (5)
H11A0.1662950.3703910.5535480.039*
H12A0.3196880.4102680.6049720.039*
H13A0.0821030.4352370.6037130.039*
O1B0.6103 (4)0.3217 (2)0.52220 (10)0.0340 (5)
H1B0.658 (6)0.378 (3)0.5458 (16)0.051*
O2B0.8138 (3)0.39905 (15)0.45540 (9)0.0235 (4)
C1B0.6963 (4)0.3238 (2)0.46965 (13)0.0204 (5)
C2B0.6369 (5)0.2227 (2)0.43163 (13)0.0221 (5)
H21B0.4765160.2115670.4295500.026*
H22B0.7073120.1560120.4516750.026*
C3B0.7035 (5)0.2303 (2)0.36840 (14)0.0263 (6)
H31B0.6574670.1612770.3458820.032*
H32B0.6278410.2945890.3473490.032*
N1B0.9441 (4)0.2447 (2)0.36811 (12)0.0269 (5)
H11B1.0135720.1827290.3842630.040*
H12B0.9879540.3059270.3905770.040*
H13B0.9778760.2543160.3293190.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.01638 (5)0.01111 (4)0.01587 (5)0.00006 (3)0.00157 (3)0.00083 (3)
Br10.02060 (13)0.02395 (12)0.01946 (14)0.00223 (9)0.00222 (10)0.00132 (10)
Br20.01714 (12)0.03413 (15)0.02531 (15)0.00159 (10)0.00106 (11)0.00382 (11)
Br30.03326 (16)0.02572 (13)0.01649 (13)0.00212 (11)0.00183 (11)0.00417 (10)
Br40.03725 (16)0.01262 (11)0.02997 (16)0.00035 (10)0.01171 (12)0.00028 (10)
O1A0.0530 (15)0.0219 (10)0.0179 (11)0.0140 (9)0.0025 (10)0.0030 (8)
O2A0.0340 (12)0.0245 (10)0.0209 (11)0.0097 (8)0.0045 (9)0.0011 (8)
C1A0.0201 (13)0.0166 (11)0.0192 (13)0.0010 (9)0.0026 (10)0.0001 (9)
C2A0.0255 (14)0.0184 (11)0.0157 (13)0.0034 (10)0.0002 (10)0.0002 (9)
C3A0.0269 (14)0.0203 (12)0.0255 (15)0.0000 (10)0.0086 (12)0.0038 (11)
N1A0.0255 (12)0.0179 (10)0.0350 (15)0.0002 (9)0.0082 (11)0.0043 (10)
O1B0.0397 (13)0.0392 (13)0.0254 (12)0.0156 (10)0.0152 (10)0.0090 (9)
O2B0.0255 (10)0.0172 (9)0.0287 (11)0.0041 (7)0.0066 (9)0.0009 (8)
C1B0.0184 (13)0.0221 (12)0.0206 (14)0.0014 (9)0.0013 (10)0.0012 (10)
C2B0.0222 (13)0.0199 (12)0.0244 (15)0.0052 (10)0.0037 (11)0.0004 (10)
C3B0.0283 (15)0.0244 (13)0.0254 (15)0.0026 (11)0.0013 (12)0.0033 (11)
N1B0.0305 (13)0.0235 (11)0.0283 (14)0.0017 (10)0.0111 (11)0.0014 (10)
Geometric parameters (Å, º) top
Pb1—Br13.0589 (4)N1A—H11A0.9100
Pb1—Br32.9230 (4)N1A—H12A0.9100
Pb1—Br22.8952 (3)N1A—H13A0.9100
Pb1—Br2i3.2714 (2)O1B—C1B1.323 (3)
Pb1—Br42.9477 (3)O1B—H1B0.88 (2)
Pb1—Br4ii3.0591 (3)O2B—C1B1.212 (3)
O1A—C1A1.323 (3)C1B—C2B1.497 (4)
O1A—H1A0.90 (2)C2B—C3B1.498 (4)
O2A—C1A1.215 (3)C2B—H21B0.9900
C1A—C2A1.493 (4)C2B—H22B0.9900
C2A—C3A1.512 (4)C3B—N1B1.487 (4)
C2A—H21A0.9900C3B—H31B0.9900
C2A—H22A0.9900C3B—H32B0.9900
C3A—N1A1.494 (4)N1B—H11B0.9100
C3A—H31A0.9900N1B—H12B0.9100
C3A—H32A0.9900N1B—H13B0.9100
Br1—Pb1—Br288.107 (9)C2A—C3A—H32A109.2
Br1—Pb1—Br2i80.90 (1)H31A—C3A—H32A107.9
Br1—Pb1—Br487.683 (8)C3A—N1A—H11A109.5
Br1—Pb1—Br4ii89.760 (8)C3A—N1A—H12A109.5
Br2—Pb1—Br490.568 (9)H11A—N1A—H12A109.5
Br2—Pb1—Br4ii96.645 (9)C3A—N1A—H13A109.5
Br2i—Pb1—Br490.75 (1)H11A—N1A—H13A109.5
Br2i—Pb1—Br4ii81.63 (1)H12A—N1A—H13A109.5
Br3—Pb1—Br287.836 (9)C1B—O1B—H1B112 (3)
Br3—Pb1—Br492.596 (8)O2B—C1B—O1B122.7 (3)
Br3—Pb1—Br4ii90.472 (8)O2B—C1B—C2B124.7 (3)
Pb1—Br2—Pb1iii168.87 (1)O1B—C1B—C2B112.5 (2)
Pb1—Br2i—Pb1i168.87 (1)C1B—C2B—C3B113.8 (2)
Pb1—Br4—Pb1iv168.90 (1)C1B—C2B—H21B108.8
Br3—Pb1—Br1175.936 (9)C3B—C2B—H21B108.8
Br4—Pb1—Br4ii172.266 (4)C1B—C2B—H22B108.8
C1A—O1A—H1A107 (3)C3B—C2B—H22B108.8
O2A—C1A—O1A122.8 (3)H21B—C2B—H22B107.7
O2A—C1A—C2A124.2 (2)N1B—C3B—C2B111.7 (2)
O1A—C1A—C2A112.9 (2)N1B—C3B—H31B109.3
C1A—C2A—C3A113.4 (2)C2B—C3B—H31B109.3
C1A—C2A—H21A108.9N1B—C3B—H32B109.3
C3A—C2A—H21A108.9C2B—C3B—H32B109.3
C1A—C2A—H22A108.9H31B—C3B—H32B107.9
C3A—C2A—H22A108.9C3B—N1B—H11B109.5
H21A—C2A—H22A107.7C3B—N1B—H12B109.5
N1A—C3A—C2A112.0 (2)H11B—N1B—H12B109.5
N1A—C3A—H31A109.2C3B—N1B—H13B109.5
C2A—C3A—H31A109.2H11B—N1B—H13B109.5
N1A—C3A—H32A109.2H12B—N1B—H13B109.5
O1A—C1A—C2A—C3a164.4 (2)O1B—C1B—C2B—C3B171.4 (2)
C1A—C2A—C3A—N1A62.9 (3)C1B—C2B—C3B—N1B59.7 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y1/2, z+1/2; (iii) x+1, y, z; (iv) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···Br3ii0.90 (2)2.35 (3)3.241 (2)171 (4)
N1A—H11A···O2A0.912.182.853 (3)130
N1A—H12A···Br1v0.912.733.619 (2)166
N1A—H13A···Br1vi0.912.583.445 (2)159
O1B—H1B···Br1v0.88 (2)2.32 (3)3.188 (2)167 (4)
N1B—H11B···Br3vii0.912.493.343 (2)157
N1B—H12B···Br1iii0.912.763.484 (2)137
N1B—H12B···O2B0.912.172.839 (3)129
N1B—H13B···Br4vii0.912.563.407 (2)155
Symmetry codes: (ii) x+1/2, y1/2, z+1/2; (iii) x+1, y, z; (v) x+1, y+1, z+1; (vi) x, y+1, z+1; (vii) x+3/2, y1/2, z+1/2.
Cation geometry (°) top
Torsion angleValue
O1A-C1A-C2A-C3A-164.4 (2)
C1A-C2A-C3A-N1A-62.9 (3)
O1B-C1B-C2B-C3B171.4 (2)
C1B-C2B-C3B-N1B59.7 (3)
Anion geometry (Å, °) top
Pb1-Br13.0589 (3)Pb1-Br22.8952 (3)Pb1-Br42.9477 (3)
Pb1-Br32.9230 (4)Pb1-Br2i3.2714 (2)Pb1-Br4ii3.0591 (3)
Br1-Pb1-Br288.11 (1)Br2-Pb1-Br490.57 (1)Br3-Pb1-Br2103.14 (1)
Br1-Pb1-Br2i80.90 (1)Br2-Pb1-Br4ii96.64 (1)Br3-Pb1-Br2i87.83 (1)
Br1-Pb1-Br487.68 (1)Br2i-Pb1-Br490.75 (1)Br3-Pb1-Br492.60 (1)
Br1-Pb1-Br4ii89.76 (1)Br2i-Pb1-Br4ii81.63 (1)Br3-Pb1-Br4ii90.47 (1)
Pb1-Br2-Pb1iii168.87 (1)Pb1-Br4-Pb1iv168.90 (1)
Pb1-Br2i-Pb1i168.87 (1)Pb1-Br4i-Pb1ii168.90 (1)
Symmetry codes: (i) x-1, y, z; (ii) -x+1/2, y-1/2, -z+1/2; (iii) x+1, y, z; (iv) -x+1/2, y+1/2, -z+1/2.

Funding information

The work was supported by the Science Committee of RA, in the frame of research project No. 21AG-1D015.

References

First citationBruker (2024). APEX5. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasas, J. S., Sordo, J. & Vidarte, M. J. (2006). Lead(II) coordination chemistry in the solid state. In Lead: Chemistry, Analytical Aspects, Environmental Impact and Health Effects, 1st ed., edited by J. S. Casas & J. Sordo, pp. 41–72. Amsterdam, The Netherlands: Elsevier.  Google Scholar
First citationCazals, C., Mercier, N., Allain, M., Massuyeau, F. & Gautier, R. (2024). Cryst. Growth Des. 24, 1880–1887.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, X., Jo, H. & Ok, K. M. (2020). Angew. Chem. Int. Ed. 59, 7514–7520.  Web of Science CrossRef ICSD Google Scholar
First citationDrozdowski, D., Fedoruk, K., Kabanski, A., Maczka, M., Sieradzki, A. & Gagor, A. (2023). J. Mater. Chem. C. 11, 4907–4915.  Web of Science CSD CrossRef CAS Google Scholar
First citationFleck, M., Ghazaryan, V. V. & Petrosyan, A. M. (2012). J. Mol. Struct. 1019, 91–96.  Web of Science CSD CrossRef CAS Google Scholar
First citationFleck, M. & Petrosyan, A. M. (2014). Salts of Amino Acids: Crystallization, Structure and Properties. Dordrecht: Springer. https://doi.org/10.1007/978-3-319-06299-0  Google Scholar
First citationFu, P., Quintero, M. A., Welton, C., Li, X., Cucco, B., De Siena, M. C., Even, J., Volonakis, G., Kepenekian, M., Liu, R., Laing, C. C., Klepov, V., Liu, Y., Dravid, V. P., Manjunatha Reddy, G. N., Li, C. & Kanatzidis, M. G. (2022). Chem. Mater. 34, 9685–9698.  Web of Science CSD CrossRef CAS Google Scholar
First citationGao, R., Reyes-Lillo, S. E., Xu, R., Dasgupta, A., Dong, Y., Dedon, L. R., Kim, J., Saremi, S., Chen, Z., Serrao, C. R., Zhou, H., Neaton, J. B. & Martin, L. W. (2017). Chem. Mater. 29, 6544–6551.  Web of Science CrossRef Google Scholar
First citationGong, L., Huang, F., Zhang, Z., Zhong, Y., Jin, J., Du, K.-Z. & Huang, X. (2021). Chem. Eng. J. 424, 130544.  Web of Science CSD CrossRef Google Scholar
First citationGröger, H., Lode, C., Vollmer, H., Krautscheid, H. & Lebedkin, S. (2002). Z. Anorg. Allg. Chem. 628, 57–62.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuo, Y.-Y., Elliott, C., McNulty, J. A., Cordes, D. B., Slawin, A. M. Z. & Lightfoot, P. (2021). Eur. J. Inorg. Chem. pp. 3404–3411.  Web of Science CSD CrossRef Google Scholar
First citationHan, J. (2024). CSD Communication (refcode BOKYAF, CCDC 2293047). CCDC, Cambridge, England. https://doi. org/10.5517/ccdc. csd. cc2gz38v  Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJin, K.-H., Zhang, Y., Li, K., Sun, M.-E., Dong, X.-Y., Wang, Q. & Zang, S.-Q. (2022). Angew. Chem. Int. Ed. 61, e202205317.  Web of Science CSD CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLi, X., Guo, P., Kepenekian, M., Hadar, I., Katan, C., Even, J., Stoumpos, C. C., Schaller, R. D. & Kanatzidis, M. G. (2019). Chem. Mater. 31, 3582–3590.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Y., Zheng, G. & Lin, J. (2008). Eur. J. Inorg. Chem. pp. 1689–1692.  Web of Science CSD CrossRef Google Scholar
First citationLin, H., Zhou, C., Chaaban, M., Xu, L.-J., Zhou, Y., Neu, J., Worku, M., Berkwits, E., He, Q., Lee, S., Lin, X., Siegrist, T., Du, M.-H. & Ma, B. (2019). Materials Lett. 1, 594–598.  CAS Google Scholar
First citationLong, L., Huang, Z., Xu, Z.-K., Gan, T., Qin, Y., Chen, Z. & Wang, Z.-X. (2024). Inorg. Chem. Front. 11, 845–852.  Web of Science CSD CrossRef CAS Google Scholar
First citationLv, J.-N., Zeng, L.-R., Ma, J.-Q. & Yue, C. (2020). Inorg. Chem. Commun. 117, 107973.  Web of Science CSD CrossRef Google Scholar
First citationMartínez-Casado, F. J., Cañadillas-Delgado, L., Cucinotta, F., Guerrero-Martínez, A., Ramos Riesco, M., Marchese, L. & Rodríguez Cheda, J. A. (2012). CrystEngComm, 14, 2660–2668.  Google Scholar
First citationPeng, C., Zhuang, Z., Yang, H., Zhang, G. & Fei, H. (2018). Chem. Sci. 9, 1627–1633.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSeth, S. K., Bauzá, A., Mahmoudi, G., Stilinović, V., López-Torres, E., Zaragoza, G., Keramidas, A. D. & Frontera, A. (2018). Cryst­EngComm, 20, 5033–5044.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTerpstra, H. J., De Groot, R. A. & Haas, C. (1997). J. Phys. Chem. Solids, 58, 561–566.  CrossRef CAS Web of Science Google Scholar
First citationTonoyan, G. S., Giester, G., Ghazaryan, V. V., Badalyan, A. Y., Chilingaryan, R. Yu., Margaryan, A. A., Mkrtchyan, A. H. & Petrosyan, A. M. (2024). III Intern. Scientific School-Conference on Acoustophysics named after Academician A. R. Mkrtchyan, Book of Abstracts, p. 23., Yerevan-Sevan, Armenia. https://school.iapp.am/wp-content/uploads/2024/06/Book-of-Abstract-Sevan-2024.pdf  Google Scholar
First citationWang, J., Gao, L., Zhang, J., Zhao, L., Wang, X., Niu, X., Fan, L. & Hu, T. (2019). Cryst. Growth Des. 19, 630–637.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, L. (2020). J. Inorg. Organomet. Polym. 30, 291–298.  Web of Science CSD CrossRef CAS Google Scholar
First citationYuan, Z., Zhou, C., Tian, Y., Shu, Y., Messier, J., Wang, J. C., van de Burgt, L. J., Kountouriotis, K., Xin, Y., Holt, E., Schanze, K., Clark, R., Siegrist, T. & Ma, B. (2017). Nat. Commun. 8, 14051.  Web of Science CSD CrossRef PubMed Google Scholar
First citationZhang, H.-Y., Zhang, Z.-X., Song, X.-J., Chen, X.-G. & Xiong, R.-G. (2020). J. Am. Chem. Soc. 142, 20208–20215.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhang, L.-L., Ding, Q., Wang, P., Zhang, Y., Liu, Q.-Y., Wang, Y.-L. & Luo, J. (2024). Inorg. Chem. Front. 11, 3618–3625.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, M., Li, M., You, X., Wei, Z., Rao, W., Wang, L. & Cai, H. (2021). J. Solid State Chem. 302, 122409.  Web of Science CSD CrossRef Google Scholar
First citationZu, H.-Y., Fan, C.-C., Liu, C.-D., Jing, C.-Q., Chai, C.-Y., Liang, B.-D., Han, X.-B. & Zhang, W. (2023). Chem. Mater. 35, 5854–5863.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds