research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of propane-1,3-diaminium squarate dihydrate

crossmark logo

aInstitut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany, and bInstitute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev-Str. Bl. 21, Sofia 1113, Bulgaria
*Correspondence e-mail: ruediger.seidel@pharmazie.uni-halle.de

Edited by S. Parkin, University of Kentucky, USA (Received 12 August 2024; accepted 20 August 2024; online 30 August 2024)

Propane-1,3-diaminium squarate dihydrate, C3H12N22+·C4O42−·2H2O, results from the proton-transfer reaction of propane-1,3-di­amine with squaric acid and subsequent crystallization from aqueous medium. The title compound crystallizes in the tetra­gonal crystal system (space group P4bm) with Z = 2. The squarate dianion belongs to the point group D4h and contains a crystallographic fourfold axis. The propane-1,3-diaminium dication exhibits a C2v-symmetric all-anti conformation and resides on a special position with mm2 site symmetry. The orientation of the propane-1,3-diaminium ions makes the crystal structure polar in the c-axis direction. The solid-state supra­molecular structure features a triperiodic network of strong hydrogen bonds of the N—H⋯O and O—H⋯O types.

1. Chemical context

Squaric acid (H2C4O4; systematic name: 3,4-di­hydroxy­cyclo­but-3-ene-1,2-dione) and its derivatives have been widely studied in organic chemistry and materials science (Grus et al., 2021[Grus, T., Lahnif, H., Klasen, B., Moon, E.-S., Greifenstein, L. & Roesch, F. (2021). Bioconjugate Chem. 32, 1223-1231.]; Laramie et al., 2017[Laramie, M. D., Levitz, A. & Henary, M. (2017). Sens. Actuators B Chem. 243, 1191-1204.]; Wurm & Klok, 2013[Wurm, F. R. & Klok, H.-A. (2013). Chem. Soc. Rev. 42, 8220-8236.]; Xia & Wang, 2017[Xia, G. & Wang, H. (2017). J. Photoch. Photobio. C, 31, 84-113.]). Squaric acid analogues have also attracted attention in medicinal chemistry (Chasák et al., 2021[Chasák, J., Šlachtová, V., Urban, M. & Brulíková, L. (2021). Eur. J. Med. Chem. 209, 112872.]; Ruseva et al., 2022[Ruseva, N. K., Cherneva, E. D. & Bakalova, A. G. (2022). Arkivoc, pp. 285-303.]). In structural chemistry, the inter­est in squaric acid and its mono- and dianions arises mainly from their planar, sym­metrical and strained mol­ecular structures and their diverse hydrogen-bonding patterns in the solid state (Allen et al., 2013[Allen, F. H., Cruz-Cabeza, A. J., Wood, P. A. & Bardwell, D. A. (2013). Acta Cryst. B69, 514-523.]; Gilli et al., 2001[Gilli, G., Bertolasi, V., Gilli, P. & Ferretti, V. (2001). Acta Cryst. B57, 859-865.]). As a strong diprotic organic acid with pKa1 = 0.59 ± 0.09 and pKa2 = 3.48 ± 0.023 at 298 K (as determined by potentiometric titrations; Schwartz & Howard, 1970[Schwartz, L. M. & Howard, L. O. (1970). J. Phys. Chem. 74, 4374-4377.]), squaric acid readily forms proton-transfer compounds with nitro­gen bases and a wide variety of structurally characterized examples can be found in the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). In the present contribution, we describe the crystal structure of the dihydrate of the proton-transfer compound propane-1,3-diaminium squar­ate.

[Scheme 1]

2. Structural commentary

Fig. 1[link] shows the mol­ecular structures of the components of the title compound in the crystal. The squarate dianion exhibits D4h point-group symmetry and contains a crystallographic fourfold rotation axis with the direction [001]. The propane-1,3-diaminium dication adopts a C2v-symmetric all-anti conformation and is located on a special position with mm2 site symmetry in the crystal structure. The overall orientation of the mol­ecular dications renders the crystal structure polar in the c-axis direction. The water mol­ecule of crystallization sits on a crystallographic mirror plane perpendicular to the [110] direction.

[Figure 1]
Figure 1
Displacement ellipsoid plot (50% probability level) of the title compound. Hydrogen atoms are shown by small spheres of arbitrary radius. Dashed lines represent hydrogen bonds. Symmetry codes: (iv) y, −x, z; (v) −x, −y, z; (vi) −y, x, z; (vii) −x + 1, −y, z;

3. Supra­molecular features

Apart from ion–ion inter­actions between propane-1,3-diamin­ium dications and squarate dianions, hydrogen bonding dominates the solid-state structure of the title compound. The protonated amino group joins two squarate ions via N—H⋯O hydrogen bonds. The remaining hydrogen-bond donor site of the aminium group forms an N—H⋯O hydrogen bond to a water mol­ecule (Fig. 2[link]). The water mol­ecule in turn acts as hydrogen-bond acceptor towards two squarate ions, which results in a triperiodic hydrogen-bond network (Fig. 3[link]). Table 1[link] lists the corresponding hydrogen-bond parameters, which are characteristic of strong hydrogen bonds (Thakuria et al., 2017[Thakuria, R., Sarma, B. & Nangia, A. (2017). Hydrogen Bonding in Molecular Crystals. In Comprehensive Supramolecular Chemistry II, vol. 7, edited by J. L. Atwood, J. L., pp. 25-48. Oxford: Elsevier.]). The centroid–centroid distance between the squarate ions in the [001] direction corresponds to the c lattice parameter. A packing index of 67.8% (Kitajgorodskij, 1973[Kitajgorodskij, A. I. (1973). In Molecular Crystals and Molecules. New York: Academic Press.]), as calculated with PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), indicates a relatively open structure. This lends support to the view that strong hydrogen bonding governs the structure rather than van der Waals close packing.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.85 (3) 1.92 (3) 2.758 (2) 171 (3)
N1—H1B⋯O1i 0.896 (19) 1.905 (18) 2.7887 (12) 168.4 (17)
O2—H2A⋯O1 0.84 (2) 1.91 (2) 2.7413 (13) 175 (2)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+1].
[Figure 2]
Figure 2
Section of the crystal structure of the title compound, viewed approximately along the [010] direction. Dashed lines illustrate hydrogen bonds. Symmetry codes: (i) x + [{1\over 2}], −y + [{1\over 2}], z + 1; (ii) −y + [{1\over 2}], −x + [{1\over 2}], z; (iii) y, −x, z + 1.
[Figure 3]
Figure 3
The tetra­gonal unit cell of the title compound, projected along the c-axis direction. Dashed lines illustrate hydrogen bonds. Colour scheme: C, grey; H, white; N, blue; O, red.

4. Database survey

The CSD (version 5.43 with September 2022 updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains >400 crystal structures with propane-1,3-diaminium cations and >100 crystal structures with squarate dianions. A structure closely related to the title compound is that of the homologous pentane-1,5-diaminium squarate dihydrate (CSD refcode: JARGAN; Ivanova & Spiteller, 2014[Ivanova, B. & Spiteller, M. (2014). J. Food. Meas. Charact. 8, 15-28.]). In contrast to the title compound, the crystal structure of JARGAN is centrosymmetric, although the pentane-1,5-diaminium cation likewise exhibits a polar (approximately) C2v-symmetric all-anti conformation. A solvent-free crystal structure of propane-1,3-diaminum bis­(hydrogen squarate) has also been published (TURQEC; Mathew et al., 2002[Mathew, S., Paul, G., Shivasankar, K., Choudhury, A. & Rao, C. N. R. (2002). J. Mol. Struct. 641, 263-279.]). The propane-1,3-diaminum cations in TURQEC similarly adopt an all-anti conformation with approximate C2v point-group symmetry, but the crystal structure is centrosymmetric. Worthy of note, a low-temperature crystal structure determination of the parent free-base propane-1,3-di­amine, which is liquid at room temperature, has also been disclosed (QATVUC; Thalladi et al., 2000[Thalladi, V. R., Boese, R. & Weiss, H.-C. (2000). Angew. Chem. Int. Ed. 39, 836-963.]).

5. Synthesis and crystallization

Starting materials were obtained from commercial sources and used as received. A solution of propane-1,3-di­amine (148 mg, 2 mmol) in 25 mL of ethanol was mixed with a solution of squaric acid (228 mg, 2 mmol) in 40 mL of distilled water. After stirring at 333 K for 4 h, the mixture was left at ambient conditions. After three weeks, colourless crystalline material was collected by filtration and air-dried. Colourless crystals of the title compound suitable for single-crystal X-ray diffraction were grown from methanol/water (1:1) by the slow evaporation method.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen-atom positions were refined freely, and Uiso(H) values were set 1.2Ueq(C, N, O) to improve the data/parameter ratio. The direction of the polar axis was chosen to give a Flack x parameter, as calculated by Parsons' quotient method (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]), close to zero. In the absence of significant anomalous scattering, however, the polar axis direction could not be determined reliably in view of the high standard uncertainty of the Flack x parameter (Flack & Bernardinelli, 1999[Flack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908-915.]). For this reason, the presence of inversion twinning also cannot be excluded.

Table 2
Experimental details

Crystal data
Chemical formula C3H12N22+·C4O42−·2H2O
Mr 224.22
Crystal system, space group Tetragonal, P4bm
Temperature (K) 105
a, c (Å) 11.2716 (2), 4.3310 (1)
V3) 550.25 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.23 × 0.16 × 0.11
 
Data collection
Diffractometer Oxford Diffraction Xcalibur2
Absorption correction Multi-scan [ABSPACK in CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])]
Tmin, Tmax 0.928, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11463, 745, 721
Rint 0.027
(sin θ/λ)max−1) 0.679
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.070, 1.09
No. of reflections 745
No. of parameters 54
No. of restraints 1
H-atom treatment Only H-atom coordinates refined
Δρmax, Δρmin (e Å−3) 0.38, −0.13
Absolute structure Flack x determined using 298 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.1 (5)
Computer programs: CrysAlis system (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis system. Oxford Diffraction Ltd., Yarnton, England.]), CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2019/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2018[Brandenburg, K. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Propane-1,3-diaminium 3,4-dioxocyclobutene-1,2-diolate dihydrate top
Crystal data top
C3H12N22+·C4O42·2H2ODx = 1.353 Mg m3
Mr = 224.22Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P4bmCell parameters from 5992 reflections
a = 11.2716 (2) Åθ = 3.6–28.7°
c = 4.3310 (1) ŵ = 0.12 mm1
V = 550.25 (2) Å3T = 105 K
Z = 2Block, colourless
F(000) = 2400.23 × 0.16 × 0.11 mm
Data collection top
Oxford Diffraction Xcalibur2
diffractometer
745 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source721 reflections with I > 2σ(I)
Detector resolution: 8.4171 pixels mm-1Rint = 0.027
ω scansθmax = 28.9°, θmin = 3.6°
Absorption correction: multi-scan
[ABSPACK in CrysAlisPro (Rigaku OD, 2023)]
h = 1515
Tmin = 0.928, Tmax = 1.000k = 1514
11463 measured reflectionsl = 55
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Only H-atom coordinates refined
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.045P)2 + 0.0625P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
745 reflectionsΔρmax = 0.38 e Å3
54 parametersΔρmin = 0.13 e Å3
1 restraintAbsolute structure: Flack x determined using 298 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.1 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.00512 (11)0.09200 (10)0.0161 (4)0.0143 (3)
C20.42195 (10)0.07805 (10)0.5294 (5)0.0137 (4)
H20.4703 (15)0.1281 (16)0.407 (5)0.016*
C30.5000000.0000000.7310 (7)0.0129 (5)
H30.5480 (17)0.0480 (17)0.851 (6)0.015*
N10.34377 (9)0.15623 (9)0.7173 (4)0.0126 (3)
H1A0.3011 (18)0.1989 (18)0.601 (7)0.015*
H1B0.3902 (15)0.2026 (15)0.834 (5)0.015*
O10.01160 (8)0.20294 (8)0.0165 (3)0.0188 (3)
O20.21736 (10)0.28264 (10)0.2827 (4)0.0244 (4)
H2A0.1556 (18)0.2608 (18)0.191 (5)0.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0114 (5)0.0119 (6)0.0196 (5)0.0002 (4)0.0025 (5)0.0017 (7)
C20.0144 (5)0.0144 (5)0.0123 (7)0.0006 (6)0.0005 (6)0.0005 (6)
C30.0132 (7)0.0132 (7)0.0124 (11)0.0005 (9)0.0000.000
N10.0117 (5)0.0117 (5)0.0144 (6)0.0004 (5)0.0013 (5)0.0013 (5)
O10.0149 (4)0.0098 (4)0.0316 (5)0.0004 (3)0.0064 (5)0.0014 (5)
O20.0197 (5)0.0197 (5)0.0337 (9)0.0071 (6)0.0117 (5)0.0117 (5)
Geometric parameters (Å, º) top
C1—O11.2527 (14)C3—H30.92 (3)
C1—C1i1.4687 (15)C3—H3iv0.92 (3)
C1—C1ii1.4687 (15)N1—H1A0.85 (3)
C2—N11.488 (2)N1—H1B0.896 (19)
C2—C31.520 (3)N1—H1Biii0.896 (19)
C2—H20.946 (19)O2—H2A0.84 (2)
C2—H2iii0.946 (19)O2—H2Aiii0.84 (2)
O1—C1—C1i135.16 (13)C2iv—C3—H3108.8 (8)
O1—C1—C1ii134.84 (13)C2—C3—H3iv108.8 (8)
C1i—C1—C1ii89.999 (1)C2iv—C3—H3iv108.8 (8)
N1—C2—C3111.80 (18)H3—C3—H3iv112 (3)
N1—C2—H2107.1 (11)C2—N1—H1A110 (2)
C3—C2—H2109.4 (11)C2—N1—H1B108.0 (11)
N1—C2—H2iii107.1 (11)H1A—N1—H1B109.7 (14)
C3—C2—H2iii109.4 (11)C2—N1—H1Biii108.0 (11)
H2—C2—H2iii112 (2)H1A—N1—H1Biii109.7 (14)
C2—C3—C2iv109.9 (2)H1B—N1—H1Biii111 (2)
C2—C3—H3108.8 (8)H2A—O2—H2Aiii105 (3)
N1—C2—C3—C2iv180.000 (1)
Symmetry codes: (i) y, x, z; (ii) y, x, z; (iii) y+1/2, x+1/2, z; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1v0.946 (19)2.590 (19)3.4712 (18)155.1 (14)
N1—H1A···O20.85 (3)1.92 (3)2.758 (2)171 (3)
N1—H1B···O1vi0.896 (19)1.905 (18)2.7887 (12)168.4 (17)
O2—H2A···O10.84 (2)1.91 (2)2.7413 (13)175 (2)
Symmetry codes: (v) x+1/2, y+1/2, z; (vi) x+1/2, y+1/2, z+1.
 

Acknowledgements

We are grateful to the late Professor William S. Sheldrick for his support of this research. We acknowledge the financial support of the Open Access Publication Fund of the Martin-Luther-Universität Halle-Wittenberg.

References

First citationAllen, F. H., Cruz-Cabeza, A. J., Wood, P. A. & Bardwell, D. A. (2013). Acta Cryst. B69, 514–523.  CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChasák, J., Šlachtová, V., Urban, M. & Brulíková, L. (2021). Eur. J. Med. Chem. 209, 112872.  Web of Science PubMed Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908–915.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGilli, G., Bertolasi, V., Gilli, P. & Ferretti, V. (2001). Acta Cryst. B57, 859–865.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGrus, T., Lahnif, H., Klasen, B., Moon, E.-S., Greifenstein, L. & Roesch, F. (2021). Bioconjugate Chem. 32, 1223–1231.  CrossRef CAS Google Scholar
First citationIvanova, B. & Spiteller, M. (2014). J. Food. Meas. Charact. 8, 15–28.  CrossRef Google Scholar
First citationKitajgorodskij, A. I. (1973). In Molecular Crystals and Molecules. New York: Academic Press.  Google Scholar
First citationLaramie, M. D., Levitz, A. & Henary, M. (2017). Sens. Actuators B Chem. 243, 1191–1204.  CrossRef CAS Google Scholar
First citationMathew, S., Paul, G., Shivasankar, K., Choudhury, A. & Rao, C. N. R. (2002). J. Mol. Struct. 641, 263–279.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis system. Oxford Diffraction Ltd., Yarnton, England.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRuseva, N. K., Cherneva, E. D. & Bakalova, A. G. (2022). Arkivoc, pp. 285–303.  Google Scholar
First citationSchwartz, L. M. & Howard, L. O. (1970). J. Phys. Chem. 74, 4374–4377.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThakuria, R., Sarma, B. & Nangia, A. (2017). Hydrogen Bonding in Molecular Crystals. In Comprehensive Supramolecular Chemistry II, vol. 7, edited by J. L. Atwood, J. L., pp. 25–48. Oxford: Elsevier.  Google Scholar
First citationThalladi, V. R., Boese, R. & Weiss, H.-C. (2000). Angew. Chem. Int. Ed. 39, 836–963.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWurm, F. R. & Klok, H.-A. (2013). Chem. Soc. Rev. 42, 8220–8236.  CrossRef CAS PubMed Google Scholar
First citationXia, G. & Wang, H. (2017). J. Photoch. Photobio. C, 31, 84–113.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds