research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of 1-[(1-octyl-1H-1,2,3-triazol-4-yl)methyl]-3-phenyl-1,2-di­hydro­quinoxalin-2(1H)-one

crossmark logo

aLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco, bLaboratory of Heterocyclic Organic Chemistry, Faculty of Sciences, Mohammed V University, Rabat, Morocco, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dLaboratoire de Chimie et Biochimie, Institut Superieur des Techniques Medicales de Kinshasa, Republique Democratique du , Congo, and eLaboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen
*Correspondence e-mail: alsubaripharmaco@21umas.edu.ye, y.ramli@um5r.ac.ma

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 23 July 2024; accepted 6 August 2024; online 9 August 2024)

In the title mol­ecule, C25H29N5O, the di­hydro­quinoxaline unit is not quite planar (r.m.s. deviation = 0.030 Å) as there is a dihedral angle of 2.69 (3)° between the mean planes of the constituent rings and the mol­ecule adopts a hairpin conformation. In the crystal, the polar portions of the mol­ecules are associated through C—H⋯O and C—H⋯N hydrogen bonds and C—H⋯π(ring) and C=O⋯π(ring) inter­actions, forming thick layers parallel to the bc plane and with the n-octyl groups on the outside surfaces.

1. Chemical context

The quinoxaline moiety is well known as a versatile nitro­gen-containing heterocyclic scaffold owing to its extensive pharmacological and biological properties as well as numerous therapeutic applications in medicinal research. It is reported to exhibit anti-tuberculosis (Carta et al., 2001[Carta, A., Sanna, P., Gherardini, L., Usai, D. & Zanetti, S. (2001). Farmaco, 56, 933-938.]), anti-fungal (Wagle et al., 2008[Wagle, S., Adhikari, A. V. & Kumari, N. S. (2008). Ind. J. Chem. 47, 439-448.]), anti-HIV (Balzarini et al., 2000[Balzarini, J., De Clercq, E., Carbonez, A., Burt, V. & Kleim, J.-P. (2000). AIDS Res. Hum. Retroviruses, 16, 517-528.]), anti-microbial (Singh et al., 2010[Singh, D. P., Deivedi, S. K., Hashim, S. R. & Singhal, R. G. (2010). Pharmaceuticals 3, 2416-2425.]), anti-malarial (Hui et al., 2006[Hui, X., Desrivot, J., Bories, C., Loiseau, P. M., Franck, X., Hocquemiller, R. & Figadère, B. (2006). Bioorg. Med. Chem. Lett. 16, 815-820.]), anti-cancer (Gupta et al., 2005[Gupta, D., Ghosh, N. N. & Chandra, R. (2005). Bioorg. Med. Chem. Lett. 15, 1019-1022.]) and anti-inflammatory (Carta et al., 2006[Carta, A., Loriga, M., Piras, S., Paglietti, G., La Colla, P., Busonera, B., Collu, G. & Loddo, R. (2006). Med. Chem. 2, 113-122.]) activities. Furthermore, quinoxalines possess anti­corrosion characteristics (e.g. Lgaz et al., 2015[Lgaz, H., ELaoufir, Y., Ramli, Y., Larouj, M., Zarrok, H., Salghi, R., Zarrouk, A., Elmidaoui, A., Guenbour, A., Essassi, E. M. & Oudda, H. (2015). Pharma Chemica, 7, 36-45.]). Similarly, the triazole ring system is linked to biological and pharmacological activities such as anti-fungal (Nowaczyk & Modzelewska-Banachiewicz, 2008[Nowaczyk, A. & Modzelewska-Banachiewicz, B. (2008). Acta Poloniae Pharm. Drug Res. 65, 795-798.]), anti-bacterial (Foroumadi et al., 2003[Foroumadi, A., Mansouri, S., Kiani, Z. & Rahmani, A. (2003). Eur. J. Med. Chem. 38, 851-854.]), anti-hypertensive (Sato et al., 1980[Sato, Y., Shimoji, Y., Fujita, H., Nishino, H., Mizuno, H., Kobayashi, S. & Kumakura, S. (1980). J. Med. Chem. 23, 927-937.]), anti-Alzheimer's disease (Missioui et al., 2022a[Missioui, M., Said, M. A., Demirtaş, G., Mague, J. T. & Ramli, Y. (2022a). J. Mol. Struct. 1247, 131420.]), anti-COVID-19 (Zhang et al., 2020[Zhang, H., Zhang, J., Qu, W., Xie, S., Huang, L., Chen, D., Tao, Y., Liu, Z., Pan, Y. & Yuan, Z. (2020). Front. Chem. 8, 598.]) and anti­cancer (Shivarama et al., 2003[Shivarama Holla, B., Veerendra, B., Shivananda, M. K. & Poojary, B. (2003). Eur. J. Med. Chem. 38, 759-767.]) activities. Given the wide range of therapeutic applications for quinoxaline and triazole derivatives, and with our continuing inter­est in the synthesis of heterocyclic systems having biological potential, we previously reported a route for the preparation of hybrid quinoxaline-containing triazoles (Missioui et al., 2022b[Missioui, M., Mortada, S., Guerrab, W., Demirtas, G., Mague, J. T., Ansar, M., Faouzi, M., Essassi, E. M., Mehdar, T. H., Aljohani, F. S., Said, M. A. & Ramli, Y. (2022b). Arab. J. Chem. 15, 103851.]) and herein report the synthesis and spectroscopic characterization of the new hybrid quinoxaline, 1-[(1-octyl-1H-1,2,3-triazol-4-yl)meth­yl]-3-phenyl-1,2-di­hydro­quinoxalin-2(1H)-one. A colorless plate-like specimen of the title compound was used for the X-ray crystallographic analysis (Fig. 1[link]). A Hirshfeld surface analysis was performed to analyze the inter­molecular inter­actions.

[Scheme 1]
[Figure 1]
Figure 1
The title mol­ecule with labeling scheme and 50% probability ellipsoids. The intra­molecular hydrogen bond and C—H⋯π(ring) inter­action are shown, respectively, by black and green dashed lines.

2. Structural commentary

The title mol­ecule adopts a hairpin conformation, in part due to an intra­molecular C18—H18B⋯O1 hydrogen bond and an intra­molecular C—H⋯π(ring) inter­action between C19—H19A and the C1/C6/N1/C7/C8/N2 ring (Table 1[link] and Fig. 1[link]). The di­hydro­quinoxaline unit is not quite planar (r.m.s. deviation = 0.030 Å), as indicated by the dihedral angle of 2.69 (3)° between the constituent rings and by N1 being 0.044 (3) Å and C5 − 0.043 (3) Å from the mean plane of the ten-atom unit. The C9–C14 benzene ring is inclined to the mean plane of the C1/C6/N1/C7/C8/N2 ring by 24.0 (1)° while the C16/C17/N3/N4/N5 ring is inclined to the mean plane of the di­hydro­quinoxaline unit by 81.4 (1)°. The n-octyl chain is largely in the all-trans conformation, except for the portion closest to N5. Thus the N5—C18—C19—C20 and C18—C19—C20—C21 torsion angles are 169.2 (4) and −172.9 (4)°, respectively, while the remainder towards the terminus of the chain are in the range 175.0 (4)–179.8 (4)°.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C16/C17/N3/N4/N5 and C1/C6/N1/C7/C8/N2 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.95 2.34 3.225 (5) 155
C15—H15A⋯N3ii 0.99 2.48 3.467 (5) 174
C15—H15BCg1iii 0.99 2.96 3.575 (4) 121
C18—H18B⋯O1 0.99 2.47 3.291 (5) 140
C19—H19ACg2 0.99 2.65 3.646 (4) 148
Symmetry codes: (i) [x, y, z-1]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, -y+1, -z+1].

3. Supra­molecular features

In the crystal, the polar portions of the mol­ecules (di­hydro­quinoxaline and triazole moieties) are associated through C3—H3⋯O1 and C15—H15B⋯N3 hydrogen bonds and C7=O1⋯Cg3 [Cg3 is the centroid of the C1–C6 ring at x, −y − [{1\over 2}], z − [{1\over 2}] with C7⋯Cg3 = 3.542 (4) Å, O1⋯Cg3 = 3.397 (4) Å and C7=O1⋯Cg3 = 86.5 (2)°] and C15—H15BCg1 (Cg1 is the centroid of the triazole ring at −x + 1, −y + 1, −z + 1) inter­actions (Table 1[link]), forming thick layers parallel to the bc plane. Fig. 2[link] shows a detail of the first three inter­molecular inter­actions while Fig. 3[link] illustrates the latter two inter­actions. Fig. 4[link] shows a portion of the full layer in which the hairpin loops of the n-octyl chains and the phenyl groups are on the outside surfaces. Consequently, the packing of the layers involves primarily van der Waals contacts between these groups.

[Figure 2]
Figure 2
Detail of the inter­molecular C—H⋯N and C—H⋯O hydrogen bonds, which are shown, respectively, by black and light-blue dashed lines and the C=O⋯π(ring) inter­actions, which are shown by orange dashed lines. Non-inter­acting hydrogen atoms are omitted for clarity.
[Figure 3]
Figure 3
Detail of the inter­molecular C=O⋯π(ring) and C—H⋯π(ring) inter­actions, shown by orange and green dashed lines, respectively, with non-inter­acting hydrogen atoms omitted for clarity.
[Figure 4]
Figure 4
Packing viewed along the b-axis direction with inter­molecular inter­actions depicted as in Figs. 2[link] and 3[link] and with non-inter­acting hydrogen atoms omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD, updated to June 2024, Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) with the fragment shown in Fig. 5[link] (R = C) generated 29 hits of which 15 most resemble the title mol­ecule. These include those with R = Et (MAGBIJ; Al Ati et al., 2021[Al Ati, G., Chkirate, K., Mashrai, A., Mague, J. T., Ramli, Y., Achour, R. & Essassi, E. M. (2021). Acta Cryst. E77, 18-22.]), Bz (PUGGII; Benzeid et al., 2009[Benzeid, H., Saffon, N., Garrigues, B., Essassi, E. M. & Ng, S. W. (2009). Acta Cryst. E65, o2685.]), allyl (YAJGEX; Benzeid et al., 2011[Benzeid, H., Bouhfid, R., Massip, S., Leger, J. M. & Essassi, E. M. (2011). Acta Cryst. E67, o2990.]), n-pentyl (UFIYEM; Abad et al., 2023b[Abad, N., Guelmami, L., Haouas, A., Hajji, M., Hafi, M. E., Sebhaoui, J., Guerfel, T., Mague, J. T., Essassi, E. M. & Ramli, Y. (2023b). J. Mol. Struct. 1286, 135622.]), n-octyl (AZAZEC; Abad et al., 2023a[Abad, N., Al-Ostoot, F. H., Ashraf, S., Chkirate, K., Aljohani, M. S., Alharbi, H. Y., Buhlak, S., El Hafi, M., Van Meervelt, L., Al-Maswari, B. M., Essassi, El M. & Ramli, Y. (2023a). Heliyon 9, e21312.]), n-nonyl (UDAMIZ; Abad et al., 2021a[Abad, N., Chkirate, K., Al-Ostoot, F. H., Van Meervelt, L., Lahmidi, S., Ferfra, S., Ramli, Y. & Essassi, E. M. (2021a). Acta Cryst. E77, 1037-1042.]), CH2CO2Et (XEXWIJ; Abad et al., 2018a[Abad, N., El Bakri, Y., Sebhaoui, J., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018a). IUCrData, 3, x180519.]), CH2CH2CO2Et (ESUKUB; Abad et al., 2021b[Abad, N., El Ghayati, L., Kalonji Mubengayi, C., Essassi, E. M., Kaya, S., Mague, J. T. & Ramli, Y. (2021b). Acta Cryst. E77, 643-646.]), CH2CH2CH2OH (RIRBOM; Abad et al., 2018b[Abad, N., Ramli, Y., Lahmidi, S., El Hafi, M., Essassi, E. M. & Mague, J. T. (2018b). IUCrData, 3, x181633.]) and cyclo­propyl­methyl (NIBXEE; Abad et al., 2018c[Abad, N., El Bakri, Y., Sebhaoui, J., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018c). IUCrData, 3, x180610.]). More elaborate examples have R = (1-hex­yl)-1H-1,2,3-triazol-4-yl)methyl (FOFCIQ; Abad et al., 2021c[Abad, N., Ferfra, S., Essassi, E. M., Mague, J. T. & Ramli, Y. (2021c). Z. Kristallogr. New Cryst. Struct. 236, 173-175.]), (1-ethyl­acetato)-1H-1,2,3-triazol-4-yl)methyl (ECUCOY; Abad et al., 2022[Abad, N., Missioui, M., Alsubari, A., Mague, J. T., Essassi, E. M. & Ramli, Y. (2022). IUCrData, 7.]), (1,3-oxazolidin-2-one-3-yl)ethyl (IDOSUR; Daouda et al., 2013[Daouda, B., Doumbia, M. L., Essassi, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o662.]) and (3-(p-tol­yl)-4,5-di­hydro­isoxazol-5-yl)methyl (ILIRED; Abad et al., 2021d[Abad, N., Sallam, H. H., Al-Ostoot, F. H., Khamees, H. A., Al-horaibi, S. A., Khanum, S. A., Madegowda, M., Hafi, M. E., Mague, J. T., Essassi, E. M. & Ramli, Y. (2021d). J. Mol. Struct. 1232, 130004.]). The two with the substituent on the ring nitro­gen of the di­hydro­quinoxaline that includes the 1,2,3-triazol-4-yl ring (ECUCOY and FOFCIQ) adopt comparable hairpin conformations. In the former, this results from an intra­molecular π-stacking inter­action between the two carbonyl groups, which are nearly anti-parallel to each other (centroid–centroid distance = 2.95 Å) while in the latter, there is an intra­molecular C—H⋯O hydrogen bond analogous to that in the title mol­ecule. A U-shaped conformation is adopted by IDOSUR but there is no intra­molecular inter­action with the side chain. In all the others, the substituent on the ring nitro­gen is in a largely extended conformation. In the examples cited, the di­hydro­qinoxaline moiety ranges from essentially planar (AZAZEC, ESUKUB, XEXWIJ and YAJGEX) to having a dihedral angle between the mean planes of the constituent rings as large as 4.51 (4)° (MAGBIJ). Additionally, the dihedral angle between the mean plane of the heterocyclic ring in the di­hydro­quinoxaline and that of the attached phenyl ring varies from 9.05 (7)° in ECUCOY to 43.61 (4)° in RIRBOM with the majority of them having this angle greater than 20°.

[Figure 5]
Figure 5
The fragment (R = C) used in the database search.

5. Hirshfeld surface analysis

A Hirshfeld surface analysis was performed with CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) and the inter­pretation of the several plots obtained is described by Tan et al. (2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). Fig. 6[link]a shows the dnorm surface together with four neighboring mol­ecules. Those above and below the surface show the C—H⋯O hydrogen bonds while those on the right show the C—H⋯N hydrogen bonds, which are also depicted in Fig. 2[link]. Fig. 6[link]b shows the surface calculated over the shape function with one neighboring mol­ecule illustrating the C7=O1⋯π(ring) inter­action. Fig. 7[link]a is a 2-D fingerprint plot of all types of inter­molecular inter­actions with the remainder of the sections showing delineation into specific atom–atom contacts. The H⋯H contacts (Fig. 7[link]b) contribute the lion's share, which is not surprising considering the high hydrogen content, particularly in the n-octyl portion. These are followed by N⋯H/H⋯N (Fig. 7[link]c), C⋯H/H⋯C (Fig. 7[link]d) and O⋯H/H⋯O (Fig. 7[link]e) contacts in order of decreasing percentage contribution. The N⋯H/H⋯N and O⋯H/H⋯O plots show rather sharp spikes as a result of the H⋯O and H⋯N distances having a narrow range of values since they primarily represent the C—H⋯O and C—H⋯N hydrogen bonds. All other contacts contribute considerably less, for example, the O⋯C contacts involving the C7=O1⋯π(ring) inter­actions contribute only 1.3% of the total.

[Figure 6]
Figure 6
(a) The dnorm Hirshfeld surface showing the C—H⋯O and C—H⋯N hydrogen bonds to neighboring mol­ecules and (b) the surface calculated over shape function showing the C=O⋯π(ring) inter­action.
[Figure 7]
Figure 7
The 2-D fingerprint plots showing (a) all inter­molecular inter­actions and those delineated into (b) H⋯H, (c) N⋯H/H⋯N, (d) C⋯H/H⋯C and (e) O⋯H/H⋯O contacts. The percent contribution of each type is given in the Figure.

6. Synthesis and crystallization

To a solution of 3-phenyl-1-(prop-2-yn-1-yl)quinoxalin-2(1H)-one 0.5 g (0.0020 mmol) in absolute ethanol (20 ml) were added 1.3 equivalents of 1-azido­octane. The mixture was stirred at reflux and the reaction monitored by thin layer chromatography (TLC). After concentration under reduced pressure, the residue was purified by column chromatography on silica gel using a mixture of ethyl acetate/hexane (10/90%) as eluent. The precipitated product was filtered off, dried and recrystallized from ethanol to yield colorless crystals of the title compound.

Yield 42%; m.p: 408–410 K; 1H NMR (300 MHz, CDCl3) δ ppm: 0.90 (t, 3H, CH3, J = 6 Hz); 1.26–1.34 (m, 10H, CH2); 1.89 (quin, 2H, CH2); 4.58 (t, 2H, N—NCH, J = 6 Hz) ; 5.63 (s, 2H, N—CH2); 7.62 (s, 1H, CHtriazole); 7.36-8.35 (m, 9Harom); 13C NMR (75 MHz, CDCl3) δ ppm: 14.07 (CH3); 22.61, 26.12, 26.62, 29.06, 30.51, 31.69, 35.24 (CH2); 48.77 (N—CH); 113.38, 124.55, 128.21 (triazole); 129.54, 130.70, 130.74, 131.18, 131.27 (CHarom); 131.83, 133.47, 133.71, 135.53, 153.84 (Cq); 154.15 (C=O).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed in calculated positions and included as riding contributions with isotropic displacement parameters tied to those of the attached atoms.

Table 2
Experimental details

Crystal data
Chemical formula C25H29N5O
Mr 415.53
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 22.5143 (9), 10.5927 (4), 9.4449 (3)
β (°) 94.439 (2)
V3) 2245.73 (14)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.61
Crystal size (mm) 0.22 × 0.14 × 0.03
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.78, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 14897, 4077, 2414
Rint 0.100
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.089, 0.187, 1.08
No. of reflections 4077
No. of parameters 281
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.25
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT, Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

1-[(1-Octyl-1H-1,2,3-triazol-4-yl)methyl]-3-phenyl-1,2-dihydroquinoxalin-2(1H)-one top
Crystal data top
C25H29N5OF(000) = 888
Mr = 415.53Dx = 1.229 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 22.5143 (9) ÅCell parameters from 6427 reflections
b = 10.5927 (4) Åθ = 3.9–68.3°
c = 9.4449 (3) ŵ = 0.61 mm1
β = 94.439 (2)°T = 150 K
V = 2245.73 (14) Å3Plate, colourless
Z = 40.22 × 0.14 × 0.03 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
4077 independent reflections
Radiation source: INCOATEC IµS micro–focus source2414 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.100
ω scansθmax = 68.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2426
Tmin = 0.78, Tmax = 0.98k = 1212
14897 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.089Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.187H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0212P)2 + 4.325P]
where P = (Fo2 + 2Fc2)/3
4077 reflections(Δ/σ)max < 0.001
281 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.31905 (12)0.4116 (3)0.5411 (3)0.0402 (7)
N10.35153 (14)0.4054 (3)0.3191 (3)0.0304 (7)
N20.23311 (15)0.4198 (3)0.2078 (3)0.0351 (8)
N30.51179 (16)0.6643 (3)0.2817 (4)0.0450 (9)
N40.47557 (16)0.7245 (3)0.3627 (4)0.0442 (9)
N50.43688 (15)0.6386 (3)0.4067 (3)0.0375 (8)
C10.27946 (17)0.4162 (3)0.1195 (4)0.0312 (8)
C20.26428 (19)0.4209 (4)0.0285 (4)0.0374 (9)
H20.2237900.4287950.0638740.045*
C30.3081 (2)0.4141 (4)0.1205 (4)0.0415 (10)
H30.2983020.4186980.2199910.050*
C40.3670 (2)0.4003 (4)0.0680 (4)0.0408 (10)
H40.3970710.3945950.1328880.049*
C50.38320 (19)0.3946 (3)0.0766 (4)0.0356 (9)
H50.4236740.3836970.1107620.043*
C60.33873 (17)0.4054 (3)0.1702 (4)0.0296 (8)
C70.30655 (17)0.4091 (3)0.4117 (4)0.0296 (8)
C80.24497 (17)0.4129 (3)0.3448 (4)0.0319 (8)
C90.19308 (17)0.4142 (4)0.4323 (4)0.0337 (9)
C100.13926 (19)0.4627 (4)0.3735 (5)0.0435 (10)
H100.1370710.4959710.2798220.052*
C110.0893 (2)0.4635 (5)0.4480 (5)0.0509 (12)
H110.0532820.4987970.4061740.061*
C120.0908 (2)0.4131 (5)0.5841 (5)0.0527 (12)
H120.0561760.4131580.6354780.063*
C130.1439 (2)0.3626 (4)0.6434 (4)0.0461 (11)
H130.1454730.3270160.7359900.055*
C140.1942 (2)0.3636 (4)0.5695 (4)0.0412 (10)
H140.2302870.3293790.6121400.049*
C150.41335 (17)0.4045 (4)0.3792 (4)0.0339 (9)
H15A0.4341300.3318650.3394150.041*
H15B0.4137180.3918020.4831410.041*
C160.44727 (18)0.5225 (4)0.3517 (4)0.0342 (9)
C170.49494 (18)0.5414 (4)0.2736 (4)0.0392 (10)
H170.5135610.4779490.2213670.047*
C180.38948 (18)0.6787 (4)0.4936 (4)0.0405 (10)
H18A0.4041780.7488110.5561180.049*
H18B0.3788030.6076110.5548280.049*
C190.33455 (18)0.7215 (4)0.4043 (4)0.0403 (10)
H19A0.3245860.6579680.3293070.048*
H19B0.3433890.8020130.3570840.048*
C200.28082 (18)0.7401 (4)0.4907 (4)0.0415 (10)
H20A0.2753420.6630140.5475340.050*
H20B0.2891330.8108850.5576560.050*
C210.22352 (19)0.7672 (4)0.4019 (4)0.0426 (10)
H21A0.2290960.8443750.3452370.051*
H21B0.2154520.6965570.3345580.051*
C220.16970 (18)0.7854 (4)0.4858 (4)0.0435 (10)
H22A0.1632630.7074380.5402950.052*
H22B0.1780020.8546950.5548600.052*
C230.11349 (19)0.8158 (4)0.3957 (5)0.0480 (11)
H23A0.1073170.7504200.3210710.058*
H23B0.1188830.8976060.3476500.058*
C240.0581 (2)0.8234 (5)0.4759 (5)0.0544 (12)
H24A0.0648690.8851710.5541640.065*
H24B0.0509430.7400020.5187800.065*
C250.0031 (2)0.8620 (5)0.3828 (6)0.0647 (14)
H25A0.0315730.8627780.4395650.097*
H25B0.0037420.8016350.3045850.097*
H25C0.0089780.9465460.3441130.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0462 (17)0.0528 (17)0.0217 (13)0.0000 (14)0.0040 (11)0.0017 (12)
N10.0373 (19)0.0333 (17)0.0211 (15)0.0002 (14)0.0044 (13)0.0013 (13)
N20.044 (2)0.0360 (18)0.0260 (16)0.0005 (15)0.0054 (14)0.0007 (14)
N30.049 (2)0.048 (2)0.039 (2)0.0081 (17)0.0083 (17)0.0018 (17)
N40.049 (2)0.042 (2)0.042 (2)0.0085 (17)0.0065 (17)0.0006 (17)
N50.043 (2)0.0406 (19)0.0292 (17)0.0027 (16)0.0029 (15)0.0005 (15)
C10.038 (2)0.0289 (19)0.0274 (18)0.0015 (17)0.0037 (16)0.0018 (16)
C20.045 (3)0.040 (2)0.0262 (19)0.0018 (19)0.0045 (17)0.0017 (17)
C30.062 (3)0.042 (2)0.0214 (19)0.002 (2)0.0072 (19)0.0020 (17)
C40.058 (3)0.034 (2)0.032 (2)0.004 (2)0.016 (2)0.0036 (17)
C50.048 (3)0.031 (2)0.0293 (19)0.0001 (18)0.0080 (17)0.0033 (16)
C60.039 (2)0.0281 (19)0.0214 (17)0.0019 (16)0.0028 (16)0.0008 (15)
C70.036 (2)0.0310 (19)0.0217 (18)0.0030 (16)0.0015 (15)0.0006 (15)
C80.038 (2)0.0292 (19)0.0283 (19)0.0007 (17)0.0015 (16)0.0007 (16)
C90.038 (2)0.036 (2)0.0282 (19)0.0005 (18)0.0052 (17)0.0020 (17)
C100.047 (3)0.047 (2)0.037 (2)0.000 (2)0.006 (2)0.005 (2)
C110.039 (3)0.062 (3)0.051 (3)0.004 (2)0.005 (2)0.003 (2)
C120.041 (3)0.067 (3)0.052 (3)0.002 (2)0.017 (2)0.007 (2)
C130.048 (3)0.056 (3)0.036 (2)0.004 (2)0.012 (2)0.001 (2)
C140.048 (3)0.044 (2)0.033 (2)0.000 (2)0.0063 (19)0.0016 (19)
C150.036 (2)0.036 (2)0.0308 (19)0.0022 (17)0.0046 (17)0.0013 (17)
C160.039 (2)0.037 (2)0.0272 (19)0.0009 (18)0.0025 (17)0.0001 (17)
C170.038 (2)0.043 (2)0.037 (2)0.0027 (18)0.0057 (18)0.0021 (19)
C180.044 (3)0.044 (2)0.033 (2)0.000 (2)0.0059 (18)0.0046 (19)
C190.049 (3)0.038 (2)0.034 (2)0.0016 (19)0.0006 (19)0.0016 (18)
C200.048 (3)0.042 (2)0.035 (2)0.005 (2)0.0049 (19)0.0033 (19)
C210.054 (3)0.038 (2)0.035 (2)0.003 (2)0.003 (2)0.0026 (18)
C220.043 (3)0.048 (3)0.039 (2)0.003 (2)0.0028 (19)0.002 (2)
C230.052 (3)0.049 (3)0.043 (3)0.006 (2)0.001 (2)0.003 (2)
C240.054 (3)0.059 (3)0.051 (3)0.011 (2)0.007 (2)0.001 (2)
C250.057 (3)0.067 (3)0.071 (4)0.009 (3)0.004 (3)0.005 (3)
Geometric parameters (Å, º) top
O1—C71.233 (4)C13—H130.9500
N1—C71.389 (4)C14—H140.9500
N1—C61.413 (4)C15—C161.498 (5)
N1—C151.462 (5)C15—H15A0.9900
N2—C81.303 (5)C15—H15B0.9900
N2—C11.386 (5)C16—C171.363 (5)
N3—N41.324 (5)C17—H170.9500
N3—C171.357 (5)C18—C191.512 (6)
N4—N51.347 (4)C18—H18A0.9900
N5—C161.362 (5)C18—H18B0.9900
N5—C181.459 (5)C19—C201.523 (5)
C1—C61.387 (5)C19—H19A0.9900
C1—C21.415 (5)C19—H19B0.9900
C2—C31.366 (5)C20—C211.511 (5)
C2—H20.9500C20—H20A0.9900
C3—C41.386 (6)C20—H20B0.9900
C3—H30.9500C21—C221.511 (5)
C4—C51.387 (5)C21—H21A0.9900
C4—H40.9500C21—H21B0.9900
C5—C61.391 (5)C22—C231.504 (6)
C5—H50.9500C22—H22A0.9900
C7—C81.479 (5)C22—H22B0.9900
C8—C91.483 (5)C23—C241.510 (6)
C9—C101.392 (6)C23—H23A0.9900
C9—C141.400 (5)C23—H23B0.9900
C10—C111.373 (6)C24—C251.520 (6)
C10—H100.9500C24—H24A0.9900
C11—C121.390 (6)C24—H24B0.9900
C11—H110.9500C25—H25A0.9800
C12—C131.387 (6)C25—H25B0.9800
C12—H120.9500C25—H25C0.9800
C13—C141.377 (6)
C7—N1—C6121.6 (3)H15A—C15—H15B107.6
C7—N1—C15118.3 (3)N5—C16—C17103.9 (3)
C6—N1—C15120.1 (3)N5—C16—C15125.6 (3)
C8—N2—C1119.3 (3)C17—C16—C15130.5 (4)
N4—N3—C17108.2 (3)N3—C17—C16109.8 (4)
N3—N4—N5107.2 (3)N3—C17—H17125.1
N4—N5—C16111.0 (3)C16—C17—H17125.1
N4—N5—C18119.7 (3)N5—C18—C19112.1 (3)
C16—N5—C18129.2 (3)N5—C18—H18A109.2
N2—C1—C6122.9 (3)C19—C18—H18A109.2
N2—C1—C2117.3 (3)N5—C18—H18B109.2
C6—C1—C2119.8 (3)C19—C18—H18B109.2
C3—C2—C1119.7 (4)H18A—C18—H18B107.9
C3—C2—H2120.1C18—C19—C20112.9 (3)
C1—C2—H2120.1C18—C19—H19A109.0
C2—C3—C4119.7 (4)C20—C19—H19A109.0
C2—C3—H3120.1C18—C19—H19B109.0
C4—C3—H3120.1C20—C19—H19B109.0
C3—C4—C5121.9 (4)H19A—C19—H19B107.8
C3—C4—H4119.1C21—C20—C19114.0 (3)
C5—C4—H4119.1C21—C20—H20A108.7
C4—C5—C6118.3 (4)C19—C20—H20A108.7
C4—C5—H5120.8C21—C20—H20B108.7
C6—C5—H5120.8C19—C20—H20B108.7
C1—C6—C5120.5 (3)H20A—C20—H20B107.6
C1—C6—N1117.4 (3)C22—C21—C20114.7 (3)
C5—C6—N1122.1 (4)C22—C21—H21A108.6
O1—C7—N1120.2 (3)C20—C21—H21A108.6
O1—C7—C8123.9 (3)C22—C21—H21B108.6
N1—C7—C8115.9 (3)C20—C21—H21B108.6
N2—C8—C7122.6 (3)H21A—C21—H21B107.6
N2—C8—C9116.3 (4)C23—C22—C21113.9 (4)
C7—C8—C9121.0 (3)C23—C22—H22A108.8
C10—C9—C14117.6 (4)C21—C22—H22A108.8
C10—C9—C8118.7 (3)C23—C22—H22B108.8
C14—C9—C8123.6 (4)C21—C22—H22B108.8
C11—C10—C9121.4 (4)H22A—C22—H22B107.7
C11—C10—H10119.3C22—C23—C24114.7 (4)
C9—C10—H10119.3C22—C23—H23A108.6
C10—C11—C12120.6 (5)C24—C23—H23A108.6
C10—C11—H11119.7C22—C23—H23B108.6
C12—C11—H11119.7C24—C23—H23B108.6
C13—C12—C11118.8 (4)H23A—C23—H23B107.6
C13—C12—H12120.6C23—C24—C25113.1 (4)
C11—C12—H12120.6C23—C24—H24A109.0
C14—C13—C12120.6 (4)C25—C24—H24A109.0
C14—C13—H13119.7C23—C24—H24B109.0
C12—C13—H13119.7C25—C24—H24B109.0
C13—C14—C9121.0 (4)H24A—C24—H24B107.8
C13—C14—H14119.5C24—C25—H25A109.5
C9—C14—H14119.5C24—C25—H25B109.5
N1—C15—C16114.2 (3)H25A—C25—H25B109.5
N1—C15—H15A108.7C24—C25—H25C109.5
C16—C15—H15A108.7H25A—C25—H25C109.5
N1—C15—H15B108.7H25B—C25—H25C109.5
C16—C15—H15B108.7
C17—N3—N4—N51.0 (5)C7—C8—C9—C10156.9 (4)
N3—N4—N5—C161.2 (4)N2—C8—C9—C14156.1 (4)
N3—N4—N5—C18177.4 (3)C7—C8—C9—C1426.3 (6)
C8—N2—C1—C60.1 (6)C14—C9—C10—C111.3 (6)
C8—N2—C1—C2178.5 (3)C8—C9—C10—C11178.3 (4)
N2—C1—C2—C3178.2 (4)C9—C10—C11—C121.4 (7)
C6—C1—C2—C30.4 (6)C10—C11—C12—C130.3 (7)
C1—C2—C3—C41.1 (6)C11—C12—C13—C140.6 (7)
C2—C3—C4—C50.8 (6)C12—C13—C14—C90.6 (7)
C3—C4—C5—C61.1 (6)C10—C9—C14—C130.4 (6)
N2—C1—C6—C5176.2 (4)C8—C9—C14—C13177.1 (4)
C2—C1—C6—C52.3 (6)C7—N1—C15—C16111.7 (4)
N2—C1—C6—N13.6 (6)C6—N1—C15—C1666.8 (4)
C2—C1—C6—N1177.9 (3)N4—N5—C16—C171.0 (4)
C4—C5—C6—C12.7 (6)C18—N5—C16—C17176.6 (4)
C4—C5—C6—N1177.6 (3)N4—N5—C16—C15179.3 (4)
C7—N1—C6—C13.4 (5)C18—N5—C16—C155.1 (7)
C15—N1—C6—C1175.1 (3)N1—C15—C16—N567.6 (5)
C7—N1—C6—C5176.4 (4)N1—C15—C16—C17114.6 (5)
C15—N1—C6—C55.2 (5)N4—N3—C17—C160.4 (5)
C6—N1—C7—O1178.5 (3)N5—C16—C17—N30.3 (5)
C15—N1—C7—O10.1 (5)C15—C16—C17—N3178.5 (4)
C6—N1—C7—C80.1 (5)N4—N5—C18—C1987.1 (4)
C15—N1—C7—C8178.6 (3)C16—N5—C18—C1988.2 (5)
C1—N2—C8—C73.9 (6)N5—C18—C19—C20169.2 (4)
C1—N2—C8—C9178.5 (3)C18—C19—C20—C21172.9 (4)
O1—C7—C8—N2174.7 (4)C19—C20—C21—C22179.8 (4)
N1—C7—C8—N23.9 (5)C20—C21—C22—C23178.5 (4)
O1—C7—C8—C92.7 (6)C21—C22—C23—C24175.0 (4)
N1—C7—C8—C9178.6 (3)C22—C23—C24—C25176.5 (4)
N2—C8—C9—C1020.7 (6)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C16/C17/N3/N4/N5 and C1/C6/N1/C7/C8/N2 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.952.343.225 (5)155
C15—H15A···N3ii0.992.483.467 (5)174
C15—H15B···Cg1iii0.992.963.575 (4)121
C18—H18B···O10.992.473.291 (5)140
C19—H19A···Cg20.992.653.646 (4)148
Symmetry codes: (i) x, y, z1; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1, z+1.
 

Acknowledgements

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. The contributions of the authors are as follows: conceptualization, EME and YR; methodology, AA; investigation, NA; writing (original draft), JTM and NA; writing (review and editing of the manuscript), YR; formal analysis, YR; supervision, YR; crystal structure determination and validation, JTM; resources, CKM

References

First citationAbad, N., Al-Ostoot, F. H., Ashraf, S., Chkirate, K., Aljohani, M. S., Alharbi, H. Y., Buhlak, S., El Hafi, M., Van Meervelt, L., Al-Maswari, B. M., Essassi, El M. & Ramli, Y. (2023a). Heliyon 9, e21312.  Google Scholar
First citationAbad, N., Chkirate, K., Al-Ostoot, F. H., Van Meervelt, L., Lahmidi, S., Ferfra, S., Ramli, Y. & Essassi, E. M. (2021a). Acta Cryst. E77, 1037–1042.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAbad, N., El Bakri, Y., Sebhaoui, J., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018a). IUCrData, 3, x180519.  Google Scholar
First citationAbad, N., El Bakri, Y., Sebhaoui, J., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018c). IUCrData, 3, x180610.  Google Scholar
First citationAbad, N., El Ghayati, L., Kalonji Mubengayi, C., Essassi, E. M., Kaya, S., Mague, J. T. & Ramli, Y. (2021b). Acta Cryst. E77, 643–646.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAbad, N., Ferfra, S., Essassi, E. M., Mague, J. T. & Ramli, Y. (2021c). Z. Kristallogr. New Cryst. Struct. 236, 173–175.  Web of Science CSD CrossRef CAS Google Scholar
First citationAbad, N., Guelmami, L., Haouas, A., Hajji, M., Hafi, M. E., Sebhaoui, J., Guerfel, T., Mague, J. T., Essassi, E. M. & Ramli, Y. (2023b). J. Mol. Struct. 1286, 135622.  Web of Science CSD CrossRef Google Scholar
First citationAbad, N., Missioui, M., Alsubari, A., Mague, J. T., Essassi, E. M. & Ramli, Y. (2022). IUCrData, 7.  Google Scholar
First citationAbad, N., Ramli, Y., Lahmidi, S., El Hafi, M., Essassi, E. M. & Mague, J. T. (2018b). IUCrData, 3, x181633.  Google Scholar
First citationAbad, N., Sallam, H. H., Al-Ostoot, F. H., Khamees, H. A., Al-horaibi, S. A., Khanum, S. A., Madegowda, M., Hafi, M. E., Mague, J. T., Essassi, E. M. & Ramli, Y. (2021d). J. Mol. Struct. 1232, 130004.  Web of Science CSD CrossRef Google Scholar
First citationAl Ati, G., Chkirate, K., Mashrai, A., Mague, J. T., Ramli, Y., Achour, R. & Essassi, E. M. (2021). Acta Cryst. E77, 18–22.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBalzarini, J., De Clercq, E., Carbonez, A., Burt, V. & Kleim, J.-P. (2000). AIDS Res. Hum. Retroviruses, 16, 517–528.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBenzeid, H., Bouhfid, R., Massip, S., Leger, J. M. & Essassi, E. M. (2011). Acta Cryst. E67, o2990.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBenzeid, H., Saffon, N., Garrigues, B., Essassi, E. M. & Ng, S. W. (2009). Acta Cryst. E65, o2685.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3 and SAINT, Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarta, A., Loriga, M., Piras, S., Paglietti, G., La Colla, P., Busonera, B., Collu, G. & Loddo, R. (2006). Med. Chem. 2, 113–122.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCarta, A., Sanna, P., Gherardini, L., Usai, D. & Zanetti, S. (2001). Farmaco, 56, 933–938.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDaouda, B., Doumbia, M. L., Essassi, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o662.  CSD CrossRef IUCr Journals Google Scholar
First citationForoumadi, A., Mansouri, S., Kiani, Z. & Rahmani, A. (2003). Eur. J. Med. Chem. 38, 851–854.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGupta, D., Ghosh, N. N. & Chandra, R. (2005). Bioorg. Med. Chem. Lett. 15, 1019–1022.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHui, X., Desrivot, J., Bories, C., Loiseau, P. M., Franck, X., Hocquemiller, R. & Figadère, B. (2006). Bioorg. Med. Chem. Lett. 16, 815–820.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLgaz, H., ELaoufir, Y., Ramli, Y., Larouj, M., Zarrok, H., Salghi, R., Zarrouk, A., Elmidaoui, A., Guenbour, A., Essassi, E. M. & Oudda, H. (2015). Pharma Chemica, 7, 36–45.  CAS Google Scholar
First citationMissioui, M., Mortada, S., Guerrab, W., Demirtas, G., Mague, J. T., Ansar, M., Faouzi, M., Essassi, E. M., Mehdar, T. H., Aljohani, F. S., Said, M. A. & Ramli, Y. (2022b). Arab. J. Chem. 15, 103851.  Web of Science CSD CrossRef Google Scholar
First citationMissioui, M., Said, M. A., Demirtaş, G., Mague, J. T. & Ramli, Y. (2022a). J. Mol. Struct. 1247, 131420.  Web of Science CSD CrossRef Google Scholar
First citationNowaczyk, A. & Modzelewska-Banachiewicz, B. (2008). Acta Poloniae Pharm. Drug Res. 65, 795–798.  CAS Google Scholar
First citationSato, Y., Shimoji, Y., Fujita, H., Nishino, H., Mizuno, H., Kobayashi, S. & Kumakura, S. (1980). J. Med. Chem. 23, 927–937.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShivarama Holla, B., Veerendra, B., Shivananda, M. K. & Poojary, B. (2003). Eur. J. Med. Chem. 38, 759–767.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSingh, D. P., Deivedi, S. K., Hashim, S. R. & Singhal, R. G. (2010). Pharmaceuticals 3, 2416–2425.  CrossRef CAS PubMed Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWagle, S., Adhikari, A. V. & Kumari, N. S. (2008). Ind. J. Chem. 47, 439–448.  Google Scholar
First citationZhang, H., Zhang, J., Qu, W., Xie, S., Huang, L., Chen, D., Tao, Y., Liu, Z., Pan, Y. & Yuan, Z. (2020). Front. Chem. 8, 598.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds