research communications
Synthesis, H-1,2,3-triazol-4-yl)methyl]-3-phenyl-1,2-dihydroquinoxalin-2(1H)-one
and Hirshfeld surface analysis of 1-[(1-octyl-1aLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco, bLaboratory of Heterocyclic Organic Chemistry, Faculty of Sciences, Mohammed V University, Rabat, Morocco, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dLaboratoire de Chimie et Biochimie, Institut Superieur des Techniques Medicales de Kinshasa, Republique Democratique du , Congo, and eLaboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen
*Correspondence e-mail: alsubaripharmaco@21umas.edu.ye, y.ramli@um5r.ac.ma
In the title molecule, C25H29N5O, the dihydroquinoxaline unit is not quite planar (r.m.s. deviation = 0.030 Å) as there is a dihedral angle of 2.69 (3)° between the mean planes of the constituent rings and the molecule adopts a hairpin conformation. In the crystal, the polar portions of the molecules are associated through C—H⋯O and C—H⋯N hydrogen bonds and C—H⋯π(ring) and C=O⋯π(ring) interactions, forming thick layers parallel to the bc plane and with the n-octyl groups on the outside surfaces.
Keywords: crystal structure; dihydroquinoxaline; triazole; hydrogen bond; C—H⋯π(ring) interaction.
CCDC reference: 2061043
1. Chemical context
The quinoxaline moiety is well known as a versatile nitrogen-containing heterocyclic scaffold owing to its extensive pharmacological and biological properties as well as numerous therapeutic applications in medicinal research. It is reported to exhibit anti-tuberculosis (Carta et al., 2001), anti-fungal (Wagle et al., 2008), anti-HIV (Balzarini et al., 2000), anti-microbial (Singh et al., 2010), anti-malarial (Hui et al., 2006), anti-cancer (Gupta et al., 2005) and anti-inflammatory (Carta et al., 2006) activities. Furthermore, quinoxalines possess anticorrosion characteristics (e.g. Lgaz et al., 2015). Similarly, the triazole ring system is linked to biological and pharmacological activities such as anti-fungal (Nowaczyk & Modzelewska-Banachiewicz, 2008), anti-bacterial (Foroumadi et al., 2003), anti-hypertensive (Sato et al., 1980), anti-Alzheimer's disease (Missioui et al., 2022a), anti-COVID-19 (Zhang et al., 2020) and anticancer (Shivarama et al., 2003) activities. Given the wide range of therapeutic applications for quinoxaline and triazole derivatives, and with our continuing interest in the synthesis of heterocyclic systems having biological potential, we previously reported a route for the preparation of hybrid quinoxaline-containing triazoles (Missioui et al., 2022b) and herein report the synthesis and spectroscopic characterization of the new hybrid quinoxaline, 1-[(1-octyl-1H-1,2,3-triazol-4-yl)methyl]-3-phenyl-1,2-dihydroquinoxalin-2(1H)-one. A colorless plate-like specimen of the title compound was used for the X-ray crystallographic analysis (Fig. 1). A Hirshfeld surface analysis was performed to analyze the intermolecular interactions.
2. Structural commentary
The title molecule adopts a hairpin conformation, in part due to an intramolecular C18—H18B⋯O1 hydrogen bond and an intramolecular C—H⋯π(ring) interaction between C19—H19A and the C1/C6/N1/C7/C8/N2 ring (Table 1 and Fig. 1). The dihydroquinoxaline unit is not quite planar (r.m.s. deviation = 0.030 Å), as indicated by the dihedral angle of 2.69 (3)° between the constituent rings and by N1 being 0.044 (3) Å and C5 − 0.043 (3) Å from the mean plane of the ten-atom unit. The C9–C14 benzene ring is inclined to the mean plane of the C1/C6/N1/C7/C8/N2 ring by 24.0 (1)° while the C16/C17/N3/N4/N5 ring is inclined to the mean plane of the dihydroquinoxaline unit by 81.4 (1)°. The n-octyl chain is largely in the all-trans conformation, except for the portion closest to N5. Thus the N5—C18—C19—C20 and C18—C19—C20—C21 torsion angles are 169.2 (4) and −172.9 (4)°, respectively, while the remainder towards the terminus of the chain are in the range 175.0 (4)–179.8 (4)°.
3. Supramolecular features
In the crystal, the polar portions of the molecules (dihydroquinoxaline and triazole moieties) are associated through C3—H3⋯O1 and C15—H15B⋯N3 hydrogen bonds and C7=O1⋯Cg3 [Cg3 is the centroid of the C1–C6 ring at x, −y − , z − with C7⋯Cg3 = 3.542 (4) Å, O1⋯Cg3 = 3.397 (4) Å and C7=O1⋯Cg3 = 86.5 (2)°] and C15—H15B⋯Cg1 (Cg1 is the centroid of the triazole ring at −x + 1, −y + 1, −z + 1) interactions (Table 1), forming thick layers parallel to the bc plane. Fig. 2 shows a detail of the first three intermolecular interactions while Fig. 3 illustrates the latter two interactions. Fig. 4 shows a portion of the full layer in which the hairpin loops of the n-octyl chains and the phenyl groups are on the outside surfaces. Consequently, the packing of the layers involves primarily van der Waals contacts between these groups.
4. Database survey
A search of the Cambridge Structural Database (CSD, updated to June 2024, Groom et al., 2016) with the fragment shown in Fig. 5 (R = C) generated 29 hits of which 15 most resemble the title molecule. These include those with R = Et (MAGBIJ; Al Ati et al., 2021), Bz (PUGGII; Benzeid et al., 2009), allyl (YAJGEX; Benzeid et al., 2011), n-pentyl (UFIYEM; Abad et al., 2023b), n-octyl (AZAZEC; Abad et al., 2023a), n-nonyl (UDAMIZ; Abad et al., 2021a), CH2CO2Et (XEXWIJ; Abad et al., 2018a), CH2CH2CO2Et (ESUKUB; Abad et al., 2021b), CH2CH2CH2OH (RIRBOM; Abad et al., 2018b) and cyclopropylmethyl (NIBXEE; Abad et al., 2018c). More elaborate examples have R = (1-hexyl)-1H-1,2,3-triazol-4-yl)methyl (FOFCIQ; Abad et al., 2021c), (1-ethylacetato)-1H-1,2,3-triazol-4-yl)methyl (ECUCOY; Abad et al., 2022), (1,3-oxazolidin-2-one-3-yl)ethyl (IDOSUR; Daouda et al., 2013) and (3-(p-tolyl)-4,5-dihydroisoxazol-5-yl)methyl (ILIRED; Abad et al., 2021d). The two with the substituent on the ring nitrogen of the dihydroquinoxaline that includes the 1,2,3-triazol-4-yl ring (ECUCOY and FOFCIQ) adopt comparable hairpin conformations. In the former, this results from an intramolecular π-stacking interaction between the two carbonyl groups, which are nearly anti-parallel to each other (centroid–centroid distance = 2.95 Å) while in the latter, there is an intramolecular C—H⋯O hydrogen bond analogous to that in the title molecule. A U-shaped conformation is adopted by IDOSUR but there is no intramolecular interaction with the side chain. In all the others, the substituent on the ring nitrogen is in a largely extended conformation. In the examples cited, the dihydroqinoxaline moiety ranges from essentially planar (AZAZEC, ESUKUB, XEXWIJ and YAJGEX) to having a dihedral angle between the mean planes of the constituent rings as large as 4.51 (4)° (MAGBIJ). Additionally, the dihedral angle between the mean plane of the heterocyclic ring in the dihydroquinoxaline and that of the attached phenyl ring varies from 9.05 (7)° in ECUCOY to 43.61 (4)° in RIRBOM with the majority of them having this angle greater than 20°.
5. Hirshfeld surface analysis
A Hirshfeld surface analysis was performed with CrystalExplorer (Spackman et al., 2021) and the interpretation of the several plots obtained is described by Tan et al. (2019). Fig. 6a shows the dnorm surface together with four neighboring molecules. Those above and below the surface show the C—H⋯O hydrogen bonds while those on the right show the C—H⋯N hydrogen bonds, which are also depicted in Fig. 2. Fig. 6b shows the surface calculated over the shape function with one neighboring molecule illustrating the C7=O1⋯π(ring) interaction. Fig. 7a is a 2-D fingerprint plot of all types of intermolecular interactions with the remainder of the sections showing delineation into specific atom–atom contacts. The H⋯H contacts (Fig. 7b) contribute the lion's share, which is not surprising considering the high hydrogen content, particularly in the n-octyl portion. These are followed by N⋯H/H⋯N (Fig. 7c), C⋯H/H⋯C (Fig. 7d) and O⋯H/H⋯O (Fig. 7e) contacts in order of decreasing percentage contribution. The N⋯H/H⋯N and O⋯H/H⋯O plots show rather sharp spikes as a result of the H⋯O and H⋯N distances having a narrow range of values since they primarily represent the C—H⋯O and C—H⋯N hydrogen bonds. All other contacts contribute considerably less, for example, the O⋯C contacts involving the C7=O1⋯π(ring) interactions contribute only 1.3% of the total.
6. Synthesis and crystallization
To a solution of 3-phenyl-1-(prop-2-yn-1-yl)quinoxalin-2(1H)-one 0.5 g (0.0020 mmol) in absolute ethanol (20 ml) were added 1.3 equivalents of 1-azidooctane. The mixture was stirred at reflux and the reaction monitored by thin layer (TLC). After concentration under reduced pressure, the residue was purified by on silica gel using a mixture of ethyl acetate/hexane (10/90%) as The precipitated product was filtered off, dried and recrystallized from ethanol to yield colorless crystals of the title compound.
Yield 42%; m.p: 408–410 K; 1H NMR (300 MHz, CDCl3) δ ppm: 0.90 (t, 3H, CH3, J = 6 Hz); 1.26–1.34 (m, 10H, CH2); 1.89 (quin, 2H, CH2); 4.58 (t, 2H, N—NCH, J = 6 Hz) ; 5.63 (s, 2H, N—CH2); 7.62 (s, 1H, CHtriazole); 7.36-8.35 (m, 9Harom); 13C NMR (75 MHz, CDCl3) δ ppm: 14.07 (CH3); 22.61, 26.12, 26.62, 29.06, 30.51, 31.69, 35.24 (CH2); 48.77 (N—CH); 113.38, 124.55, 128.21 (triazole); 129.54, 130.70, 130.74, 131.18, 131.27 (CHarom); 131.83, 133.47, 133.71, 135.53, 153.84 (Cq); 154.15 (C=O).
7. Refinement
Crystal data, data collection and structure . H atoms were placed in calculated positions and included as riding contributions with isotropic displacement parameters tied to those of the attached atoms.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2061043
https://doi.org/10.1107/S2056989024007746/vm2306sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024007746/vm2306Isup2.hkl
C25H29N5O | F(000) = 888 |
Mr = 415.53 | Dx = 1.229 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
a = 22.5143 (9) Å | Cell parameters from 6427 reflections |
b = 10.5927 (4) Å | θ = 3.9–68.3° |
c = 9.4449 (3) Å | µ = 0.61 mm−1 |
β = 94.439 (2)° | T = 150 K |
V = 2245.73 (14) Å3 | Plate, colourless |
Z = 4 | 0.22 × 0.14 × 0.03 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 4077 independent reflections |
Radiation source: INCOATEC IµS micro–focus source | 2414 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.100 |
ω scans | θmax = 68.4°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −24→26 |
Tmin = 0.78, Tmax = 0.98 | k = −12→12 |
14897 measured reflections | l = −11→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.089 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.187 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0212P)2 + 4.325P] where P = (Fo2 + 2Fc2)/3 |
4077 reflections | (Δ/σ)max < 0.001 |
281 parameters | Δρmax = 0.28 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.31905 (12) | 0.4116 (3) | 0.5411 (3) | 0.0402 (7) | |
N1 | 0.35153 (14) | 0.4054 (3) | 0.3191 (3) | 0.0304 (7) | |
N2 | 0.23311 (15) | 0.4198 (3) | 0.2078 (3) | 0.0351 (8) | |
N3 | 0.51179 (16) | 0.6643 (3) | 0.2817 (4) | 0.0450 (9) | |
N4 | 0.47557 (16) | 0.7245 (3) | 0.3627 (4) | 0.0442 (9) | |
N5 | 0.43688 (15) | 0.6386 (3) | 0.4067 (3) | 0.0375 (8) | |
C1 | 0.27946 (17) | 0.4162 (3) | 0.1195 (4) | 0.0312 (8) | |
C2 | 0.26428 (19) | 0.4209 (4) | −0.0285 (4) | 0.0374 (9) | |
H2 | 0.223790 | 0.428795 | −0.063874 | 0.045* | |
C3 | 0.3081 (2) | 0.4141 (4) | −0.1205 (4) | 0.0415 (10) | |
H3 | 0.298302 | 0.418698 | −0.219991 | 0.050* | |
C4 | 0.3670 (2) | 0.4003 (4) | −0.0680 (4) | 0.0408 (10) | |
H4 | 0.397071 | 0.394595 | −0.132888 | 0.049* | |
C5 | 0.38320 (19) | 0.3946 (3) | 0.0766 (4) | 0.0356 (9) | |
H5 | 0.423674 | 0.383697 | 0.110762 | 0.043* | |
C6 | 0.33873 (17) | 0.4054 (3) | 0.1702 (4) | 0.0296 (8) | |
C7 | 0.30655 (17) | 0.4091 (3) | 0.4117 (4) | 0.0296 (8) | |
C8 | 0.24497 (17) | 0.4129 (3) | 0.3448 (4) | 0.0319 (8) | |
C9 | 0.19308 (17) | 0.4142 (4) | 0.4323 (4) | 0.0337 (9) | |
C10 | 0.13926 (19) | 0.4627 (4) | 0.3735 (5) | 0.0435 (10) | |
H10 | 0.137071 | 0.495971 | 0.279822 | 0.052* | |
C11 | 0.0893 (2) | 0.4635 (5) | 0.4480 (5) | 0.0509 (12) | |
H11 | 0.053282 | 0.498797 | 0.406174 | 0.061* | |
C12 | 0.0908 (2) | 0.4131 (5) | 0.5841 (5) | 0.0527 (12) | |
H12 | 0.056176 | 0.413158 | 0.635478 | 0.063* | |
C13 | 0.1439 (2) | 0.3626 (4) | 0.6434 (4) | 0.0461 (11) | |
H13 | 0.145473 | 0.327016 | 0.735990 | 0.055* | |
C14 | 0.1942 (2) | 0.3636 (4) | 0.5695 (4) | 0.0412 (10) | |
H14 | 0.230287 | 0.329379 | 0.612140 | 0.049* | |
C15 | 0.41335 (17) | 0.4045 (4) | 0.3792 (4) | 0.0339 (9) | |
H15A | 0.434130 | 0.331865 | 0.339415 | 0.041* | |
H15B | 0.413718 | 0.391802 | 0.483141 | 0.041* | |
C16 | 0.44727 (18) | 0.5225 (4) | 0.3517 (4) | 0.0342 (9) | |
C17 | 0.49494 (18) | 0.5414 (4) | 0.2736 (4) | 0.0392 (10) | |
H17 | 0.513561 | 0.477949 | 0.221367 | 0.047* | |
C18 | 0.38948 (18) | 0.6787 (4) | 0.4936 (4) | 0.0405 (10) | |
H18A | 0.404178 | 0.748811 | 0.556118 | 0.049* | |
H18B | 0.378803 | 0.607611 | 0.554828 | 0.049* | |
C19 | 0.33455 (18) | 0.7215 (4) | 0.4043 (4) | 0.0403 (10) | |
H19A | 0.324586 | 0.657968 | 0.329307 | 0.048* | |
H19B | 0.343389 | 0.802013 | 0.357084 | 0.048* | |
C20 | 0.28082 (18) | 0.7401 (4) | 0.4907 (4) | 0.0415 (10) | |
H20A | 0.275342 | 0.663014 | 0.547534 | 0.050* | |
H20B | 0.289133 | 0.810885 | 0.557656 | 0.050* | |
C21 | 0.22352 (19) | 0.7672 (4) | 0.4019 (4) | 0.0426 (10) | |
H21A | 0.229096 | 0.844375 | 0.345237 | 0.051* | |
H21B | 0.215452 | 0.696557 | 0.334558 | 0.051* | |
C22 | 0.16970 (18) | 0.7854 (4) | 0.4858 (4) | 0.0435 (10) | |
H22A | 0.163263 | 0.707438 | 0.540295 | 0.052* | |
H22B | 0.178002 | 0.854695 | 0.554860 | 0.052* | |
C23 | 0.11349 (19) | 0.8158 (4) | 0.3957 (5) | 0.0480 (11) | |
H23A | 0.107317 | 0.750420 | 0.321071 | 0.058* | |
H23B | 0.118883 | 0.897606 | 0.347650 | 0.058* | |
C24 | 0.0581 (2) | 0.8234 (5) | 0.4759 (5) | 0.0544 (12) | |
H24A | 0.064869 | 0.885171 | 0.554164 | 0.065* | |
H24B | 0.050943 | 0.740002 | 0.518780 | 0.065* | |
C25 | 0.0031 (2) | 0.8620 (5) | 0.3828 (6) | 0.0647 (14) | |
H25A | −0.031573 | 0.862778 | 0.439565 | 0.097* | |
H25B | −0.003742 | 0.801635 | 0.304585 | 0.097* | |
H25C | 0.008978 | 0.946546 | 0.344113 | 0.097* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0462 (17) | 0.0528 (17) | 0.0217 (13) | 0.0000 (14) | 0.0040 (11) | 0.0017 (12) |
N1 | 0.0373 (19) | 0.0333 (17) | 0.0211 (15) | 0.0002 (14) | 0.0044 (13) | 0.0013 (13) |
N2 | 0.044 (2) | 0.0360 (18) | 0.0260 (16) | 0.0005 (15) | 0.0054 (14) | −0.0007 (14) |
N3 | 0.049 (2) | 0.048 (2) | 0.039 (2) | −0.0081 (17) | 0.0083 (17) | −0.0018 (17) |
N4 | 0.049 (2) | 0.042 (2) | 0.042 (2) | −0.0085 (17) | 0.0065 (17) | 0.0006 (17) |
N5 | 0.043 (2) | 0.0406 (19) | 0.0292 (17) | −0.0027 (16) | 0.0029 (15) | −0.0005 (15) |
C1 | 0.038 (2) | 0.0289 (19) | 0.0274 (18) | 0.0015 (17) | 0.0037 (16) | −0.0018 (16) |
C2 | 0.045 (3) | 0.040 (2) | 0.0262 (19) | 0.0018 (19) | −0.0045 (17) | 0.0017 (17) |
C3 | 0.062 (3) | 0.042 (2) | 0.0214 (19) | −0.002 (2) | 0.0072 (19) | −0.0020 (17) |
C4 | 0.058 (3) | 0.034 (2) | 0.032 (2) | −0.004 (2) | 0.016 (2) | −0.0036 (17) |
C5 | 0.048 (3) | 0.031 (2) | 0.0293 (19) | 0.0001 (18) | 0.0080 (17) | −0.0033 (16) |
C6 | 0.039 (2) | 0.0281 (19) | 0.0214 (17) | 0.0019 (16) | 0.0028 (16) | 0.0008 (15) |
C7 | 0.036 (2) | 0.0310 (19) | 0.0217 (18) | 0.0030 (16) | 0.0015 (15) | −0.0006 (15) |
C8 | 0.038 (2) | 0.0292 (19) | 0.0283 (19) | 0.0007 (17) | 0.0015 (16) | −0.0007 (16) |
C9 | 0.038 (2) | 0.036 (2) | 0.0282 (19) | −0.0005 (18) | 0.0052 (17) | −0.0020 (17) |
C10 | 0.047 (3) | 0.047 (2) | 0.037 (2) | 0.000 (2) | 0.006 (2) | −0.005 (2) |
C11 | 0.039 (3) | 0.062 (3) | 0.051 (3) | 0.004 (2) | 0.005 (2) | −0.003 (2) |
C12 | 0.041 (3) | 0.067 (3) | 0.052 (3) | −0.002 (2) | 0.017 (2) | −0.007 (2) |
C13 | 0.048 (3) | 0.056 (3) | 0.036 (2) | −0.004 (2) | 0.012 (2) | 0.001 (2) |
C14 | 0.048 (3) | 0.044 (2) | 0.033 (2) | 0.000 (2) | 0.0063 (19) | 0.0016 (19) |
C15 | 0.036 (2) | 0.036 (2) | 0.0308 (19) | 0.0022 (17) | 0.0046 (17) | −0.0013 (17) |
C16 | 0.039 (2) | 0.037 (2) | 0.0272 (19) | 0.0009 (18) | 0.0025 (17) | −0.0001 (17) |
C17 | 0.038 (2) | 0.043 (2) | 0.037 (2) | −0.0027 (18) | 0.0057 (18) | −0.0021 (19) |
C18 | 0.044 (3) | 0.044 (2) | 0.033 (2) | 0.000 (2) | 0.0059 (18) | −0.0046 (19) |
C19 | 0.049 (3) | 0.038 (2) | 0.034 (2) | 0.0016 (19) | 0.0006 (19) | −0.0016 (18) |
C20 | 0.048 (3) | 0.042 (2) | 0.035 (2) | 0.005 (2) | 0.0049 (19) | −0.0033 (19) |
C21 | 0.054 (3) | 0.038 (2) | 0.035 (2) | 0.003 (2) | 0.003 (2) | −0.0026 (18) |
C22 | 0.043 (3) | 0.048 (3) | 0.039 (2) | 0.003 (2) | 0.0028 (19) | −0.002 (2) |
C23 | 0.052 (3) | 0.049 (3) | 0.043 (3) | 0.006 (2) | 0.001 (2) | 0.003 (2) |
C24 | 0.054 (3) | 0.059 (3) | 0.051 (3) | 0.011 (2) | 0.007 (2) | −0.001 (2) |
C25 | 0.057 (3) | 0.067 (3) | 0.071 (4) | 0.009 (3) | 0.004 (3) | 0.005 (3) |
O1—C7 | 1.233 (4) | C13—H13 | 0.9500 |
N1—C7 | 1.389 (4) | C14—H14 | 0.9500 |
N1—C6 | 1.413 (4) | C15—C16 | 1.498 (5) |
N1—C15 | 1.462 (5) | C15—H15A | 0.9900 |
N2—C8 | 1.303 (5) | C15—H15B | 0.9900 |
N2—C1 | 1.386 (5) | C16—C17 | 1.363 (5) |
N3—N4 | 1.324 (5) | C17—H17 | 0.9500 |
N3—C17 | 1.357 (5) | C18—C19 | 1.512 (6) |
N4—N5 | 1.347 (4) | C18—H18A | 0.9900 |
N5—C16 | 1.362 (5) | C18—H18B | 0.9900 |
N5—C18 | 1.459 (5) | C19—C20 | 1.523 (5) |
C1—C6 | 1.387 (5) | C19—H19A | 0.9900 |
C1—C2 | 1.415 (5) | C19—H19B | 0.9900 |
C2—C3 | 1.366 (5) | C20—C21 | 1.511 (5) |
C2—H2 | 0.9500 | C20—H20A | 0.9900 |
C3—C4 | 1.386 (6) | C20—H20B | 0.9900 |
C3—H3 | 0.9500 | C21—C22 | 1.511 (5) |
C4—C5 | 1.387 (5) | C21—H21A | 0.9900 |
C4—H4 | 0.9500 | C21—H21B | 0.9900 |
C5—C6 | 1.391 (5) | C22—C23 | 1.504 (6) |
C5—H5 | 0.9500 | C22—H22A | 0.9900 |
C7—C8 | 1.479 (5) | C22—H22B | 0.9900 |
C8—C9 | 1.483 (5) | C23—C24 | 1.510 (6) |
C9—C10 | 1.392 (6) | C23—H23A | 0.9900 |
C9—C14 | 1.400 (5) | C23—H23B | 0.9900 |
C10—C11 | 1.373 (6) | C24—C25 | 1.520 (6) |
C10—H10 | 0.9500 | C24—H24A | 0.9900 |
C11—C12 | 1.390 (6) | C24—H24B | 0.9900 |
C11—H11 | 0.9500 | C25—H25A | 0.9800 |
C12—C13 | 1.387 (6) | C25—H25B | 0.9800 |
C12—H12 | 0.9500 | C25—H25C | 0.9800 |
C13—C14 | 1.377 (6) | ||
C7—N1—C6 | 121.6 (3) | H15A—C15—H15B | 107.6 |
C7—N1—C15 | 118.3 (3) | N5—C16—C17 | 103.9 (3) |
C6—N1—C15 | 120.1 (3) | N5—C16—C15 | 125.6 (3) |
C8—N2—C1 | 119.3 (3) | C17—C16—C15 | 130.5 (4) |
N4—N3—C17 | 108.2 (3) | N3—C17—C16 | 109.8 (4) |
N3—N4—N5 | 107.2 (3) | N3—C17—H17 | 125.1 |
N4—N5—C16 | 111.0 (3) | C16—C17—H17 | 125.1 |
N4—N5—C18 | 119.7 (3) | N5—C18—C19 | 112.1 (3) |
C16—N5—C18 | 129.2 (3) | N5—C18—H18A | 109.2 |
N2—C1—C6 | 122.9 (3) | C19—C18—H18A | 109.2 |
N2—C1—C2 | 117.3 (3) | N5—C18—H18B | 109.2 |
C6—C1—C2 | 119.8 (3) | C19—C18—H18B | 109.2 |
C3—C2—C1 | 119.7 (4) | H18A—C18—H18B | 107.9 |
C3—C2—H2 | 120.1 | C18—C19—C20 | 112.9 (3) |
C1—C2—H2 | 120.1 | C18—C19—H19A | 109.0 |
C2—C3—C4 | 119.7 (4) | C20—C19—H19A | 109.0 |
C2—C3—H3 | 120.1 | C18—C19—H19B | 109.0 |
C4—C3—H3 | 120.1 | C20—C19—H19B | 109.0 |
C3—C4—C5 | 121.9 (4) | H19A—C19—H19B | 107.8 |
C3—C4—H4 | 119.1 | C21—C20—C19 | 114.0 (3) |
C5—C4—H4 | 119.1 | C21—C20—H20A | 108.7 |
C4—C5—C6 | 118.3 (4) | C19—C20—H20A | 108.7 |
C4—C5—H5 | 120.8 | C21—C20—H20B | 108.7 |
C6—C5—H5 | 120.8 | C19—C20—H20B | 108.7 |
C1—C6—C5 | 120.5 (3) | H20A—C20—H20B | 107.6 |
C1—C6—N1 | 117.4 (3) | C22—C21—C20 | 114.7 (3) |
C5—C6—N1 | 122.1 (4) | C22—C21—H21A | 108.6 |
O1—C7—N1 | 120.2 (3) | C20—C21—H21A | 108.6 |
O1—C7—C8 | 123.9 (3) | C22—C21—H21B | 108.6 |
N1—C7—C8 | 115.9 (3) | C20—C21—H21B | 108.6 |
N2—C8—C7 | 122.6 (3) | H21A—C21—H21B | 107.6 |
N2—C8—C9 | 116.3 (4) | C23—C22—C21 | 113.9 (4) |
C7—C8—C9 | 121.0 (3) | C23—C22—H22A | 108.8 |
C10—C9—C14 | 117.6 (4) | C21—C22—H22A | 108.8 |
C10—C9—C8 | 118.7 (3) | C23—C22—H22B | 108.8 |
C14—C9—C8 | 123.6 (4) | C21—C22—H22B | 108.8 |
C11—C10—C9 | 121.4 (4) | H22A—C22—H22B | 107.7 |
C11—C10—H10 | 119.3 | C22—C23—C24 | 114.7 (4) |
C9—C10—H10 | 119.3 | C22—C23—H23A | 108.6 |
C10—C11—C12 | 120.6 (5) | C24—C23—H23A | 108.6 |
C10—C11—H11 | 119.7 | C22—C23—H23B | 108.6 |
C12—C11—H11 | 119.7 | C24—C23—H23B | 108.6 |
C13—C12—C11 | 118.8 (4) | H23A—C23—H23B | 107.6 |
C13—C12—H12 | 120.6 | C23—C24—C25 | 113.1 (4) |
C11—C12—H12 | 120.6 | C23—C24—H24A | 109.0 |
C14—C13—C12 | 120.6 (4) | C25—C24—H24A | 109.0 |
C14—C13—H13 | 119.7 | C23—C24—H24B | 109.0 |
C12—C13—H13 | 119.7 | C25—C24—H24B | 109.0 |
C13—C14—C9 | 121.0 (4) | H24A—C24—H24B | 107.8 |
C13—C14—H14 | 119.5 | C24—C25—H25A | 109.5 |
C9—C14—H14 | 119.5 | C24—C25—H25B | 109.5 |
N1—C15—C16 | 114.2 (3) | H25A—C25—H25B | 109.5 |
N1—C15—H15A | 108.7 | C24—C25—H25C | 109.5 |
C16—C15—H15A | 108.7 | H25A—C25—H25C | 109.5 |
N1—C15—H15B | 108.7 | H25B—C25—H25C | 109.5 |
C16—C15—H15B | 108.7 | ||
C17—N3—N4—N5 | 1.0 (5) | C7—C8—C9—C10 | 156.9 (4) |
N3—N4—N5—C16 | −1.2 (4) | N2—C8—C9—C14 | 156.1 (4) |
N3—N4—N5—C18 | −177.4 (3) | C7—C8—C9—C14 | −26.3 (6) |
C8—N2—C1—C6 | −0.1 (6) | C14—C9—C10—C11 | 1.3 (6) |
C8—N2—C1—C2 | 178.5 (3) | C8—C9—C10—C11 | 178.3 (4) |
N2—C1—C2—C3 | −178.2 (4) | C9—C10—C11—C12 | −1.4 (7) |
C6—C1—C2—C3 | 0.4 (6) | C10—C11—C12—C13 | 0.3 (7) |
C1—C2—C3—C4 | 1.1 (6) | C11—C12—C13—C14 | 0.6 (7) |
C2—C3—C4—C5 | −0.8 (6) | C12—C13—C14—C9 | −0.6 (7) |
C3—C4—C5—C6 | −1.1 (6) | C10—C9—C14—C13 | −0.4 (6) |
N2—C1—C6—C5 | 176.2 (4) | C8—C9—C14—C13 | −177.1 (4) |
C2—C1—C6—C5 | −2.3 (6) | C7—N1—C15—C16 | −111.7 (4) |
N2—C1—C6—N1 | −3.6 (6) | C6—N1—C15—C16 | 66.8 (4) |
C2—C1—C6—N1 | 177.9 (3) | N4—N5—C16—C17 | 1.0 (4) |
C4—C5—C6—C1 | 2.7 (6) | C18—N5—C16—C17 | 176.6 (4) |
C4—C5—C6—N1 | −177.6 (3) | N4—N5—C16—C15 | 179.3 (4) |
C7—N1—C6—C1 | 3.4 (5) | C18—N5—C16—C15 | −5.1 (7) |
C15—N1—C6—C1 | −175.1 (3) | N1—C15—C16—N5 | 67.6 (5) |
C7—N1—C6—C5 | −176.4 (4) | N1—C15—C16—C17 | −114.6 (5) |
C15—N1—C6—C5 | 5.2 (5) | N4—N3—C17—C16 | −0.4 (5) |
C6—N1—C7—O1 | −178.5 (3) | N5—C16—C17—N3 | −0.3 (5) |
C15—N1—C7—O1 | −0.1 (5) | C15—C16—C17—N3 | −178.5 (4) |
C6—N1—C7—C8 | 0.1 (5) | N4—N5—C18—C19 | 87.1 (4) |
C15—N1—C7—C8 | 178.6 (3) | C16—N5—C18—C19 | −88.2 (5) |
C1—N2—C8—C7 | 3.9 (6) | N5—C18—C19—C20 | 169.2 (4) |
C1—N2—C8—C9 | −178.5 (3) | C18—C19—C20—C21 | −172.9 (4) |
O1—C7—C8—N2 | 174.7 (4) | C19—C20—C21—C22 | 179.8 (4) |
N1—C7—C8—N2 | −3.9 (5) | C20—C21—C22—C23 | 178.5 (4) |
O1—C7—C8—C9 | −2.7 (6) | C21—C22—C23—C24 | 175.0 (4) |
N1—C7—C8—C9 | 178.6 (3) | C22—C23—C24—C25 | 176.5 (4) |
N2—C8—C9—C10 | −20.7 (6) |
Cg1 and Cg2 are the centroids of the C16/C17/N3/N4/N5 and C1/C6/N1/C7/C8/N2 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O1i | 0.95 | 2.34 | 3.225 (5) | 155 |
C15—H15A···N3ii | 0.99 | 2.48 | 3.467 (5) | 174 |
C15—H15B···Cg1iii | 0.99 | 2.96 | 3.575 (4) | 121 |
C18—H18B···O1 | 0.99 | 2.47 | 3.291 (5) | 140 |
C19—H19A···Cg2 | 0.99 | 2.65 | 3.646 (4) | 148 |
Symmetry codes: (i) x, y, z−1; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+1, −y+1, −z+1. |
Acknowledgements
The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. The contributions of the authors are as follows: conceptualization, EME and YR; methodology, AA; investigation, NA; writing (original draft), JTM and NA; writing (review and editing of the manuscript), YR; formal analysis, YR; supervision, YR;
determination and validation, JTM; resources, CKMReferences
Abad, N., Al-Ostoot, F. H., Ashraf, S., Chkirate, K., Aljohani, M. S., Alharbi, H. Y., Buhlak, S., El Hafi, M., Van Meervelt, L., Al-Maswari, B. M., Essassi, El M. & Ramli, Y. (2023a). Heliyon 9, e21312. Google Scholar
Abad, N., Chkirate, K., Al-Ostoot, F. H., Van Meervelt, L., Lahmidi, S., Ferfra, S., Ramli, Y. & Essassi, E. M. (2021a). Acta Cryst. E77, 1037–1042. Web of Science CSD CrossRef IUCr Journals Google Scholar
Abad, N., El Bakri, Y., Sebhaoui, J., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018a). IUCrData, 3, x180519. Google Scholar
Abad, N., El Bakri, Y., Sebhaoui, J., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018c). IUCrData, 3, x180610. Google Scholar
Abad, N., El Ghayati, L., Kalonji Mubengayi, C., Essassi, E. M., Kaya, S., Mague, J. T. & Ramli, Y. (2021b). Acta Cryst. E77, 643–646. Web of Science CSD CrossRef IUCr Journals Google Scholar
Abad, N., Ferfra, S., Essassi, E. M., Mague, J. T. & Ramli, Y. (2021c). Z. Kristallogr. New Cryst. Struct. 236, 173–175. Web of Science CSD CrossRef CAS Google Scholar
Abad, N., Guelmami, L., Haouas, A., Hajji, M., Hafi, M. E., Sebhaoui, J., Guerfel, T., Mague, J. T., Essassi, E. M. & Ramli, Y. (2023b). J. Mol. Struct. 1286, 135622. Web of Science CSD CrossRef Google Scholar
Abad, N., Missioui, M., Alsubari, A., Mague, J. T., Essassi, E. M. & Ramli, Y. (2022). IUCrData, 7. Google Scholar
Abad, N., Ramli, Y., Lahmidi, S., El Hafi, M., Essassi, E. M. & Mague, J. T. (2018b). IUCrData, 3, x181633. Google Scholar
Abad, N., Sallam, H. H., Al-Ostoot, F. H., Khamees, H. A., Al-horaibi, S. A., Khanum, S. A., Madegowda, M., Hafi, M. E., Mague, J. T., Essassi, E. M. & Ramli, Y. (2021d). J. Mol. Struct. 1232, 130004. Web of Science CSD CrossRef Google Scholar
Al Ati, G., Chkirate, K., Mashrai, A., Mague, J. T., Ramli, Y., Achour, R. & Essassi, E. M. (2021). Acta Cryst. E77, 18–22. Web of Science CSD CrossRef IUCr Journals Google Scholar
Balzarini, J., De Clercq, E., Carbonez, A., Burt, V. & Kleim, J.-P. (2000). AIDS Res. Hum. Retroviruses, 16, 517–528. Web of Science CrossRef PubMed CAS Google Scholar
Benzeid, H., Bouhfid, R., Massip, S., Leger, J. M. & Essassi, E. M. (2011). Acta Cryst. E67, o2990. Web of Science CSD CrossRef IUCr Journals Google Scholar
Benzeid, H., Saffon, N., Garrigues, B., Essassi, E. M. & Ng, S. W. (2009). Acta Cryst. E65, o2685. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3 and SAINT, Bruker AXS, Inc., Madison, Wisconsin, USA. Google Scholar
Carta, A., Loriga, M., Piras, S., Paglietti, G., La Colla, P., Busonera, B., Collu, G. & Loddo, R. (2006). Med. Chem. 2, 113–122. Web of Science CrossRef PubMed CAS Google Scholar
Carta, A., Sanna, P., Gherardini, L., Usai, D. & Zanetti, S. (2001). Farmaco, 56, 933–938. Web of Science CrossRef PubMed CAS Google Scholar
Daouda, B., Doumbia, M. L., Essassi, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o662. CSD CrossRef IUCr Journals Google Scholar
Foroumadi, A., Mansouri, S., Kiani, Z. & Rahmani, A. (2003). Eur. J. Med. Chem. 38, 851–854. Web of Science CrossRef PubMed CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gupta, D., Ghosh, N. N. & Chandra, R. (2005). Bioorg. Med. Chem. Lett. 15, 1019–1022. Web of Science CrossRef PubMed CAS Google Scholar
Hui, X., Desrivot, J., Bories, C., Loiseau, P. M., Franck, X., Hocquemiller, R. & Figadère, B. (2006). Bioorg. Med. Chem. Lett. 16, 815–820. Web of Science CrossRef PubMed CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lgaz, H., ELaoufir, Y., Ramli, Y., Larouj, M., Zarrok, H., Salghi, R., Zarrouk, A., Elmidaoui, A., Guenbour, A., Essassi, E. M. & Oudda, H. (2015). Pharma Chemica, 7, 36–45. CAS Google Scholar
Missioui, M., Mortada, S., Guerrab, W., Demirtas, G., Mague, J. T., Ansar, M., Faouzi, M., Essassi, E. M., Mehdar, T. H., Aljohani, F. S., Said, M. A. & Ramli, Y. (2022b). Arab. J. Chem. 15, 103851. Web of Science CSD CrossRef Google Scholar
Missioui, M., Said, M. A., Demirtaş, G., Mague, J. T. & Ramli, Y. (2022a). J. Mol. Struct. 1247, 131420. Web of Science CSD CrossRef Google Scholar
Nowaczyk, A. & Modzelewska-Banachiewicz, B. (2008). Acta Poloniae Pharm. Drug Res. 65, 795–798. CAS Google Scholar
Sato, Y., Shimoji, Y., Fujita, H., Nishino, H., Mizuno, H., Kobayashi, S. & Kumakura, S. (1980). J. Med. Chem. 23, 927–937. CrossRef CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shivarama Holla, B., Veerendra, B., Shivananda, M. K. & Poojary, B. (2003). Eur. J. Med. Chem. 38, 759–767. Web of Science CrossRef PubMed CAS Google Scholar
Singh, D. P., Deivedi, S. K., Hashim, S. R. & Singhal, R. G. (2010). Pharmaceuticals 3, 2416–2425. CrossRef CAS PubMed Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. Web of Science CrossRef IUCr Journals Google Scholar
Wagle, S., Adhikari, A. V. & Kumari, N. S. (2008). Ind. J. Chem. 47, 439–448. Google Scholar
Zhang, H., Zhang, J., Qu, W., Xie, S., Huang, L., Chen, D., Tao, Y., Liu, Z., Pan, Y. & Yuan, Z. (2020). Front. Chem. 8, 598. Web of Science CrossRef PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.