research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis, DFT and the mol­ecular docking studies of 3-(2-chloro­acet­yl)-2,4,6,8-tetra­phenyl-3,7-di­azabi­cyclo­[3.3.1]nonan-9-one

crossmark logo

aDepartment of Chemistry, Annamalai University, Annamalainagar, Chidambaram 608 002, India, bPG & Research Department of Chemistry, Government Arts College, Chidambaram 608 102, India, and cPG & Research Department of Physics, Government Arts College, Melur 625 106, India
*Correspondence e-mail: tvschemau@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 23 July 2024; accepted 22 August 2024; online 30 August 2024)

In the title compound, C33H29ClN2O2, the two piperidine rings of the di­aza­bicyclo moiety adopt distorted-chair conformations. Inter­molecular C—H⋯π inter­actions are mainly responsible for the crystal packing. The inter­molecular inter­actions were qu­anti­fied and analysed using Hirshfeld surface analysis, revealing that H⋯H inter­actions contribute most to the crystal packing (52.3%). The mol­ecular structure was further optimized by density functional theory (DFT) at the B3LYP/6–31 G(d,p) level and is compared with the experimentally determined mol­ecular structure in the solid state.

1. Chemical context

The 3,7-di­aza­bicyclo­[3.3.1]nonane core structure is present in many naturally occurring lupin alkaloids such as lupanine, sparteine, isolupanine and hy­droxy­lupanine. The bridged bicyclic ring system present in 3-aza­bicyclo­[3.3.1]-9-ones [3-ABN] and 3,7-di­aza­bicyclo­[3.3.1]nonan-9-ones [3-DABN] can adopt twin chair, chair–boat or twin boat stereochemical conformations (Srikrishna & Vijaykumar, 1998[Srikrishna, A. & Vijaykumar, D. (1998). Tetrahedron Lett. 39, 5833-5834.]; Pathak et al., 2007[Pathak, C., Karthikeyan, S., More, K. & Vijayakumar, V. (2007). Indian J. Heterocycl. Chem. 16, 295-296.]; Vijayakumar & Sundaravadivelu, 2005[Vijayakumar, V. & Sundaravadivelu, M. (2005). Magn. Reson. Chem. 43, 479-482.]). Syntheses and stereochemistries of these bicyclic compounds have extensively been studied by several groups (Jeyaraman & Avila, 1981[Jeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149-174.]), and their biological potencies have also been well established (Parthiban et al., 2009[Parthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009). Bioorg. Med. Chem. Lett. 19, 6981-6985.]). Inter­estingly, the N-nitroso derivatives of 3-DABN show distorted chair–chair conformations (Natarajan & Mathews, 2011[Natarajan, S. & Mathews, R. (2011). Acta Cryst. E67, o1686.]), and 3,7-dialk­yl/diacyl-3,7-di­aza­bicyclo­nona­nes serve as stimulus-sensitive mol­ecular switches and lipid bilayer modifiers (Veremeeva et al., 2014[Veremeeva, P. N., Lapteva, V. L., Palyulin, V. A., Sybachin, A. V., Yaroslavov, A. A. & Zefirov, N. S. (2014). Tetrahedron, 70, 1408-1411.], 2019[Veremeeva, P. N., Grishina, I. V., Zaborova, O. V., Averin, A. D. & Palyulin, V. A. (2019). Tetrahedron, 75, 4444-4450.]).

[Scheme 1]

In the present work, the synthesis, structural and computational studies of 3-(2-chloro­acet­yl)-2,4,6,8-tetra­phen­yl-3,7-di­aza­bicyclo­[3.3.1]nonan-9-one, (I)[link], a similar analogue of 3-DABN, is reported.

2. Structural commentary

The mol­ecular structure of (I)[link] is displayed in Fig. 1[link]. The chloro­acetyl group (C8/O1/C9/Cl1) and the phenyl ring (C10–C15) are perpendicular with each other and make a dihedral angle of 89.8 (1)°. The chloro­acetyl group is planar with a maximum deviation of 0.080 (1) Å for atom C8.

[Figure 1]
Figure 1
A view of the mol­ecular structure of (I)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. Intra­molecular hydrogen bonds are shown as dashed lines.

The two piperidine rings (N1/C1–C5) and (N2/C6/C2–C4/C7) in the di­aza­bicyclo moiety adopt distorted chair conformations, with puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) of Q = 0.487 (2) Å, θ = 157.5 (2)°, φ = 6.6 (6)° for ring (N1/C1–C5) and 0.628 (2) Å, θ = 5.8 (2)° and φ = 194.5 (16)° for ring (N2/C6/C2–C4/C7). Atoms C5 and C1 in the (N1/C1–C5) ring deviate by 0.489 (1) and −0.599 (2) Å, respectively, from the least-squares plane through the remaining four atoms. Similarly, atoms C4 and C6 in the (N2/C6/C2–C4/C7) ring deviate by 0.781 (1) and −0.695 (1) Å respectively, from the least-squares plane through the remaining four atoms. The eight-membered ring (N1/C1/C2/C6/N2/C7/C4/C5) of the aza­bicyclo moiety has a boat–boat conformation, with puckering parameters q2 = 1.565 (2) Å, q3 = q4 = 0.086 (2) Å and θ2 = 86.8 (2)° (Evans & Boeyens, 1988[Evans, D. G. & Boeyens, J. C. A. (1988). Acta Cryst. B44, 663-671.]).

Intra­molecular C17—H17⋯N2 and C5—H5⋯O1 contacts, forming two S(5) ring motifs (Bernstein et al.,1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]), lead to the stabilization of the mol­ecular conformation, supplemented by the C33—H33⋯O1 contact, forming an S(6) ring motif (Fig. 1[link], Table 1[link]). An intra­molecular C—H⋯π inter­action is observed (C11—H11⋯Cg1) involving the centroid of the C28–C33 benzene ring (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C28–C33 and C16–C21 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1 0.98 2.30 2.725 (2) 105
C17—H17⋯N2 0.93 2.46 2.809 (3) 103
C33—H33⋯O1 0.93 2.50 3.214 (3) 134
C11—H11⋯Cg1 0.93 2.72 3.625 (3) 166
C24—H24⋯Cg2i 0.93 2.87 3.628 (3) 140
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The crystal packing of (I)[link]. The intra- and inter­molecular C—H⋯π inter­actions are shown as dashed lines. For clarity, H atoms not involved in these inter­actions have been omitted.

3. Supra­molecular features

In the crystal, mol­ecules are linked into a C(10) chain motif by C—H⋯π inter­actions, C24—H224⋯Cg2, where Cg2 is the centroid of the symmetry-related mol­ecule C16–C21 benzene ring at (1 − x, −[{1\over 2}] + y, [{1\over 2}] − z) (Table 1[link]). This C(10) chain runs in a helical manner parallel to [[\overline{1}]10] (Fig. 2[link]). It is inter­esting to note that the amine function (N2—H2) is not involved in any inter­molecular inter­actions.

4. Hirshfeld surface analysis

To characterize the inter­molecular inter­actions in (I)[link], a Hirshfeld surface (HS) analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out using CrystalExplorer 21 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were generated. The HS mapped over dnorm in the range −0.0876 to +1.5105 a.u. is illustrated in Fig. 3[link], using colours to indicate contacts that are shorter (red areas), equal to (white areas), or longer than (blue areas) the sum of the van der Waals radii (Ashfaq et al., 2021[Ashfaq, M., Tahir, M. N., Muhammad, S., Munawar, K. S., Ali, A., Bogdanov, G. & Alarfaji, S. S. (2021). ACS Omega, 6, 31211-31225.]).

[Figure 3]
Figure 3
A view of the Hirshfeld surface mapped over dnorm for (I)[link].

The two-dimensional fingerprint plots provide qu­anti­tative information about the non-covalent inter­actions and the crystal packing in terms of the percentage contribution of the inter­atomic contacts (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]; Ashfaq et al., 2021[Ashfaq, M., Tahir, M. N., Muhammad, S., Munawar, K. S., Ali, A., Bogdanov, G. & Alarfaji, S. S. (2021). ACS Omega, 6, 31211-31225.]). The overall two-dimensional fingerprint plot, Fig. 4[link]a, and those delineated into H⋯H inter­actions (52.3%), H⋯C/C⋯H (23.7%), H⋯Cl/Cl⋯H (11.3%), H⋯O/O⋯H (10.8%), Cl⋯C/C⋯Cl (1.1%) and C⋯C (0.7%) inter­actions are illustrated in Fig. 4[link]bg, respectively. The most important inter­action is H⋯H, which is reflected in Fig. 4[link]b as widely scattered points of high density due to the large hydrogen content of the mol­ecule with the tip at de = di = 1.10 Å. The large number of H⋯H, H⋯C/C⋯H, H⋯Cl/Cl⋯H, H⋯O/O⋯H and Cl⋯C/C⋯Cl inter­actions suggest that van der Waals and hydrogen-bonding inter­actions play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]). The fragment patches on the HS provide an easy way to investigate the nearest neighbour coordination environment of a mol­ecule, which is 15 in the present case.

[Figure 4]
Figure 4
Two-dimensional fingerprint plots of (I)[link], showing (a) all inter­actions, and those delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯Cl/Cl⋯H, (e) H⋯O/O⋯H (f) Cl⋯C/C⋯Cl and (g) C⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

5. DFT Studies

The optimized structure of (I)[link] in the gas phase was computed with Gaussian 09W (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian Inc., Wallingford, CT, USA.]) using the B3LYP/6–31G (d, p) basis set and generated by GaussView 5.0. Comparison of the experimentally determined structure parameters by single-crystal X-ray diffraction with that of theoretical ones obtained from the optimized structure revealed that they are in good agreement (Table 2[link]). The optimized structure of (I)[link] is shown in Fig. 5[link].

Table 2
Comparison (X-ray and DFT) of selected bond lengths, bond angles and torsion angles (Å, °)

Parameter SC-XRD B3LYP/6–31G(d,p)
N1—C8 1.367 (2) 1.367
N1—C1 1.481 (2) 1.4813
N1—C5 1.494 (2) 1.4939
O1=C8 1.224 (2) 1.224
C8—C9 1.528 (2) 1.528
C9—Cl1 1.766 (2) 1.765
N2—C7 1.463 (2) 1.463
N2—C6 1.465 (2) 1.465
C1—N1—C5 122.4 (1) 122.49
C1—N1—C8 120.2 (1) 120.14
C5—N1—C8 116.9 (2) 116.91
N1—C8—C9 116.0 (2) 116.00
N1—C1—C10 116.0 (2) 115.98
N1—C5—C28 111.2 (2) 111.18
N1—C8=O1 122.9 (2) 122.84
C16—C6—C2 110.5 (2) 111.60
C22—C7—N2 111.1 (2) 111.06
N1—C1—C2—C3 –42.8 (2) –42.77
N1—C5—C4—C3 45.4 (2) 45.38
C3—C2—C1—C10 89.0 (2) 89.05
C10—C1—N1—C5 –97.1 (2) –97.09
C1—N1—C5—C28 93.9 (2) 93.91
C5—N1—C8=O1 1.4 (3) 1.35
C1—N1—C8=O1 173.9 (2) 173.89
C3—C4—C5—C28 –81.5 (2) –81.52
C6—N2—C7—C22 –174.7 (2) –174.68
C7—N2—C6—C16 –179.3 (2) –179.26
[Figure 5]
Figure 5
The DFT-optimized structure of (I)[link].

The HOMO and LUMO (Fig. 6[link]) were generated and their energies were evaluated from the optimized structure. The electron density in the HOMO mainly resides on the amidic carbonyl (N—C=O) group and the bicyclic ring system and at the phenyl groups to a lesser extent. In the LUMO, the electronic charge densities are delocalized to reside on the bicyclic ring and the phenyl groups. The energies of HOMO and LUMO are −6.361 eV and −0.1.056 eV, respectively, resulting in an energy gap (ΔE) of 5.305 eV.

[Figure 6]
Figure 6
The HOMO/LUMO energy diagram of (I)[link].

The mol­ecular electrostatic potential surface (MEPS; Fig. 7[link]) is used to find the positive and negative electrostatic potential of the mol­ecule, which provides possible information about the reactive sites of (I)[link]. The electron-rich part with a partial negative charge is shown by red regions on the MEPS over the carbonyl oxygen atom of the chloro­acetyl moiety, which is expected to undergo electrophilic attack. The pale-yellow colour spread over the chlorine atom and the secondary amine (–NH) shows lower electron density regions. The faint blue colour spread all over the mol­ecule implies less electron-deficient parts. The absence of a bright-blue region on the MEPS reveals that there are no possible sites on the mol­ecule for nucleophile attack.

[Figure 7]
Figure 7
The mol­ecular electrostatic potential surface of (I)[link].

6. Mol­ecular Docking Studies

Mol­ecules with ester and acetyl moieties are expected to have enhanced bioavailability and biological activity. Hence, it is inter­esting to evaluate the biological activity of (I)[link] through mol­ecular docking studies. To examine the binding affinity of the title compound, a mol­ecular docking study was performed with ERα protein (PDB ID: 3ERT). The mol­ecular docking was carried out using the AutoDock tool (Huey et al., 2012[Huey, R., Morris, G. M. & Forli, S. (2012). The Scripps Research Institute Molecular Graphics Laboratory, 10550 N. Torrey Pines Rd. La Jolla, California 92037-1000, USA.]) and the results were visualized using Discovery Studio­Visualizer software (v21.1.0.20298: Biovia, 2017[Biovia (2017). Discovery Studio Visualizer. Biovia, San Diego, CA, USA.]). The results showed a good binding affinity to the target receptor 3ERT protein with a docking score of −9.56 kcal mol−1. The three- and two-dimensional views of the docking inter­actions are shown in Fig. 8[link].

[Figure 8]
Figure 8
Mol­ecular docking analysis of (I)[link] against 3ERT.

7. Synthesis and crystallization

Formation of the parent compound 2,4,6,8-tetra­phenyl-3,7-di­aza­bicyclo­[3.3.1]nonan-9-one was achieved by double Mannich reaction of acetone, benzaldehyde and ammonium acetate in the molar ratio of 1:4:2. The obtained product was utilized for the synthesis of compound (I)[link] by reaction of 2,4,6,8-tetra­phenyl-3,7-di­aza­bicyclo­[3.3.1]nonan-9-one with chloro­acetyl chloride in di­chloro­methane using triethyl amine as a catalyst: yield 90%; white solid; IR (ATR, cm−1): 2656, 2799 (aromatic C—H stretching), 1718 (C=O stretching), 1654 (amidic carbon­yl). The solid product was collected, washed and recrystallized from methanol to obtain the pure product.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Atom H2 was located from a difference-Fourier map and other H atoms were placed in idealized positions and allowed to ride on their parent atoms with C—H = 0.93–0.98 Å and Uiso(H) = 1.2Ueq of the parent atom. Reflections 134, 043, 102 and 210 were obstructed from the beam stop and thus were omitted from the refinement.

Table 3
Experimental details

Crystal data
Chemical formula C33H29ClN2O2
Mr 521.03
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 298
a, b, c (Å) 9.229 (3), 19.235 (6), 30.058 (10)
V3) 5336 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.18
Crystal size (mm) 0.35 × 0.23 × 0.19
 
Data collection
Diffractometer Bruker D8 Quest XRD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.692, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 127372, 7493, 4101
Rint 0.104
(sin θ/λ)max−1) 0.719
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.151, 1.07
No. of reflections 7493
No. of parameters 344
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.28
Computer programs: APEX3 and SAINT (Bruker, 2017[Bruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

3-(2-Chloroacetyl)-2,4,6,8-tetraphenyl-3,7-diazabicyclo[3.3.1]nonan-9-one top
Crystal data top
C33H29ClN2O2Dx = 1.297 Mg m3
Mr = 521.03Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9200 reflections
a = 9.229 (3) Åθ = 2.5–29.5°
b = 19.235 (6) ŵ = 0.18 mm1
c = 30.058 (10) ÅT = 298 K
V = 5336 (3) Å3Block, colorless
Z = 80.35 × 0.23 × 0.19 mm
F(000) = 2192
Data collection top
Bruker D8 Quest XRD
diffractometer
4101 reflections with I > 2σ(I)
Detector resolution: 7.3910 pixels mm-1Rint = 0.104
ω and Phi Scans scansθmax = 30.8°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1212
Tmin = 0.692, Tmax = 0.746k = 2525
127372 measured reflectionsl = 4042
7493 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.070 w = 1/[σ2(Fo2) + (0.0448P)2 + 2.2149P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.151(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.24 e Å3
7493 reflectionsΔρmin = 0.28 e Å3
344 parametersExtinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0032 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.49791 (8)0.40099 (3)0.00094 (2)0.0784 (2)
O10.35619 (16)0.31422 (7)0.06683 (5)0.0595 (4)
O20.01614 (17)0.45163 (9)0.20859 (5)0.0695 (5)
N10.23075 (16)0.39715 (7)0.10473 (5)0.0386 (3)
N20.38457 (18)0.40602 (8)0.19171 (6)0.0496 (4)
H20.4599220.4019530.2081880.060*
C10.2156 (2)0.47202 (9)0.11529 (6)0.0409 (4)
H10.3100340.4927400.1084630.049*
C20.1919 (2)0.48463 (10)0.16565 (6)0.0436 (4)
H2A0.1532920.5316900.1696130.052*
C30.0874 (2)0.43415 (11)0.18594 (6)0.0475 (5)
C40.1368 (2)0.36052 (10)0.18000 (6)0.0459 (5)
H40.0641830.3295850.1931770.055*
C50.1534 (2)0.34183 (9)0.13028 (6)0.0417 (4)
H50.2146910.3002810.1290050.050*
C60.3352 (2)0.47838 (10)0.19303 (6)0.0474 (5)
H60.3149260.4909660.2240020.057*
C70.2784 (2)0.35584 (10)0.20830 (6)0.0492 (5)
H70.2538380.3692130.2388410.059*
C80.3309 (2)0.37562 (10)0.07418 (6)0.0431 (4)
C90.4103 (2)0.43311 (11)0.04895 (7)0.0508 (5)
H9A0.4814830.4543090.0684190.061*
H9B0.3413840.4687520.0403460.061*
C100.1061 (2)0.51234 (10)0.08728 (6)0.0464 (5)
C110.0107 (2)0.48393 (12)0.06587 (7)0.0584 (6)
H110.0255620.4361420.0669960.070*
C120.1073 (3)0.52561 (15)0.04244 (9)0.0750 (7)
H120.1867200.5053940.0284410.090*
C130.0874 (3)0.59549 (15)0.03974 (8)0.0791 (8)
H130.1529930.6229870.0241940.095*
C140.0291 (4)0.62480 (14)0.05989 (10)0.0940 (10)
H140.0441470.6725000.0578540.113*
C150.1261 (3)0.58363 (12)0.08362 (9)0.0777 (8)
H150.2056770.6042460.0972540.093*
C160.4491 (2)0.52762 (11)0.17489 (7)0.0505 (5)
C170.5834 (3)0.50516 (13)0.16039 (8)0.0678 (6)
H170.6096010.4588460.1641710.081*
C180.6794 (3)0.55085 (17)0.14029 (10)0.0867 (8)
H180.7701210.5351050.1313070.104*
C190.6422 (4)0.61856 (17)0.13359 (10)0.0874 (9)
H190.7051280.6483470.1187310.105*
C200.5127 (3)0.64236 (15)0.14871 (10)0.0831 (8)
H200.4881730.6888550.1448330.100*
C210.4167 (3)0.59769 (11)0.16994 (8)0.0649 (6)
H210.3296740.6149340.1809590.078*
C220.3419 (2)0.28339 (10)0.20994 (7)0.0499 (5)
C230.3028 (3)0.23822 (12)0.24377 (8)0.0667 (6)
H230.2362470.2525470.2651130.080*
C240.3613 (4)0.17210 (13)0.24627 (10)0.0826 (8)
H240.3332830.1424010.2691170.099*
C250.4597 (3)0.15019 (13)0.21554 (11)0.0802 (8)
H250.5006790.1061730.2178090.096*
C260.4979 (3)0.19359 (14)0.18116 (10)0.0777 (8)
H260.5637270.1785660.1598000.093*
C270.4384 (3)0.25990 (13)0.17818 (8)0.0653 (6)
H270.4638990.2886850.1545830.078*
C280.0095 (2)0.32249 (10)0.10794 (7)0.0462 (5)
C290.1247 (2)0.33945 (12)0.12559 (8)0.0619 (6)
H290.1305840.3618360.1529570.074*
C300.2510 (3)0.32299 (14)0.10237 (10)0.0774 (7)
H300.3404610.3352750.1142410.093*
C310.2453 (3)0.28918 (14)0.06257 (10)0.0811 (8)
H310.3302930.2788310.0473120.097*
C320.1135 (3)0.27048 (13)0.04513 (9)0.0743 (7)
H320.1089480.2467640.0182000.089*
C330.0127 (2)0.28700 (11)0.06772 (7)0.0582 (5)
H330.1014710.2740390.0556820.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0978 (5)0.0704 (4)0.0671 (4)0.0026 (3)0.0425 (3)0.0029 (3)
O10.0677 (10)0.0457 (8)0.0652 (10)0.0056 (7)0.0204 (8)0.0010 (7)
O20.0682 (10)0.0708 (11)0.0694 (10)0.0045 (8)0.0287 (8)0.0056 (8)
N10.0407 (8)0.0373 (8)0.0378 (8)0.0006 (6)0.0034 (6)0.0023 (6)
N20.0494 (9)0.0474 (9)0.0520 (10)0.0019 (8)0.0099 (8)0.0070 (8)
C10.0453 (10)0.0391 (10)0.0383 (9)0.0006 (8)0.0025 (8)0.0013 (8)
C20.0483 (10)0.0443 (10)0.0381 (10)0.0036 (8)0.0025 (8)0.0013 (8)
C30.0494 (11)0.0588 (12)0.0344 (10)0.0002 (9)0.0038 (8)0.0007 (9)
C40.0470 (11)0.0495 (11)0.0412 (10)0.0025 (9)0.0057 (8)0.0080 (8)
C50.0432 (10)0.0382 (9)0.0435 (10)0.0011 (8)0.0040 (8)0.0056 (8)
C60.0561 (12)0.0469 (11)0.0391 (10)0.0002 (9)0.0024 (9)0.0008 (8)
C70.0579 (12)0.0519 (12)0.0377 (10)0.0021 (10)0.0001 (9)0.0071 (9)
C80.0431 (10)0.0447 (11)0.0416 (10)0.0006 (8)0.0025 (8)0.0015 (8)
C90.0542 (12)0.0510 (12)0.0471 (11)0.0020 (9)0.0132 (9)0.0012 (9)
C100.0576 (12)0.0467 (11)0.0350 (10)0.0089 (9)0.0023 (8)0.0035 (8)
C110.0609 (13)0.0573 (13)0.0571 (13)0.0031 (11)0.0054 (10)0.0134 (10)
C120.0672 (15)0.0894 (19)0.0684 (16)0.0095 (14)0.0133 (12)0.0213 (14)
C130.100 (2)0.0821 (19)0.0557 (15)0.0361 (16)0.0093 (14)0.0132 (13)
C140.150 (3)0.0517 (15)0.0802 (19)0.0222 (17)0.031 (2)0.0112 (13)
C150.109 (2)0.0478 (13)0.0759 (17)0.0001 (13)0.0314 (15)0.0079 (12)
C160.0570 (12)0.0500 (12)0.0444 (11)0.0061 (10)0.0074 (9)0.0007 (9)
C170.0652 (15)0.0633 (15)0.0748 (16)0.0032 (12)0.0063 (12)0.0003 (12)
C180.0678 (17)0.100 (2)0.093 (2)0.0159 (16)0.0152 (15)0.0021 (17)
C190.087 (2)0.092 (2)0.0830 (19)0.0347 (18)0.0039 (16)0.0204 (16)
C200.090 (2)0.0612 (16)0.098 (2)0.0219 (15)0.0215 (17)0.0189 (14)
C210.0655 (14)0.0529 (13)0.0764 (16)0.0059 (11)0.0082 (12)0.0005 (11)
C220.0531 (11)0.0499 (11)0.0466 (11)0.0044 (9)0.0101 (9)0.0094 (9)
C230.0793 (16)0.0631 (14)0.0577 (13)0.0072 (12)0.0052 (12)0.0171 (11)
C240.104 (2)0.0573 (15)0.0869 (19)0.0117 (15)0.0241 (17)0.0251 (14)
C250.0850 (19)0.0498 (14)0.106 (2)0.0005 (13)0.0447 (17)0.0077 (15)
C260.0627 (15)0.0737 (17)0.097 (2)0.0162 (13)0.0125 (14)0.0071 (15)
C270.0622 (14)0.0659 (15)0.0679 (15)0.0082 (12)0.0007 (12)0.0135 (12)
C280.0469 (11)0.0395 (10)0.0522 (11)0.0045 (8)0.0010 (9)0.0093 (9)
C290.0493 (12)0.0663 (14)0.0701 (15)0.0063 (11)0.0045 (11)0.0013 (11)
C300.0467 (13)0.0821 (18)0.104 (2)0.0105 (12)0.0020 (13)0.0098 (16)
C310.0672 (17)0.0705 (17)0.105 (2)0.0197 (14)0.0286 (16)0.0136 (16)
C320.0855 (19)0.0634 (15)0.0741 (16)0.0155 (13)0.0214 (14)0.0014 (12)
C330.0613 (13)0.0535 (12)0.0597 (13)0.0067 (10)0.0044 (10)0.0018 (10)
Geometric parameters (Å, º) top
Cl1—C91.766 (2)C14—C151.392 (4)
O1—C81.224 (2)C14—H140.9300
O2—C31.220 (2)C15—H150.9300
N1—C81.367 (2)C16—C171.383 (3)
N1—C11.481 (2)C16—C211.389 (3)
N1—C51.494 (2)C17—C181.387 (3)
N2—C61.465 (2)C17—H170.9300
N2—C71.463 (2)C18—C191.362 (4)
N2—H20.8574C18—H180.9300
C1—C101.527 (3)C19—C201.358 (4)
C1—C21.549 (3)C19—H190.9300
C1—H10.9800C20—C211.389 (4)
C2—C31.499 (3)C20—H200.9300
C2—C61.562 (3)C21—H210.9300
C2—H2A0.9800C22—C271.382 (3)
C3—C41.499 (3)C22—C231.385 (3)
C4—C51.545 (3)C23—C241.384 (3)
C4—C71.562 (3)C23—H230.9300
C4—H40.9800C24—C251.362 (4)
C5—C281.534 (3)C24—H240.9300
C5—H50.9800C25—C261.375 (4)
C6—C161.516 (3)C25—H250.9300
C6—H60.9800C26—C271.391 (3)
C7—C221.512 (3)C26—H260.9300
C7—H70.9800C27—H270.9300
C8—C91.528 (3)C28—C291.387 (3)
C9—H9A0.9700C28—C331.389 (3)
C9—H9B0.9700C29—C301.395 (3)
C10—C111.369 (3)C29—H290.9300
C10—C151.388 (3)C30—C311.363 (4)
C11—C121.391 (3)C30—H300.9300
C11—H110.9300C31—C321.373 (4)
C12—C131.359 (4)C31—H310.9300
C12—H120.9300C32—C331.385 (3)
C13—C141.356 (4)C32—H320.9300
C13—H130.9300C33—H330.9300
C8—N1—C1120.15 (14)C14—C13—C12119.5 (2)
C8—N1—C5116.92 (15)C14—C13—H13120.3
C1—N1—C5122.48 (14)C12—C13—H13120.3
C6—N2—C7114.17 (16)C13—C14—C15120.1 (3)
C6—N2—H2108.9C13—C14—H14119.9
C7—N2—H2106.6C15—C14—H14119.9
N1—C1—C10115.97 (15)C10—C15—C14121.1 (3)
N1—C1—C2112.04 (14)C10—C15—H15119.4
C10—C1—C2111.46 (15)C14—C15—H15119.4
N1—C1—H1105.5C17—C16—C21117.5 (2)
C10—C1—H1105.5C17—C16—C6122.6 (2)
C2—C1—H1105.5C21—C16—C6119.7 (2)
C3—C2—C1112.78 (15)C18—C17—C16120.8 (2)
C3—C2—C6106.31 (15)C18—C17—H17119.6
C1—C2—C6112.53 (15)C16—C17—H17119.6
C3—C2—H2A108.4C19—C18—C17120.6 (3)
C1—C2—H2A108.4C19—C18—H18119.7
C6—C2—H2A108.4C17—C18—H18119.7
O2—C3—C2123.54 (19)C20—C19—C18119.7 (3)
O2—C3—C4124.42 (18)C20—C19—H19120.2
C2—C3—C4111.57 (16)C18—C19—H19120.2
C3—C4—C5111.42 (15)C19—C20—C21120.4 (3)
C3—C4—C7104.16 (16)C19—C20—H20119.8
C5—C4—C7115.51 (16)C21—C20—H20119.8
C3—C4—H4108.5C20—C21—C16120.8 (2)
C5—C4—H4108.5C20—C21—H21119.6
C7—C4—H4108.5C16—C21—H21119.6
N1—C5—C28111.18 (15)C27—C22—C23118.0 (2)
N1—C5—C4112.27 (15)C27—C22—C7121.91 (18)
C28—C5—C4113.22 (16)C23—C22—C7120.1 (2)
N1—C5—H5106.5C24—C23—C22121.0 (3)
C28—C5—H5106.5C24—C23—H23119.5
C4—C5—H5106.5C22—C23—H23119.5
N2—C6—C16111.60 (17)C25—C24—C23120.5 (3)
N2—C6—C2108.79 (15)C25—C24—H24119.7
C16—C6—C2110.45 (16)C23—C24—H24119.7
N2—C6—H6108.6C24—C25—C26119.5 (3)
C16—C6—H6108.6C24—C25—H25120.2
C2—C6—H6108.6C26—C25—H25120.2
N2—C7—C22111.08 (17)C25—C26—C27120.3 (3)
N2—C7—C4109.67 (15)C25—C26—H26119.9
C22—C7—C4113.26 (16)C27—C26—H26119.9
N2—C7—H7107.5C22—C27—C26120.6 (2)
C22—C7—H7107.5C22—C27—H27119.7
C4—C7—H7107.5C26—C27—H27119.7
O1—C8—N1122.85 (17)C29—C28—C33117.9 (2)
O1—C8—C9121.15 (17)C29—C28—C5123.29 (19)
N1—C8—C9115.99 (16)C33—C28—C5118.83 (18)
C8—C9—Cl1111.84 (14)C28—C29—C30120.1 (2)
C8—C9—H9A109.2C28—C29—H29119.9
Cl1—C9—H9A109.2C30—C29—H29119.9
C8—C9—H9B109.2C31—C30—C29121.0 (3)
Cl1—C9—H9B109.2C31—C30—H30119.5
H9A—C9—H9B107.9C29—C30—H30119.5
C11—C10—C15117.5 (2)C30—C31—C32119.6 (2)
C11—C10—C1125.28 (18)C30—C31—H31120.2
C15—C10—C1117.21 (19)C32—C31—H31120.2
C10—C11—C12120.9 (2)C31—C32—C33119.8 (3)
C10—C11—H11119.6C31—C32—H32120.1
C12—C11—H11119.6C33—C32—H32120.1
C13—C12—C11120.9 (3)C32—C33—C28121.5 (2)
C13—C12—H12119.6C32—C33—H33119.3
C11—C12—H12119.6C28—C33—H33119.3
C8—N1—C1—C1090.8 (2)C2—C1—C10—C1574.2 (2)
C5—N1—C1—C1097.09 (19)C15—C10—C11—C121.8 (3)
C8—N1—C1—C2139.68 (16)C1—C10—C11—C12177.6 (2)
C5—N1—C1—C232.4 (2)C10—C11—C12—C130.8 (4)
N1—C1—C2—C342.8 (2)C11—C12—C13—C140.5 (4)
C10—C1—C2—C389.03 (19)C12—C13—C14—C150.8 (5)
N1—C1—C2—C677.48 (19)C11—C10—C15—C141.4 (4)
C10—C1—C2—C6150.70 (16)C1—C10—C15—C14178.0 (2)
C1—C2—C3—O2129.2 (2)C13—C14—C15—C100.1 (5)
C6—C2—C3—O2107.1 (2)N2—C6—C16—C171.7 (3)
C1—C2—C3—C458.3 (2)C2—C6—C16—C17122.9 (2)
C6—C2—C3—C465.43 (19)N2—C6—C16—C21174.43 (18)
O2—C3—C4—C5128.2 (2)C2—C6—C16—C2153.3 (2)
C2—C3—C4—C559.4 (2)C21—C16—C17—C182.2 (4)
O2—C3—C4—C7106.6 (2)C6—C16—C17—C18174.1 (2)
C2—C3—C4—C765.80 (18)C16—C17—C18—C191.4 (4)
C8—N1—C5—C2893.73 (19)C17—C18—C19—C203.3 (5)
C1—N1—C5—C2893.93 (19)C18—C19—C20—C211.6 (4)
C8—N1—C5—C4138.26 (16)C19—C20—C21—C162.0 (4)
C1—N1—C5—C434.1 (2)C17—C16—C21—C203.8 (3)
C3—C4—C5—N145.4 (2)C6—C16—C21—C20172.5 (2)
C7—C4—C5—N173.2 (2)N2—C7—C22—C2735.9 (3)
C3—C4—C5—C2881.5 (2)C4—C7—C22—C2788.0 (2)
C7—C4—C5—C28159.92 (16)N2—C7—C22—C23144.60 (19)
C7—N2—C6—C16179.28 (15)C4—C7—C22—C2391.5 (2)
C7—N2—C6—C257.2 (2)C27—C22—C23—C241.5 (3)
C3—C2—C6—N257.01 (19)C7—C22—C23—C24179.0 (2)
C1—C2—C6—N266.9 (2)C22—C23—C24—C250.4 (4)
C3—C2—C6—C16179.81 (16)C23—C24—C25—C261.7 (4)
C1—C2—C6—C1655.9 (2)C24—C25—C26—C271.1 (4)
C6—N2—C7—C22174.69 (16)C23—C22—C27—C262.1 (3)
C6—N2—C7—C459.3 (2)C7—C22—C27—C26178.4 (2)
C3—C4—C7—N259.65 (19)C25—C26—C27—C220.9 (4)
C5—C4—C7—N262.9 (2)N1—C5—C28—C29109.3 (2)
C3—C4—C7—C22175.63 (16)C4—C5—C28—C2918.2 (3)
C5—C4—C7—C2261.8 (2)N1—C5—C28—C3369.8 (2)
C1—N1—C8—O1173.88 (18)C4—C5—C28—C33162.69 (17)
C5—N1—C8—O11.4 (3)C33—C28—C29—C302.1 (3)
C1—N1—C8—C96.6 (2)C5—C28—C29—C30177.0 (2)
C5—N1—C8—C9179.11 (16)C28—C29—C30—C311.1 (4)
O1—C8—C9—Cl115.7 (3)C29—C30—C31—C320.5 (4)
N1—C8—C9—Cl1163.88 (14)C30—C31—C32—C331.0 (4)
N1—C1—C10—C1124.6 (3)C31—C32—C33—C280.1 (4)
C2—C1—C10—C11105.2 (2)C29—C28—C33—C321.7 (3)
N1—C1—C10—C15156.0 (2)C5—C28—C33—C32177.5 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C28–C33 and C16–C21 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5···O10.982.302.725 (2)105
C17—H17···N20.932.462.809 (3)103
C33—H33···O10.932.503.214 (3)134
C11—H11···Cg10.932.723.625 (3)166
C24—H24···Cg2i0.932.873.628 (3)140
Symmetry code: (i) x+1, y1/2, z+1/2.
Comparison (X-ray and DFT) of selected bond lengths, bond angles and torsion angles (Å, °) top
ParameterSC-XRDB3LYP/6-31G(d,p)
N1—C81.367 (2)1.367
N1—C11.481 (2)1.4813
N1—C51.494 (2)1.4939
O1C81.224 (2)1.224
C8—C91.528 (2)1.528
C9—Cl11.766 (2)1.765
N2—C71.463 (2)1.463
N2—C61.465 (2)1.465
C1—N1—C5122.4 (1)122.49
C1—N1—C8120.2 (1)120.14
C5—N1—C8116.9 (2)116.91
N1—C8—C9116.0 (2)116.00
N1—C1—C10116.0 (2)115.98
N1—C5—C28111.2 (2)111.18
N1—C8O1122.9 (2)122.84
C16—C6—C2110.5 (2)111.60
C22—C7—N2111.1 (2)111.06
N1—C1—C2—C3–42.8 (2)–42.77
N1—C5—C4—C345.4 (2)45.38
C3—C2—C1—C1089.0 (2)89.05
C10—C1—N1—C5–97.1 (2)–97.09
C1—N1—C5—C2893.9 (2)93.91
C5—N1—C8O11.4 (3)1.35
C1—N1—C8O1173.9 (2)173.89
C3—C4—C5—C28–81.5 (2)–81.52
C6—N2—C7—C22–174.7 (2)–174.68
C7—N2—C6—C16–179.3 (2)–179.26
 

Footnotes

Additional correspondence author, e-mail: s_selvanayagam@rediffmail.com.

References

First citationAshfaq, M., Tahir, M. N., Muhammad, S., Munawar, K. S., Ali, A., Bogdanov, G. & Alarfaji, S. S. (2021). ACS Omega, 6, 31211–31225.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBiovia (2017). Discovery Studio Visualizer. Biovia, San Diego, CA, USA.  Google Scholar
First citationBruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, U. S. A.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEvans, D. G. & Boeyens, J. C. A. (1988). Acta Cryst. B44, 663–671.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHuey, R., Morris, G. M. & Forli, S. (2012). The Scripps Research Institute Molecular Graphics Laboratory, 10550 N. Torrey Pines Rd. La Jolla, California 92037-1000, USA.  Google Scholar
First citationJeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149–174.  CrossRef CAS Web of Science Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationNatarajan, S. & Mathews, R. (2011). Acta Cryst. E67, o1686.  CrossRef IUCr Journals Google Scholar
First citationParthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009). Bioorg. Med. Chem. Lett. 19, 6981–6985.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPathak, C., Karthikeyan, S., More, K. & Vijayakumar, V. (2007). Indian J. Heterocycl. Chem. 16, 295–296.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSrikrishna, A. & Vijaykumar, D. (1998). Tetrahedron Lett. 39, 5833–5834.  Web of Science CrossRef CAS Google Scholar
First citationVeremeeva, P. N., Grishina, I. V., Zaborova, O. V., Averin, A. D. & Palyulin, V. A. (2019). Tetrahedron, 75, 4444–4450.  CrossRef CAS Google Scholar
First citationVeremeeva, P. N., Lapteva, V. L., Palyulin, V. A., Sybachin, A. V., Yaroslavov, A. A. & Zefirov, N. S. (2014). Tetrahedron, 70, 1408–1411.  CrossRef CAS Google Scholar
First citationVijayakumar, V. & Sundaravadivelu, M. (2005). Magn. Reson. Chem. 43, 479–482.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds