research communications
Hirshfeld surface analysis, DFT and the molecular of 3-(2-chloroacetyl)-2,4,6,8-tetraphenyl-3,7-diazabicyclo[3.3.1]nonan-9-one
aDepartment of Chemistry, Annamalai University, Annamalainagar, Chidambaram 608 002, India, bPG & Research Department of Chemistry, Government Arts College, Chidambaram 608 102, India, and cPG & Research Department of Physics, Government Arts College, Melur 625 106, India
*Correspondence e-mail: tvschemau@gmail.com
In the title compound, C33H29ClN2O2, the two piperidine rings of the diazabicyclo moiety adopt distorted-chair conformations. Intermolecular C—H⋯π interactions are mainly responsible for the crystal packing. The intermolecular interactions were quantified and analysed using Hirshfeld surface analysis, revealing that H⋯H interactions contribute most to the crystal packing (52.3%). The molecular structure was further optimized by density functional theory (DFT) at the B3LYP/6–31 G(d,p) level and is compared with the experimentally determined molecular structure in the solid state.
Keywords: crystal structure; azabicyclo derivatives; boat–boat conformation; C—H⋯π intermolecular interactions; Hirshfeld surface analysis.
CCDC reference: 2189597
1. Chemical context
The 3,7-diazabicyclo[3.3.1]nonane core structure is present in many naturally occurring lupin ; Pathak et al., 2007; Vijayakumar & Sundaravadivelu, 2005). Syntheses and stereochemistries of these bicyclic compounds have extensively been studied by several groups (Jeyaraman & Avila, 1981), and their biological potencies have also been well established (Parthiban et al., 2009). Interestingly, the N-nitroso derivatives of 3-DABN show distorted chair–chair conformations (Natarajan & Mathews, 2011), and 3,7-dialkyl/diacyl-3,7-diazabicyclononanes serve as stimulus-sensitive molecular switches and lipid bilayer modifiers (Veremeeva et al., 2014, 2019).
such as lupanine, sparteine, isolupanine and hydroxylupanine. The bridged bicyclic ring system present in 3-azabicyclo[3.3.1]-9-ones [3-ABN] and 3,7-diazabicyclo[3.3.1]nonan-9-ones [3-DABN] can adopt twin chair, chair–boat or twin boat stereochemical conformations (Srikrishna & Vijaykumar, 1998In the present work, the synthesis, structural and computational studies of 3-(2-chloroacetyl)-2,4,6,8-tetraphenyl-3,7-diazabicyclo[3.3.1]nonan-9-one, (I), a similar analogue of 3-DABN, is reported.
2. Structural commentary
The molecular structure of (I) is displayed in Fig. 1. The chloroacetyl group (C8/O1/C9/Cl1) and the phenyl ring (C10–C15) are perpendicular with each other and make a dihedral angle of 89.8 (1)°. The chloroacetyl group is planar with a maximum deviation of 0.080 (1) Å for atom C8.
The two piperidine rings (N1/C1–C5) and (N2/C6/C2–C4/C7) in the diazabicyclo moiety adopt distorted chair conformations, with puckering parameters (Cremer & Pople, 1975) of Q = 0.487 (2) Å, θ = 157.5 (2)°, φ = 6.6 (6)° for ring (N1/C1–C5) and 0.628 (2) Å, θ = 5.8 (2)° and φ = 194.5 (16)° for ring (N2/C6/C2–C4/C7). Atoms C5 and C1 in the (N1/C1–C5) ring deviate by 0.489 (1) and −0.599 (2) Å, respectively, from the least-squares plane through the remaining four atoms. Similarly, atoms C4 and C6 in the (N2/C6/C2–C4/C7) ring deviate by 0.781 (1) and −0.695 (1) Å respectively, from the least-squares plane through the remaining four atoms. The eight-membered ring (N1/C1/C2/C6/N2/C7/C4/C5) of the azabicyclo moiety has a boat–boat conformation, with puckering parameters q2 = 1.565 (2) Å, q3 = q4 = 0.086 (2) Å and θ2 = 86.8 (2)° (Evans & Boeyens, 1988).
Intramolecular C17—H17⋯N2 and C5—H5⋯O1 contacts, forming two S(5) ring motifs (Bernstein et al.,1995), lead to the stabilization of the molecular conformation, supplemented by the C33—H33⋯O1 contact, forming an S(6) ring motif (Fig. 1, Table 1). An intramolecular C—H⋯π interaction is observed (C11—H11⋯Cg1) involving the centroid of the C28–C33 benzene ring (Table 1, Fig. 2).
3. Supramolecular features
In the crystal, molecules are linked into a C(10) chain motif by C—H⋯π interactions, C24—H224⋯Cg2, where Cg2 is the centroid of the symmetry-related molecule C16–C21 benzene ring at (1 − x, − + y, − z) (Table 1). This C(10) chain runs in a helical manner parallel to [10] (Fig. 2). It is interesting to note that the amine function (N2—H2) is not involved in any intermolecular interactions.
4. Hirshfeld surface analysis
To characterize the intermolecular interactions in (I), a Hirshfeld surface (HS) analysis (Spackman & Jayatilaka, 2009) was carried out using CrystalExplorer 21 (Spackman et al., 2021) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were generated. The HS mapped over dnorm in the range −0.0876 to +1.5105 a.u. is illustrated in Fig. 3, using colours to indicate contacts that are shorter (red areas), equal to (white areas), or longer than (blue areas) the sum of the van der Waals radii (Ashfaq et al., 2021).
The two-dimensional fingerprint plots provide quantitative information about the non-covalent interactions and the crystal packing in terms of the percentage contribution of the interatomic contacts (Spackman & McKinnon, 2002; Ashfaq et al., 2021). The overall two-dimensional fingerprint plot, Fig. 4a, and those delineated into H⋯H interactions (52.3%), H⋯C/C⋯H (23.7%), H⋯Cl/Cl⋯H (11.3%), H⋯O/O⋯H (10.8%), Cl⋯C/C⋯Cl (1.1%) and C⋯C (0.7%) interactions are illustrated in Fig. 4b–g, respectively. The most important interaction is H⋯H, which is reflected in Fig. 4b as widely scattered points of high density due to the large hydrogen content of the molecule with the tip at de = di = 1.10 Å. The large number of H⋯H, H⋯C/C⋯H, H⋯Cl/Cl⋯H, H⋯O/O⋯H and Cl⋯C/C⋯Cl interactions suggest that van der Waals and hydrogen-bonding interactions play the major roles in the crystal packing (Hathwar et al., 2015). The fragment patches on the HS provide an easy way to investigate the nearest neighbour coordination environment of a molecule, which is 15 in the present case.
5. DFT Studies
The optimized structure of (I) in the gas phase was computed with Gaussian 09W (Frisch et al., 2009) using the B3LYP/6–31G (d, p) basis set and generated by GaussView 5.0. Comparison of the experimentally determined structure parameters by single-crystal X-ray diffraction with that of theoretical ones obtained from the optimized structure revealed that they are in good agreement (Table 2). The optimized structure of (I) is shown in Fig. 5.
|
The HOMO and LUMO (Fig. 6) were generated and their energies were evaluated from the optimized structure. The electron density in the HOMO mainly resides on the amidic carbonyl (N—C=O) group and the bicyclic ring system and at the phenyl groups to a lesser extent. In the LUMO, the electronic charge densities are delocalized to reside on the bicyclic ring and the phenyl groups. The energies of HOMO and LUMO are −6.361 eV and −0.1.056 eV, respectively, resulting in an energy gap (ΔE) of 5.305 eV.
The molecular electrostatic potential surface (MEPS; Fig. 7) is used to find the positive and negative electrostatic potential of the molecule, which provides possible information about the reactive sites of (I). The electron-rich part with a partial negative charge is shown by red regions on the MEPS over the carbonyl oxygen atom of the chloroacetyl moiety, which is expected to undergo electrophilic attack. The pale-yellow colour spread over the chlorine atom and the secondary amine (–NH) shows lower electron density regions. The faint blue colour spread all over the molecule implies less electron-deficient parts. The absence of a bright-blue region on the MEPS reveals that there are no possible sites on the molecule for attack.
6. Molecular Docking Studies
Molecules with ester and acetyl moieties are expected to have enhanced bioavailability and biological activity. Hence, it is interesting to evaluate the biological activity of (I) through molecular To examine the binding affinity of the title compound, a molecular docking study was performed with ERα protein (PDB ID: 3ERT). The molecular docking was carried out using the AutoDock tool (Huey et al., 2012) and the results were visualized using Discovery StudioVisualizer software (v21.1.0.20298: Biovia, 2017). The results showed a good binding affinity to the target receptor 3ERT protein with a docking score of −9.56 kcal mol−1. The three- and two-dimensional views of the docking interactions are shown in Fig. 8.
7. Synthesis and crystallization
Formation of the parent compound 2,4,6,8-tetraphenyl-3,7-diazabicyclo[3.3.1]nonan-9-one was achieved by double Mannich reaction of acetone, benzaldehyde and ammonium acetate in the molar ratio of 1:4:2. The obtained product was utilized for the synthesis of compound (I) by reaction of 2,4,6,8-tetraphenyl-3,7-diazabicyclo[3.3.1]nonan-9-one with chloroacetyl chloride in dichloromethane using triethyl amine as a catalyst: yield 90%; white solid; IR (ATR, cm−1): 2656, 2799 (aromatic C—H stretching), 1718 (C=O stretching), 1654 (amidic carbonyl). The solid product was collected, washed and recrystallized from methanol to obtain the pure product.
8. Refinement
Crystal data, data collection and structure . Atom H2 was located from a difference-Fourier map and other H atoms were placed in idealized positions and allowed to ride on their parent atoms with C—H = 0.93–0.98 Å and Uiso(H) = 1.2Ueq of the parent atom. Reflections 134, 043, 102 and 210 were obstructed from the beam stop and thus were omitted from the refinement.
details are summarized in Table 3Supporting information
CCDC reference: 2189597
https://doi.org/10.1107/S2056989024008302/wm5730sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024008302/wm5730Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024008302/wm5730Isup3.cml
C33H29ClN2O2 | Dx = 1.297 Mg m−3 |
Mr = 521.03 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 9200 reflections |
a = 9.229 (3) Å | θ = 2.5–29.5° |
b = 19.235 (6) Å | µ = 0.18 mm−1 |
c = 30.058 (10) Å | T = 298 K |
V = 5336 (3) Å3 | Block, colorless |
Z = 8 | 0.35 × 0.23 × 0.19 mm |
F(000) = 2192 |
Bruker D8 Quest XRD diffractometer | 4101 reflections with I > 2σ(I) |
Detector resolution: 7.3910 pixels mm-1 | Rint = 0.104 |
ω and Phi Scans scans | θmax = 30.8°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −12→12 |
Tmin = 0.692, Tmax = 0.746 | k = −25→25 |
127372 measured reflections | l = −40→42 |
7493 independent reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.070 | w = 1/[σ2(Fo2) + (0.0448P)2 + 2.2149P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.151 | (Δ/σ)max < 0.001 |
S = 1.07 | Δρmax = 0.24 e Å−3 |
7493 reflections | Δρmin = −0.28 e Å−3 |
344 parameters | Extinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
1 restraint | Extinction coefficient: 0.0032 (4) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.49791 (8) | 0.40099 (3) | 0.00094 (2) | 0.0784 (2) | |
O1 | 0.35619 (16) | 0.31422 (7) | 0.06683 (5) | 0.0595 (4) | |
O2 | −0.01614 (17) | 0.45163 (9) | 0.20859 (5) | 0.0695 (5) | |
N1 | 0.23075 (16) | 0.39715 (7) | 0.10473 (5) | 0.0386 (3) | |
N2 | 0.38457 (18) | 0.40602 (8) | 0.19171 (6) | 0.0496 (4) | |
H2 | 0.459922 | 0.401953 | 0.208188 | 0.060* | |
C1 | 0.2156 (2) | 0.47202 (9) | 0.11529 (6) | 0.0409 (4) | |
H1 | 0.310034 | 0.492740 | 0.108463 | 0.049* | |
C2 | 0.1919 (2) | 0.48463 (10) | 0.16565 (6) | 0.0436 (4) | |
H2A | 0.153292 | 0.531690 | 0.169613 | 0.052* | |
C3 | 0.0874 (2) | 0.43415 (11) | 0.18594 (6) | 0.0475 (5) | |
C4 | 0.1368 (2) | 0.36052 (10) | 0.18000 (6) | 0.0459 (5) | |
H4 | 0.064183 | 0.329585 | 0.193177 | 0.055* | |
C5 | 0.1534 (2) | 0.34183 (9) | 0.13028 (6) | 0.0417 (4) | |
H5 | 0.214691 | 0.300281 | 0.129005 | 0.050* | |
C6 | 0.3352 (2) | 0.47838 (10) | 0.19303 (6) | 0.0474 (5) | |
H6 | 0.314926 | 0.490966 | 0.224002 | 0.057* | |
C7 | 0.2784 (2) | 0.35584 (10) | 0.20830 (6) | 0.0492 (5) | |
H7 | 0.253838 | 0.369213 | 0.238841 | 0.059* | |
C8 | 0.3309 (2) | 0.37562 (10) | 0.07418 (6) | 0.0431 (4) | |
C9 | 0.4103 (2) | 0.43311 (11) | 0.04895 (7) | 0.0508 (5) | |
H9A | 0.481483 | 0.454309 | 0.068419 | 0.061* | |
H9B | 0.341384 | 0.468752 | 0.040346 | 0.061* | |
C10 | 0.1061 (2) | 0.51234 (10) | 0.08728 (6) | 0.0464 (5) | |
C11 | −0.0107 (2) | 0.48393 (12) | 0.06587 (7) | 0.0584 (6) | |
H11 | −0.025562 | 0.436142 | 0.066996 | 0.070* | |
C12 | −0.1073 (3) | 0.52561 (15) | 0.04244 (9) | 0.0750 (7) | |
H12 | −0.186720 | 0.505394 | 0.028441 | 0.090* | |
C13 | −0.0874 (3) | 0.59549 (15) | 0.03974 (8) | 0.0791 (8) | |
H13 | −0.152993 | 0.622987 | 0.024194 | 0.095* | |
C14 | 0.0291 (4) | 0.62480 (14) | 0.05989 (10) | 0.0940 (10) | |
H14 | 0.044147 | 0.672500 | 0.057854 | 0.113* | |
C15 | 0.1261 (3) | 0.58363 (12) | 0.08362 (9) | 0.0777 (8) | |
H15 | 0.205677 | 0.604246 | 0.097254 | 0.093* | |
C16 | 0.4491 (2) | 0.52762 (11) | 0.17489 (7) | 0.0505 (5) | |
C17 | 0.5834 (3) | 0.50516 (13) | 0.16039 (8) | 0.0678 (6) | |
H17 | 0.609601 | 0.458846 | 0.164171 | 0.081* | |
C18 | 0.6794 (3) | 0.55085 (17) | 0.14029 (10) | 0.0867 (8) | |
H18 | 0.770121 | 0.535105 | 0.131307 | 0.104* | |
C19 | 0.6422 (4) | 0.61856 (17) | 0.13359 (10) | 0.0874 (9) | |
H19 | 0.705128 | 0.648347 | 0.118731 | 0.105* | |
C20 | 0.5127 (3) | 0.64236 (15) | 0.14871 (10) | 0.0831 (8) | |
H20 | 0.488173 | 0.688855 | 0.144833 | 0.100* | |
C21 | 0.4167 (3) | 0.59769 (11) | 0.16994 (8) | 0.0649 (6) | |
H21 | 0.329674 | 0.614934 | 0.180959 | 0.078* | |
C22 | 0.3419 (2) | 0.28339 (10) | 0.20994 (7) | 0.0499 (5) | |
C23 | 0.3028 (3) | 0.23822 (12) | 0.24377 (8) | 0.0667 (6) | |
H23 | 0.236247 | 0.252547 | 0.265113 | 0.080* | |
C24 | 0.3613 (4) | 0.17210 (13) | 0.24627 (10) | 0.0826 (8) | |
H24 | 0.333283 | 0.142401 | 0.269117 | 0.099* | |
C25 | 0.4597 (3) | 0.15019 (13) | 0.21554 (11) | 0.0802 (8) | |
H25 | 0.500679 | 0.106173 | 0.217809 | 0.096* | |
C26 | 0.4979 (3) | 0.19359 (14) | 0.18116 (10) | 0.0777 (8) | |
H26 | 0.563727 | 0.178566 | 0.159800 | 0.093* | |
C27 | 0.4384 (3) | 0.25990 (13) | 0.17818 (8) | 0.0653 (6) | |
H27 | 0.463899 | 0.288685 | 0.154583 | 0.078* | |
C28 | 0.0095 (2) | 0.32249 (10) | 0.10794 (7) | 0.0462 (5) | |
C29 | −0.1247 (2) | 0.33945 (12) | 0.12559 (8) | 0.0619 (6) | |
H29 | −0.130584 | 0.361836 | 0.152957 | 0.074* | |
C30 | −0.2510 (3) | 0.32299 (14) | 0.10237 (10) | 0.0774 (7) | |
H30 | −0.340461 | 0.335275 | 0.114241 | 0.093* | |
C31 | −0.2453 (3) | 0.28918 (14) | 0.06257 (10) | 0.0811 (8) | |
H31 | −0.330293 | 0.278831 | 0.047312 | 0.097* | |
C32 | −0.1135 (3) | 0.27048 (13) | 0.04513 (9) | 0.0743 (7) | |
H32 | −0.108948 | 0.246764 | 0.018200 | 0.089* | |
C33 | 0.0127 (2) | 0.28700 (11) | 0.06772 (7) | 0.0582 (5) | |
H33 | 0.101471 | 0.274039 | 0.055682 | 0.070* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0978 (5) | 0.0704 (4) | 0.0671 (4) | 0.0026 (3) | 0.0425 (3) | 0.0029 (3) |
O1 | 0.0677 (10) | 0.0457 (8) | 0.0652 (10) | 0.0056 (7) | 0.0204 (8) | −0.0010 (7) |
O2 | 0.0682 (10) | 0.0708 (11) | 0.0694 (10) | 0.0045 (8) | 0.0287 (8) | −0.0056 (8) |
N1 | 0.0407 (8) | 0.0373 (8) | 0.0378 (8) | −0.0006 (6) | 0.0034 (6) | 0.0023 (6) |
N2 | 0.0494 (9) | 0.0474 (9) | 0.0520 (10) | −0.0019 (8) | −0.0099 (8) | 0.0070 (8) |
C1 | 0.0453 (10) | 0.0391 (10) | 0.0383 (9) | −0.0006 (8) | 0.0025 (8) | 0.0013 (8) |
C2 | 0.0483 (10) | 0.0443 (10) | 0.0381 (10) | 0.0036 (8) | 0.0025 (8) | −0.0013 (8) |
C3 | 0.0494 (11) | 0.0588 (12) | 0.0344 (10) | 0.0002 (9) | 0.0038 (8) | 0.0007 (9) |
C4 | 0.0470 (11) | 0.0495 (11) | 0.0412 (10) | −0.0025 (9) | 0.0057 (8) | 0.0080 (8) |
C5 | 0.0432 (10) | 0.0382 (9) | 0.0435 (10) | −0.0011 (8) | 0.0040 (8) | 0.0056 (8) |
C6 | 0.0561 (12) | 0.0469 (11) | 0.0391 (10) | −0.0002 (9) | −0.0024 (9) | −0.0008 (8) |
C7 | 0.0579 (12) | 0.0519 (12) | 0.0377 (10) | −0.0021 (10) | −0.0001 (9) | 0.0071 (9) |
C8 | 0.0431 (10) | 0.0447 (11) | 0.0416 (10) | 0.0006 (8) | 0.0025 (8) | 0.0015 (8) |
C9 | 0.0542 (12) | 0.0510 (12) | 0.0471 (11) | −0.0020 (9) | 0.0132 (9) | 0.0012 (9) |
C10 | 0.0576 (12) | 0.0467 (11) | 0.0350 (10) | 0.0089 (9) | 0.0023 (8) | 0.0035 (8) |
C11 | 0.0609 (13) | 0.0573 (13) | 0.0571 (13) | 0.0031 (11) | −0.0054 (10) | 0.0134 (10) |
C12 | 0.0672 (15) | 0.0894 (19) | 0.0684 (16) | 0.0095 (14) | −0.0133 (12) | 0.0213 (14) |
C13 | 0.100 (2) | 0.0821 (19) | 0.0557 (15) | 0.0361 (16) | −0.0093 (14) | 0.0132 (13) |
C14 | 0.150 (3) | 0.0517 (15) | 0.0802 (19) | 0.0222 (17) | −0.031 (2) | 0.0112 (13) |
C15 | 0.109 (2) | 0.0478 (13) | 0.0759 (17) | 0.0001 (13) | −0.0314 (15) | 0.0079 (12) |
C16 | 0.0570 (12) | 0.0500 (12) | 0.0444 (11) | −0.0061 (10) | −0.0074 (9) | −0.0007 (9) |
C17 | 0.0652 (15) | 0.0633 (15) | 0.0748 (16) | −0.0032 (12) | 0.0063 (12) | 0.0003 (12) |
C18 | 0.0678 (17) | 0.100 (2) | 0.093 (2) | −0.0159 (16) | 0.0152 (15) | 0.0021 (17) |
C19 | 0.087 (2) | 0.092 (2) | 0.0830 (19) | −0.0347 (18) | −0.0039 (16) | 0.0204 (16) |
C20 | 0.090 (2) | 0.0612 (16) | 0.098 (2) | −0.0219 (15) | −0.0215 (17) | 0.0189 (14) |
C21 | 0.0655 (14) | 0.0529 (13) | 0.0764 (16) | −0.0059 (11) | −0.0082 (12) | 0.0005 (11) |
C22 | 0.0531 (11) | 0.0499 (11) | 0.0466 (11) | −0.0044 (9) | −0.0101 (9) | 0.0094 (9) |
C23 | 0.0793 (16) | 0.0631 (14) | 0.0577 (13) | −0.0072 (12) | −0.0052 (12) | 0.0171 (11) |
C24 | 0.104 (2) | 0.0573 (15) | 0.0869 (19) | −0.0117 (15) | −0.0241 (17) | 0.0251 (14) |
C25 | 0.0850 (19) | 0.0498 (14) | 0.106 (2) | 0.0005 (13) | −0.0447 (17) | 0.0077 (15) |
C26 | 0.0627 (15) | 0.0737 (17) | 0.097 (2) | 0.0162 (13) | −0.0125 (14) | −0.0071 (15) |
C27 | 0.0622 (14) | 0.0659 (15) | 0.0679 (15) | 0.0082 (12) | 0.0007 (12) | 0.0135 (12) |
C28 | 0.0469 (11) | 0.0395 (10) | 0.0522 (11) | −0.0045 (8) | −0.0010 (9) | 0.0093 (9) |
C29 | 0.0493 (12) | 0.0663 (14) | 0.0701 (15) | −0.0063 (11) | 0.0045 (11) | 0.0013 (11) |
C30 | 0.0467 (13) | 0.0821 (18) | 0.104 (2) | −0.0105 (12) | −0.0020 (13) | 0.0098 (16) |
C31 | 0.0672 (17) | 0.0705 (17) | 0.105 (2) | −0.0197 (14) | −0.0286 (16) | 0.0136 (16) |
C32 | 0.0855 (19) | 0.0634 (15) | 0.0741 (16) | −0.0155 (13) | −0.0214 (14) | −0.0014 (12) |
C33 | 0.0613 (13) | 0.0535 (12) | 0.0597 (13) | −0.0067 (10) | −0.0044 (10) | −0.0018 (10) |
Cl1—C9 | 1.766 (2) | C14—C15 | 1.392 (4) |
O1—C8 | 1.224 (2) | C14—H14 | 0.9300 |
O2—C3 | 1.220 (2) | C15—H15 | 0.9300 |
N1—C8 | 1.367 (2) | C16—C17 | 1.383 (3) |
N1—C1 | 1.481 (2) | C16—C21 | 1.389 (3) |
N1—C5 | 1.494 (2) | C17—C18 | 1.387 (3) |
N2—C6 | 1.465 (2) | C17—H17 | 0.9300 |
N2—C7 | 1.463 (2) | C18—C19 | 1.362 (4) |
N2—H2 | 0.8574 | C18—H18 | 0.9300 |
C1—C10 | 1.527 (3) | C19—C20 | 1.358 (4) |
C1—C2 | 1.549 (3) | C19—H19 | 0.9300 |
C1—H1 | 0.9800 | C20—C21 | 1.389 (4) |
C2—C3 | 1.499 (3) | C20—H20 | 0.9300 |
C2—C6 | 1.562 (3) | C21—H21 | 0.9300 |
C2—H2A | 0.9800 | C22—C27 | 1.382 (3) |
C3—C4 | 1.499 (3) | C22—C23 | 1.385 (3) |
C4—C5 | 1.545 (3) | C23—C24 | 1.384 (3) |
C4—C7 | 1.562 (3) | C23—H23 | 0.9300 |
C4—H4 | 0.9800 | C24—C25 | 1.362 (4) |
C5—C28 | 1.534 (3) | C24—H24 | 0.9300 |
C5—H5 | 0.9800 | C25—C26 | 1.375 (4) |
C6—C16 | 1.516 (3) | C25—H25 | 0.9300 |
C6—H6 | 0.9800 | C26—C27 | 1.391 (3) |
C7—C22 | 1.512 (3) | C26—H26 | 0.9300 |
C7—H7 | 0.9800 | C27—H27 | 0.9300 |
C8—C9 | 1.528 (3) | C28—C29 | 1.387 (3) |
C9—H9A | 0.9700 | C28—C33 | 1.389 (3) |
C9—H9B | 0.9700 | C29—C30 | 1.395 (3) |
C10—C11 | 1.369 (3) | C29—H29 | 0.9300 |
C10—C15 | 1.388 (3) | C30—C31 | 1.363 (4) |
C11—C12 | 1.391 (3) | C30—H30 | 0.9300 |
C11—H11 | 0.9300 | C31—C32 | 1.373 (4) |
C12—C13 | 1.359 (4) | C31—H31 | 0.9300 |
C12—H12 | 0.9300 | C32—C33 | 1.385 (3) |
C13—C14 | 1.356 (4) | C32—H32 | 0.9300 |
C13—H13 | 0.9300 | C33—H33 | 0.9300 |
C8—N1—C1 | 120.15 (14) | C14—C13—C12 | 119.5 (2) |
C8—N1—C5 | 116.92 (15) | C14—C13—H13 | 120.3 |
C1—N1—C5 | 122.48 (14) | C12—C13—H13 | 120.3 |
C6—N2—C7 | 114.17 (16) | C13—C14—C15 | 120.1 (3) |
C6—N2—H2 | 108.9 | C13—C14—H14 | 119.9 |
C7—N2—H2 | 106.6 | C15—C14—H14 | 119.9 |
N1—C1—C10 | 115.97 (15) | C10—C15—C14 | 121.1 (3) |
N1—C1—C2 | 112.04 (14) | C10—C15—H15 | 119.4 |
C10—C1—C2 | 111.46 (15) | C14—C15—H15 | 119.4 |
N1—C1—H1 | 105.5 | C17—C16—C21 | 117.5 (2) |
C10—C1—H1 | 105.5 | C17—C16—C6 | 122.6 (2) |
C2—C1—H1 | 105.5 | C21—C16—C6 | 119.7 (2) |
C3—C2—C1 | 112.78 (15) | C18—C17—C16 | 120.8 (2) |
C3—C2—C6 | 106.31 (15) | C18—C17—H17 | 119.6 |
C1—C2—C6 | 112.53 (15) | C16—C17—H17 | 119.6 |
C3—C2—H2A | 108.4 | C19—C18—C17 | 120.6 (3) |
C1—C2—H2A | 108.4 | C19—C18—H18 | 119.7 |
C6—C2—H2A | 108.4 | C17—C18—H18 | 119.7 |
O2—C3—C2 | 123.54 (19) | C20—C19—C18 | 119.7 (3) |
O2—C3—C4 | 124.42 (18) | C20—C19—H19 | 120.2 |
C2—C3—C4 | 111.57 (16) | C18—C19—H19 | 120.2 |
C3—C4—C5 | 111.42 (15) | C19—C20—C21 | 120.4 (3) |
C3—C4—C7 | 104.16 (16) | C19—C20—H20 | 119.8 |
C5—C4—C7 | 115.51 (16) | C21—C20—H20 | 119.8 |
C3—C4—H4 | 108.5 | C20—C21—C16 | 120.8 (2) |
C5—C4—H4 | 108.5 | C20—C21—H21 | 119.6 |
C7—C4—H4 | 108.5 | C16—C21—H21 | 119.6 |
N1—C5—C28 | 111.18 (15) | C27—C22—C23 | 118.0 (2) |
N1—C5—C4 | 112.27 (15) | C27—C22—C7 | 121.91 (18) |
C28—C5—C4 | 113.22 (16) | C23—C22—C7 | 120.1 (2) |
N1—C5—H5 | 106.5 | C24—C23—C22 | 121.0 (3) |
C28—C5—H5 | 106.5 | C24—C23—H23 | 119.5 |
C4—C5—H5 | 106.5 | C22—C23—H23 | 119.5 |
N2—C6—C16 | 111.60 (17) | C25—C24—C23 | 120.5 (3) |
N2—C6—C2 | 108.79 (15) | C25—C24—H24 | 119.7 |
C16—C6—C2 | 110.45 (16) | C23—C24—H24 | 119.7 |
N2—C6—H6 | 108.6 | C24—C25—C26 | 119.5 (3) |
C16—C6—H6 | 108.6 | C24—C25—H25 | 120.2 |
C2—C6—H6 | 108.6 | C26—C25—H25 | 120.2 |
N2—C7—C22 | 111.08 (17) | C25—C26—C27 | 120.3 (3) |
N2—C7—C4 | 109.67 (15) | C25—C26—H26 | 119.9 |
C22—C7—C4 | 113.26 (16) | C27—C26—H26 | 119.9 |
N2—C7—H7 | 107.5 | C22—C27—C26 | 120.6 (2) |
C22—C7—H7 | 107.5 | C22—C27—H27 | 119.7 |
C4—C7—H7 | 107.5 | C26—C27—H27 | 119.7 |
O1—C8—N1 | 122.85 (17) | C29—C28—C33 | 117.9 (2) |
O1—C8—C9 | 121.15 (17) | C29—C28—C5 | 123.29 (19) |
N1—C8—C9 | 115.99 (16) | C33—C28—C5 | 118.83 (18) |
C8—C9—Cl1 | 111.84 (14) | C28—C29—C30 | 120.1 (2) |
C8—C9—H9A | 109.2 | C28—C29—H29 | 119.9 |
Cl1—C9—H9A | 109.2 | C30—C29—H29 | 119.9 |
C8—C9—H9B | 109.2 | C31—C30—C29 | 121.0 (3) |
Cl1—C9—H9B | 109.2 | C31—C30—H30 | 119.5 |
H9A—C9—H9B | 107.9 | C29—C30—H30 | 119.5 |
C11—C10—C15 | 117.5 (2) | C30—C31—C32 | 119.6 (2) |
C11—C10—C1 | 125.28 (18) | C30—C31—H31 | 120.2 |
C15—C10—C1 | 117.21 (19) | C32—C31—H31 | 120.2 |
C10—C11—C12 | 120.9 (2) | C31—C32—C33 | 119.8 (3) |
C10—C11—H11 | 119.6 | C31—C32—H32 | 120.1 |
C12—C11—H11 | 119.6 | C33—C32—H32 | 120.1 |
C13—C12—C11 | 120.9 (3) | C32—C33—C28 | 121.5 (2) |
C13—C12—H12 | 119.6 | C32—C33—H33 | 119.3 |
C11—C12—H12 | 119.6 | C28—C33—H33 | 119.3 |
C8—N1—C1—C10 | 90.8 (2) | C2—C1—C10—C15 | 74.2 (2) |
C5—N1—C1—C10 | −97.09 (19) | C15—C10—C11—C12 | −1.8 (3) |
C8—N1—C1—C2 | −139.68 (16) | C1—C10—C11—C12 | 177.6 (2) |
C5—N1—C1—C2 | 32.4 (2) | C10—C11—C12—C13 | 0.8 (4) |
N1—C1—C2—C3 | −42.8 (2) | C11—C12—C13—C14 | 0.5 (4) |
C10—C1—C2—C3 | 89.03 (19) | C12—C13—C14—C15 | −0.8 (5) |
N1—C1—C2—C6 | 77.48 (19) | C11—C10—C15—C14 | 1.4 (4) |
C10—C1—C2—C6 | −150.70 (16) | C1—C10—C15—C14 | −178.0 (2) |
C1—C2—C3—O2 | −129.2 (2) | C13—C14—C15—C10 | −0.1 (5) |
C6—C2—C3—O2 | 107.1 (2) | N2—C6—C16—C17 | −1.7 (3) |
C1—C2—C3—C4 | 58.3 (2) | C2—C6—C16—C17 | −122.9 (2) |
C6—C2—C3—C4 | −65.43 (19) | N2—C6—C16—C21 | 174.43 (18) |
O2—C3—C4—C5 | 128.2 (2) | C2—C6—C16—C21 | 53.3 (2) |
C2—C3—C4—C5 | −59.4 (2) | C21—C16—C17—C18 | −2.2 (4) |
O2—C3—C4—C7 | −106.6 (2) | C6—C16—C17—C18 | 174.1 (2) |
C2—C3—C4—C7 | 65.80 (18) | C16—C17—C18—C19 | −1.4 (4) |
C8—N1—C5—C28 | −93.73 (19) | C17—C18—C19—C20 | 3.3 (5) |
C1—N1—C5—C28 | 93.93 (19) | C18—C19—C20—C21 | −1.6 (4) |
C8—N1—C5—C4 | 138.26 (16) | C19—C20—C21—C16 | −2.0 (4) |
C1—N1—C5—C4 | −34.1 (2) | C17—C16—C21—C20 | 3.8 (3) |
C3—C4—C5—N1 | 45.4 (2) | C6—C16—C21—C20 | −172.5 (2) |
C7—C4—C5—N1 | −73.2 (2) | N2—C7—C22—C27 | −35.9 (3) |
C3—C4—C5—C28 | −81.5 (2) | C4—C7—C22—C27 | 88.0 (2) |
C7—C4—C5—C28 | 159.92 (16) | N2—C7—C22—C23 | 144.60 (19) |
C7—N2—C6—C16 | −179.28 (15) | C4—C7—C22—C23 | −91.5 (2) |
C7—N2—C6—C2 | −57.2 (2) | C27—C22—C23—C24 | 1.5 (3) |
C3—C2—C6—N2 | 57.01 (19) | C7—C22—C23—C24 | −179.0 (2) |
C1—C2—C6—N2 | −66.9 (2) | C22—C23—C24—C25 | 0.4 (4) |
C3—C2—C6—C16 | 179.81 (16) | C23—C24—C25—C26 | −1.7 (4) |
C1—C2—C6—C16 | 55.9 (2) | C24—C25—C26—C27 | 1.1 (4) |
C6—N2—C7—C22 | −174.69 (16) | C23—C22—C27—C26 | −2.1 (3) |
C6—N2—C7—C4 | 59.3 (2) | C7—C22—C27—C26 | 178.4 (2) |
C3—C4—C7—N2 | −59.65 (19) | C25—C26—C27—C22 | 0.9 (4) |
C5—C4—C7—N2 | 62.9 (2) | N1—C5—C28—C29 | −109.3 (2) |
C3—C4—C7—C22 | 175.63 (16) | C4—C5—C28—C29 | 18.2 (3) |
C5—C4—C7—C22 | −61.8 (2) | N1—C5—C28—C33 | 69.8 (2) |
C1—N1—C8—O1 | 173.88 (18) | C4—C5—C28—C33 | −162.69 (17) |
C5—N1—C8—O1 | 1.4 (3) | C33—C28—C29—C30 | −2.1 (3) |
C1—N1—C8—C9 | −6.6 (2) | C5—C28—C29—C30 | 177.0 (2) |
C5—N1—C8—C9 | −179.11 (16) | C28—C29—C30—C31 | 1.1 (4) |
O1—C8—C9—Cl1 | 15.7 (3) | C29—C30—C31—C32 | 0.5 (4) |
N1—C8—C9—Cl1 | −163.88 (14) | C30—C31—C32—C33 | −1.0 (4) |
N1—C1—C10—C11 | 24.6 (3) | C31—C32—C33—C28 | −0.1 (4) |
C2—C1—C10—C11 | −105.2 (2) | C29—C28—C33—C32 | 1.7 (3) |
N1—C1—C10—C15 | −156.0 (2) | C5—C28—C33—C32 | −177.5 (2) |
Cg1 and Cg2 are the centroids of the C28–C33 and C16–C21 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O1 | 0.98 | 2.30 | 2.725 (2) | 105 |
C17—H17···N2 | 0.93 | 2.46 | 2.809 (3) | 103 |
C33—H33···O1 | 0.93 | 2.50 | 3.214 (3) | 134 |
C11—H11···Cg1 | 0.93 | 2.72 | 3.625 (3) | 166 |
C24—H24···Cg2i | 0.93 | 2.87 | 3.628 (3) | 140 |
Symmetry code: (i) −x+1, y−1/2, −z+1/2. |
Parameter | SC-XRD | B3LYP/6-31G(d,p) |
N1—C8 | 1.367 (2) | 1.367 |
N1—C1 | 1.481 (2) | 1.4813 |
N1—C5 | 1.494 (2) | 1.4939 |
O1═C8 | 1.224 (2) | 1.224 |
C8—C9 | 1.528 (2) | 1.528 |
C9—Cl1 | 1.766 (2) | 1.765 |
N2—C7 | 1.463 (2) | 1.463 |
N2—C6 | 1.465 (2) | 1.465 |
C1—N1—C5 | 122.4 (1) | 122.49 |
C1—N1—C8 | 120.2 (1) | 120.14 |
C5—N1—C8 | 116.9 (2) | 116.91 |
N1—C8—C9 | 116.0 (2) | 116.00 |
N1—C1—C10 | 116.0 (2) | 115.98 |
N1—C5—C28 | 111.2 (2) | 111.18 |
N1—C8═O1 | 122.9 (2) | 122.84 |
C16—C6—C2 | 110.5 (2) | 111.60 |
C22—C7—N2 | 111.1 (2) | 111.06 |
N1—C1—C2—C3 | –42.8 (2) | –42.77 |
N1—C5—C4—C3 | 45.4 (2) | 45.38 |
C3—C2—C1—C10 | 89.0 (2) | 89.05 |
C10—C1—N1—C5 | –97.1 (2) | –97.09 |
C1—N1—C5—C28 | 93.9 (2) | 93.91 |
C5—N1—C8═O1 | 1.4 (3) | 1.35 |
C1—N1—C8═O1 | 173.9 (2) | 173.89 |
C3—C4—C5—C28 | –81.5 (2) | –81.52 |
C6—N2—C7—C22 | –174.7 (2) | –174.68 |
C7—N2—C6—C16 | –179.3 (2) | –179.26 |
Footnotes
‡Additional correspondence author, e-mail: s_selvanayagam@rediffmail.com.
References
Ashfaq, M., Tahir, M. N., Muhammad, S., Munawar, K. S., Ali, A., Bogdanov, G. & Alarfaji, S. S. (2021). ACS Omega, 6, 31211–31225. Web of Science CSD CrossRef CAS PubMed Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Biovia (2017). Discovery Studio Visualizer. Biovia, San Diego, CA, USA. Google Scholar
Bruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, U. S. A. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Evans, D. G. & Boeyens, J. C. A. (1988). Acta Cryst. B44, 663–671. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian Inc., Wallingford, CT, USA. Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Huey, R., Morris, G. M. & Forli, S. (2012). The Scripps Research Institute Molecular Graphics Laboratory, 10550 N. Torrey Pines Rd. La Jolla, California 92037-1000, USA. Google Scholar
Jeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149–174. CrossRef CAS Web of Science Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Natarajan, S. & Mathews, R. (2011). Acta Cryst. E67, o1686. CrossRef IUCr Journals Google Scholar
Parthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009). Bioorg. Med. Chem. Lett. 19, 6981–6985. Web of Science CSD CrossRef PubMed CAS Google Scholar
Pathak, C., Karthikeyan, S., More, K. & Vijayakumar, V. (2007). Indian J. Heterocycl. Chem. 16, 295–296. CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392. Web of Science CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Srikrishna, A. & Vijaykumar, D. (1998). Tetrahedron Lett. 39, 5833–5834. Web of Science CrossRef CAS Google Scholar
Veremeeva, P. N., Grishina, I. V., Zaborova, O. V., Averin, A. D. & Palyulin, V. A. (2019). Tetrahedron, 75, 4444–4450. CrossRef CAS Google Scholar
Veremeeva, P. N., Lapteva, V. L., Palyulin, V. A., Sybachin, A. V., Yaroslavov, A. A. & Zefirov, N. S. (2014). Tetrahedron, 70, 1408–1411. CrossRef CAS Google Scholar
Vijayakumar, V. & Sundaravadivelu, M. (2005). Magn. Reson. Chem. 43, 479–482. Web of Science CrossRef PubMed CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.