research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Three-dimensional alkaline earth metal–organic framework poly[[μ-aqua-aqua­bis­­(μ3-carba­moyl­cyano­nitro­somethanido)barium] monohydrate] and its thermal decomposition

crossmark logo

aInorganic Chemistry Department, National Taras Shevchenko University of Kyiv, Volodymyrska Str. 64/13, 01601 Kyiv, Ukraine, and bInstitute of Inorganic Chemistry, Leipzig University, Johannisallee 29, D-04103 Leipzig, Germany
*Correspondence e-mail: dk@univ.kiev.ua

Edited by C. Schulzke, Universität Greifswald, Germany (Received 7 August 2024; accepted 23 August 2024; online 30 August 2024)

In the structure of the title salt, {[Ba(μ3-C3H2N3O2)2(μ-H2O)(H2O)]·H2O}n, the barium ion and all three oxygen atoms of the water mol­ecules reside on a mirror plane. The hydrogen atoms of the bridging water and the solvate water mol­ecules are arranged across a mirror plane whereas all atoms of the monodentate aqua ligand are situated on this mirror plane. The distorted ninefold coord­ination of the Ba ions is completed with four nitroso-, two carbonyl- and three aqua-O atoms at the distances of 2.763 (3)–2.961 (4) Å and it is best described as tricapped trigonal prism. The three-dimensional framework structure is formed by face-sharing of the trigonal prisms, via μ-nitroso- and μ-aqua-O atoms, and also by the bridging coordination of the anions via carbonyl-O atoms occupying two out of the three cap positions. The solvate water mol­ecules populate the crystal channels and facilitate a set of four directional hydrogen bonds. The principal Ba–carbamoyl­cyano­nitro­somethanido linkage reveals a rare example of the inherently polar binodal six- and three-coordinated bipartite topology (three-letter notation sit). It suggests that small resonance-stabilized cyano­nitroso anions can be utilized as bridging ligands for the supra­molecular synthesis of MOF solids. Such an outcome may be anti­cipated for a broader range of hard Lewis acidic alkaline earth metal ions, which perfectly match the coordination preferences of highly nucleophilic nitroso-O atoms. Thermal analysis reveals two-stage dehydration of the title compound (383 and 473 K) followed by decomposition with release of CO2, HCN and H2O at 558 K.

1. Chemical context

Alkaline earth metal-based framework coordination polymers offer significant advantages in the synthesis of functional solids for a range of applications, including gas storage and separation, proton conductivity, construction of optoelectronic devices and development of catalytic systems (Banerjee et al., 2016[Banerjee, D., Wang, H., Deibert, B. J. & Li, J. (2016). The Chemistry of Metal-Organic Frameworks: Synthesis, Characterization, and Applications, edited by S. Kaskel, pp. 73-103. Weinheim: Wiley-VCH Verlag GmbH & Co.]; Király et al., 2023[Király, N., Capková, D., Gyepes, R., Vargová, N., Kazda, T., Bednarčik, J., Yudina, D., Zelenka, T., Čudek, P., Zeleňák, V., Sharma, A., Meynen, V., Hornebecq, V., Straková Fedorková, A. & Almáši, M. (2023). Nanomaterials, 13, 234.]). However, this class of materials remains relatively scarcely investigated. Designing their structures following the principles of supra­molecular synthesis and crystal engineering faces appreciable difficulties. This goes back to a lack of well-established and predictable coordination geometries, variable coordination numbers adopted by alkaline earth metal ions and a general trend for the coordination of solvent (aqua) mol­ecules. The latter, as terminal ligands, prevent the polymerization and formation of extended framework structures (Zang et al., 2021[Zang, Y., Li, L.-K. & Zang, S.-Q. (2021). Coord. Chem. Rev. 440, 213955.]).

It is not surprising that the library of organic linkers for the construction of these materials is essentially restricted to the main types of hard Lewis bases, such as carboxyl­ates (Banerjee & Parise, 2011[Banerjee, D. & Parise, J. B. (2011). Cryst. Growth Des. 11, 4704-4720.]), phospho­nates and sulfonates (Côté & Shimizu, 2003[Côté, A. P. & Shimizu, G. K. H. (2003). Chem. Eur. J. 9, 5361-5370.]). All of them feature the availability of multiple donor atoms to fill the relatively capacious coordination spheres of the alkaline earth metal ions (Gagné & Hawthorne, 2016[Gagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602-625.]) and this is in line with the need to improve the predictability of coordination geometries with a larger number of donor atoms as well as to control the incorporation of terminal ligands. Herein, we report the engineering of a coordination framework with small resonance-stabilized carbamoyl­cyano­nitro­somethanide anions [(ONC(CN)—CONH2), (ccnm)], which are employed as a new kind of linker in the context of alkaline earth metal-based three-dimensional materials. Such species may be well applied to the construction of framework solids, while exploiting specific preferences of the three present functional groups as hydrogen-bond acceptors (Turner et al., 2011[Turner, D. R., Chesman, A. S. R., Murray, K. S., Deacon, G. B. & Batten, S. R. (2011). Chem. Commun. 47, 10189-10210.]). For example, double N—H⋯O bonding of the nitroso-O atoms in a series of ammonium salts is a particularly reliable supra­molecular feature for extended structures with tuneable metrics and dimensionalities (Domasevitch et al., 2023[Domasevitch, K. V., Senchyk, G. A., Lysenko, A. B. & Rusanov, E. B. (2023). Acta Cryst. C79, 177-185.]). In a similar fashion, when combined with the alkaline earth metal cations, the highly nucleophilic and sterically accessible nitroso-O atoms of (ccnm) could establish a suite of short-distance M—O—M bridges (Arulsamy et al., 1999[Arulsamy, N., Bohle, D. S. & Doletski, B. G. (1999). Inorg. Chem. 38, 2709-2715.]) and thus govern a predictable fusion of the coordination polyhedra. One can suppose that the demands for symmetrical electron distribution of the alkaline earth metal ions, which is the case when the bond valence vectors drawn from a central atom to its ligands will sum to zero (Müller et al., 2003[Müller, P., Köpke, S. & Sheldrick, G. M. (2003). Acta Cryst. D59, 32-37.]), could be best fulfilled by an identical face (edge) sharing at the opposite sides of the polyhedron. In total, this is a prerequisite of polymerization to yield an infinite connection of coordination polyhedra, which may be relatively controllable even in the case of very high coordination numbers. With this in mind, we now describe the synthesis and structure of the title salt, poly[[(μ-aqua)(aqua­barium)-bis-μ3-(carbamoyl­cyano­nitro­somethanido)] monohydrate] (1), which underlines the utility of bridging nitroso anions as linkers for the supra­molecular synthesis of a series of MOF solids with (potentially) various alkaline earth metal ions.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link], with the asymmetric unit comprising the barium ion situated on a mirror plane, one organic ligand in a general position and three halves of water mol­ecules, of which one lies within the mirror plane and two others are oriented across the mirror plane.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing the ninefold environment of the Ba ion and displacement ellipsoids drawn at the 40% probability level. Blue lines indicate the trigonal–prismatic coordination core with three additional O atoms situated in the capped positions. Symmetry codes: (i) x − [{1\over 2}], −y + 1, z − [{1\over 2}]; (ii) −x + [{1\over 2}], −y + 1, z − [{1\over 2}]; (iii) −x, y, z; (iv) x, y + 1, z; (v) −x, y + 1, z.

The characteristic high ninefold coordination of the barium ion [BaO9] is completed with four nitroso-, two carbonyl- and three aqua-O atoms at distances of 2.763 (3)–2.961 (4) Å [mean 2.840 (5) Å, Table 1[link]]. These values are fully consistent with the Ba—O separations for nine-coordinate environments in metal–organic structures (mean 2.860 Å; Gagné & Hawthorne, 2016[Gagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602-625.]) and also match the sum of the corresponding ionic radii of 2.87 Å (Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]). In spite of the nearly uniform bond lengths, the environment is somewhat uneven, since the Ba ion is shifted by 0.390 (2) Å from the O9 group centroid toward the O1W position. This polar arrangement may be best assessed with a formalism of the bond-valence model (Brown, 2009[Brown, I. D. (2009). Chem. Rev. 109, 6858-6919.]). The bond-valence sum (BVS) for Ba1 is 2.04 and that is in good agreement with the theory. However, the vectorial sum of the bond-valence vectors corresponding to the individual bonded atoms represents a perceptible residual vector of 0.26 v.u., compared to a value of zero expected for alkaline earth metal ions (Harvey et al., 2006[Harvey, M. A., Baggio, S. & Baggio, R. (2006). Acta Cryst. B62, 1038-1042.]). This distorted polyhedral geometry of the metal ion is nearly inter­mediate between the two most typical and very similar configurations of tricapped trigonal prism and capped square anti­prism, with the corresponding shape measures of 1.673 and 1.927, respectively (Ruiz-Martínez et al., 2008[Ruiz-Martínez, A., Casanova, D. & Alvarez, S. (2008). Chem. Eur. J. 14, 1291-1303.]). Therefore the attribution of the former configuration is essentially nominal, while facilitating further discussion of the three-dimensional connectivity. The vertices of the trigonal prism are occupied by four nitroso-O atoms of four anions and two O-atoms of the aqua ligands, whereas the three cap positions belong to two carbonyl-O atoms and the O atom of the terminal aqua ligand (Fig. 1[link]).

Table 1
Selected bond lengths (Å)

Ba1—O2i 2.763 (3) Ba1—O1v 2.845 (3)
Ba1—O2ii 2.763 (3) Ba1—O1W 2.860 (5)
Ba1—O1iii 2.787 (3) Ba1—O2Wiv 2.951 (5)
Ba1—O1 2.787 (3) Ba1—O2W 2.961 (4)
Ba1—O1iv 2.845 (3)    
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (iii) [-x, y, z]; (iv) [x, y+1, z]; (v) [-x, y+1, z].

The geometry parameters of the (ccnm) anion suggest a highly conjugated structure, which is common to a series of comparable small cyano anions (Turner et al., 2011[Turner, D. R., Chesman, A. S. R., Murray, K. S., Deacon, G. B. & Batten, S. R. (2011). Chem. Commun. 47, 10189-10210.]). The nitroso­cyano­methanide O1/N1/C1/C2/N2 and amide C3/N3/O2 fragments sustain a small dihedral angle of 8.3 (5)°, while the central methanide core itself is strictly planar (Fig. 1[link]), as evidenced by the sum of the bond angles around C1 [359.8 (4)°]. The delocalization of the π-electron density in the (nccm) anions is indicated also by identical separations within the C N O fragment, which are C1—N1 = 1.313 (5) and N1—O1 = 1.313 (4) Å. This is contrary to the neutral H(ccnm) molecule that adopts the structure of a partially conjugated oxime C=N—OH, in which the two principal bond lengths are clearly distinct [1.288 (2) and 1.345 (2) Å, respectively, for H(ccnm)-3,4-di­methyl­pyrazole (1/1); Domasevitch et al., 2024[Domasevitch, K. V., Senchyk, G. A., Ponomarova, V. V., Lysenko, A. B. & Krautscheid, H. (2024). Acta Cryst. E80, 439-445.]]. The present trans–anti configuration of the nitroso group with respect to the carbonyl group is the most typical for crystal structures of [ONC(CN)—COR] salts (Domasevitch et al., 1998[Domasevitch, K. V., Ponomareva, V. V., Rusanov, E. B., Gelbrich, T., Sieler, J. & Skopenko, V. V. (1998). Inorg. Chim. Acta, 268, 93-101.]; Ponomareva et al., 1997[Ponomareva, V. V., Skopenko, V. V., Domasevitch, K. V., Sieler, J. & Gelbrich, T. (1997). Z. Naturforsch. B, 52, 901-905.]), while the syn configuration of (ccnm) anions has only been detected spectroscopically in solution (Janikowski et al., 2013[Janikowski, J., Razali, M. R., Forsyth, C. M., Nairn, K. M., Batten, S. R., MacFarlane, D. R. & Pringle, J. M. (2013). ChemPlusChem, 78, 486-497.]).

3. Supra­molecular features

The title compound adopts a three-dimensional framework structure with eight-connected Ba nodes, μ3-(ccnm) and μ-H2O links, found in a 1:2:1 proportion. The linkage is readily comprehensible when considering a sequence of face-sharing [BaO9] polyhedra, as simpler one-dimensional subconnectivities. The identical by symmetry triangular faces of the trigonal prisms are sustained with two nitroso- and one aqua-O atoms, each of which is bridging between the Ba ions of two translation-related fused polyhedra (Fig. 2[link]). The Ba1⋯Ba1iv separation of 4.4102 (7) Å [symmetry code: (iv) x, y + 1, z] corresponds to the b-axis parameter of the unit cell. In this way the trigonal prisms are stacked to yield linear chains along the b-axis direction. The (ccnm) groups, anchored to the polyhedral chains via nitroso-O atoms, provide the connection to adjacent chains via their carbonyl-O atoms, which occupy two out of the three cap positions at the Ba ions (Fig. 3[link]). The remaining cap position hosts a terminal aqua ligand and therefore it does not influence the framework topology. One can formalize the principal connectivity when excluding the auxiliary μ-H2O links and consider the Ba ions and μ3-(ccnm) unit as the points of a binodal heterocoordinated topological net (Fig. 3[link]c). In this way, a six- and three-connected framework is found with a point symbol {4.62}2{42.610.83} (three-letter notation sit; Blatov et al., 2010[Blatov, V. A., O'Keeffe, M. & Proserpio, D. M. (2010). CrystEngComm, 12, 44-48.]). This topology is inherently polar. It represents a bipartite connection of trigonal–prismatic and trigonal nodes and it is relatively rarely associated with the crystal chemistry of metal–organic frameworks (Li et al., 2014[Li, M., Li, D., O'Keeffe, M. & Yaghi, O. M. (2014). Chem. Rev. 114, 1343-1370.]).

[Figure 2]
Figure 2
(a) Face-sharing connection of the coordination polyhedra through the triangular faces of the trigonal prisms; thick bonds indicate the primary Ba—O(nitroso) linkage. (b) The polyhedral chain accommodating organic anions and aqua ligands with a set of hydrogen-bond inter­actions represented by dotted blue lines. Symmetry codes: (iv) x, y + 1, z; (vii) −x + [{1\over 2}], −y, z − [{1\over 2}].
[Figure 3]
Figure 3
(a) Situation of four (ccnm) anions around the polyhedral stack, which is orthogonal to the drawing plane. (b) View of the framework down the b-axis direction, showing the principal coordination and hydrogen-bond inter­actions. (c) Topology of the metal–anion connectivity, in the form of a binodal heterocoordinated net with trigonal–prismatic [Ba2+] and trigonal [μ3-(ccnm)] nodes, which are indicated in blue and red, respectively. Symmetry codes: (i) x − [{1\over 2}], −y + 1, z − [{1\over 2}]; (ii) −x + [{1\over 2}], −y + 1, z − [{1\over 2}]; (iv) x, y + 1, z; (v) −x, y + 1, z; (vi) −x + [{1\over 2}], −y + 1, z + [{1\over 2}]; (vii) −x + [{1\over 2}], −y, z − [{1\over 2}].

The overall framework is relatively dense leaving only small channels with free volume accounting for 50 Å3 per unit cell or 7.4% of the crystal volume. These channels, running down the b-axis direction, are populated by solvate water mol­ecules (Fig. 4[link]). The latter are important for extensive and relatively strong hydrogen bonding, which is superior to the strengths of other hydrogen-bond inter­actions in the structure. In particular, the solvate water mol­ecules reside in comfortable nearly tetra­hedral environments of two donors and two acceptors and afford four highly directional inter­actions, with the angles at the H atoms of 161 (5)–169 (9)° (Table 2[link]). These mol­ecules are accommodated at the above polyhedral chains, while accepting a pair of O—H⋯O bonds from the terminal aqua ligands of the adjacent polyhedra [O⋯O = 2.782 (7) and 2.877 (7) Å] and extending the linkage to the pair of symmetry-equivalent nitrile-N acceptors [O3W⋯N2viii = 2.933 (5) Å; symmetry code: (viii) −x + [{1\over 2}], −y, z + [{1\over 2}]] (Figs. 2[link], 3[link]). Other possible hydrogen bonds involve the acceptors, which are pre-positioned due to the coordination by the Ba ions, and therefore the geometry of these inter­actions is slightly forced. Only bonding between the amide-NH and nitroso-O sites is favourable (N3⋯O1vi = 3.084 (5) Å; symmetry code: (vi) −x + [{1\over 2}], −y + 1, z + [{1\over 2}]; Table 2[link]) and it may be regarded as a stabilizing factor for the present mutual orientation of the coordinated (ccnm) anions (Fig. 3[link]a). At the same time, a second inter­action of the NH2 group is particularly weak with the N⋯O separation appreciably exceeding the sum of van der Waals radii of 3.07 Å, whereas two symmetry-identical bonds with bridging water mol­ecule are associated with far less favourable angles at the H atoms [O2W⋯O2vii = 2.868 (4) Å; O2W—H⋯O2vii = 112 (6)°; symmetry code: (vii) −x + [{1\over 2}], −y, z − [{1\over 2}]] (Fig. 3[link]a).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1⋯O1vi 0.87 (3) 2.29 (5) 3.084 (5) 151 (5)
N3—H2⋯O1W 0.87 (3) 2.64 (3) 3.490 (4) 169 (5)
O1W—H1W⋯O3W 0.85 (3) 1.94 (3) 2.782 (7) 169 (9)
O1W—H2W⋯O3Wiv 0.85 (3) 2.05 (4) 2.877 (7) 162 (7)
O2W—H3W⋯O2vii 0.85 (3) 2.44 (7) 2.868 (4) 112 (6)
O3W—H4W⋯N2viii 0.84 (3) 2.12 (4) 2.933 (5) 161 (5)
Symmetry codes: (iv) [x, y+1, z]; (vi) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (vii) [-x+{\script{1\over 2}}, -y, z-{\script{1\over 2}}]; (viii) [-x+{\script{1\over 2}}, -y, z+{\script{1\over 2}}].
[Figure 4]
Figure 4
Perspective projection of the structure viewed down the b axis, which features small channels populated by solvate water mol­ecules.

The thermal properties of the title compound were examined by TG/DTA-MS analysis (Netzsch F1 Jupiter integrated with Aeolos mass spectrometer) (Fig. 5[link]). There are two partially separated stages for endothermic weight losses in the temperature ranges of 333–423 K (−9.05 mass %) and 423–503 K (−3.60 mass %). These events are centred at 383 and 473 K, respectively. They are accompanied by peaks m/z = 18 and thus they correspond to the elimination of two and one water mol­ecules (− 2 H2O: calculated −8.66%; − H2O: calculated −4.33%). Therefore, the three types of water mol­ecules in the structure of 1 are only partially distinguishable by thermal analysis. The totally dehydrated material Ba(ccnm)2 is stable up to 558 K, when sharp exothermic decomposition occurs with the release of CO2 (m/z = 44), HCN (m/z = 27) and H2O (m/z = 18). For the attempted decomposition experiment in a small preparative scale of 100 mg, the sample exploded immediately after the temperature reached 558 K. The weight loss in the temperature range of 553–603 K is 26.33 mass % (− CO2, − 2 HCN, − H2O: calculated −27.92%). The resulting material remains intact to significantly higher temperatures, with only very slight outstretched weight loss observed above 693 K (Fig. 5[link]). For comparison, the closely related Ba(ONC(CN)2)2·H2O decomposes at the comparable temperature of 536 K and also very violently (‘to shatter the sample cups’; Arulsamy et al., 1999[Arulsamy, N., Bohle, D. S. & Doletski, B. G. (1999). Inorg. Chem. 38, 2709-2715.]). However, the pathways of nitro­sodia­cyano­methanide degradation are different, since KONC(CN)2 forms (CN)2 and not HCN as in the present case (Jasim, 1989[Jasim, F. (1989). Thermochim. Acta, 154, 381-384.]). The amount of the remaining brown amorphous material (60.00% to 723 K) suggests the composition of BaC3N4O (calculated: 59.04%). It cannot be attributed as Ba[NCO][N(CN)2], since either barium cyanate or di­cyano­amide themselves readily undergo thermal trimerization of the anions giving cyanurate C3N3O33−, mixed anion cyanurates, tri­cyano­melaminates C6N93− and even larger condensation products. These species could be detected by a distinctive pattern in the FT–IR spectrum that reveals a very strong absorption band at 2165 cm−1 (Fig. 6[link]). It corresponds to ν(C≡N) in the highly conjugated tri­cyano­melaminates observed, for example, in the spectrum of NaRb5(C6N93−)2·4H2O [2164 cm−1; Reckeweg et al., 2016[Reckeweg, O., Schulz, A. & DiSalvo, F. J. (2016). Z. Naturforsch. B, 71, 327-332.]], while a series of partially resolved bands in the 1060–1450 cm−1 region is well in accordance with the ring ν(C=N) for the mixture of C3N3O33− (Kalmutzki et al., 2014[Kalmutzki, M., Ströbele, M., Bettinger, H. F. & Meyer, H.-J. (2014). Eur. J. Inorg. Chem. 2014, 2536-2543.]) and C6N93− anions (Reckeweg et al., 2016[Reckeweg, O., Schulz, A. & DiSalvo, F. J. (2016). Z. Naturforsch. B, 71, 327-332.]). There are no ν(C=O) or cyanate ν(C≡N) absorptions [2191 cm−1 for Ba2(C3N3O33−)2(NCO); Tang et al., 2019[Tang, J., Liang, F., Meng, X., Kang, K., Zeng, T., Yin, W., Xia, M., Lin, Z. & Kang, B. (2019). Dalton Trans. 48, 14246-14250.]], suggesting a total conversion of the inter­mediate decomposition products.

[Figure 5]
Figure 5
Combined TGA (green), DTA (black) and MS (red, blue, purple) plots for the title compound, in the temperature range 303–813 K (argon, heating rate 10 K min−1).
[Figure 6]
Figure 6
The IR spectra of (a) the title compound, (b) the product of its dehydration at 493 K for 2 h, (c) sections of the IR spectra, in the region of 1100–1250 cm−1, showing splitting of the ν(N—O) band upon dehydration, and (d) the final product of decomposition at 673 K.

Following the results of thermal analysis, the anhydrate Ba(ccnm)2 was prepared by calcination of the title compound at 493 K for 2 h. The FT–IR spectra of 1 and its dehydration product are very similar, beyond the elimination of broad absorption bands in the ν(O—H) region in the latter case. The strong ν(N—O) absorption at 1202 cm−1 in the spectra of 1 is almost identical to the value of 1212 cm−1 for the ammonium salt (Domasevitch et al., 2021[Domasevitch, K. V., Senchyk, G. A., Lysenko, A. B. & Rusanov, E. B. (2021). Acta Cryst. E77, 1103-1108.]) and both these compounds manifest a certain low-frequency shift when compared to the spectra of NMe4(ccnm) (1253 cm−1; Izgorodina et al., 2010[Izgorodina, E. I., Chesman, A. S. R., Turner, D. R., Deacon, G. B. & Batten, S. R. (2010). J. Phys. Chem. B, 114, 16517-16527.]). This reflects a perceptible sensitivity of ν(N—O) bands either to the effects of ion–dipole coordination for the alkaline earth metal salts or for relatively strong multiple hydrogen bonding observed for NH4(ccnm). It is not surprising that dehydration causes splitting of the ν(N—O) absorption (1206 and 1214 cm−1) (Fig. 6[link]c). Since the blue shift of ν(N—O) is in line with a higher N—O bond order and also with stronger M—N coordination (Domasevitch et al., 2021[Domasevitch, K. V., Senchyk, G. A., Lysenko, A. B. & Rusanov, E. B. (2021). Acta Cryst. E77, 1103-1108.]), one can suppose that upon elimination of the aqua ligands the metal–nitroso inter­action becomes stronger due to the involvement of the N atom. A realistic pattern could consider side-coordination of the N—O group with the formation of a three-membered chelate ring, similar to the structure of discrete complex anions [Ln(ccnm)6]3− (Chesman et al., 2010[Chesman, A. S. R., Turner, D. R., Deacon, G. B. & Batten, S. R. (2010). Eur. J. Inorg. Chem. pp. 2798-2812.]) and to the local [Ba(NO)6] motif in N,N′-di­methyl­iso­nitro­somalonamide (Raston & White, 1976[Raston, C. L. & White, A. H. (1976). J. Chem. Soc. Dalton Trans. pp. 1919-1924.]). In the spectra of 1 and its anhydrate, ν(C≡N) is present as a medium-intense band at 2222 cm−1. It is characteristic for ionic salts of conjugated cyano­nitroso anions, whereas the neutral H(ccnm) derivatives exhibit only very weak ν(C≡N) absorption around 2236 cm−1.

In brief, the present system suggests small cyano­nitroso anions to be suitable building blocks for the construction of extended framework solids. The behaviour of the hard Lewis basic nitroso-O atoms towards alkaline earth cations may be considered predictable with regard to generating multiple M—O—M bridges and a subsequent face- or edge-sharing fusion of the coordination polyhedra. Such cyano­nitroso compounds may be involved as possible single-source precursors for the thermal solid-state metathesis reactions toward alkaline earth metal carbonitride materials.

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.43, update of November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals no alkaline earth metal carbamoyl­cyano­nitro­somethanides, while a series of barium salts with different nitroso-anions accounts for twelve hits. The present nitroso-O—Ba linkage, which delivers chains of Ba2O2 rhombes sharing their Ba-vertices, is reminiscent of the polymeric motif adopted by the most closely related nitro­sodi­cyano­methanide (Arulsamy et al., 1999[Arulsamy, N., Bohle, D. S. & Doletski, B. G. (1999). Inorg. Chem. 38, 2709-2715.]). This structure is not deposited in the CSD. Triple nitroso-O bridging of Ba ions is also known as a local motif in N,N′-di­methyl­iso­nitro­somalonamide (refcode: MIMALB; Raston & White, 1976[Raston, C. L. & White, A. H. (1976). J. Chem. Soc. Dalton Trans. pp. 1919-1924.]). The Ba⋯Ba separation for this [Ba(μ-ON)3Ba] fragment [4.2414 (7) Å] was slightly shorter than 4.4102 (7) Å for [Ba(μ-ON)2(μ-OH2)Ba] in the title structure. However, the supra­molecular patterns for Ba iso­nitro­somalonamide (refcode: INMALB; Raston & White, 1976[Raston, C. L. & White, A. H. (1976). J. Chem. Soc. Dalton Trans. pp. 1919-1924.]) and also for the comparable N,N′-di­methyl­violurate (refcode: LEDYOM; Lorenz et al., 2022[Lorenz, V., Liebing, P., Müller, M., Hilfert, L., Feneberg, M., Kluth, E., Kühling, M., Buchner, M. R., Goldhahn, R. & Edelmann, F. T. (2022). Dalton Trans. 51, 7975-7985.]) were essentially dominated by the formation of different N,O- and O,O-chelate fragments, which mitigate against the generation of high-dimensional frameworks. In this way, the dimensionality of Ba iso­nitro­somalonamide was decreased down to two (Raston & White, 1976[Raston, C. L. & White, A. H. (1976). J. Chem. Soc. Dalton Trans. pp. 1919-1924.]), as may be compared with complex three-dimensional frameworks found for 1 and for Ba(ONC(CN)2)2·H2O (Arulsamy et al., 1999[Arulsamy, N., Bohle, D. S. & Doletski, B. G. (1999). Inorg. Chem. 38, 2709-2715.]).

5. Synthesis and crystallization

The carbamoyl­cyano­nitro­somethanide was prepared in 92% yield by a modified method for the nitro­sation of cyano­acetamide, with isolation of the reaction product in form of the silver salt Ag(ccnm) (Domasevitch et al., 2024[Domasevitch, K. V., Senchyk, G. A., Ponomarova, V. V., Lysenko, A. B. & Krautscheid, H. (2024). Acta Cryst. E80, 439-445.]).

A solution of 4.20 g (50 mmol) of cyano­acetamide and 4.14 g (60 mmol) of NaNO2 in 50 ml of water was cooled to 278 K and then 4.00 ml (70 mmol) of CH3COOH were added dropwise for 3 h with stirring. The mixture was allowed to stand for 12 d at 278–283 K in a stoppered flask to complete precipitation of a faintly yellow voluminous deposit, which represents the sodium hydrogen salt NaH(ccnm)2. The latter was dissolved at room temperature by addition of 100 ml of water, after which a solution of 8.49 g (50 mmol) of AgNO3 in 30 ml of water was added with stirring. A yellow–orange precipitate of Ag(ccnm) was formed immediately. It was filtered, washed thoroughly with 30 ml portions of water and methanol and dried in air. The yield was 10.11 g (92%).

For preparation of the barium salt 1, 1.385 g (6.3 mmol, excess 5%) of the finely powdered solid Ag(ccnm) was added to a solution of 0.733 g (3.0 mmol) of BaCl2·2H2O in 25 ml of water and the mixture was stirred for 4 h. A light-grey deposit of AgCl was filtered off and washed with 2 ml of water. The obtained bright-yellow solution was slowly evaporated to a volume of 3–4 ml, giving several large orange crystals of the product in a yield of 1.084 g (87%). The crystals were stable in air for 10–15 d, but eventually they became opaque and lost their crystallinity. Analysis (%) calculated for C6H10N6O7Ba: C 17.34, H 2.43, N 20.27; found: C 17.49, H 2.27, N 20.49. IR (KBr, cm−1): 652 w, 686 m, 762 w, 1136 vs, 1202 s, 1422 m, 1444 m, 1578 m, 1608 w, 1658 vs, 2222 m, 3284 br, 3450 br, 3628 br.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All hydrogen atoms were located in difference maps and then refined with isotropic displacement parameters and with soft similarity restraints for the O—H bond lengths and H—O—H bond angles for water mol­ecules and N—H bond lengths and C—N—H bond angles for the amide group, which results in O—H = 0.84 (3)–0.85 (3) Å and N—H = 0.87 (3) Å. Two outliers (10[\overline{1}] and 00[\overline{2}]) were omitted in the last cycles of refinement.

Table 3
Experimental details

Crystal data
Chemical formula [Ba(C3H2N3O2)2(H2O)2]·H2O
Mr 415.54
Crystal system, space group Orthorhombic, Pmn21
Temperature (K) 173
a, b, c (Å) 13.6667 (17), 4.4102 (7), 11.2816 (14)
V3) 679.97 (16)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.96
Crystal size (mm) 0.22 × 0.18 × 0.15
 
Data collection
Diffractometer Stoe Image plate diffraction system-2T
Absorption correction Numerical [X-RED (Stoe & Cie, 2001[Stoe & Cie (2001). X-RED. Stoe & Cie GmbH, Darmstadt, Germany.]) and X-SHAPE (Stoe & Cie, 1999[Stoe & Cie (1999). X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.])]
Tmin, Tmax 0.310, 0.399
No. of measured, independent and observed [I > 2σ(I)] reflections 3251, 1696, 1688
Rint 0.016
(sin θ/λ)max−1) 0.692
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.043, 1.15
No. of reflections 1696
No. of parameters 119
No. of restraints 13
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.72, −1.87
Absolute structure Flack x determined using 668 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.013 (14)
Computer programs: X-AREA (Stoe & Cie, 2016[Stoe & Cie (2016). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2019/2 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Poly[[µ-aqua-aquabis(µ3-carbamoylcyanonitrosomethanido)barium] monohydrate] top
Crystal data top
[Ba(C3H2N3O2)2(H2O)2]·H2ODx = 2.030 Mg m3
Mr = 415.54Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pmn21Cell parameters from 3251 reflections
a = 13.6667 (17) Åθ = 4.6–29.4°
b = 4.4102 (7) ŵ = 2.96 mm1
c = 11.2816 (14) ÅT = 173 K
V = 679.97 (16) Å3Prism, yellow
Z = 20.22 × 0.18 × 0.15 mm
F(000) = 400
Data collection top
Stoe Image plate diffraction system-2T
diffractometer
1688 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
φ oscillation scansθmax = 29.4°, θmin = 4.6°
Absorption correction: numerical
[X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)]
h = 1518
Tmin = 0.310, Tmax = 0.399k = 56
3251 measured reflectionsl = 1513
1696 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017All H-atom parameters refined
wR(F2) = 0.043 w = 1/[σ2(Fo2) + (0.0318P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
1696 reflectionsΔρmax = 0.72 e Å3
119 parametersΔρmin = 1.87 e Å3
13 restraintsAbsolute structure: Flack x determined using 668 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.013 (14)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.0000000.71083 (4)0.46009 (2)0.01511 (8)
O10.1246 (2)0.2193 (6)0.4964 (3)0.0242 (6)
O20.3561 (3)0.2641 (7)0.7884 (4)0.0338 (7)
N10.1548 (2)0.3428 (7)0.5958 (3)0.0204 (6)
N20.3448 (3)0.1379 (11)0.5230 (4)0.0392 (8)
N30.2319 (3)0.6036 (9)0.7971 (3)0.0277 (6)
C10.2387 (3)0.2447 (9)0.6375 (4)0.0191 (6)
C20.2979 (2)0.0271 (9)0.5748 (3)0.0237 (7)
C30.2796 (2)0.3730 (9)0.7480 (3)0.0216 (6)
O1W0.0000000.8440 (11)0.7082 (5)0.0446 (12)
O2W0.0000000.2093 (9)0.2856 (4)0.0284 (9)
O3W0.0000000.3577 (11)0.8653 (4)0.0304 (8)
H10.253 (5)0.681 (12)0.864 (4)0.05 (2)*
H20.178 (3)0.666 (9)0.765 (5)0.027 (12)*
H1W0.0000000.712 (13)0.763 (7)0.04 (3)*
H2W0.0000001.019 (8)0.740 (6)0.04 (2)*
H3W0.0509 (10)0.192 (17)0.243 (5)0.07 (3)*
H4W0.0508 (10)0.334 (15)0.906 (5)0.048 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.01474 (10)0.01439 (11)0.01620 (11)0.0000.0000.0010 (3)
O10.0220 (12)0.0259 (12)0.0248 (14)0.0015 (8)0.0088 (9)0.0003 (9)
O20.0310 (16)0.0345 (14)0.0359 (19)0.0029 (11)0.0197 (14)0.0041 (12)
N10.0186 (12)0.0210 (13)0.0217 (15)0.0023 (11)0.0030 (10)0.0003 (11)
N20.0359 (18)0.0426 (19)0.039 (2)0.0108 (17)0.0031 (15)0.0062 (18)
N30.0306 (16)0.0290 (18)0.0234 (17)0.0021 (15)0.0037 (12)0.0045 (14)
C10.0184 (15)0.0190 (15)0.0199 (18)0.0021 (12)0.0029 (12)0.0032 (12)
C20.0208 (14)0.0268 (16)0.0235 (17)0.0006 (12)0.0046 (11)0.0005 (13)
C30.0211 (13)0.0243 (15)0.0195 (16)0.0054 (13)0.0043 (11)0.0022 (13)
O1W0.088 (4)0.022 (2)0.024 (2)0.0000.0000.0013 (18)
O2W0.026 (2)0.031 (2)0.028 (2)0.0000.0000.0024 (15)
O3W0.0283 (18)0.035 (2)0.028 (2)0.0000.0000.0081 (18)
Geometric parameters (Å, º) top
Ba1—O2i2.763 (3)N2—C21.132 (5)
Ba1—O2ii2.763 (3)N3—C31.329 (5)
Ba1—O1iii2.787 (3)N3—H10.87 (3)
Ba1—O12.787 (3)N3—H20.87 (3)
Ba1—O1iv2.845 (3)C1—C21.441 (5)
Ba1—O1v2.845 (3)C1—C31.478 (5)
Ba1—O1W2.860 (5)O1W—H1W0.85 (3)
Ba1—O2Wiv2.951 (5)O1W—H2W0.85 (3)
Ba1—O2W2.961 (4)O2W—H3W0.85 (3)
O1—N11.313 (4)O2W—H3Wiii0.85 (3)
O2—C31.237 (5)O3W—H4W0.84 (3)
N1—C11.313 (5)O3W—H4Wiii0.84 (3)
O2i—Ba1—O2ii90.78 (19)O1—Ba1—O2W61.11 (9)
O2i—Ba1—O1iii72.50 (10)O1iv—Ba1—O2W133.20 (8)
O2ii—Ba1—O1iii124.70 (9)O1v—Ba1—O2W133.20 (8)
O2i—Ba1—O1124.70 (9)O1W—Ba1—O2W143.53 (14)
O2ii—Ba1—O172.50 (10)O2Wiv—Ba1—O2W96.48 (15)
O1iii—Ba1—O175.32 (12)N1—O1—Ba189.72 (19)
O2i—Ba1—O1iv119.71 (9)N1—O1—Ba1vi129.7 (2)
O2ii—Ba1—O1iv69.11 (10)Ba1—O1—Ba1vi103.07 (9)
O1iii—Ba1—O1iv163.22 (13)C3—O2—Ba1vii147.6 (3)
O1—Ba1—O1iv103.07 (9)C1—N1—O1116.4 (3)
O2i—Ba1—O1v69.11 (10)C3—N3—H1120 (3)
O2ii—Ba1—O1v119.71 (8)C3—N3—H2119 (3)
O1iii—Ba1—O1v103.07 (9)H1—N3—H2121 (5)
O1—Ba1—O1v163.22 (13)N1—C1—C2122.2 (4)
O1iv—Ba1—O1v73.52 (12)N1—C1—C3120.4 (3)
O2i—Ba1—O1W132.68 (9)C2—C1—C3117.2 (3)
O2ii—Ba1—O1W132.68 (9)N2—C2—C1178.0 (4)
O1iii—Ba1—O1W90.90 (10)O2—C3—N3123.9 (4)
O1—Ba1—O1W90.90 (10)O2—C3—C1118.8 (4)
O1iv—Ba1—O1W72.36 (10)N3—C3—C1117.3 (3)
O1v—Ba1—O1W72.36 (10)Ba1—O1W—H1W125 (6)
O2i—Ba1—O2Wiv60.16 (8)Ba1—O1W—H2W127 (5)
O2ii—Ba1—O2Wiv60.16 (8)H1W—O1W—H2W108 (6)
O1iii—Ba1—O2Wiv132.66 (8)Ba1vi—O2W—Ba196.48 (15)
O1—Ba1—O2Wiv132.66 (8)Ba1vi—O2W—H3W108 (5)
O1iv—Ba1—O2Wiv60.60 (9)Ba1—O2W—H3W116 (4)
O1v—Ba1—O2Wiv60.60 (9)Ba1vi—O2W—H3Wiii108 (5)
O1W—Ba1—O2Wiv120.00 (13)Ba1—O2W—H3Wiii116 (4)
O2i—Ba1—O2W64.14 (9)H3W—O2W—H3Wiii110 (7)
O2ii—Ba1—O2W64.14 (9)H4W—O3W—H4Wiii111 (6)
O1iii—Ba1—O2W61.11 (9)
Ba1—O1—N1—C1160.6 (3)Ba1vii—O2—C3—C1176.7 (4)
Ba1vi—O1—N1—C192.6 (4)N1—C1—C3—O2176.0 (4)
O1—N1—C1—C23.7 (6)C2—C1—C3—O28.3 (6)
O1—N1—C1—C3179.1 (3)N1—C1—C3—N34.9 (5)
Ba1vii—O2—C3—N32.3 (8)C2—C1—C3—N3170.8 (4)
Symmetry codes: (i) x1/2, y+1, z1/2; (ii) x+1/2, y+1, z1/2; (iii) x, y, z; (iv) x, y+1, z; (v) x, y+1, z; (vi) x, y1, z; (vii) x+1/2, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···O1vii0.87 (3)2.29 (5)3.084 (5)151 (5)
N3—H2···O1W0.87 (3)2.64 (3)3.490 (4)169 (5)
O1W—H1W···O3W0.85 (3)1.94 (3)2.782 (7)169 (9)
O1W—H2W···O3Wiv0.85 (3)2.05 (4)2.877 (7)162 (7)
O2W—H3W···O2viii0.85 (3)2.44 (7)2.868 (4)112 (6)
O3W—H4W···N2ix0.84 (3)2.12 (4)2.933 (5)161 (5)
Symmetry codes: (iv) x, y+1, z; (vii) x+1/2, y+1, z+1/2; (viii) x+1/2, y, z1/2; (ix) x+1/2, y, z+1/2.
 

Funding information

This work was supported by the Ministry of Education and Science of Ukraine (Project No. 22BF037–11).

References

First citationArulsamy, N., Bohle, D. S. & Doletski, B. G. (1999). Inorg. Chem. 38, 2709–2715.  Web of Science CrossRef CAS Google Scholar
First citationBanerjee, D. & Parise, J. B. (2011). Cryst. Growth Des. 11, 4704–4720.  Web of Science CrossRef CAS Google Scholar
First citationBanerjee, D., Wang, H., Deibert, B. J. & Li, J. (2016). The Chemistry of Metal-Organic Frameworks: Synthesis, Characterization, and Applications, edited by S. Kaskel, pp. 73–103. Weinheim: Wiley-VCH Verlag GmbH & Co.  Google Scholar
First citationBlatov, V. A., O'Keeffe, M. & Proserpio, D. M. (2010). CrystEngComm, 12, 44–48.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. (2009). Chem. Rev. 109, 6858–6919.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChesman, A. S. R., Turner, D. R., Deacon, G. B. & Batten, S. R. (2010). Eur. J. Inorg. Chem. pp. 2798–2812.  Web of Science CSD CrossRef Google Scholar
First citationCôté, A. P. & Shimizu, G. K. H. (2003). Chem. Eur. J. 9, 5361–5370.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDomasevitch, K. V., Ponomareva, V. V., Rusanov, E. B., Gelbrich, T., Sieler, J. & Skopenko, V. V. (1998). Inorg. Chim. Acta, 268, 93–101.  Web of Science CSD CrossRef CAS Google Scholar
First citationDomasevitch, K. V., Senchyk, G. A., Lysenko, A. B. & Rusanov, E. B. (2021). Acta Cryst. E77, 1103–1108.  CSD CrossRef IUCr Journals Google Scholar
First citationDomasevitch, K. V., Senchyk, G. A., Lysenko, A. B. & Rusanov, E. B. (2023). Acta Cryst. C79, 177–185.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDomasevitch, K. V., Senchyk, G. A., Ponomarova, V. V., Lysenko, A. B. & Krautscheid, H. (2024). Acta Cryst. E80, 439–445.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602–625.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHarvey, M. A., Baggio, S. & Baggio, R. (2006). Acta Cryst. B62, 1038–1042.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIzgorodina, E. I., Chesman, A. S. R., Turner, D. R., Deacon, G. B. & Batten, S. R. (2010). J. Phys. Chem. B, 114, 16517–16527.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJanikowski, J., Razali, M. R., Forsyth, C. M., Nairn, K. M., Batten, S. R., MacFarlane, D. R. & Pringle, J. M. (2013). ChemPlusChem, 78, 486–497.  Web of Science CSD CrossRef CAS Google Scholar
First citationJasim, F. (1989). Thermochim. Acta, 154, 381–384.  CrossRef CAS Google Scholar
First citationKalmutzki, M., Ströbele, M., Bettinger, H. F. & Meyer, H.-J. (2014). Eur. J. Inorg. Chem. 2014, 2536–2543.  CrossRef CAS Google Scholar
First citationKirály, N., Capková, D., Gyepes, R., Vargová, N., Kazda, T., Bednarčik, J., Yudina, D., Zelenka, T., Čudek, P., Zeleňák, V., Sharma, A., Meynen, V., Hornebecq, V., Straková Fedorková, A. & Almáši, M. (2023). Nanomaterials, 13, 234.  PubMed Google Scholar
First citationLi, M., Li, D., O'Keeffe, M. & Yaghi, O. M. (2014). Chem. Rev. 114, 1343–1370.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLorenz, V., Liebing, P., Müller, M., Hilfert, L., Feneberg, M., Kluth, E., Kühling, M., Buchner, M. R., Goldhahn, R. & Edelmann, F. T. (2022). Dalton Trans. 51, 7975–7985.  CrossRef CAS PubMed Google Scholar
First citationMüller, P., Köpke, S. & Sheldrick, G. M. (2003). Acta Cryst. D59, 32–37.  Web of Science CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPonomareva, V. V., Skopenko, V. V., Domasevitch, K. V., Sieler, J. & Gelbrich, T. (1997). Z. Naturforsch. B, 52, 901–905.  CrossRef CAS Google Scholar
First citationRaston, C. L. & White, A. H. (1976). J. Chem. Soc. Dalton Trans. pp. 1919–1924.  CrossRef Google Scholar
First citationReckeweg, O., Schulz, A. & DiSalvo, F. J. (2016). Z. Naturforsch. B, 71, 327–332.  CrossRef CAS Google Scholar
First citationRuiz–Martínez, A., Casanova, D. & Alvarez, S. (2008). Chem. Eur. J. 14, 1291–1303.  Web of Science PubMed Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (1999). X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (2001). X-RED. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (2016). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTang, J., Liang, F., Meng, X., Kang, K., Zeng, T., Yin, W., Xia, M., Lin, Z. & Kang, B. (2019). Dalton Trans. 48, 14246–14250.  CrossRef CAS PubMed Google Scholar
First citationTurner, D. R., Chesman, A. S. R., Murray, K. S., Deacon, G. B. & Batten, S. R. (2011). Chem. Commun. 47, 10189–10210.  Web of Science CrossRef CAS Google Scholar
First citationZang, Y., Li, L.-K. & Zang, S.-Q. (2021). Coord. Chem. Rev. 440, 213955.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds