research communications
Synthesis, H-imidazol-1-yl]acetate (thiophenytoin derivative)
and Hirshfeld surface of ethyl 2-[2-(methylsulfanyl)-5-oxo-4,4-diphenyl-4,5-dihydro-1aLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco, bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom, cLaboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen, dUniversity of Jeddah, College of Science, Department of Chemistry, Jeddah 21589, Saudi Arabia, and eDepartment of Chemistry, Tulane University, New Orleans, LA, 70118, USA
*Correspondence e-mail: alsubaripharmaco@21umas.edu.ye, y.ramli@um5r.ac.ma
The dihydroimidazole ring in the title molecule, C20H20N2O3S, is slightly distorted and the lone pair on the tri-coordinate nitrogen atom is involved in intra-ring π bonding. The methylsulfanyl substituent lies nearly in the plane of the five-membered ring while the ester substituent is rotated well out of that plane. In the crystal, C—H⋯O hydrogen bonds form inversion dimers, which are connected along the a- and c-axis directions by additional C—H⋯O hydrogen bonds, forming layers parallel to the ac plane. The major contributors to the Hirshfeld surface are C⋯H/H⋯C, O⋯H/H⋯O and S⋯H/H⋯S contacts at 20.5%, 14.7% and 4.9%, respectively.
Keywords: crystal structure; thiophenytoin; dihydroimidazole; hydrogen bond; ester; thioether.
CCDC reference: 2372876
1. Chemical context
The family of hydantoin drugs is important in medicinal chemistry because of the wide range of pharmacological activities exhibited, including antibacterial, antidiabetic, anti-inflammatory, anticonvulsant, anti-HIV and anticancer properties. Thiohydantoins, sulfur analogues of hydantoins, undergo replacement of one or both carbonyl groups with thiocarbonyl groups. This substitution enables versatile structural modifications, facilitating the customization of thiohydantoins to preferentially adopt specific structural types. Such modifications, achieved by introducing steric bulk, altering hydrophilic or hydrophobic interactions, or promoting stacking, afford control over the molecule's ability to form hydrogen-bonded arrays in the solid state. In particular, phenytoin and thiophenytoin derivatives and diphenyl-substituted hydantoin exhibit significant activity against tonic–clonic (grand mal) seizures (Camerman & Camerman, 1971). These chemicals are recognized for their anticonvulsant properties and have diverse pharmacological applications, including antifungal, herbicidal, anti-inflammatory, anti-HIV, antimicrobial, anticancer, and antibacterial activities, which vary based on the specific substitutions on the hydantoin ring (Cho et al., 2019; Allah et al., 2024; El Moutaouakil Ala Allah et al., 2024a). The significance of this scaffold in drug discovery is underscored by several clinically used medications, including phenytoin, nitrofurantoin, and enzalutamide (Patocka et al., 2020). Given the wide range of therapeutic applications for such compounds, we have previously reported a route for the preparation of thiophenytoine derivatives using N-alkylation reactions carried out with ethyl bromoacetate (Guerrab et al., 2020, 2022; Missioui et al. 2022). A similar approach yielded the title compound, C20H20N2O3S (Fig. 1). In addition to the synthesis, we also report the molecular and along with a Hirshfeld surface analysis.
2. Structural commentary
The dihydroimidazole ring is slightly distorted with C1 located 0.0166 (10) Å to one side of the mean plane and C14 positioned 0.0199 (10) Å on the other side (r.m.s. deviation of the fitted atoms = 0.0143 Å). The ethoxy group is disordered over two resolved sites in a 0.741 (7)/0.259 (6) ratio. The sum of the angles about N2 is 359.89 (15)°, indicating participation of its lone pair in N→C π bonding. This occurs to a slightly greater extent with C14 as the N2—C14 bond length is 1.371 (2) Å while the N2—C15 bond length is 1.406 (2) Å. By contrast, the N2—C17 bond length is 1.445 (2) Å. The C16 methyl group lies nearly in the plane of the dihydroimidazole ring as the C16—S1—C15—N2 torsion angle is −176.94 (14)° but the ester substituent is directed well out of this plane since the C15—N2—C17—C18 torsion angle is −76.6 (2)° (Fig. 2). The rotational orientation of the C8⋯C13 phenyl ring is partially determined by the intramolecular C9—H9⋯O1 hydrogen bond (Fig. 2).
3. Supramolecular features
In the crystal, inversion dimers are formed by paired C17—H17A⋯O1 hydrogen bonds. The dimers are formed into chains extending along the c-axis direction by weak C5—H5⋯O2 hydrogen bonds and the chains are linked by weak C11—H11⋯O1 hydrogen bonds (Table 1) along the a-axis direction into layers parallel to the the ac plane. The layers pack with normal van der Waals contacts (Fig. 2).
4. Database survey
A search of the Cambridge Structural Database (CSD; updated to May 31, 2024; Groom et al., 2016) with the fragment shown in Fig. 3 yielded ten hits including those with methyl (YEYYA; El Moutaouakil Ala Allah et al., 2023), ethyl (HOPQAI; Allah et al., 2024a), n-propyl (RIJZIW: Akrad et al., 2018), benzyl (RAHGUF; Akrad et al., 2017) and allyl (ROLJAH; El Moutaouakil Ala Allah et al., 2024b) substituents on both nitrogen and sulfur. The remainder have the nitrogen and sulfur connected by a —CH2CH2— chain (DIYRAE; El Moutaouakil Ala Allah et al., 2023), a —CH2CH(COOEt)— chain (FURFED; Karolak-Wojciechowska & Kiec-Kononowicz, 1987), a —CH2CH2CH2— chain (IMTHZN; Kieć-Kononowicz et al., 1981 and IMTHZN01; Guerrab et al., 2019) and a —CH2CH2(OCH2CH2)2OCH2CH2— chain (LIGWOR; Guerrab et al., 2023). In all cases, the dihydroimidazole ring is planar with the maximum deviation of a fitted atom from the mean plane ranging from 0.006 (1) Å (HOPQAI, r.m.s. deviation of the fitted atoms = 0.001 Å) to 0.023 (2) Å (RAHGUF, r.m.s. deviation of the fitted atoms = 0.002 Å) for those not have a ring fused to it and up to 0.029 (2) Å (IMTHZN01, r.m.s. deviation of the fitted atoms = 0.002 Å) where a fused ring is present. Particularly where the second ring size is relatively small (DIYRAE, FURFED, IMTHZN and IMTHZN01), it is likely that strain from the ring fusion contributes to the greater deviation from planarity. With the exception of the four just mentioned where geometrical constraints require it, all structures have the carbon attached to sulfur in the side chain very close to the mean plane of the dihydroimidazole ring as in the title molecule. The same group of structures has the β-carbon of the substituent on nitrogen oriented well out of that plane.
5. Hirshfeld surface analysis
A Hirshfeld surface analysis of the intermolecular interactions of the title molecule was carried out with Crystal Explorer 21.5 (Spackman et al., 2021) and descriptions of the graphical output and its interpretation have been published (Tan et al., 2019). The dnorm surface calculated over the range −0.2373 to 1.3807 in arbitrary units is shown in Fig. 4a together with four neighboring molecules illustrating the weak C5—H5⋯O2 and C11—H11⋯O1 hydrogen bonds while Fig. 4b shows the surface calculated over the curvature function. The latter shows that there are no extensive flat regions about the molecule, consistent with the absence of π-stacking interactions. Fig. 5 shows the 2-D fingerprint plot of all intermolecular interactions and those delineated into contributions from H⋯H, C⋯H/H⋯C, O⋯H/H⋯O and S⋯H/H⋯S interactions. Here, the H⋯H interactions comprise 56.4% of the total, consistent with the high hydrogen content of the molecule and the shape, which has many of the hydrogen atoms pointing outwards from the center of gravity. The other significant contributions are from C⋯H/H⋯C, O⋯H/H⋯O and S⋯H/H⋯S contacts at 20.5%, 14.7% and 4.9%, respectively.
6. Synthesis and crystallization
To a solution of 2-(methylsulfanyl)-5,5-diphenyl-3,5-dihydro-4H-imidazol-4-one (0.5 g, 1.78 mmol) in acetonitrile (15 mL) were added K2CO3 (0.3 g, 2 mmol) and ethyl bromoacetate (0.19 ml, 1.80 mmol) and a catalytic quantity of tetra-n-butylammonium bromide. The reaction scheme is shown in Fig. 6. The mixture was stirred for 8 h at room temperature. The solution was filtered and the solvent removed under reduced pressure. The solid obtained upon solvent removal was recrystallized from ethanol to afford thick, colorless, plate-like crystals of the title compound. Yield = 92%, m.p. = 515–517 K. FT-IR (ATR, υ, cm−1): 3082 (N—H), 3060 (H—C=C), 1731 (C=O), 1587, 1570, 1491, 1412 (Ar—C=C); 1H NMR (500 MHz, CDCl3): δ ppm 1.24 (t, 3H, —O—CH2—CH3), 2.69 (s, 3H, S—CH3), 4.22 (q, 2H, —O—CH2—CH3), 4.27 (s, 2H, N—CH2), 7.25–7.54 (m, 10H, Ar—H); 13C NMR: 12,93 (—O—CH2—CH3), 14.16 (—S—CH3), 41.75 (—N—CH3), 62.17 (—O—CH2—CH3), 78.98 (C—2Ph), 127.22, 128.31, 128.76, 140.14 (C—Ar); 160.71 (C=N); 167.00 (C=O), 180.73(C=Oimidazole). HRMS (ESI): calculated for C20H20N2O2S [M − H]+ 369,1195; found 369,12579.
7. Refinement
Crystal data, data collection and structure . Hydrogen atoms were included as riding contributions in idealized positions with isotropic displacement parameters tied to those of the attached atoms. The ethoxy group is disordered over two sites in a 0.741 (7)/0.259 (6) ratio. The two components were refined with restraints to make their geometries be comparable.
details are summarized in Table 2Supporting information
CCDC reference: 2372876
https://doi.org/10.1107/S2056989024007345/zn2037sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024007345/zn2037Isup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024007345/zn2037Isup3.cml
C20H20N2O3S | Z = 2 |
Mr = 368.44 | F(000) = 388 |
Triclinic, P1 | Dx = 1.271 Mg m−3 |
a = 8.5473 (7) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.4653 (10) Å | Cell parameters from 3430 reflections |
c = 11.5360 (9) Å | θ = 3.9–27.4° |
α = 88.258 (7)° | µ = 0.19 mm−1 |
β = 74.622 (7)° | T = 293 K |
γ = 75.593 (7)° | Block, colourless |
V = 962.96 (15) Å3 | 0.57 × 0.32 × 0.17 mm |
SuperNova, Dual, Cu at home/near, Atlas diffractometer | 3377 reflections with I > 2σ(I) |
ω scans | Rint = 0.019 |
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2023) | θmax = 29.8°, θmin = 3.5° |
Tmin = 0.592, Tmax = 1.000 | h = −11→11 |
7781 measured reflections | k = −12→13 |
4523 independent reflections | l = −15→14 |
Refinement on F2 | 106 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.050 | H-atom parameters constrained |
wR(F2) = 0.137 | w = 1/[σ2(Fo2) + (0.052P)2 + 0.2326P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max < 0.001 |
4523 reflections | Δρmax = 0.24 e Å−3 |
257 parameters | Δρmin = −0.32 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.5979 (2) | 0.24490 (16) | 0.72577 (15) | 0.0416 (4) | |
C2 | 0.6264 (2) | 0.23182 (18) | 0.85255 (15) | 0.0442 (4) | |
C3 | 0.6478 (3) | 0.1096 (2) | 0.90440 (19) | 0.0633 (6) | |
H3 | 0.639895 | 0.036969 | 0.863850 | 0.076* | |
C4 | 0.6808 (4) | 0.0945 (3) | 1.0157 (2) | 0.0769 (7) | |
H4 | 0.695641 | 0.011916 | 1.049348 | 0.092* | |
C5 | 0.6917 (3) | 0.2012 (3) | 1.0767 (2) | 0.0768 (7) | |
H5 | 0.714370 | 0.191190 | 1.151414 | 0.092* | |
C6 | 0.6691 (4) | 0.3215 (3) | 1.0269 (2) | 0.0821 (8) | |
H6 | 0.674981 | 0.394015 | 1.068756 | 0.099* | |
C7 | 0.6372 (3) | 0.3383 (2) | 0.91425 (19) | 0.0639 (6) | |
H7 | 0.623416 | 0.421097 | 0.880978 | 0.077* | |
C8 | 0.4451 (2) | 0.19605 (18) | 0.72080 (15) | 0.0449 (4) | |
C9 | 0.4566 (3) | 0.0756 (2) | 0.67024 (19) | 0.0609 (5) | |
H9 | 0.561486 | 0.021073 | 0.634043 | 0.073* | |
C10 | 0.3136 (3) | 0.0344 (3) | 0.6726 (2) | 0.0747 (7) | |
H10 | 0.323486 | −0.046878 | 0.637062 | 0.090* | |
C11 | 0.1604 (3) | 0.1110 (3) | 0.7260 (2) | 0.0785 (7) | |
H11 | 0.065117 | 0.081614 | 0.729605 | 0.094* | |
C12 | 0.1461 (3) | 0.2321 (3) | 0.7747 (3) | 0.0995 (10) | |
H12 | 0.040598 | 0.285935 | 0.810314 | 0.119* | |
C13 | 0.2884 (3) | 0.2752 (3) | 0.7712 (2) | 0.0787 (7) | |
H13 | 0.277336 | 0.358453 | 0.803302 | 0.094* | |
C14 | 0.7617 (2) | 0.16849 (17) | 0.63784 (15) | 0.0426 (4) | |
C15 | 0.7038 (2) | 0.38504 (17) | 0.60131 (16) | 0.0437 (4) | |
C16 | 0.5733 (3) | 0.6489 (2) | 0.5983 (2) | 0.0719 (6) | |
H16A | 0.470718 | 0.622454 | 0.608740 | 0.108* | |
H16B | 0.568596 | 0.727851 | 0.553355 | 0.108* | |
H16C | 0.588071 | 0.665361 | 0.675577 | 0.108* | |
C17 | 0.9826 (2) | 0.23788 (19) | 0.47982 (16) | 0.0484 (4) | |
H17A | 1.049766 | 0.152095 | 0.493094 | 0.058* | |
H17B | 1.039754 | 0.303695 | 0.491716 | 0.058* | |
C18 | 0.9700 (3) | 0.24075 (19) | 0.35239 (17) | 0.0532 (5) | |
C19 | 1.1395 (8) | 0.2528 (5) | 0.1481 (3) | 0.0862 (14) | 0.741 (7) |
H19A | 1.075894 | 0.198513 | 0.123746 | 0.103* | 0.741 (7) |
H19B | 1.257026 | 0.219412 | 0.106622 | 0.103* | 0.741 (7) |
C20 | 1.0784 (9) | 0.3934 (5) | 0.1203 (4) | 0.127 (2) | 0.741 (7) |
H20A | 0.962396 | 0.425004 | 0.162843 | 0.190* | 0.741 (7) |
H20B | 1.090623 | 0.400299 | 0.035378 | 0.190* | 0.741 (7) |
H20C | 1.142746 | 0.445500 | 0.144878 | 0.190* | 0.741 (7) |
O3 | 1.1147 (2) | 0.25222 (17) | 0.27909 (13) | 0.0738 (5) | 0.741 (7) |
C19A | 1.0825 (18) | 0.2742 (19) | 0.1595 (7) | 0.084 (3) | 0.259 (7) |
H19C | 0.975229 | 0.336314 | 0.165521 | 0.101* | 0.259 (7) |
H19D | 1.083765 | 0.192018 | 0.122213 | 0.101* | 0.259 (7) |
C20A | 1.223 (2) | 0.3291 (17) | 0.0899 (9) | 0.117 (4) | 0.259 (7) |
H20D | 1.202603 | 0.419795 | 0.114703 | 0.176* | 0.259 (7) |
H20E | 1.230224 | 0.323440 | 0.005607 | 0.176* | 0.259 (7) |
H20F | 1.326004 | 0.279434 | 0.104436 | 0.176* | 0.259 (7) |
O3A | 1.1147 (2) | 0.25222 (17) | 0.27909 (13) | 0.0738 (5) | 0.259 (7) |
N1 | 0.57653 (19) | 0.38291 (14) | 0.68826 (13) | 0.0450 (3) | |
N2 | 0.82123 (18) | 0.26296 (14) | 0.56738 (13) | 0.0453 (3) | |
O1 | 0.83139 (17) | 0.05214 (12) | 0.63157 (12) | 0.0551 (3) | |
O2 | 0.8505 (2) | 0.23180 (18) | 0.32206 (14) | 0.0776 (5) | |
S1 | 0.74520 (7) | 0.52037 (5) | 0.51841 (5) | 0.06199 (18) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0425 (9) | 0.0385 (9) | 0.0441 (9) | −0.0092 (7) | −0.0129 (7) | 0.0006 (7) |
C2 | 0.0400 (9) | 0.0484 (10) | 0.0452 (9) | −0.0112 (7) | −0.0127 (7) | −0.0016 (7) |
C3 | 0.0890 (16) | 0.0551 (12) | 0.0570 (12) | −0.0222 (11) | −0.0349 (11) | 0.0072 (9) |
C4 | 0.105 (2) | 0.0726 (15) | 0.0621 (14) | −0.0208 (14) | −0.0408 (14) | 0.0151 (11) |
C5 | 0.0902 (18) | 0.0946 (19) | 0.0543 (13) | −0.0213 (15) | −0.0359 (12) | 0.0037 (12) |
C6 | 0.110 (2) | 0.0796 (17) | 0.0719 (15) | −0.0264 (15) | −0.0445 (15) | −0.0138 (13) |
C7 | 0.0821 (15) | 0.0544 (12) | 0.0632 (13) | −0.0175 (11) | −0.0319 (11) | −0.0033 (9) |
C8 | 0.0445 (9) | 0.0531 (10) | 0.0407 (9) | −0.0151 (8) | −0.0154 (7) | 0.0068 (7) |
C9 | 0.0598 (12) | 0.0613 (13) | 0.0682 (13) | −0.0255 (10) | −0.0180 (10) | −0.0009 (10) |
C10 | 0.0823 (18) | 0.0812 (16) | 0.0827 (16) | −0.0451 (14) | −0.0372 (14) | 0.0096 (13) |
C11 | 0.0690 (16) | 0.103 (2) | 0.0905 (17) | −0.0454 (15) | −0.0465 (14) | 0.0271 (15) |
C12 | 0.0446 (13) | 0.113 (2) | 0.139 (3) | −0.0153 (14) | −0.0239 (15) | −0.011 (2) |
C13 | 0.0483 (12) | 0.0789 (16) | 0.109 (2) | −0.0124 (11) | −0.0215 (12) | −0.0191 (14) |
C14 | 0.0427 (9) | 0.0418 (9) | 0.0459 (9) | −0.0120 (7) | −0.0145 (7) | 0.0002 (7) |
C15 | 0.0458 (10) | 0.0384 (9) | 0.0513 (10) | −0.0121 (7) | −0.0189 (8) | 0.0023 (7) |
C16 | 0.0719 (15) | 0.0458 (11) | 0.0958 (17) | −0.0059 (10) | −0.0274 (13) | 0.0069 (11) |
C17 | 0.0427 (9) | 0.0521 (10) | 0.0502 (10) | −0.0147 (8) | −0.0089 (8) | −0.0004 (8) |
C18 | 0.0612 (12) | 0.0475 (10) | 0.0531 (11) | −0.0201 (9) | −0.0123 (9) | −0.0012 (8) |
C19 | 0.100 (3) | 0.087 (3) | 0.055 (2) | −0.020 (2) | 0.0046 (19) | 0.0016 (18) |
C20 | 0.160 (5) | 0.106 (4) | 0.087 (3) | −0.009 (3) | −0.013 (3) | 0.030 (3) |
O3 | 0.0843 (11) | 0.0866 (11) | 0.0528 (8) | −0.0398 (9) | −0.0054 (8) | 0.0096 (7) |
C19A | 0.096 (5) | 0.094 (5) | 0.053 (4) | −0.028 (4) | 0.001 (4) | 0.002 (4) |
C20A | 0.119 (8) | 0.145 (8) | 0.075 (6) | −0.042 (7) | 0.003 (6) | 0.023 (6) |
O3A | 0.0843 (11) | 0.0866 (11) | 0.0528 (8) | −0.0398 (9) | −0.0054 (8) | 0.0096 (7) |
N1 | 0.0456 (8) | 0.0386 (8) | 0.0510 (8) | −0.0081 (6) | −0.0158 (7) | 0.0022 (6) |
N2 | 0.0427 (8) | 0.0409 (8) | 0.0508 (8) | −0.0112 (6) | −0.0090 (7) | 0.0014 (6) |
O1 | 0.0547 (8) | 0.0396 (7) | 0.0646 (8) | −0.0063 (6) | −0.0097 (6) | 0.0000 (6) |
O2 | 0.0765 (11) | 0.0972 (13) | 0.0711 (10) | −0.0292 (9) | −0.0318 (9) | −0.0105 (9) |
S1 | 0.0646 (3) | 0.0443 (3) | 0.0763 (4) | −0.0191 (2) | −0.0135 (3) | 0.0125 (2) |
C1—N1 | 1.476 (2) | C15—N1 | 1.274 (2) |
C1—C8 | 1.531 (2) | C15—N2 | 1.406 (2) |
C1—C14 | 1.539 (2) | C15—S1 | 1.7415 (18) |
C1—C2 | 1.542 (2) | C16—S1 | 1.786 (2) |
C2—C7 | 1.376 (3) | C16—H16A | 0.9600 |
C2—C3 | 1.387 (3) | C16—H16B | 0.9600 |
C3—C4 | 1.382 (3) | C16—H16C | 0.9600 |
C3—H3 | 0.9300 | C17—N2 | 1.445 (2) |
C4—C5 | 1.373 (4) | C17—C18 | 1.501 (3) |
C4—H4 | 0.9300 | C17—H17A | 0.9700 |
C5—C6 | 1.359 (4) | C17—H17B | 0.9700 |
C5—H5 | 0.9300 | C18—O2 | 1.189 (2) |
C6—C7 | 1.394 (3) | C18—O3A | 1.331 (2) |
C6—H6 | 0.9300 | C18—O3 | 1.331 (2) |
C7—H7 | 0.9300 | C19—O3 | 1.470 (3) |
C8—C13 | 1.372 (3) | C19—C20 | 1.489 (5) |
C8—C9 | 1.376 (3) | C19—H19A | 0.9700 |
C9—C10 | 1.388 (3) | C19—H19B | 0.9700 |
C9—H9 | 0.9300 | C20—H20A | 0.9600 |
C10—C11 | 1.347 (4) | C20—H20B | 0.9600 |
C10—H10 | 0.9300 | C20—H20C | 0.9600 |
C11—C12 | 1.366 (4) | C19A—O3A | 1.477 (5) |
C11—H11 | 0.9300 | C19A—C20A | 1.489 (6) |
C12—C13 | 1.390 (3) | C19A—H19C | 0.9700 |
C12—H12 | 0.9300 | C19A—H19D | 0.9700 |
C13—H13 | 0.9300 | C20A—H20D | 0.9600 |
C14—O1 | 1.210 (2) | C20A—H20E | 0.9600 |
C14—N2 | 1.371 (2) | C20A—H20F | 0.9600 |
N1—C1—C8 | 109.77 (14) | S1—C16—H16A | 109.5 |
N1—C1—C14 | 104.73 (13) | S1—C16—H16B | 109.5 |
C8—C1—C14 | 113.33 (14) | H16A—C16—H16B | 109.5 |
N1—C1—C2 | 110.96 (13) | S1—C16—H16C | 109.5 |
C8—C1—C2 | 111.13 (14) | H16A—C16—H16C | 109.5 |
C14—C1—C2 | 106.73 (14) | H16B—C16—H16C | 109.5 |
C7—C2—C3 | 118.83 (18) | N2—C17—C18 | 113.00 (16) |
C7—C2—C1 | 121.37 (17) | N2—C17—H17A | 109.0 |
C3—C2—C1 | 119.76 (16) | C18—C17—H17A | 109.0 |
C4—C3—C2 | 120.7 (2) | N2—C17—H17B | 109.0 |
C4—C3—H3 | 119.6 | C18—C17—H17B | 109.0 |
C2—C3—H3 | 119.6 | H17A—C17—H17B | 107.8 |
C5—C4—C3 | 120.1 (2) | O2—C18—O3A | 125.7 (2) |
C5—C4—H4 | 119.9 | O2—C18—O3 | 125.7 (2) |
C3—C4—H4 | 119.9 | O2—C18—C17 | 125.19 (19) |
C6—C5—C4 | 119.5 (2) | O3A—C18—C17 | 109.14 (18) |
C6—C5—H5 | 120.3 | O3—C18—C17 | 109.14 (18) |
C4—C5—H5 | 120.3 | O3—C19—C20 | 105.4 (3) |
C5—C6—C7 | 121.2 (2) | O3—C19—H19A | 110.7 |
C5—C6—H6 | 119.4 | C20—C19—H19A | 110.7 |
C7—C6—H6 | 119.4 | O3—C19—H19B | 110.7 |
C2—C7—C6 | 119.7 (2) | C20—C19—H19B | 110.7 |
C2—C7—H7 | 120.2 | H19A—C19—H19B | 108.8 |
C6—C7—H7 | 120.2 | C19—C20—H20A | 109.5 |
C13—C8—C9 | 118.12 (19) | C19—C20—H20B | 109.5 |
C13—C8—C1 | 118.49 (17) | H20A—C20—H20B | 109.5 |
C9—C8—C1 | 123.38 (17) | C19—C20—H20C | 109.5 |
C8—C9—C10 | 120.8 (2) | H20A—C20—H20C | 109.5 |
C8—C9—H9 | 119.6 | H20B—C20—H20C | 109.5 |
C10—C9—H9 | 119.6 | C18—O3—C19 | 120.7 (3) |
C11—C10—C9 | 120.6 (2) | O3A—C19A—C20A | 104.0 (6) |
C11—C10—H10 | 119.7 | O3A—C19A—H19C | 111.0 |
C9—C10—H10 | 119.7 | C20A—C19A—H19C | 111.0 |
C10—C11—C12 | 119.5 (2) | O3A—C19A—H19D | 111.0 |
C10—C11—H11 | 120.2 | C20A—C19A—H19D | 111.0 |
C12—C11—H11 | 120.2 | H19C—C19A—H19D | 109.0 |
C11—C12—C13 | 120.4 (3) | C19A—C20A—H20D | 109.5 |
C11—C12—H12 | 119.8 | C19A—C20A—H20E | 109.5 |
C13—C12—H12 | 119.8 | H20D—C20A—H20E | 109.5 |
C8—C13—C12 | 120.5 (2) | C19A—C20A—H20F | 109.5 |
C8—C13—H13 | 119.7 | H20D—C20A—H20F | 109.5 |
C12—C13—H13 | 119.7 | H20E—C20A—H20F | 109.5 |
O1—C14—N2 | 125.35 (16) | C18—O3A—C19A | 105.2 (5) |
O1—C14—C1 | 129.75 (16) | C15—N1—C1 | 106.59 (14) |
N2—C14—C1 | 104.84 (14) | C14—N2—C15 | 108.10 (14) |
N1—C15—N2 | 115.62 (15) | C14—N2—C17 | 124.14 (15) |
N1—C15—S1 | 127.39 (14) | C15—N2—C17 | 127.65 (15) |
N2—C15—S1 | 116.97 (13) | C15—S1—C16 | 100.45 (10) |
N1—C1—C2—C7 | −3.0 (2) | C2—C1—C14—O1 | 62.8 (2) |
C8—C1—C2—C7 | −125.40 (19) | N1—C1—C14—N2 | 3.28 (17) |
C14—C1—C2—C7 | 110.6 (2) | C8—C1—C14—N2 | 122.90 (15) |
N1—C1—C2—C3 | 179.46 (17) | C2—C1—C14—N2 | −114.45 (15) |
C8—C1—C2—C3 | 57.0 (2) | N2—C17—C18—O2 | −17.6 (3) |
C14—C1—C2—C3 | −67.0 (2) | N2—C17—C18—O3A | 163.59 (16) |
C7—C2—C3—C4 | −0.5 (3) | N2—C17—C18—O3 | 163.59 (16) |
C1—C2—C3—C4 | 177.1 (2) | O2—C18—O3—C19 | −0.9 (4) |
C2—C3—C4—C5 | 0.4 (4) | C17—C18—O3—C19 | 177.8 (2) |
C3—C4—C5—C6 | 0.3 (4) | C20—C19—O3—C18 | 88.0 (5) |
C4—C5—C6—C7 | −0.9 (4) | O2—C18—O3A—C19A | 9.4 (8) |
C3—C2—C7—C6 | −0.1 (3) | C17—C18—O3A—C19A | −171.8 (8) |
C1—C2—C7—C6 | −177.7 (2) | C20A—C19A—O3A—C18 | 162.3 (12) |
C5—C6—C7—C2 | 0.8 (4) | N2—C15—N1—C1 | 0.2 (2) |
N1—C1—C8—C13 | −47.2 (2) | S1—C15—N1—C1 | 178.45 (13) |
C14—C1—C8—C13 | −163.92 (19) | C8—C1—N1—C15 | −124.10 (15) |
C2—C1—C8—C13 | 75.9 (2) | C14—C1—N1—C15 | −2.12 (18) |
N1—C1—C8—C9 | 133.98 (19) | C2—C1—N1—C15 | 112.68 (16) |
C14—C1—C8—C9 | 17.3 (2) | O1—C14—N2—C15 | 179.40 (17) |
C2—C1—C8—C9 | −102.9 (2) | C1—C14—N2—C15 | −3.19 (18) |
C13—C8—C9—C10 | −1.4 (3) | O1—C14—N2—C17 | −4.2 (3) |
C1—C8—C9—C10 | 177.42 (19) | C1—C14—N2—C17 | 173.26 (15) |
C8—C9—C10—C11 | −0.9 (4) | N1—C15—N2—C14 | 2.1 (2) |
C9—C10—C11—C12 | 2.1 (4) | S1—C15—N2—C14 | −176.36 (12) |
C10—C11—C12—C13 | −1.1 (5) | N1—C15—N2—C17 | −174.20 (16) |
C9—C8—C13—C12 | 2.3 (4) | S1—C15—N2—C17 | 7.4 (2) |
C1—C8—C13—C12 | −176.5 (2) | C18—C17—N2—C14 | 107.66 (19) |
C11—C12—C13—C8 | −1.1 (5) | C18—C17—N2—C15 | −76.6 (2) |
N1—C1—C14—O1 | −179.47 (18) | N1—C15—S1—C16 | 4.8 (2) |
C8—C1—C14—O1 | −59.8 (2) | N2—C15—S1—C16 | −176.94 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O2i | 0.93 | 2.63 | 3.502 (3) | 156 |
C9—H9···O1 | 0.93 | 2.40 | 3.063 (3) | 128 |
C11—H11···O1ii | 0.93 | 2.63 | 3.464 (3) | 150 |
C17—H17A···O1iii | 0.97 | 2.45 | 3.185 (2) | 132 |
Symmetry codes: (i) x, y, z+1; (ii) x−1, y, z; (iii) −x+2, −y, −z+1. |
Acknowledgements
YR is thankful to the National Center for Scientific and Technical Research of Morocco (CNRST) for its continuous support. The contributions of the authors are as follows: conceptualization, YR; methodology, AA; investigation, AEMAA; writing (original draft), JTM and AEMAA; writing (review and editing of the manuscript), YR; formal analysis, YR and JTM; supervision, YR;
determination, BMK; resources, AIA and BHAReferences
Akrad, R., Guerrab, W., Lazrak, F., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2018). IUCrData, 3, x180934. Google Scholar
Akrad, R., Mague, J. T., Guerrab, W., Taoufik, J., Ansar, M. & Ramli, Y. (2017). IUCrData, 2, x170033. Google Scholar
Allah, A., Temel, E., Guerrab, W., Nchioua, I., Mague, J. T., Talbaoui, A., Alzahrani, A. Y. A. & Ramli, Y. (2024). J. Mol. Struct. 1312, 138572. Web of Science CSD CrossRef Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Camerman, A. & Camerman, N. (1971). Acta Cryst. B27, 2205–2211. CSD CrossRef IUCr Journals Web of Science Google Scholar
Cho, S., Kim, S.-H. & Shin, D. (2019). Eur. J. Med. Chem. 164, 517–545. Web of Science CrossRef CAS PubMed Google Scholar
El Moutaouakil Ala Allah, A., Guerrab, W., Alsubari, A., Mague, J. T. & Ramli, Y. (2023). IUCrData, 8, x230208. Google Scholar
El Moutaouakil Ala Allah, A., Guerrab, W., Maatallah, M., Mague, J. T., Talbaoui, A., Alzahrani, A. Y. A. & Ramli, Y. (2024a). J. Mol. Struct. 1310, 138324. Web of Science CSD CrossRef Google Scholar
El Moutaouakil Ala Allah, A., Guerrab, W., Maatallah, M., Mague, J. T., Talbaoui, A., Alzahrani, A. Y. A. & Ramli, Y. (2024b). J. Mol. Struct. 1310, 138324. Web of Science CSD CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Guerrab, W., Chung, I.-M., Kansiz, S., Mague, J. T., Dege, N., Taoufik, J., Salghi, R., Ali, I. H., Khan, M. I., Lgaz, H. & Ramli, Y. (2019). J. Mol. Struct. 1197, 369–376. Web of Science CSD CrossRef CAS Google Scholar
Guerrab, W., El Jemli, M., Akachar, J., Demirtaş, G., Mague, J. T., Taoufik, J., Ibrahimi, A., Ansar, M., Alaoui, K. & Ramli, Y. (2022). J. Biomol. Struct. Dyn. 40, 8765–8782. Web of Science CSD CrossRef CAS PubMed Google Scholar
Guerrab, W., El Moutaouakil Ala Allah, A., Alsubari, A., Mague, J. T. & Ramli, Y. (2023). IUCrData, 8, x230125. Google Scholar
Guerrab, W., Mague, J. T. & Ramli, Y. (2020). Z. Krist. New Cryst. Struct. 235, 1425–14275. CAS Google Scholar
Karolak-Wojciechowska, J. & Kieć-Kononowicz, K. (1987). J. Crystallogr. Spectrosc. Res. 17, 485–494. CAS Google Scholar
Kieć-Kononowicz, K., Zejc, A., MikoŁajczyk, M., Zatorski, A., Karolak-Wojciechowska, J. & Wieczorek, M. W. (1981). Tetrahedron, 37, 409–415. Google Scholar
Lübben, J., Wandtke, C. M., Hübschle, C. B., Ruf, M., Sheldrick, G. M. & Dittrich, B. (2019). Acta Cryst. A75, 50–62. Web of Science CrossRef IUCr Journals Google Scholar
Missioui, M., Said, M. A., Demirtaş, G., Mague, J. T., Al-Sulami, A., Al-Kaff, N. S. & Ramli, Y. (2022). Arab. J. Chem. 15, 103595. Web of Science CSD CrossRef PubMed Google Scholar
Patocka, J., Wu, Q., Nepovimova, E. & Kuca, K. (2020). Food Chem. Toxicol. 142, 111393. Web of Science CrossRef PubMed Google Scholar
Rigaku OD (2023). CrysAlia PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.