research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface of ethyl 2-[2-(methyl­sulfan­yl)-5-oxo-4,4-di­phenyl-4,5-di­hydro-1H-imidazol-1-yl]acetate (thio­phenytoin derivative)

crossmark logo

aLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco, bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom, cLaboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen, dUniversity of Jeddah, College of Science, Department of Chemistry, Jeddah 21589, Saudi Arabia, and eDepartment of Chemistry, Tulane University, New Orleans, LA, 70118, USA
*Correspondence e-mail: alsubaripharmaco@21umas.edu.ye, y.ramli@um5r.ac.ma

Edited by A. Briceno, Venezuelan Institute of Scientific Research, Venezuela (Received 27 June 2024; accepted 23 July 2024; online 9 August 2024)

The di­hydro­imidazole ring in the title mol­ecule, C20H20N2O3S, is slightly distorted and the lone pair on the tri-coordinate nitro­gen atom is involved in intra-ring π bonding. The methyl­sulfanyl substituent lies nearly in the plane of the five-membered ring while the ester substituent is rotated well out of that plane. In the crystal, C—H⋯O hydrogen bonds form inversion dimers, which are connected along the a- and c-axis directions by additional C—H⋯O hydrogen bonds, forming layers parallel to the ac plane. The major contributors to the Hirshfeld surface are C⋯H/H⋯C, O⋯H/H⋯O and S⋯H/H⋯S contacts at 20.5%, 14.7% and 4.9%, respectively.

1. Chemical context

The family of hydantoin drugs is important in medicinal chemistry because of the wide range of pharmacological activities exhibited, including anti­bacterial, anti­diabetic, anti-inflammatory, anti­convulsant, anti-HIV and anti­cancer properties. Thio­hydantoins, sulfur analogues of hydantoins, undergo replacement of one or both carbonyl groups with thio­carbonyl groups. This substitution enables versatile structural modifications, facilitating the customization of thio­hydantoins to preferentially adopt specific structural types. Such modifications, achieved by introducing steric bulk, altering hydro­philic or hydro­phobic inter­actions, or promoting stacking, afford control over the mol­ecule's ability to form hydrogen-bonded arrays in the solid state. In particular, phenytoin and thio­phenytoin derivatives and diphenyl-substituted hydantoin exhibit significant activity against tonic–clonic (grand mal) seizures (Camerman & Camerman, 1971[Camerman, A. & Camerman, N. (1971). Acta Cryst. B27, 2205-2211.]). These chemicals are recognized for their anti­convulsant properties and have diverse pharmacological applications, including anti­fungal, herbicidal, anti-inflammatory, anti-HIV, anti­microbial, anti­cancer, and anti­bacterial activities, which vary based on the specific substitutions on the hydantoin ring (Cho et al., 2019[Cho, S., Kim, S.-H. & Shin, D. (2019). Eur. J. Med. Chem. 164, 517-545.]; Allah et al., 2024[Allah, A., Temel, E., Guerrab, W., Nchioua, I., Mague, J. T., Talbaoui, A., Alzahrani, A. Y. A. & Ramli, Y. (2024). J. Mol. Struct. 1312, 138572.]; El Moutaouakil Ala Allah et al., 2024a[El Moutaouakil Ala Allah, A., Guerrab, W., Maatallah, M., Mague, J. T., Talbaoui, A., Alzahrani, A. Y. A. & Ramli, Y. (2024a). J. Mol. Struct. 1310, 138324.]). The significance of this scaffold in drug discovery is underscored by several clinically used medications, including phenytoin, nitro­furan­toin, and enzalutamide (Patocka et al., 2020[Patocka, J., Wu, Q., Nepovimova, E. & Kuca, K. (2020). Food Chem. Toxicol. 142, 111393.]). Given the wide range of therapeutic applications for such compounds, we have previously reported a route for the preparation of thio­phenytoine derivatives using N-alkyl­ation reactions carried out with ethyl bromo­acetate (Guerrab et al., 2020[Guerrab, W., Mague, J. T. & Ramli, Y. (2020). Z. Krist. New Cryst. Struct. 235, 1425-14275.], 2022[Guerrab, W., El Jemli, M., Akachar, J., Demirtaş, G., Mague, J. T., Taoufik, J., Ibrahimi, A., Ansar, M., Alaoui, K. & Ramli, Y. (2022). J. Biomol. Struct. Dyn. 40, 8765-8782.]; Missioui et al. 2022[Missioui, M., Said, M. A., Demirtaş, G., Mague, J. T., Al-Sulami, A., Al-Kaff, N. S. & Ramli, Y. (2022). Arab. J. Chem. 15, 103595.]). A similar approach yielded the title compound, C20H20N2O3S (Fig. 1[link]). In addition to the synthesis, we also report the mol­ecular and crystal structure along with a Hirshfeld surface analysis.

[Scheme 1]
[Figure 1]
Figure 1
The title mol­ecule with the labeling scheme and 30% probability ellipsoids. The intra­molecular C—H⋯O hydrogen bond is depicted by a dashed line and only the major component of the disorder is shown.

2. Structural commentary

The di­hydro­imidazole ring is slightly distorted with C1 located 0.0166 (10) Å to one side of the mean plane and C14 positioned 0.0199 (10) Å on the other side (r.m.s. deviation of the fitted atoms = 0.0143 Å). The ethoxy group is disordered over two resolved sites in a 0.741 (7)/0.259 (6) ratio. The sum of the angles about N2 is 359.89 (15)°, indicating participation of its lone pair in N→C π bonding. This occurs to a slightly greater extent with C14 as the N2—C14 bond length is 1.371 (2) Å while the N2—C15 bond length is 1.406 (2) Å. By contrast, the N2—C17 bond length is 1.445 (2) Å. The C16 methyl group lies nearly in the plane of the di­hydro­imidazole ring as the C16—S1—C15—N2 torsion angle is −176.94 (14)° but the ester substituent is directed well out of this plane since the C15—N2—C17—C18 torsion angle is −76.6 (2)° (Fig. 2[link]). The rotational orientation of the C8⋯C13 phenyl ring is partially determined by the intra­molecular C9—H9⋯O1 hydrogen bond (Fig. 2[link]).

[Figure 2]
Figure 2
Packing viewed along the c-axis direction giving end views of two adjacent layers. The C—H⋯O hydrogen bonds are depicted by dashed lines and non-inter­acting hydrogen atoms are omitted for clarity.

3. Supra­molecular features

In the crystal, inversion dimers are formed by paired C17—H17A⋯O1 hydrogen bonds. The dimers are formed into chains extending along the c-axis direction by weak C5—H5⋯O2 hydrogen bonds and the chains are linked by weak C11—H11⋯O1 hydrogen bonds (Table 1[link]) along the a-axis direction into layers parallel to the the ac plane. The layers pack with normal van der Waals contacts (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 0.93 2.63 3.502 (3) 156
C9—H9⋯O1 0.93 2.40 3.063 (3) 128
C11—H11⋯O1ii 0.93 2.63 3.464 (3) 150
C17—H17A⋯O1iii 0.97 2.45 3.185 (2) 132
Symmetry codes: (i) [x, y, z+1]; (ii) [x-1, y, z]; (iii) [-x+2, -y, -z+1].

4. Database survey

A search of the Cambridge Structural Database (CSD; updated to May 31, 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) with the fragment shown in Fig. 3[link] yielded ten hits including those with methyl (YEYYA; El Moutaouakil Ala Allah et al., 2023[El Moutaouakil Ala Allah, A., Guerrab, W., Alsubari, A., Mague, J. T. & Ramli, Y. (2023). IUCrData, 8, x230208.]), ethyl (HOPQAI; Allah et al., 2024a[El Moutaouakil Ala Allah, A., Guerrab, W., Maatallah, M., Mague, J. T., Talbaoui, A., Alzahrani, A. Y. A. & Ramli, Y. (2024a). J. Mol. Struct. 1310, 138324.]), n-propyl (RIJZIW: Akrad et al., 2018[Akrad, R., Guerrab, W., Lazrak, F., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2018). IUCrData, 3, x180934.]), benzyl (RAHGUF; Akrad et al., 2017[Akrad, R., Mague, J. T., Guerrab, W., Taoufik, J., Ansar, M. & Ramli, Y. (2017). IUCrData, 2, x170033.]) and allyl (ROLJAH; El Moutaouakil Ala Allah et al., 2024b[El Moutaouakil Ala Allah, A., Guerrab, W., Maatallah, M., Mague, J. T., Talbaoui, A., Alzahrani, A. Y. A. & Ramli, Y. (2024b). J. Mol. Struct. 1310, 138324.]) subs­tituents on both nitro­gen and sulfur. The remainder have the nitro­gen and sulfur connected by a —CH2CH2— chain (DIYRAE; El Moutaouakil Ala Allah et al., 2023[El Moutaouakil Ala Allah, A., Guerrab, W., Alsubari, A., Mague, J. T. & Ramli, Y. (2023). IUCrData, 8, x230208.]), a —CH2CH(COOEt)— chain (FURFED; Karolak-Wojciechowska & Kiec-Kononowicz, 1987[Karolak-Wojciechowska, J. & Kieć-Kononowicz, K. (1987). J. Crystallogr. Spectrosc. Res. 17, 485-494.]), a —CH2CH2CH2— chain (IMTHZN; Kieć-Kononowicz et al., 1981[Kieć-Kononowicz, K., Zejc, A., MikoŁajczyk, M., Zatorski, A., Karolak-Wojciechowska, J. & Wieczorek, M. W. (1981). Tetrahedron, 37, 409-415.] and IMTHZN01; Guerrab et al., 2019[Guerrab, W., Chung, I.-M., Kansiz, S., Mague, J. T., Dege, N., Taoufik, J., Salghi, R., Ali, I. H., Khan, M. I., Lgaz, H. & Ramli, Y. (2019). J. Mol. Struct. 1197, 369-376.]) and a —CH2CH2(OCH2CH2)2OCH2CH2— chain (LIGWOR; Guerrab et al., 2023[Guerrab, W., El Moutaouakil Ala Allah, A., Alsubari, A., Mague, J. T. & Ramli, Y. (2023). IUCrData, 8, x230125.]). In all cases, the di­hydro­imidazole ring is planar with the maximum deviation of a fitted atom from the mean plane ranging from 0.006 (1) Å (HOPQAI, r.m.s. deviation of the fitted atoms = 0.001 Å) to 0.023 (2) Å (RAHGUF, r.m.s. deviation of the fitted atoms = 0.002 Å) for those not have a ring fused to it and up to 0.029 (2) Å (IMTHZN01, r.m.s. deviation of the fitted atoms = 0.002 Å) where a fused ring is present. Particularly where the second ring size is relatively small (DIYRAE, FURFED, IMTHZN and IMTHZN01), it is likely that strain from the ring fusion contributes to the greater deviation from planarity. With the exception of the four just mentioned where geometrical constraints require it, all structures have the carbon attached to sulfur in the side chain very close to the mean plane of the di­hydro­imidazole ring as in the title mol­ecule. The same group of structures has the β-carbon of the substituent on nitro­gen oriented well out of that plane.

[Figure 3]
Figure 3
The search fragment used for the database survey.

5. Hirshfeld surface analysis

A Hirshfeld surface analysis of the inter­molecular inter­actions of the title mol­ecule was carried out with Crystal Explorer 21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) and descriptions of the graphical output and its inter­pretation have been published (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). The dnorm surface calculated over the range −0.2373 to 1.3807 in arbitrary units is shown in Fig. 4[link]a together with four neighboring mol­ecules illustrating the weak C5—H5⋯O2 and C11—H11⋯O1 hydrogen bonds while Fig. 4[link]b shows the surface calculated over the curvature function. The latter shows that there are no extensive flat regions about the mol­ecule, consistent with the absence of π-stacking inter­actions. Fig. 5[link] shows the 2-D fingerprint plot of all inter­molecular inter­actions and those delineated into contributions from H⋯H, C⋯H/H⋯C, O⋯H/H⋯O and S⋯H/H⋯S inter­actions. Here, the H⋯H inter­actions comprise 56.4% of the total, consistent with the high hydrogen content of the mol­ecule and the shape, which has many of the hydrogen atoms pointing outwards from the center of gravity. The other significant contributions are from C⋯H/H⋯C, O⋯H/H⋯O and S⋯H/H⋯S contacts at 20.5%, 14.7% and 4.9%, respectively.

[Figure 4]
Figure 4
The Hirshfeld surface plotted over (a) dnorm and (b) curvature with four neighboring mol­ecules. C—H⋯O hydrogen bonds are depicted by green dashed lines.
[Figure 5]
Figure 5
Fingerprint plots showing (a) all inter­molecular contacts and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O contacts and (e) S⋯H/H⋯O contacts.

6. Synthesis and crystallization

To a solution of 2-(methyl­sulfan­yl)-5,5-diphenyl-3,5-di­hydro-4H-imidazol-4-one (0.5 g, 1.78 mmol) in aceto­nitrile (15 mL) were added K2CO3 (0.3 g, 2 mmol) and ethyl bromo­acetate (0.19 ml, 1.80 mmol) and a catalytic qu­antity of tetra-n-butyl­ammonium bromide. The reaction scheme is shown in Fig. 6[link]. The mixture was stirred for 8 h at room temperature. The solution was filtered and the solvent removed under reduced pressure. The solid obtained upon solvent removal was recrystallized from ethanol to afford thick, colorless, plate-like crystals of the title compound. Yield = 92%, m.p. = 515–517 K. FT-IR (ATR, υ, cm−1): 3082 (N—H), 3060 (H—C=C), 1731 (C=O), 1587, 1570, 1491, 1412 (Ar—C=C); 1H NMR (500 MHz, CDCl3): δ ppm 1.24 (t, 3H, —O—CH2—CH3), 2.69 (s, 3H, S—CH3), 4.22 (q, 2H, —O—CH2—CH3), 4.27 (s, 2H, N—CH2), 7.25–7.54 (m, 10H, Ar—H); 13C NMR: 12,93 (—O—CH2CH3), 14.16 (—S—CH3), 41.75 (—N—CH3), 62.17 (—O—CH2—CH3), 78.98 (C—2Ph), 127.22, 128.31, 128.76, 140.14 (C—Ar); 160.71 (C=N); 167.00 (C=O), 180.73(C=Oimidazole). HRMS (ESI): calculated for C20H20N2O2S [M − H]+ 369,1195; found 369,12579.

[Figure 6]
Figure 6
Synthesis of the title compound.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were included as riding contributions in idealized positions with isotropic displacement parameters tied to those of the attached atoms. The eth­oxy group is disordered over two sites in a 0.741 (7)/0.259 (6) ratio. The two components were refined with restraints to make their geometries be comparable.

Table 2
Experimental details

Crystal data
Chemical formula C20H20N2O3S
Mr 368.44
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 8.5473 (7), 10.4653 (10), 11.5360 (9)
α, β, γ (°) 88.258 (7), 74.622 (7), 75.593 (7)
V3) 962.96 (15)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.19
Crystal size (mm) 0.57 × 0.32 × 0.17
 
Data collection
Diffractometer SuperNova, Dual, Cu at home/near, Atlas
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlia PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.592, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7781, 4523, 3377
Rint 0.019
(sin θ/λ)max−1) 0.699
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.137, 1.09
No. of reflections 4523
No. of parameters 257
No. of restraints 106
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.33
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlia PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), SHELXL2019/1 (Lübben et al., 2019[Lübben, J., Wandtke, C. M., Hübschle, C. B., Ruf, M., Sheldrick, G. M. & Dittrich, B. (2019). Acta Cryst. A75, 50-62.]) and DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

Ethyl 2-[2-(methylsulfanyl)-5-oxo-4,4-diphenyl-4,5-dihydro-1H-imidazol-1-yl]acetate top
Crystal data top
C20H20N2O3SZ = 2
Mr = 368.44F(000) = 388
Triclinic, P1Dx = 1.271 Mg m3
a = 8.5473 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.4653 (10) ÅCell parameters from 3430 reflections
c = 11.5360 (9) Åθ = 3.9–27.4°
α = 88.258 (7)°µ = 0.19 mm1
β = 74.622 (7)°T = 293 K
γ = 75.593 (7)°Block, colourless
V = 962.96 (15) Å30.57 × 0.32 × 0.17 mm
Data collection top
SuperNova, Dual, Cu at home/near, Atlas
diffractometer
3377 reflections with I > 2σ(I)
ω scansRint = 0.019
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2023)
θmax = 29.8°, θmin = 3.5°
Tmin = 0.592, Tmax = 1.000h = 1111
7781 measured reflectionsk = 1213
4523 independent reflectionsl = 1514
Refinement top
Refinement on F2106 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.052P)2 + 0.2326P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
4523 reflectionsΔρmax = 0.24 e Å3
257 parametersΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5979 (2)0.24490 (16)0.72577 (15)0.0416 (4)
C20.6264 (2)0.23182 (18)0.85255 (15)0.0442 (4)
C30.6478 (3)0.1096 (2)0.90440 (19)0.0633 (6)
H30.6398950.0369690.8638500.076*
C40.6808 (4)0.0945 (3)1.0157 (2)0.0769 (7)
H40.6956410.0119161.0493480.092*
C50.6917 (3)0.2012 (3)1.0767 (2)0.0768 (7)
H50.7143700.1911901.1514140.092*
C60.6691 (4)0.3215 (3)1.0269 (2)0.0821 (8)
H60.6749810.3940151.0687560.099*
C70.6372 (3)0.3383 (2)0.91425 (19)0.0639 (6)
H70.6234160.4210970.8809780.077*
C80.4451 (2)0.19605 (18)0.72080 (15)0.0449 (4)
C90.4566 (3)0.0756 (2)0.67024 (19)0.0609 (5)
H90.5614860.0210730.6340430.073*
C100.3136 (3)0.0344 (3)0.6726 (2)0.0747 (7)
H100.3234860.0468780.6370620.090*
C110.1604 (3)0.1110 (3)0.7260 (2)0.0785 (7)
H110.0651170.0816140.7296050.094*
C120.1461 (3)0.2321 (3)0.7747 (3)0.0995 (10)
H120.0405980.2859350.8103140.119*
C130.2884 (3)0.2752 (3)0.7712 (2)0.0787 (7)
H130.2773360.3584530.8033020.094*
C140.7617 (2)0.16849 (17)0.63784 (15)0.0426 (4)
C150.7038 (2)0.38504 (17)0.60131 (16)0.0437 (4)
C160.5733 (3)0.6489 (2)0.5983 (2)0.0719 (6)
H16A0.4707180.6224540.6087400.108*
H16B0.5685960.7278510.5533550.108*
H16C0.5880710.6653610.6755770.108*
C170.9826 (2)0.23788 (19)0.47982 (16)0.0484 (4)
H17A1.0497660.1520950.4930940.058*
H17B1.0397540.3036950.4917160.058*
C180.9700 (3)0.24075 (19)0.35239 (17)0.0532 (5)
C191.1395 (8)0.2528 (5)0.1481 (3)0.0862 (14)0.741 (7)
H19A1.0758940.1985130.1237460.103*0.741 (7)
H19B1.2570260.2194120.1066220.103*0.741 (7)
C201.0784 (9)0.3934 (5)0.1203 (4)0.127 (2)0.741 (7)
H20A0.9623960.4250040.1628430.190*0.741 (7)
H20B1.0906230.4002990.0353780.190*0.741 (7)
H20C1.1427460.4455000.1448780.190*0.741 (7)
O31.1147 (2)0.25222 (17)0.27909 (13)0.0738 (5)0.741 (7)
C19A1.0825 (18)0.2742 (19)0.1595 (7)0.084 (3)0.259 (7)
H19C0.9752290.3363140.1655210.101*0.259 (7)
H19D1.0837650.1920180.1222130.101*0.259 (7)
C20A1.223 (2)0.3291 (17)0.0899 (9)0.117 (4)0.259 (7)
H20D1.2026030.4197950.1147030.176*0.259 (7)
H20E1.2302240.3234400.0056070.176*0.259 (7)
H20F1.3260040.2794340.1044360.176*0.259 (7)
O3A1.1147 (2)0.25222 (17)0.27909 (13)0.0738 (5)0.259 (7)
N10.57653 (19)0.38291 (14)0.68826 (13)0.0450 (3)
N20.82123 (18)0.26296 (14)0.56738 (13)0.0453 (3)
O10.83139 (17)0.05214 (12)0.63157 (12)0.0551 (3)
O20.8505 (2)0.23180 (18)0.32206 (14)0.0776 (5)
S10.74520 (7)0.52037 (5)0.51841 (5)0.06199 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0425 (9)0.0385 (9)0.0441 (9)0.0092 (7)0.0129 (7)0.0006 (7)
C20.0400 (9)0.0484 (10)0.0452 (9)0.0112 (7)0.0127 (7)0.0016 (7)
C30.0890 (16)0.0551 (12)0.0570 (12)0.0222 (11)0.0349 (11)0.0072 (9)
C40.105 (2)0.0726 (15)0.0621 (14)0.0208 (14)0.0408 (14)0.0151 (11)
C50.0902 (18)0.0946 (19)0.0543 (13)0.0213 (15)0.0359 (12)0.0037 (12)
C60.110 (2)0.0796 (17)0.0719 (15)0.0264 (15)0.0445 (15)0.0138 (13)
C70.0821 (15)0.0544 (12)0.0632 (13)0.0175 (11)0.0319 (11)0.0033 (9)
C80.0445 (9)0.0531 (10)0.0407 (9)0.0151 (8)0.0154 (7)0.0068 (7)
C90.0598 (12)0.0613 (13)0.0682 (13)0.0255 (10)0.0180 (10)0.0009 (10)
C100.0823 (18)0.0812 (16)0.0827 (16)0.0451 (14)0.0372 (14)0.0096 (13)
C110.0690 (16)0.103 (2)0.0905 (17)0.0454 (15)0.0465 (14)0.0271 (15)
C120.0446 (13)0.113 (2)0.139 (3)0.0153 (14)0.0239 (15)0.011 (2)
C130.0483 (12)0.0789 (16)0.109 (2)0.0124 (11)0.0215 (12)0.0191 (14)
C140.0427 (9)0.0418 (9)0.0459 (9)0.0120 (7)0.0145 (7)0.0002 (7)
C150.0458 (10)0.0384 (9)0.0513 (10)0.0121 (7)0.0189 (8)0.0023 (7)
C160.0719 (15)0.0458 (11)0.0958 (17)0.0059 (10)0.0274 (13)0.0069 (11)
C170.0427 (9)0.0521 (10)0.0502 (10)0.0147 (8)0.0089 (8)0.0004 (8)
C180.0612 (12)0.0475 (10)0.0531 (11)0.0201 (9)0.0123 (9)0.0012 (8)
C190.100 (3)0.087 (3)0.055 (2)0.020 (2)0.0046 (19)0.0016 (18)
C200.160 (5)0.106 (4)0.087 (3)0.009 (3)0.013 (3)0.030 (3)
O30.0843 (11)0.0866 (11)0.0528 (8)0.0398 (9)0.0054 (8)0.0096 (7)
C19A0.096 (5)0.094 (5)0.053 (4)0.028 (4)0.001 (4)0.002 (4)
C20A0.119 (8)0.145 (8)0.075 (6)0.042 (7)0.003 (6)0.023 (6)
O3A0.0843 (11)0.0866 (11)0.0528 (8)0.0398 (9)0.0054 (8)0.0096 (7)
N10.0456 (8)0.0386 (8)0.0510 (8)0.0081 (6)0.0158 (7)0.0022 (6)
N20.0427 (8)0.0409 (8)0.0508 (8)0.0112 (6)0.0090 (7)0.0014 (6)
O10.0547 (8)0.0396 (7)0.0646 (8)0.0063 (6)0.0097 (6)0.0000 (6)
O20.0765 (11)0.0972 (13)0.0711 (10)0.0292 (9)0.0318 (9)0.0105 (9)
S10.0646 (3)0.0443 (3)0.0763 (4)0.0191 (2)0.0135 (3)0.0125 (2)
Geometric parameters (Å, º) top
C1—N11.476 (2)C15—N11.274 (2)
C1—C81.531 (2)C15—N21.406 (2)
C1—C141.539 (2)C15—S11.7415 (18)
C1—C21.542 (2)C16—S11.786 (2)
C2—C71.376 (3)C16—H16A0.9600
C2—C31.387 (3)C16—H16B0.9600
C3—C41.382 (3)C16—H16C0.9600
C3—H30.9300C17—N21.445 (2)
C4—C51.373 (4)C17—C181.501 (3)
C4—H40.9300C17—H17A0.9700
C5—C61.359 (4)C17—H17B0.9700
C5—H50.9300C18—O21.189 (2)
C6—C71.394 (3)C18—O3A1.331 (2)
C6—H60.9300C18—O31.331 (2)
C7—H70.9300C19—O31.470 (3)
C8—C131.372 (3)C19—C201.489 (5)
C8—C91.376 (3)C19—H19A0.9700
C9—C101.388 (3)C19—H19B0.9700
C9—H90.9300C20—H20A0.9600
C10—C111.347 (4)C20—H20B0.9600
C10—H100.9300C20—H20C0.9600
C11—C121.366 (4)C19A—O3A1.477 (5)
C11—H110.9300C19A—C20A1.489 (6)
C12—C131.390 (3)C19A—H19C0.9700
C12—H120.9300C19A—H19D0.9700
C13—H130.9300C20A—H20D0.9600
C14—O11.210 (2)C20A—H20E0.9600
C14—N21.371 (2)C20A—H20F0.9600
N1—C1—C8109.77 (14)S1—C16—H16A109.5
N1—C1—C14104.73 (13)S1—C16—H16B109.5
C8—C1—C14113.33 (14)H16A—C16—H16B109.5
N1—C1—C2110.96 (13)S1—C16—H16C109.5
C8—C1—C2111.13 (14)H16A—C16—H16C109.5
C14—C1—C2106.73 (14)H16B—C16—H16C109.5
C7—C2—C3118.83 (18)N2—C17—C18113.00 (16)
C7—C2—C1121.37 (17)N2—C17—H17A109.0
C3—C2—C1119.76 (16)C18—C17—H17A109.0
C4—C3—C2120.7 (2)N2—C17—H17B109.0
C4—C3—H3119.6C18—C17—H17B109.0
C2—C3—H3119.6H17A—C17—H17B107.8
C5—C4—C3120.1 (2)O2—C18—O3A125.7 (2)
C5—C4—H4119.9O2—C18—O3125.7 (2)
C3—C4—H4119.9O2—C18—C17125.19 (19)
C6—C5—C4119.5 (2)O3A—C18—C17109.14 (18)
C6—C5—H5120.3O3—C18—C17109.14 (18)
C4—C5—H5120.3O3—C19—C20105.4 (3)
C5—C6—C7121.2 (2)O3—C19—H19A110.7
C5—C6—H6119.4C20—C19—H19A110.7
C7—C6—H6119.4O3—C19—H19B110.7
C2—C7—C6119.7 (2)C20—C19—H19B110.7
C2—C7—H7120.2H19A—C19—H19B108.8
C6—C7—H7120.2C19—C20—H20A109.5
C13—C8—C9118.12 (19)C19—C20—H20B109.5
C13—C8—C1118.49 (17)H20A—C20—H20B109.5
C9—C8—C1123.38 (17)C19—C20—H20C109.5
C8—C9—C10120.8 (2)H20A—C20—H20C109.5
C8—C9—H9119.6H20B—C20—H20C109.5
C10—C9—H9119.6C18—O3—C19120.7 (3)
C11—C10—C9120.6 (2)O3A—C19A—C20A104.0 (6)
C11—C10—H10119.7O3A—C19A—H19C111.0
C9—C10—H10119.7C20A—C19A—H19C111.0
C10—C11—C12119.5 (2)O3A—C19A—H19D111.0
C10—C11—H11120.2C20A—C19A—H19D111.0
C12—C11—H11120.2H19C—C19A—H19D109.0
C11—C12—C13120.4 (3)C19A—C20A—H20D109.5
C11—C12—H12119.8C19A—C20A—H20E109.5
C13—C12—H12119.8H20D—C20A—H20E109.5
C8—C13—C12120.5 (2)C19A—C20A—H20F109.5
C8—C13—H13119.7H20D—C20A—H20F109.5
C12—C13—H13119.7H20E—C20A—H20F109.5
O1—C14—N2125.35 (16)C18—O3A—C19A105.2 (5)
O1—C14—C1129.75 (16)C15—N1—C1106.59 (14)
N2—C14—C1104.84 (14)C14—N2—C15108.10 (14)
N1—C15—N2115.62 (15)C14—N2—C17124.14 (15)
N1—C15—S1127.39 (14)C15—N2—C17127.65 (15)
N2—C15—S1116.97 (13)C15—S1—C16100.45 (10)
N1—C1—C2—C73.0 (2)C2—C1—C14—O162.8 (2)
C8—C1—C2—C7125.40 (19)N1—C1—C14—N23.28 (17)
C14—C1—C2—C7110.6 (2)C8—C1—C14—N2122.90 (15)
N1—C1—C2—C3179.46 (17)C2—C1—C14—N2114.45 (15)
C8—C1—C2—C357.0 (2)N2—C17—C18—O217.6 (3)
C14—C1—C2—C367.0 (2)N2—C17—C18—O3A163.59 (16)
C7—C2—C3—C40.5 (3)N2—C17—C18—O3163.59 (16)
C1—C2—C3—C4177.1 (2)O2—C18—O3—C190.9 (4)
C2—C3—C4—C50.4 (4)C17—C18—O3—C19177.8 (2)
C3—C4—C5—C60.3 (4)C20—C19—O3—C1888.0 (5)
C4—C5—C6—C70.9 (4)O2—C18—O3A—C19A9.4 (8)
C3—C2—C7—C60.1 (3)C17—C18—O3A—C19A171.8 (8)
C1—C2—C7—C6177.7 (2)C20A—C19A—O3A—C18162.3 (12)
C5—C6—C7—C20.8 (4)N2—C15—N1—C10.2 (2)
N1—C1—C8—C1347.2 (2)S1—C15—N1—C1178.45 (13)
C14—C1—C8—C13163.92 (19)C8—C1—N1—C15124.10 (15)
C2—C1—C8—C1375.9 (2)C14—C1—N1—C152.12 (18)
N1—C1—C8—C9133.98 (19)C2—C1—N1—C15112.68 (16)
C14—C1—C8—C917.3 (2)O1—C14—N2—C15179.40 (17)
C2—C1—C8—C9102.9 (2)C1—C14—N2—C153.19 (18)
C13—C8—C9—C101.4 (3)O1—C14—N2—C174.2 (3)
C1—C8—C9—C10177.42 (19)C1—C14—N2—C17173.26 (15)
C8—C9—C10—C110.9 (4)N1—C15—N2—C142.1 (2)
C9—C10—C11—C122.1 (4)S1—C15—N2—C14176.36 (12)
C10—C11—C12—C131.1 (5)N1—C15—N2—C17174.20 (16)
C9—C8—C13—C122.3 (4)S1—C15—N2—C177.4 (2)
C1—C8—C13—C12176.5 (2)C18—C17—N2—C14107.66 (19)
C11—C12—C13—C81.1 (5)C18—C17—N2—C1576.6 (2)
N1—C1—C14—O1179.47 (18)N1—C15—S1—C164.8 (2)
C8—C1—C14—O159.8 (2)N2—C15—S1—C16176.94 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.932.633.502 (3)156
C9—H9···O10.932.403.063 (3)128
C11—H11···O1ii0.932.633.464 (3)150
C17—H17A···O1iii0.972.453.185 (2)132
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z; (iii) x+2, y, z+1.
 

Acknowledgements

YR is thankful to the National Center for Scientific and Technical Research of Morocco (CNRST) for its continuous support. The contributions of the authors are as follows: conceptualization, YR; methodology, AA; investigation, AEMAA; writing (original draft), JTM and AEMAA; writing (review and editing of the manuscript), YR; formal analysis, YR and JTM; supervision, YR; crystal structure determination, BMK; resources, AIA and BHA

References

First citationAkrad, R., Guerrab, W., Lazrak, F., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2018). IUCrData, 3, x180934.  Google Scholar
First citationAkrad, R., Mague, J. T., Guerrab, W., Taoufik, J., Ansar, M. & Ramli, Y. (2017). IUCrData, 2, x170033.  Google Scholar
First citationAllah, A., Temel, E., Guerrab, W., Nchioua, I., Mague, J. T., Talbaoui, A., Alzahrani, A. Y. A. & Ramli, Y. (2024). J. Mol. Struct. 1312, 138572.  Web of Science CSD CrossRef Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCamerman, A. & Camerman, N. (1971). Acta Cryst. B27, 2205–2211.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationCho, S., Kim, S.-H. & Shin, D. (2019). Eur. J. Med. Chem. 164, 517–545.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEl Moutaouakil Ala Allah, A., Guerrab, W., Alsubari, A., Mague, J. T. & Ramli, Y. (2023). IUCrData, 8, x230208.  Google Scholar
First citationEl Moutaouakil Ala Allah, A., Guerrab, W., Maatallah, M., Mague, J. T., Talbaoui, A., Alzahrani, A. Y. A. & Ramli, Y. (2024a). J. Mol. Struct. 1310, 138324.  Web of Science CSD CrossRef Google Scholar
First citationEl Moutaouakil Ala Allah, A., Guerrab, W., Maatallah, M., Mague, J. T., Talbaoui, A., Alzahrani, A. Y. A. & Ramli, Y. (2024b). J. Mol. Struct. 1310, 138324.  Web of Science CSD CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuerrab, W., Chung, I.-M., Kansiz, S., Mague, J. T., Dege, N., Taoufik, J., Salghi, R., Ali, I. H., Khan, M. I., Lgaz, H. & Ramli, Y. (2019). J. Mol. Struct. 1197, 369–376.  Web of Science CSD CrossRef CAS Google Scholar
First citationGuerrab, W., El Jemli, M., Akachar, J., Demirtaş, G., Mague, J. T., Taoufik, J., Ibrahimi, A., Ansar, M., Alaoui, K. & Ramli, Y. (2022). J. Biomol. Struct. Dyn. 40, 8765–8782.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGuerrab, W., El Moutaouakil Ala Allah, A., Alsubari, A., Mague, J. T. & Ramli, Y. (2023). IUCrData, 8, x230125.  Google Scholar
First citationGuerrab, W., Mague, J. T. & Ramli, Y. (2020). Z. Krist. New Cryst. Struct. 235, 1425–14275.  CAS Google Scholar
First citationKarolak-Wojciechowska, J. & Kieć-Kononowicz, K. (1987). J. Crystallogr. Spectrosc. Res. 17, 485–494.  CAS Google Scholar
First citationKieć-Kononowicz, K., Zejc, A., MikoŁajczyk, M., Zatorski, A., Karolak-Wojciechowska, J. & Wieczorek, M. W. (1981). Tetrahedron, 37, 409–415.  Google Scholar
First citationLübben, J., Wandtke, C. M., Hübschle, C. B., Ruf, M., Sheldrick, G. M. & Dittrich, B. (2019). Acta Cryst. A75, 50–62.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMissioui, M., Said, M. A., Demirtaş, G., Mague, J. T., Al-Sulami, A., Al-Kaff, N. S. & Ramli, Y. (2022). Arab. J. Chem. 15, 103595.  Web of Science CSD CrossRef PubMed Google Scholar
First citationPatocka, J., Wu, Q., Nepovimova, E. & Kuca, K. (2020). Food Chem. Toxicol. 142, 111393.  Web of Science CrossRef PubMed Google Scholar
First citationRigaku OD (2023). CrysAlia PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds