research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-Hy­dr­oxy­quinolinium tri­chlorido­(pyridine-2,6-di­carb­­oxy­lic acid-κ3O,N,O′)copper(II) dihydrate

crossmark logo

aTermez State University, Barkamol Avlod Street 43, Termez City, Uzbekistan, and bInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, 100125, M. Ulugbek Str. 83, Tashkent, 700125, Uzbekistan
*Correspondence e-mail: ashurovjamshid1@gmail.com

Edited by G. Ferrence, Illinois State University, USA (Received 1 August 2024; accepted 19 September 2024; online 24 September 2024)

The title compound, (C9H8NO)[CuCl3(C7H5NO4)]·2H2O, was prepared by reacting CuII acetate dihydrate, solid 8-hy­droxy­quinoline (8-HQ), and solid pyridine-2,6-di­carb­oxy­lic acid (H2pydc), in a 1:1:1 molar ratio, in an aqueous solution of dilute hydro­chloric acid. The CuII atom exhibits a distorted CuO2NCl3 octa­hedral geometry, coordinating two oxygen atoms and one nitro­gen atom from the tridentate H2pydc ligand and three chloride atoms; the nitro­gen atom and one chloride atom occupy the axial positions with Cu—N and Cu—Cl bond lengths of 2.011 (2) Å and 2.2067 (9) Å, respectively. In the equatorial plane, the oxygen and chloride atoms are arranged in a cis configuration, with Cu—O bond lengths of 2.366 (2) and 2.424 (2) Å, and Cu—Cl bond lengths of 2.4190 (10) and 2.3688 (11) Å. The asymmetric unit contains 8-HQ+ as a counter-ion and two uncoordinated water mol­ecules. The crystal structure features strong O—H⋯O and O—H⋯Cl hydrogen bonds as well as weak inter­actions including C—H⋯O, C—H⋯Cl, Cu—Cl⋯π, and ππ, which result in a three-dimensional network. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing involving the main residues are from H⋯Cl/Cl⋯H inter­actions, contributing 40.3% for the anion. Weak H⋯H contacts contribute 13.2% for the cation and 28.6% for the anion.

1. Chemical context

8-Hy­droxy­quinoline (8HQ, C9H7NO), also known as oxine, is a versatile bidentate chelating agent forming species such as H2L+, HL, and L. With pKa values of 10.8 and 4.9 for the nitro­gen and phenol groups, respectively, it effectively forms supra­molecular structures through hydrogen bonding (Smith et al., 2003[Smith, G., Wermuth, U. D. & White, J. M. (2003). CrystEngComm, 5, 58-61.]). 8HQ is extensively utilized in analytical chemistry for metal-ion qu­anti­fication because of the insolubility of its complexes in water (Albrecht et al., 2008[Albrecht, M., Fiege, M. & Osetska, O. (2008). Coord. Chem. Rev. 252, 812-824.]). Tris(8-hy­droxy­quinolinato)aluminum is crucial in OLEDs (Cölle et al., 2002[Cölle, M., Dinnebier, R. E. & Brütting, W. (2002). Chem. Commun. 23, 2908-2909.]; Katakura & Koide, 2006[Katakura, R. & Koide, Y. (2006). Inorg. Chem. 45, 5730-5732.]), and its luminescence properties are enhanced by ring substituents (Montes et al., 2006[Montes, V. A., Pohl, R., Shinar, J. & Anzenbacher, P. Jr (2006). Chem. Eur. J. 12, 4523-4535.]). Its metal binding induces fluorescence changes, useful in developing sensitive chemosensors for detecting metal ions like zinc, cadmium, lead, and mercury (Moon et al., 2004[Moon, S. Y., Cha, N. R., Kim, Y. H. & Chang, S. K. (2004). J. Org. Chem. 69, 181-183.]; Zhang et al., 2005[Zhang, H., Han, L.-F., Zachariasse, K. A. & Jiang, Y.-B. (2005). Org. Lett. 7, 4217-4220.]; Farruggia et al., 2006[Farruggia, G., Iotti, S., Prodi, L., Montalti, M., Zaccheroni, N., Savage, P. B., Trapani, V., Sale, P. & Wolf, F. I. (2006). J. Am. Chem. Soc. 128, 344-350.]; Mei et al., 2006[Mei, Y., Bentley, P. A. & Wang, W. (2006). Tetrahedron Lett. 47, 2447-2449.]). 8HQ derivatives enhance adsorbents for heavy-metal removal from solutions (Kosa et al., 2012[Kosa, S. A., Al-Zahrani, G. & Salam, M. A. (2012). J. Industrial Engineering Chem. 181-182, 159-168.]) and serve as corrosion inhibitors in acidic media (Rbaa et al., 2018[Rbaa, M., Benhiba, F., Obot, I. B., Oudda, H., Warad, I., Lakhrissi, B. & Zarrouk, A. (2018). J. Mol. Liq. 276, 120-133.]).

Quinoline derivatives, including 8HQ, exhibit a broad spectrum of biological activities in medicinal chemistry (Song et al., 2014[Song, Y., Xu, H., Chen, W., Zhan, P. & Liu, X. (2015). Medicinal Chemistry Communication, 6, 61-74.]; Cherdtrakulkiat et al., 2016[Cherdtrakulkiat, R., Boonpangrak, S., Sinthupoom, N., Prachayasittikul, S., Ruchirawat, S. & Prachayasittikul, V. (2016). Biochem. Biophys. Rep. 6, 135-141.]), showing anti­microbial, anti­oxidant, anti­cancer, anti-inflammatory, anti­neurodegenerative, anti­malarial, and anti­tuberculotic activities (Song et al., 2015[Song, Y., Xu, H., Chen, W., Zhan, P. & Liu, X. (2015). Medicinal Chemistry Communication, 6, 61-74.]; Cherdtrakulkiat et al., 2016[Cherdtrakulkiat, R., Boonpangrak, S., Sinthupoom, N., Prachayasittikul, S., Ruchirawat, S. & Prachayasittikul, V. (2016). Biochem. Biophys. Rep. 6, 135-141.]; Dixit et al., 2010[Dixit, R. B., Vanparia, S. F., Patel, T. S., Jagani, C. L., Doshi, H. V. & Dixit, B. C. (2010). Appl. Organomet. Chem. 24, 408-413.]).

Copper(II) complexes of 8HQ derivatives show potential in treating Alzheimer's disease (Qin et al., 2015[Qin, Q. P., Chen, Z. F., Qin, J. L., He, X. J., Li, Y. L., Liu, Y. C., Huang, K. B. & Liang, H. (2015). Eur. J. Med. Chem. 92, 302-313.]), while their anti­microbial properties are attributed to metal ion chelation (Dixit et al., 2010[Dixit, R. B., Vanparia, S. F., Patel, T. S., Jagani, C. L., Doshi, H. V. & Dixit, B. C. (2010). Appl. Organomet. Chem. 24, 408-413.]; Yin et al., 2020[Yin, X., Ma, K., Wang, Y., Sun, Y., Shang, X.-F., Zhao, Z., Wang, R., Chen, Y., Zhu, J. & Liu, Y.-Q. (2020). J. Agric. Food Chem. 68, 11096-11104.]). Pyridine-2,6-di­carb­oxy­lic acid (H2pydc) has a pKa of 2.16 at 25°C. This ligand is notable for forming stable chelates with various metal ions, due to its two carboxyl groups arranged at 120°. It supports multiple coordination geometries, including bidentate, tridentate, meridional, and bridging modes (Yang et al., 2015[Yang, R., Li, H. H., Van Hecke, K. & Cui, G. H. (2015). Z. Anorg. Allg Chem. 641, 642-649.]; Ye et al., 2005[Ye, B. H., Tong, M. L. & Chen, X. M. (2005). Coord. Chem. Rev. 249, 545-565.]). Its flexibility allows for the creation of both discrete and polymeric metal complexes (Aghabozorg et al., 2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184-227.]). H2pydc is essential for constructing some metal–organic frameworks (MOFs) for applications in adsorption, catalysis, and photoluminescence (Cui et al., 2012[Cui, G. H., He, C. H., Jiao, C. H., Geng, J. C. & Blatov, V. A. (2012). CrystEngComm, 14, 4210-4216.]; Tanner et al., 2010[Tanner, P. A. & Duan, C.-K. (2010). Coord. Chem. Rev. 254, 3026-3029.]). These complexes also exhibit significant anti­microbial and anti­cancer activities (Li et al., 2014[Li, D. & Zhong, G.-Q. (2014). Sci. World J. 641608.]; Shi et al., 2009[Shi, F. N., Cunha-Silva, L., Trindade, T., Paz, F. A. A. & Rocha, J. (2009). Cryst. Growth Des. 9, 2098-2109.]). Additionally, many co-crystals and proton-transfer compounds involving H2pydc have been studied (Zhang et al., 2015[Zhang, X., Sun, F., Zhang, T., Jia, J., Su, H., Wang, C. & Zhu, G. (2015). J. Mol. Struct. 1100, 395-400.]). In our previous work (Naza­rov et al., 2024[Nazarov, Y. E., Turaev, K. K., Alimnazarov, B. K., Suyunov, J. R., Umirova, G. A., Ibragimov, B. T. & Ashurov, J. M. (2024). IUCrData, 9, x240570.]), we reported on the organic salt of bis­(8-hy­droxy­quinolinium) naphthalene-1,5-di­sulfonate tetra­hydrate. In this paper, we focus on the synthesis and structural characterization of the salt formed from 8-hy­droxy­quinoline and pyridine-2,6-di­carb­oxy­lic acid in dilute hydro­chloric acid.

[Scheme 1]

2. Structural commentary

The title hydrated mol­ecular salt consists of a [Cu(H2pydc)Cl3] anion, 8HQ+ cation and two uncoordinated water mol­ecules (Fig. 1[link]). The CuII atom exhibits a distorted CuO2NCl3 octa­hedral geometry (Fig. 2[link]). It coordinates two oxygen atoms and one nitro­gen atom from the tridentate H2pydc ligand, along with three chloride ions. The Cu—N bond length is 2.011 (2) Å, while the Cu—O bond lengths are 2.366 (2) and 2.424 (2) Å. The Cu—Cl bond lengths are 2.2067 (9), 2.3688 (11) and 2.4190 (10) Å. The cis angles range from 74.48 (9) to 105.45 (6)°, and the trans angles range from 149.30 (8) to 174.14 (3)°. The pyridine ring of the H2pydc mol­ecule exhibits a planar geometry, with the maximum deviation of a ring atom from the least-squares plane being 0.007 Å. The carboxyl­ate groups attached to the pyridine ring form different dihedral angles of 11.094 (10) and 6.513 (1)° with the pyridine plane. This difference possibly results from the different bonding modes and inter­molecular hydrogen bonds with the O—H group. The 8-HQ unit is protonated, and the hy­droxy­quinoline cation fragment is also planar, with a maximum deviation of 0.0162 (14) Å. This fragment is coplanar with the plane of the H2pydc mol­ecule.

[Figure 1]
Figure 1
The structures of the mol­ecular entities in the title salt, showing the atom-labeling scheme and displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius and hydrogen bonds are shown as dashed lines.
[Figure 2]
Figure 2
Coordination polyhedron around the copper cation, with other atoms omitted for clarity.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, the 8HQ+ cation, the [Cu(H2pydc)Cl3] anion, and the water mol­ecules are connected via strong O—H⋯O and O—H⋯Cl hydrogen bonds (Table 1[link]) with graph-set motifs of R22(12), R44(12) and R32(8) (Fig. 3[link]), which link the components into chains extending along [100] and [0[\overline{1}]1], forming a two-dimensional network lying in the (011) plane (Fig. 4[link]). All chlorine atoms in the anion participate in hydrogen bonding. As depicted in Fig. 5[link], the Cl3 atom exhibits Cu—Cl⋯π inter­actions with the pyridine ring of 8HQ [Cl⋯Cg2iii = 3.4736 (17) Å; Cu—Cl⋯Cg2iii = 167.79 (4)°; Cg2 is the centroid of the 8HQ pyridine ring; symmetry code: (iii) 1 − x, 1 − y, −z]. There is also an extensive ππ inter­action between the rings of H2pydc and 8HQ+ cation fragments, with centroid–centroid distances for Cg1⋯Cg2iv of 3.666 (2) Å, where Cg1 is the centroid of the N2/C10–C14 ring [symmetry code: (iv) 1 + x, y, z].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Cl1 0.82 (4) 2.31 (4) 3.124 (3) 172 (3)
O1W—H1WA⋯O2W 0.85 (4) 1.86 (4) 2.697 (5) 172 (5)
N1—H1A⋯Cl3i 0.86 (2) 2.41 (3) 3.201 (3) 154 (5)
O1W—H1WB⋯O4ii 0.84 (4) 2.04 (3) 2.808 (4) 152 (4)
O3—H3⋯Cl3iii 0.82 (3) 2.20 (3) 3.015 (3) 173 (4)
O2W—H2WA⋯Cl2iv 0.86 (6) 2.53 (5) 3.361 (4) 163 (5)
O2W—H2WB⋯Cl1ii 0.85 (5) 2.50 (5) 3.317 (4) 160 (4)
O5—H5⋯O1W 0.82 (4) 1.69 (4) 2.477 (4) 162 (5)
C3—H3A⋯O2Wv 0.93 2.56 3.473 (5) 168
C6—H6⋯Cl2vi 0.93 2.78 3.622 (4) 151
C7—H7⋯O2vi 0.93 2.44 3.356 (4) 169
C11—H11⋯O5vii 0.93 2.56 3.396 (5) 150
C12—H12⋯O1Wvii 0.93 2.58 3.412 (5) 148
Symmetry codes: (i) [x-1, y, z]; (ii) [-x+2, -y, -z+1]; (iii) [-x+1, -y+1, -z]; (iv) [x+1, y, z]; (v) [x-1, y+1, z]; (vi) [-x, -y+1, -z]; (vii) [-x+2, -y+1, -z+1].
[Figure 3]
Figure 3
The formation of O—H⋯O, O—H⋯Cl and N—H⋯Cl hydrogen bonds (dashed lines) in the crystal structure, leading to R22(12), R44(12) and R32(8) graph-set motifs.
[Figure 4]
Figure 4
The crystal packing of the title salt in a view along [010]. O—H⋯O, O—H⋯Cl and N—H⋯Cl hydrogen bonds are shown as dashed blue lines.
[Figure 5]
Figure 5
A fragment of the packing of the title compound showing Cu—Cl⋯π and π-π- inter­actions between the pyridine rings of H2pydc and the 8HQ+ cation.

In the crystal packing, a wide range of non-covalent inter­actions, consisting of hydrogen bonding, Cu—Cl⋯π, and ππ inter­actions, play an important role in the cohesion of the three-dimensional supra­molecular network. In order to visualize the inter­molecular inter­actions in the structure of the title compound, a Hirshfeld surface (HS) analysis was carried out (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were generated using CrystalExplorer 21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The presence of strong inter­actions on the Hirshfeld surface is indicated by red spots, while the blue areas indicate weak inter­actions, as shown in Fig. 6[link]. The two-dimensional fingerprint plot for all inter­actions and those delineated into individual inter­actions, together with their relative contributions, are shown in Fig. 7[link]. The Hirshfeld surface analysis indicates that the most important contributions to the crystal packing involving the main residues are from H⋯Cl/Cl⋯H inter­actions, contributing 40.3% for the anion. Weak H⋯H contacts contribute 13.2% for the cation and 28.6% for the anion. O⋯H/O⋯H inter­actions contribute 22.6% for the cation and 17.6% for the anion, while H⋯C/C⋯H inter­actions contribute 19.5% for the cation and 10.3% for the anion. The Hirshfeld surface (HS) shape index is a tool used to visualize ππ stacking inter­actions, indicated by the presence of adjacent red and blue triangles. Fig. 6[link] clearly shows that ππ inter­actions are present in both the pyridine ring of the H2pydc mol­ecule and in both the pyridine and phenyl rings of the 8HQ+ cation.

[Figure 6]
Figure 6
Hirshfeld surfaces mapped over dnorm and shape index for (a), (c) the 8HQ+ cation and (b), (d) the [Cu(H2pydc)Cl3] anion, respectively.
[Figure 7]
Figure 7
Two-dimensional fingerprint plots for the [Cu(H2pydc)Cl3] anion (left) and the 8HQ+ cation (right), showing all contributions and contributions between specific inter­acting atom pairs.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.45, updated November 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed that the crystal structure of 8HQ has been determined; 27 reports are related to neutral structures. In addition, there are over 100 reports of organic salts and co-crystals and over 100 reports of metal complexes, among which 25 are chelates. In 150 cases, the nitro­gen atom of 8HQ is protonated. There are seven cases where 8-hy­droxy­quinolinium and pyridine-2,6-di­carboxyl­ate are simultaneously present in the same compound. During the search, more than 2600 compounds of H2pydc and its deprotonated form were found. About 250 of them are organic salts and co-crystals, while the rest are metallocomplexes, more than 2200 of which are tridentately coordinated. Additionally, there are instances where H2pydc in its neutral form is tridentately coordinated to copper(II), as seen in the complexes LACGUT (Fainerman-Melnikova et al., 2010[Fainerman-Melnikova, M., Clegg, J. K., Pakchung, A. A. H., Jensen, P. & Codd, R. (2010). CrystEngComm, 12, 4217-4225.]) and QIDSAY (Prasad et al., 2007[Prasad, T. K. & Rajasekharan, M. V. (2007). Polyhedron, 26, 1364-1372.]).

5. Synthesis and crystallization

The title compound, (C9H8NO)[CuCl3(C7H5NO4)]·2H2O, was prepared by the reaction of CuII acetate dihydrate (0.2357 g, 1.083 mmol) in dilute hydro­chloric acid, 8-hy­droxy­quinoline (8-HQ) (0.1452 g, 0.9934 mmol), and pyridine-2,6-di­carb­oxy­lic acid (H2pydc) (0.1671 g, 1.000 mmol) in a 1:1:1 molar ratio in an aqueous solution. Good-quality single crystals were obtained by slow evaporation after four days (yield: 60%). Elemental analysis for C16H17Cl3CuN2O7 (519.20): calculated C: 37.01, H: 3.30, N:5.40%; found: C: 36.92, H: 3.28, N: 5.36%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bound H atoms were positioned geometrically and refined as riding with Uiso(H) = 1.2Ueq(C). The following restrains were used for N- and O-bound H atoms: N1—H1A = 0.86±0.01 Å, O1—H1 = O3—H3 = 0.82±0.01 Å, O5—H5 = 0.82±0.01 Å, O1W—H1WB = O1W—H1WA = 0.85±0.01 Å, O2W—H2WB = O2W—H2WA = 0.85±0.01 Å.

Table 2
Experimental details

Crystal data
Chemical formula (C9H8NO)[CuCl3(C7H5NO4)]·2H2O
Mr 519.20
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 291
a, b, c (Å) 8.4699 (5), 9.7818 (5), 12.9026 (11)
α, β, γ (°) 77.238 (6), 89.207 (6), 78.038 (5)
V3) 1019.37 (12)
Z 2
Radiation type Cu Kα
μ (mm−1) 5.52
Crystal size (mm) 0.26 × 0.24 × 0.18
 
Data collection
Diffractometer Xcalibur, Ruby
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.819, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7074, 4134, 3092
Rint 0.046
(sin θ/λ)max−1) 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.105, 1.01
No. of reflections 4134
No. of parameters 295
No. of restraints 8
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.39, −0.38
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), and publCIF (Westrip 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

8-Hydroxyquinolinium trichlorido(pyridine-2,6-dicarboxylic acid-κ3O,N,O')copper(II) dihydrate top
Crystal data top
(C9H8NO)[CuCl3(C7H5NO4)]·2H2OZ = 2
Mr = 519.20F(000) = 526
Triclinic, P1Dx = 1.692 Mg m3
a = 8.4699 (5) ÅCu Kα radiation, λ = 1.54184 Å
b = 9.7818 (5) ÅCell parameters from 2815 reflections
c = 12.9026 (11) Åθ = 3.5–75.6°
α = 77.238 (6)°µ = 5.52 mm1
β = 89.207 (6)°T = 291 K
γ = 78.038 (5)°Block, light blue
V = 1019.37 (12) Å30.26 × 0.24 × 0.18 mm
Data collection top
Xcalibur, Ruby
diffractometer
4134 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source3092 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 10.2576 pixels mm-1θmax = 76.2°, θmin = 3.5°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 1210
Tmin = 0.819, Tmax = 1.000l = 1516
7074 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0387P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.105(Δ/σ)max = 0.001
S = 1.01Δρmax = 0.39 e Å3
4134 reflectionsΔρmin = 0.37 e Å3
295 parametersExtinction correction: SHELXL2019/2 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
8 restraintsExtinction coefficient: 0.0043 (3)
Primary atom site location: iterative
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.61613 (6)0.28127 (4)0.24128 (4)0.02919 (15)
Cl10.42036 (11)0.28777 (9)0.37398 (7)0.0420 (2)
Cl20.56984 (12)0.08134 (9)0.20741 (8)0.0451 (2)
Cl30.81820 (10)0.29892 (8)0.10741 (6)0.03518 (19)
O20.4368 (3)0.4718 (2)0.11873 (18)0.0346 (5)
O30.4004 (3)0.7115 (2)0.0718 (2)0.0405 (6)
H30.344 (4)0.701 (4)0.024 (2)0.041 (11)*
O40.8324 (3)0.2084 (2)0.36886 (19)0.0385 (6)
O50.9662 (3)0.3119 (3)0.4671 (2)0.0439 (6)
H51.015 (7)0.229 (2)0.486 (5)0.11 (2)*
N20.6552 (3)0.4647 (3)0.27169 (19)0.0261 (5)
C100.7590 (4)0.4598 (3)0.3508 (2)0.0282 (6)
C110.7769 (4)0.5813 (4)0.3825 (3)0.0351 (7)
H110.8486410.5751750.4381040.042*
C120.6865 (4)0.7131 (3)0.3304 (3)0.0358 (7)
H120.6959990.7966040.3506760.043*
C130.5824 (4)0.7179 (3)0.2480 (3)0.0329 (7)
H130.5220150.8052170.2109870.039*
C140.5686 (4)0.5918 (3)0.2209 (2)0.0273 (6)
C150.4607 (4)0.5844 (3)0.1314 (2)0.0289 (6)
C160.8575 (4)0.3121 (3)0.3975 (2)0.0315 (7)
O10.1093 (3)0.4401 (3)0.2333 (2)0.0463 (6)
H10.186 (4)0.396 (4)0.274 (3)0.063 (15)*
N10.1016 (4)0.6102 (3)0.0823 (2)0.0376 (6)
H1A0.089 (6)0.5181 (12)0.096 (4)0.071 (15)*
C10.0898 (4)0.5833 (4)0.2254 (3)0.0367 (8)
C20.1642 (4)0.6467 (4)0.2893 (3)0.0444 (9)
H20.2373060.5903730.3426840.053*
C30.1308 (5)0.7977 (4)0.2747 (3)0.0498 (10)
H3A0.1814650.8391380.3194340.060*
C40.0262 (5)0.8833 (4)0.1966 (3)0.0480 (9)
H40.0066110.9823340.1877770.058*
C50.1643 (5)0.9014 (4)0.0476 (3)0.0460 (9)
H5A0.1882771.0008560.0356530.055*
C60.2383 (5)0.8358 (5)0.0143 (3)0.0516 (10)
H60.3095820.8899370.0695110.062*
C70.2064 (4)0.6876 (4)0.0058 (3)0.0457 (9)
H70.2589960.6419400.0348290.055*
C80.0213 (4)0.6706 (4)0.1456 (3)0.0338 (7)
C90.0523 (4)0.8220 (4)0.1293 (3)0.0386 (8)
O1W1.1567 (4)0.0804 (3)0.5343 (3)0.0505 (7)
H1WA1.224 (5)0.043 (6)0.494 (3)0.09 (2)*
H1WB1.129 (6)0.006 (3)0.570 (4)0.09 (2)*
O2W1.3740 (4)0.0607 (3)0.4191 (3)0.0569 (7)
H2WA1.414 (7)0.007 (6)0.369 (4)0.12 (2)*
H2WB1.444 (6)0.124 (5)0.460 (4)0.12 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0366 (3)0.0193 (2)0.0320 (3)0.00748 (18)0.00345 (19)0.00455 (17)
Cl10.0436 (5)0.0361 (4)0.0420 (5)0.0075 (4)0.0053 (4)0.0005 (3)
Cl20.0609 (6)0.0261 (4)0.0537 (5)0.0171 (4)0.0002 (4)0.0127 (3)
Cl30.0375 (4)0.0329 (4)0.0357 (4)0.0071 (3)0.0002 (3)0.0089 (3)
O20.0406 (13)0.0265 (11)0.0367 (13)0.0077 (10)0.0072 (10)0.0060 (9)
O30.0534 (15)0.0261 (12)0.0377 (13)0.0049 (11)0.0148 (12)0.0006 (10)
O40.0473 (14)0.0244 (11)0.0421 (14)0.0053 (10)0.0126 (11)0.0047 (10)
O50.0500 (15)0.0329 (14)0.0455 (15)0.0011 (11)0.0215 (12)0.0075 (11)
N20.0313 (13)0.0201 (12)0.0264 (13)0.0064 (10)0.0015 (10)0.0034 (10)
C100.0319 (16)0.0233 (15)0.0291 (16)0.0063 (12)0.0023 (12)0.0045 (12)
C110.0397 (18)0.0345 (17)0.0343 (18)0.0105 (15)0.0031 (14)0.0115 (14)
C120.0421 (19)0.0235 (15)0.045 (2)0.0070 (14)0.0021 (15)0.0141 (14)
C130.0365 (17)0.0200 (14)0.0412 (18)0.0038 (13)0.0000 (14)0.0068 (13)
C140.0320 (15)0.0202 (14)0.0278 (15)0.0040 (12)0.0002 (12)0.0029 (11)
C150.0323 (16)0.0237 (15)0.0288 (16)0.0046 (12)0.0008 (13)0.0033 (12)
C160.0354 (17)0.0300 (16)0.0289 (16)0.0070 (13)0.0027 (13)0.0058 (12)
O10.0432 (15)0.0338 (13)0.0582 (17)0.0056 (11)0.0071 (13)0.0038 (12)
N10.0370 (15)0.0378 (16)0.0420 (17)0.0127 (13)0.0063 (13)0.0134 (13)
C10.0340 (17)0.0346 (18)0.0403 (19)0.0080 (14)0.0051 (14)0.0050 (14)
C20.0392 (19)0.050 (2)0.041 (2)0.0050 (17)0.0003 (16)0.0087 (16)
C30.050 (2)0.057 (2)0.052 (2)0.0187 (19)0.0040 (18)0.0258 (19)
C40.053 (2)0.037 (2)0.059 (2)0.0130 (17)0.0070 (19)0.0170 (17)
C50.045 (2)0.0368 (19)0.052 (2)0.0038 (16)0.0085 (17)0.0038 (17)
C60.043 (2)0.055 (2)0.047 (2)0.0026 (19)0.0058 (18)0.0016 (19)
C70.0388 (19)0.061 (2)0.041 (2)0.0171 (18)0.0012 (16)0.0131 (18)
C80.0289 (16)0.0347 (17)0.0376 (18)0.0067 (13)0.0079 (13)0.0080 (14)
C90.0407 (19)0.0330 (17)0.0414 (19)0.0073 (15)0.0057 (15)0.0076 (14)
O1W0.0545 (18)0.0310 (14)0.0588 (18)0.0029 (13)0.0052 (15)0.0001 (13)
O2W0.0608 (19)0.0482 (17)0.060 (2)0.0136 (15)0.0024 (16)0.0059 (15)
Geometric parameters (Å, º) top
Cu1—Cl12.3688 (11)O1—C11.357 (4)
Cu1—Cl22.2067 (9)N1—H1A0.863 (10)
Cu1—Cl32.4190 (10)N1—C71.323 (5)
Cu1—O22.424 (2)N1—C81.369 (4)
Cu1—O42.366 (2)C1—C21.365 (5)
Cu1—N22.011 (2)C1—C81.407 (5)
O2—C151.205 (4)C2—H20.9300
O3—H30.822 (10)C2—C31.414 (6)
O3—C151.312 (4)C3—H3A0.9300
O4—C161.212 (4)C3—C41.359 (6)
O5—H50.818 (10)C4—H40.9300
O5—C161.295 (4)C4—C91.402 (5)
N2—C101.343 (4)C5—H5A0.9300
N2—C141.338 (4)C5—C61.360 (6)
C10—C111.377 (4)C5—C91.405 (5)
C10—C161.508 (4)C6—H60.9300
C11—H110.9300C6—C71.384 (6)
C11—C121.386 (5)C7—H70.9300
C12—H120.9300C8—C91.417 (5)
C12—C131.377 (5)O1W—H1WA0.847 (10)
C13—H130.9300O1W—H1WB0.844 (10)
C13—C141.382 (4)O2W—H2WA0.853 (10)
C14—C151.506 (4)O2W—H2WB0.850 (10)
O1—H10.822 (10)
Cl1—Cu1—Cl3174.14 (3)O2—C15—C14121.7 (3)
Cl1—Cu1—O290.47 (6)O3—C15—C14112.2 (3)
Cl2—Cu1—Cl193.30 (4)O4—C16—O5126.2 (3)
Cl2—Cu1—Cl392.50 (4)O4—C16—C10120.6 (3)
Cl2—Cu1—O2104.88 (6)O5—C16—C10113.1 (3)
Cl2—Cu1—O4105.45 (6)C1—O1—H1110 (3)
Cl3—Cu1—O287.19 (6)C7—N1—H1A119 (3)
O4—Cu1—Cl192.42 (7)C7—N1—C8122.6 (3)
O4—Cu1—Cl386.88 (7)C8—N1—H1A118 (3)
O4—Cu1—O2149.30 (8)O1—C1—C2125.7 (3)
N2—Cu1—Cl186.29 (8)O1—C1—C8115.5 (3)
N2—Cu1—Cl2179.23 (8)C2—C1—C8118.8 (3)
N2—Cu1—Cl387.90 (8)C1—C2—H2119.8
N2—Cu1—O274.48 (9)C1—C2—C3120.4 (4)
N2—Cu1—O475.23 (9)C3—C2—H2119.8
C15—O2—Cu1107.79 (19)C2—C3—H3A119.3
C15—O3—H3108 (3)C4—C3—C2121.3 (4)
C16—O4—Cu1109.41 (19)C4—C3—H3A119.3
C16—O5—H5106 (4)C3—C4—H4120.1
C10—N2—Cu1119.7 (2)C3—C4—C9119.9 (4)
C14—N2—Cu1121.0 (2)C9—C4—H4120.1
C14—N2—C10119.0 (3)C6—C5—H5A119.3
N2—C10—C11122.0 (3)C6—C5—C9121.4 (4)
N2—C10—C16114.3 (3)C9—C5—H5A119.3
C11—C10—C16123.7 (3)C5—C6—H6120.4
C10—C11—H11120.5C5—C6—C7119.2 (4)
C10—C11—C12119.1 (3)C7—C6—H6120.4
C12—C11—H11120.5N1—C7—C6120.6 (4)
C11—C12—H12120.6N1—C7—H7119.7
C13—C12—C11118.7 (3)C6—C7—H7119.7
C13—C12—H12120.6N1—C8—C1120.3 (3)
C12—C13—H13120.3N1—C8—C9118.8 (3)
C12—C13—C14119.4 (3)C1—C8—C9120.9 (3)
C14—C13—H13120.3C4—C9—C5124.0 (3)
N2—C14—C13121.8 (3)C4—C9—C8118.6 (3)
N2—C14—C15114.2 (3)C5—C9—C8117.3 (3)
C13—C14—C15124.0 (3)H1WA—O1W—H1WB100 (5)
O2—C15—O3126.0 (3)H2WA—O2W—H2WB114 (6)
Cu1—O2—C15—O3171.8 (3)C14—N2—C10—C16176.3 (3)
Cu1—O2—C15—C147.7 (4)C16—C10—C11—C12176.5 (3)
Cu1—O4—C16—O5179.5 (3)O1—C1—C2—C3178.4 (3)
Cu1—O4—C16—C101.1 (4)O1—C1—C8—N10.1 (5)
Cu1—N2—C10—C11172.8 (3)O1—C1—C8—C9179.9 (3)
Cu1—N2—C10—C169.7 (4)N1—C8—C9—C4177.9 (3)
Cu1—N2—C14—C13173.5 (2)N1—C8—C9—C50.3 (5)
Cu1—N2—C14—C158.1 (4)C1—C2—C3—C40.8 (6)
N2—C10—C11—C120.8 (5)C1—C8—C9—C42.1 (5)
N2—C10—C16—O45.1 (5)C1—C8—C9—C5179.7 (3)
N2—C10—C16—O5174.4 (3)C2—C1—C8—N1178.1 (3)
N2—C14—C15—O211.1 (5)C2—C1—C8—C91.9 (5)
N2—C14—C15—O3168.5 (3)C2—C3—C4—C90.7 (6)
C10—N2—C14—C130.4 (5)C3—C4—C9—C5178.9 (4)
C10—N2—C14—C15178.0 (3)C3—C4—C9—C80.8 (6)
C10—C11—C12—C130.4 (5)C5—C6—C7—N11.9 (6)
C11—C10—C16—O4177.5 (3)C6—C5—C9—C4179.1 (4)
C11—C10—C16—O53.1 (5)C6—C5—C9—C80.9 (6)
C11—C12—C13—C141.2 (5)C7—N1—C8—C1179.5 (3)
C12—C13—C14—N20.8 (5)C7—N1—C8—C90.5 (5)
C12—C13—C14—C15179.1 (3)C8—N1—C7—C60.7 (6)
C13—C14—C15—O2170.6 (3)C8—C1—C2—C30.5 (6)
C13—C14—C15—O39.8 (5)C9—C5—C6—C72.1 (6)
C14—N2—C10—C111.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl10.82 (4)2.31 (4)3.124 (3)172 (3)
O1W—H1WA···O2W0.85 (4)1.86 (4)2.697 (5)172 (5)
N1—H1A···Cl3i0.86 (2)2.41 (3)3.201 (3)154 (5)
O1W—H1WB···O4ii0.84 (4)2.04 (3)2.808 (4)152 (4)
O3—H3···Cl3iii0.82 (3)2.20 (3)3.015 (3)173 (4)
O2W—H2WA···Cl2iv0.86 (6)2.53 (5)3.361 (4)163 (5)
O2W—H2WB···Cl1ii0.85 (5)2.50 (5)3.317 (4)160 (4)
O5—H5···O1W0.82 (4)1.69 (4)2.477 (4)162 (5)
C3—H3A···O2Wv0.932.563.473 (5)168
C6—H6···Cl2vi0.932.783.622 (4)151
C7—H7···O2vi0.932.443.356 (4)169
C11—H11···O5vii0.932.563.396 (5)150
C12—H12···O1Wvii0.932.583.412 (5)148
Symmetry codes: (i) x1, y, z; (ii) x+2, y, z+1; (iii) x+1, y+1, z; (iv) x+1, y, z; (v) x1, y+1, z; (vi) x, y+1, z; (vii) x+2, y+1, z+1.
 

Funding information

The authors thank the Uzbekistan government for their direct financial support of this research. They also gratefully acknowledge the Fundamental Research Grant from the Agency for Innovative Development under the Ministry of Higher Education, Science, and Innovation of the Republic of Uzbekistan.

References

First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.  Web of Science CrossRef CAS Google Scholar
First citationAlbrecht, M., Fiege, M. & Osetska, O. (2008). Coord. Chem. Rev. 252, 812–824.  Web of Science CrossRef CAS Google Scholar
First citationCherdtrakulkiat, R., Boonpangrak, S., Sinthupoom, N., Prachayasittikul, S., Ruchirawat, S. & Prachayasittikul, V. (2016). Biochem. Biophys. Rep. 6, 135–141.  PubMed Google Scholar
First citationCölle, M., Dinnebier, R. E. & Brütting, W. (2002). Chem. Commun. 23, 2908–2909.  Google Scholar
First citationCui, G. H., He, C. H., Jiao, C. H., Geng, J. C. & Blatov, V. A. (2012). CrystEngComm, 14, 4210–4216.  Web of Science CSD CrossRef CAS Google Scholar
First citationDixit, R. B., Vanparia, S. F., Patel, T. S., Jagani, C. L., Doshi, H. V. & Dixit, B. C. (2010). Appl. Organomet. Chem. 24, 408–413.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFainerman-Melnikova, M., Clegg, J. K., Pakchung, A. A. H., Jensen, P. & Codd, R. (2010). CrystEngComm, 12, 4217–4225.  CAS Google Scholar
First citationFarruggia, G., Iotti, S., Prodi, L., Montalti, M., Zaccheroni, N., Savage, P. B., Trapani, V., Sale, P. & Wolf, F. I. (2006). J. Am. Chem. Soc. 128, 344–350.  CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKatakura, R. & Koide, Y. (2006). Inorg. Chem. 45, 5730–5732.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKosa, S. A., Al-Zahrani, G. & Salam, M. A. (2012). J. Industrial Engineering Chem. 181–182, 159–168.  CAS Google Scholar
First citationLi, D. & Zhong, G.-Q. (2014). Sci. World J. 641608.  Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMei, Y., Bentley, P. A. & Wang, W. (2006). Tetrahedron Lett. 47, 2447–2449.  CrossRef CAS Google Scholar
First citationMontes, V. A., Pohl, R., Shinar, J. & Anzenbacher, P. Jr (2006). Chem. Eur. J. 12, 4523–4535.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMoon, S. Y., Cha, N. R., Kim, Y. H. & Chang, S. K. (2004). J. Org. Chem. 69, 181–183.  CrossRef PubMed CAS Google Scholar
First citationNazarov, Y. E., Turaev, K. K., Alimnazarov, B. K., Suyunov, J. R., Umirova, G. A., Ibragimov, B. T. & Ashurov, J. M. (2024). IUCrData, 9, x240570.  Google Scholar
First citationPrasad, T. K. & Rajasekharan, M. V. (2007). Polyhedron, 26, 1364–1372.  CSD CrossRef CAS Google Scholar
First citationQin, Q. P., Chen, Z. F., Qin, J. L., He, X. J., Li, Y. L., Liu, Y. C., Huang, K. B. & Liang, H. (2015). Eur. J. Med. Chem. 92, 302–313.  CSD CrossRef CAS PubMed Google Scholar
First citationRbaa, M., Benhiba, F., Obot, I. B., Oudda, H., Warad, I., Lakhrissi, B. & Zarrouk, A. (2018). J. Mol. Liq. 276, 120–133.  CrossRef Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, F. N., Cunha-Silva, L., Trindade, T., Paz, F. A. A. & Rocha, J. (2009). Cryst. Growth Des. 9, 2098–2109.  CSD CrossRef CAS Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2003). CrystEngComm, 5, 58–61.  Web of Science CSD CrossRef CAS Google Scholar
First citationSong, Y., Xu, H., Chen, W., Zhan, P. & Liu, X. (2015). Medicinal Chemistry Communication, 6, 61–74.  CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanner, P. A. & Duan, C.-K. (2010). Coord. Chem. Rev. 254, 3026–3029.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, R., Li, H. H., Van Hecke, K. & Cui, G. H. (2015). Z. Anorg. Allg Chem. 641, 642–649.  CSD CrossRef CAS Google Scholar
First citationYe, B. H., Tong, M. L. & Chen, X. M. (2005). Coord. Chem. Rev. 249, 545–565.  Web of Science CrossRef CAS Google Scholar
First citationYin, X., Ma, K., Wang, Y., Sun, Y., Shang, X.-F., Zhao, Z., Wang, R., Chen, Y., Zhu, J. & Liu, Y.-Q. (2020). J. Agric. Food Chem. 68, 11096–11104.  CrossRef CAS PubMed Google Scholar
First citationZhang, H., Han, L.-F., Zachariasse, K. A. & Jiang, Y.-B. (2005). Org. Lett. 7, 4217–4220.  CrossRef PubMed CAS Google Scholar
First citationZhang, X., Sun, F., Zhang, T., Jia, J., Su, H., Wang, C. & Zhu, G. (2015). J. Mol. Struct. 1100, 395–400.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds