research communications
8-Hydroxyquinolinium trichlorido(pyridine-2,6-dicarboxylic acid-κ3O,N,O′)copper(II) dihydrate
aTermez State University, Barkamol Avlod Street 43, Termez City, Uzbekistan, and bInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, 100125, M. Ulugbek Str. 83, Tashkent, 700125, Uzbekistan
*Correspondence e-mail: ashurovjamshid1@gmail.com
The title compound, (C9H8NO)[CuCl3(C7H5NO4)]·2H2O, was prepared by reacting CuII acetate dihydrate, solid 8-hydroxyquinoline (8-HQ), and solid pyridine-2,6-dicarboxylic acid (H2pydc), in a 1:1:1 molar ratio, in an aqueous solution of dilute hydrochloric acid. The CuII atom exhibits a distorted CuO2NCl3 octahedral geometry, coordinating two oxygen atoms and one nitrogen atom from the tridentate H2pydc ligand and three chloride atoms; the nitrogen atom and one chloride atom occupy the axial positions with Cu—N and Cu—Cl bond lengths of 2.011 (2) Å and 2.2067 (9) Å, respectively. In the equatorial plane, the oxygen and chloride atoms are arranged in a cis configuration, with Cu—O bond lengths of 2.366 (2) and 2.424 (2) Å, and Cu—Cl bond lengths of 2.4190 (10) and 2.3688 (11) Å. The contains 8-HQ+ as a counter-ion and two uncoordinated water molecules. The features strong O—H⋯O and O—H⋯Cl hydrogen bonds as well as weak interactions including C—H⋯O, C—H⋯Cl, Cu—Cl⋯π, and π–π, which result in a three-dimensional network. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing involving the main residues are from H⋯Cl/Cl⋯H interactions, contributing 40.3% for the anion. Weak H⋯H contacts contribute 13.2% for the cation and 28.6% for the anion.
Keywords: pyridine-2,6-dicarboxylic acid; 8-hydroxyquinoline; crystal structure; hydrogen bonds; Hirshfeld surface analysis.
CCDC reference: 2307012
1. Chemical context
8-Hydroxyquinoline (8HQ, C9H7NO), also known as oxine, is a versatile bidentate chelating agent forming species such as H2L+, HL, and L−. With pKa values of 10.8 and 4.9 for the nitrogen and phenol groups, respectively, it effectively forms supramolecular structures through hydrogen bonding (Smith et al., 2003). 8HQ is extensively utilized in analytical chemistry for metal-ion quantification because of the insolubility of its complexes in water (Albrecht et al., 2008). Tris(8-hydroxyquinolinato)aluminum is crucial in OLEDs (Cölle et al., 2002; Katakura & Koide, 2006), and its luminescence properties are enhanced by ring substituents (Montes et al., 2006). Its metal binding induces fluorescence changes, useful in developing sensitive chemosensors for detecting metal ions like zinc, cadmium, lead, and mercury (Moon et al., 2004; Zhang et al., 2005; Farruggia et al., 2006; Mei et al., 2006). 8HQ derivatives enhance adsorbents for heavy-metal removal from solutions (Kosa et al., 2012) and serve as corrosion inhibitors in acidic media (Rbaa et al., 2018).
Quinoline derivatives, including 8HQ, exhibit a broad spectrum of biological activities in medicinal chemistry (Song et al., 2014; Cherdtrakulkiat et al., 2016), showing antimicrobial, antioxidant, anticancer, anti-inflammatory, antineurodegenerative, antimalarial, and antituberculotic activities (Song et al., 2015; Cherdtrakulkiat et al., 2016; Dixit et al., 2010).
Copper(II) complexes of 8HQ derivatives show potential in treating Alzheimer's disease (Qin et al., 2015), while their antimicrobial properties are attributed to metal ion (Dixit et al., 2010; Yin et al., 2020). Pyridine-2,6-dicarboxylic acid (H2pydc) has a pKa of 2.16 at 25°C. This ligand is notable for forming stable chelates with various metal ions, due to its two carboxyl groups arranged at 120°. It supports multiple coordination geometries, including bidentate, tridentate, meridional, and bridging modes (Yang et al., 2015; Ye et al., 2005). Its flexibility allows for the creation of both discrete and polymeric metal complexes (Aghabozorg et al., 2008). H2pydc is essential for constructing some metal–organic frameworks (MOFs) for applications in adsorption, catalysis, and (Cui et al., 2012; Tanner et al., 2010). These complexes also exhibit significant antimicrobial and anticancer activities (Li et al., 2014; Shi et al., 2009). Additionally, many co-crystals and proton-transfer compounds involving H2pydc have been studied (Zhang et al., 2015). In our previous work (Nazarov et al., 2024), we reported on the organic salt of bis(8-hydroxyquinolinium) naphthalene-1,5-disulfonate tetrahydrate. In this paper, we focus on the synthesis and structural characterization of the salt formed from 8-hydroxyquinoline and pyridine-2,6-dicarboxylic acid in dilute hydrochloric acid.
2. Structural commentary
The title hydrated molecular salt consists of a [Cu(H2pydc)Cl3]− anion, 8HQ+ cation and two uncoordinated water molecules (Fig. 1). The CuII atom exhibits a distorted CuO2NCl3 octahedral geometry (Fig. 2). It coordinates two oxygen atoms and one nitrogen atom from the tridentate H2pydc ligand, along with three chloride ions. The Cu—N bond length is 2.011 (2) Å, while the Cu—O bond lengths are 2.366 (2) and 2.424 (2) Å. The Cu—Cl bond lengths are 2.2067 (9), 2.3688 (11) and 2.4190 (10) Å. The cis angles range from 74.48 (9) to 105.45 (6)°, and the trans angles range from 149.30 (8) to 174.14 (3)°. The pyridine ring of the H2pydc molecule exhibits a planar geometry, with the maximum deviation of a ring atom from the least-squares plane being 0.007 Å. The carboxylate groups attached to the pyridine ring form different dihedral angles of 11.094 (10) and 6.513 (1)° with the pyridine plane. This difference possibly results from the different bonding modes and intermolecular hydrogen bonds with the O—H group. The 8-HQ unit is protonated, and the hydroxyquinoline cation fragment is also planar, with a maximum deviation of 0.0162 (14) Å. This fragment is coplanar with the plane of the H2pydc molecule.
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, the 8HQ+ cation, the [Cu(H2pydc)Cl3]− anion, and the water molecules are connected via strong O—H⋯O and O—H⋯Cl hydrogen bonds (Table 1) with graph-set motifs of R22(12), R44(12) and R32(8) (Fig. 3), which link the components into chains extending along [100] and [01], forming a two-dimensional network lying in the (011) plane (Fig. 4). All chlorine atoms in the anion participate in hydrogen bonding. As depicted in Fig. 5, the Cl3 atom exhibits Cu—Cl⋯π interactions with the pyridine ring of 8HQ [Cl⋯Cg2iii = 3.4736 (17) Å; Cu—Cl⋯Cg2iii = 167.79 (4)°; Cg2 is the centroid of the 8HQ pyridine ring; symmetry code: (iii) 1 − x, 1 − y, −z]. There is also an extensive π–π interaction between the rings of H2pydc and 8HQ+ cation fragments, with centroid–centroid distances for Cg1⋯Cg2iv of 3.666 (2) Å, where Cg1 is the centroid of the N2/C10–C14 ring [symmetry code: (iv) 1 + x, y, z].
In the crystal packing, a wide range of non-covalent interactions, consisting of hydrogen bonding, Cu—Cl⋯π, and π–π interactions, play an important role in the cohesion of the three-dimensional supramolecular network. In order to visualize the intermolecular interactions in the structure of the title compound, a Hirshfeld surface (HS) analysis was carried out (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were generated using CrystalExplorer 21.5 (Spackman et al., 2021). The presence of strong interactions on the Hirshfeld surface is indicated by red spots, while the blue areas indicate weak interactions, as shown in Fig. 6. The two-dimensional fingerprint plot for all interactions and those delineated into individual interactions, together with their relative contributions, are shown in Fig. 7. The Hirshfeld surface analysis indicates that the most important contributions to the crystal packing involving the main residues are from H⋯Cl/Cl⋯H interactions, contributing 40.3% for the anion. Weak H⋯H contacts contribute 13.2% for the cation and 28.6% for the anion. O⋯H/O⋯H interactions contribute 22.6% for the cation and 17.6% for the anion, while H⋯C/C⋯H interactions contribute 19.5% for the cation and 10.3% for the anion. The Hirshfeld surface (HS) shape index is a tool used to visualize π–π stacking interactions, indicated by the presence of adjacent red and blue triangles. Fig. 6 clearly shows that π–π interactions are present in both the pyridine ring of the H2pydc molecule and in both the pyridine and phenyl rings of the 8HQ+ cation.
4. Database survey
A search of the Cambridge Structural Database (CSD, version 5.45, updated November 2023; Groom et al., 2016) revealed that the of 8HQ has been determined; 27 reports are related to neutral structures. In addition, there are over 100 reports of organic salts and co-crystals and over 100 reports of metal complexes, among which 25 are chelates. In 150 cases, the nitrogen atom of 8HQ is protonated. There are seven cases where 8-hydroxyquinolinium and pyridine-2,6-dicarboxylate are simultaneously present in the same compound. During the search, more than 2600 compounds of H2pydc and its deprotonated form were found. About 250 of them are organic salts and co-crystals, while the rest are metallocomplexes, more than 2200 of which are tridentately coordinated. Additionally, there are instances where H2pydc in its neutral form is tridentately coordinated to copper(II), as seen in the complexes LACGUT (Fainerman-Melnikova et al., 2010) and QIDSAY (Prasad et al., 2007).
5. Synthesis and crystallization
The title compound, (C9H8NO)[CuCl3(C7H5NO4)]·2H2O, was prepared by the reaction of CuII acetate dihydrate (0.2357 g, 1.083 mmol) in dilute hydrochloric acid, 8-hydroxyquinoline (8-HQ) (0.1452 g, 0.9934 mmol), and pyridine-2,6-dicarboxylic acid (H2pydc) (0.1671 g, 1.000 mmol) in a 1:1:1 molar ratio in an aqueous solution. Good-quality single crystals were obtained by slow evaporation after four days (yield: 60%). Elemental analysis for C16H17Cl3CuN2O7 (519.20): calculated C: 37.01, H: 3.30, N:5.40%; found: C: 36.92, H: 3.28, N: 5.36%.
6. Refinement
Crystal data, data collection and structure . C-bound H atoms were positioned geometrically and refined as riding with Uiso(H) = 1.2Ueq(C). The following restrains were used for N- and O-bound H atoms: N1—H1A = 0.86±0.01 Å, O1—H1 = O3—H3 = 0.82±0.01 Å, O5—H5 = 0.82±0.01 Å, O1W—H1WB = O1W—H1WA = 0.85±0.01 Å, O2W—H2WB = O2W—H2WA = 0.85±0.01 Å.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2307012
https://doi.org/10.1107/S2056989024009186/ej2008sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024009186/ej2008Isup2.hkl
(C9H8NO)[CuCl3(C7H5NO4)]·2H2O | Z = 2 |
Mr = 519.20 | F(000) = 526 |
Triclinic, P1 | Dx = 1.692 Mg m−3 |
a = 8.4699 (5) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 9.7818 (5) Å | Cell parameters from 2815 reflections |
c = 12.9026 (11) Å | θ = 3.5–75.6° |
α = 77.238 (6)° | µ = 5.52 mm−1 |
β = 89.207 (6)° | T = 291 K |
γ = 78.038 (5)° | Block, light blue |
V = 1019.37 (12) Å3 | 0.26 × 0.24 × 0.18 mm |
Xcalibur, Ruby diffractometer | 4134 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source | 3092 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.046 |
Detector resolution: 10.2576 pixels mm-1 | θmax = 76.2°, θmin = 3.5° |
ω scans | h = −10→10 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022) | k = −12→10 |
Tmin = 0.819, Tmax = 1.000 | l = −15→16 |
7074 measured reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.042 | w = 1/[σ2(Fo2) + (0.0387P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.105 | (Δ/σ)max = 0.001 |
S = 1.01 | Δρmax = 0.39 e Å−3 |
4134 reflections | Δρmin = −0.37 e Å−3 |
295 parameters | Extinction correction: SHELXL2019/2 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
8 restraints | Extinction coefficient: 0.0043 (3) |
Primary atom site location: iterative |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.61613 (6) | 0.28127 (4) | 0.24128 (4) | 0.02919 (15) | |
Cl1 | 0.42036 (11) | 0.28777 (9) | 0.37398 (7) | 0.0420 (2) | |
Cl2 | 0.56984 (12) | 0.08134 (9) | 0.20741 (8) | 0.0451 (2) | |
Cl3 | 0.81820 (10) | 0.29892 (8) | 0.10741 (6) | 0.03518 (19) | |
O2 | 0.4368 (3) | 0.4718 (2) | 0.11873 (18) | 0.0346 (5) | |
O3 | 0.4004 (3) | 0.7115 (2) | 0.0718 (2) | 0.0405 (6) | |
H3 | 0.344 (4) | 0.701 (4) | 0.024 (2) | 0.041 (11)* | |
O4 | 0.8324 (3) | 0.2084 (2) | 0.36886 (19) | 0.0385 (6) | |
O5 | 0.9662 (3) | 0.3119 (3) | 0.4671 (2) | 0.0439 (6) | |
H5 | 1.015 (7) | 0.229 (2) | 0.486 (5) | 0.11 (2)* | |
N2 | 0.6552 (3) | 0.4647 (3) | 0.27169 (19) | 0.0261 (5) | |
C10 | 0.7590 (4) | 0.4598 (3) | 0.3508 (2) | 0.0282 (6) | |
C11 | 0.7769 (4) | 0.5813 (4) | 0.3825 (3) | 0.0351 (7) | |
H11 | 0.848641 | 0.575175 | 0.438104 | 0.042* | |
C12 | 0.6865 (4) | 0.7131 (3) | 0.3304 (3) | 0.0358 (7) | |
H12 | 0.695999 | 0.796604 | 0.350676 | 0.043* | |
C13 | 0.5824 (4) | 0.7179 (3) | 0.2480 (3) | 0.0329 (7) | |
H13 | 0.522015 | 0.805217 | 0.210987 | 0.039* | |
C14 | 0.5686 (4) | 0.5918 (3) | 0.2209 (2) | 0.0273 (6) | |
C15 | 0.4607 (4) | 0.5844 (3) | 0.1314 (2) | 0.0289 (6) | |
C16 | 0.8575 (4) | 0.3121 (3) | 0.3975 (2) | 0.0315 (7) | |
O1 | 0.1093 (3) | 0.4401 (3) | 0.2333 (2) | 0.0463 (6) | |
H1 | 0.186 (4) | 0.396 (4) | 0.274 (3) | 0.063 (15)* | |
N1 | −0.1016 (4) | 0.6102 (3) | 0.0823 (2) | 0.0376 (6) | |
H1A | −0.089 (6) | 0.5181 (12) | 0.096 (4) | 0.071 (15)* | |
C1 | 0.0898 (4) | 0.5833 (4) | 0.2254 (3) | 0.0367 (8) | |
C2 | 0.1642 (4) | 0.6467 (4) | 0.2893 (3) | 0.0444 (9) | |
H2 | 0.237306 | 0.590373 | 0.342684 | 0.053* | |
C3 | 0.1308 (5) | 0.7977 (4) | 0.2747 (3) | 0.0498 (10) | |
H3A | 0.181465 | 0.839138 | 0.319434 | 0.060* | |
C4 | 0.0262 (5) | 0.8833 (4) | 0.1966 (3) | 0.0480 (9) | |
H4 | 0.006611 | 0.982334 | 0.187777 | 0.058* | |
C5 | −0.1643 (5) | 0.9014 (4) | 0.0476 (3) | 0.0460 (9) | |
H5A | −0.188277 | 1.000856 | 0.035653 | 0.055* | |
C6 | −0.2383 (5) | 0.8358 (5) | −0.0143 (3) | 0.0516 (10) | |
H6 | −0.309582 | 0.889937 | −0.069511 | 0.062* | |
C7 | −0.2064 (4) | 0.6876 (4) | 0.0058 (3) | 0.0457 (9) | |
H7 | −0.258996 | 0.641940 | −0.034829 | 0.055* | |
C8 | −0.0213 (4) | 0.6706 (4) | 0.1456 (3) | 0.0338 (7) | |
C9 | −0.0523 (4) | 0.8220 (4) | 0.1293 (3) | 0.0386 (8) | |
O1W | 1.1567 (4) | 0.0804 (3) | 0.5343 (3) | 0.0505 (7) | |
H1WA | 1.224 (5) | 0.043 (6) | 0.494 (3) | 0.09 (2)* | |
H1WB | 1.129 (6) | 0.006 (3) | 0.570 (4) | 0.09 (2)* | |
O2W | 1.3740 (4) | −0.0607 (3) | 0.4191 (3) | 0.0569 (7) | |
H2WA | 1.414 (7) | −0.007 (6) | 0.369 (4) | 0.12 (2)* | |
H2WB | 1.444 (6) | −0.124 (5) | 0.460 (4) | 0.12 (3)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0366 (3) | 0.0193 (2) | 0.0320 (3) | −0.00748 (18) | −0.00345 (19) | −0.00455 (17) |
Cl1 | 0.0436 (5) | 0.0361 (4) | 0.0420 (5) | −0.0075 (4) | 0.0053 (4) | −0.0005 (3) |
Cl2 | 0.0609 (6) | 0.0261 (4) | 0.0537 (5) | −0.0171 (4) | 0.0002 (4) | −0.0127 (3) |
Cl3 | 0.0375 (4) | 0.0329 (4) | 0.0357 (4) | −0.0071 (3) | 0.0002 (3) | −0.0089 (3) |
O2 | 0.0406 (13) | 0.0265 (11) | 0.0367 (13) | −0.0077 (10) | −0.0072 (10) | −0.0060 (9) |
O3 | 0.0534 (15) | 0.0261 (12) | 0.0377 (13) | −0.0049 (11) | −0.0148 (12) | −0.0006 (10) |
O4 | 0.0473 (14) | 0.0244 (11) | 0.0421 (14) | −0.0053 (10) | −0.0126 (11) | −0.0047 (10) |
O5 | 0.0500 (15) | 0.0329 (14) | 0.0455 (15) | −0.0011 (11) | −0.0215 (12) | −0.0075 (11) |
N2 | 0.0313 (13) | 0.0201 (12) | 0.0264 (13) | −0.0064 (10) | −0.0015 (10) | −0.0034 (10) |
C10 | 0.0319 (16) | 0.0233 (15) | 0.0291 (16) | −0.0063 (12) | −0.0023 (12) | −0.0045 (12) |
C11 | 0.0397 (18) | 0.0345 (17) | 0.0343 (18) | −0.0105 (15) | −0.0031 (14) | −0.0115 (14) |
C12 | 0.0421 (19) | 0.0235 (15) | 0.045 (2) | −0.0070 (14) | −0.0021 (15) | −0.0141 (14) |
C13 | 0.0365 (17) | 0.0200 (14) | 0.0412 (18) | −0.0038 (13) | 0.0000 (14) | −0.0068 (13) |
C14 | 0.0320 (15) | 0.0202 (14) | 0.0278 (15) | −0.0040 (12) | 0.0002 (12) | −0.0029 (11) |
C15 | 0.0323 (16) | 0.0237 (15) | 0.0288 (16) | −0.0046 (12) | 0.0008 (13) | −0.0033 (12) |
C16 | 0.0354 (17) | 0.0300 (16) | 0.0289 (16) | −0.0070 (13) | −0.0027 (13) | −0.0058 (12) |
O1 | 0.0432 (15) | 0.0338 (13) | 0.0582 (17) | −0.0056 (11) | −0.0071 (13) | −0.0038 (12) |
N1 | 0.0370 (15) | 0.0378 (16) | 0.0420 (17) | −0.0127 (13) | 0.0063 (13) | −0.0134 (13) |
C1 | 0.0340 (17) | 0.0346 (18) | 0.0403 (19) | −0.0080 (14) | 0.0051 (14) | −0.0050 (14) |
C2 | 0.0392 (19) | 0.050 (2) | 0.041 (2) | −0.0050 (17) | −0.0003 (16) | −0.0087 (16) |
C3 | 0.050 (2) | 0.057 (2) | 0.052 (2) | −0.0187 (19) | 0.0040 (18) | −0.0258 (19) |
C4 | 0.053 (2) | 0.037 (2) | 0.059 (2) | −0.0130 (17) | 0.0070 (19) | −0.0170 (17) |
C5 | 0.045 (2) | 0.0368 (19) | 0.052 (2) | −0.0038 (16) | 0.0085 (17) | −0.0038 (17) |
C6 | 0.043 (2) | 0.055 (2) | 0.047 (2) | −0.0026 (19) | −0.0058 (18) | 0.0016 (19) |
C7 | 0.0388 (19) | 0.061 (2) | 0.041 (2) | −0.0171 (18) | 0.0012 (16) | −0.0131 (18) |
C8 | 0.0289 (16) | 0.0347 (17) | 0.0376 (18) | −0.0067 (13) | 0.0079 (13) | −0.0080 (14) |
C9 | 0.0407 (19) | 0.0330 (17) | 0.0414 (19) | −0.0073 (15) | 0.0057 (15) | −0.0076 (14) |
O1W | 0.0545 (18) | 0.0310 (14) | 0.0588 (18) | −0.0029 (13) | −0.0052 (15) | −0.0001 (13) |
O2W | 0.0608 (19) | 0.0482 (17) | 0.060 (2) | −0.0136 (15) | 0.0024 (16) | −0.0059 (15) |
Cu1—Cl1 | 2.3688 (11) | O1—C1 | 1.357 (4) |
Cu1—Cl2 | 2.2067 (9) | N1—H1A | 0.863 (10) |
Cu1—Cl3 | 2.4190 (10) | N1—C7 | 1.323 (5) |
Cu1—O2 | 2.424 (2) | N1—C8 | 1.369 (4) |
Cu1—O4 | 2.366 (2) | C1—C2 | 1.365 (5) |
Cu1—N2 | 2.011 (2) | C1—C8 | 1.407 (5) |
O2—C15 | 1.205 (4) | C2—H2 | 0.9300 |
O3—H3 | 0.822 (10) | C2—C3 | 1.414 (6) |
O3—C15 | 1.312 (4) | C3—H3A | 0.9300 |
O4—C16 | 1.212 (4) | C3—C4 | 1.359 (6) |
O5—H5 | 0.818 (10) | C4—H4 | 0.9300 |
O5—C16 | 1.295 (4) | C4—C9 | 1.402 (5) |
N2—C10 | 1.343 (4) | C5—H5A | 0.9300 |
N2—C14 | 1.338 (4) | C5—C6 | 1.360 (6) |
C10—C11 | 1.377 (4) | C5—C9 | 1.405 (5) |
C10—C16 | 1.508 (4) | C6—H6 | 0.9300 |
C11—H11 | 0.9300 | C6—C7 | 1.384 (6) |
C11—C12 | 1.386 (5) | C7—H7 | 0.9300 |
C12—H12 | 0.9300 | C8—C9 | 1.417 (5) |
C12—C13 | 1.377 (5) | O1W—H1WA | 0.847 (10) |
C13—H13 | 0.9300 | O1W—H1WB | 0.844 (10) |
C13—C14 | 1.382 (4) | O2W—H2WA | 0.853 (10) |
C14—C15 | 1.506 (4) | O2W—H2WB | 0.850 (10) |
O1—H1 | 0.822 (10) | ||
Cl1—Cu1—Cl3 | 174.14 (3) | O2—C15—C14 | 121.7 (3) |
Cl1—Cu1—O2 | 90.47 (6) | O3—C15—C14 | 112.2 (3) |
Cl2—Cu1—Cl1 | 93.30 (4) | O4—C16—O5 | 126.2 (3) |
Cl2—Cu1—Cl3 | 92.50 (4) | O4—C16—C10 | 120.6 (3) |
Cl2—Cu1—O2 | 104.88 (6) | O5—C16—C10 | 113.1 (3) |
Cl2—Cu1—O4 | 105.45 (6) | C1—O1—H1 | 110 (3) |
Cl3—Cu1—O2 | 87.19 (6) | C7—N1—H1A | 119 (3) |
O4—Cu1—Cl1 | 92.42 (7) | C7—N1—C8 | 122.6 (3) |
O4—Cu1—Cl3 | 86.88 (7) | C8—N1—H1A | 118 (3) |
O4—Cu1—O2 | 149.30 (8) | O1—C1—C2 | 125.7 (3) |
N2—Cu1—Cl1 | 86.29 (8) | O1—C1—C8 | 115.5 (3) |
N2—Cu1—Cl2 | 179.23 (8) | C2—C1—C8 | 118.8 (3) |
N2—Cu1—Cl3 | 87.90 (8) | C1—C2—H2 | 119.8 |
N2—Cu1—O2 | 74.48 (9) | C1—C2—C3 | 120.4 (4) |
N2—Cu1—O4 | 75.23 (9) | C3—C2—H2 | 119.8 |
C15—O2—Cu1 | 107.79 (19) | C2—C3—H3A | 119.3 |
C15—O3—H3 | 108 (3) | C4—C3—C2 | 121.3 (4) |
C16—O4—Cu1 | 109.41 (19) | C4—C3—H3A | 119.3 |
C16—O5—H5 | 106 (4) | C3—C4—H4 | 120.1 |
C10—N2—Cu1 | 119.7 (2) | C3—C4—C9 | 119.9 (4) |
C14—N2—Cu1 | 121.0 (2) | C9—C4—H4 | 120.1 |
C14—N2—C10 | 119.0 (3) | C6—C5—H5A | 119.3 |
N2—C10—C11 | 122.0 (3) | C6—C5—C9 | 121.4 (4) |
N2—C10—C16 | 114.3 (3) | C9—C5—H5A | 119.3 |
C11—C10—C16 | 123.7 (3) | C5—C6—H6 | 120.4 |
C10—C11—H11 | 120.5 | C5—C6—C7 | 119.2 (4) |
C10—C11—C12 | 119.1 (3) | C7—C6—H6 | 120.4 |
C12—C11—H11 | 120.5 | N1—C7—C6 | 120.6 (4) |
C11—C12—H12 | 120.6 | N1—C7—H7 | 119.7 |
C13—C12—C11 | 118.7 (3) | C6—C7—H7 | 119.7 |
C13—C12—H12 | 120.6 | N1—C8—C1 | 120.3 (3) |
C12—C13—H13 | 120.3 | N1—C8—C9 | 118.8 (3) |
C12—C13—C14 | 119.4 (3) | C1—C8—C9 | 120.9 (3) |
C14—C13—H13 | 120.3 | C4—C9—C5 | 124.0 (3) |
N2—C14—C13 | 121.8 (3) | C4—C9—C8 | 118.6 (3) |
N2—C14—C15 | 114.2 (3) | C5—C9—C8 | 117.3 (3) |
C13—C14—C15 | 124.0 (3) | H1WA—O1W—H1WB | 100 (5) |
O2—C15—O3 | 126.0 (3) | H2WA—O2W—H2WB | 114 (6) |
Cu1—O2—C15—O3 | 171.8 (3) | C14—N2—C10—C16 | −176.3 (3) |
Cu1—O2—C15—C14 | −7.7 (4) | C16—C10—C11—C12 | 176.5 (3) |
Cu1—O4—C16—O5 | 179.5 (3) | O1—C1—C2—C3 | −178.4 (3) |
Cu1—O4—C16—C10 | −1.1 (4) | O1—C1—C8—N1 | 0.1 (5) |
Cu1—N2—C10—C11 | −172.8 (3) | O1—C1—C8—C9 | −179.9 (3) |
Cu1—N2—C10—C16 | 9.7 (4) | N1—C8—C9—C4 | 177.9 (3) |
Cu1—N2—C14—C13 | 173.5 (2) | N1—C8—C9—C5 | −0.3 (5) |
Cu1—N2—C14—C15 | −8.1 (4) | C1—C2—C3—C4 | −0.8 (6) |
N2—C10—C11—C12 | −0.8 (5) | C1—C8—C9—C4 | −2.1 (5) |
N2—C10—C16—O4 | −5.1 (5) | C1—C8—C9—C5 | 179.7 (3) |
N2—C10—C16—O5 | 174.4 (3) | C2—C1—C8—N1 | −178.1 (3) |
N2—C14—C15—O2 | 11.1 (5) | C2—C1—C8—C9 | 1.9 (5) |
N2—C14—C15—O3 | −168.5 (3) | C2—C3—C4—C9 | 0.7 (6) |
C10—N2—C14—C13 | −0.4 (5) | C3—C4—C9—C5 | 178.9 (4) |
C10—N2—C14—C15 | 178.0 (3) | C3—C4—C9—C8 | 0.8 (6) |
C10—C11—C12—C13 | −0.4 (5) | C5—C6—C7—N1 | −1.9 (6) |
C11—C10—C16—O4 | 177.5 (3) | C6—C5—C9—C4 | −179.1 (4) |
C11—C10—C16—O5 | −3.1 (5) | C6—C5—C9—C8 | −0.9 (6) |
C11—C12—C13—C14 | 1.2 (5) | C7—N1—C8—C1 | −179.5 (3) |
C12—C13—C14—N2 | −0.8 (5) | C7—N1—C8—C9 | 0.5 (5) |
C12—C13—C14—C15 | −179.1 (3) | C8—N1—C7—C6 | 0.7 (6) |
C13—C14—C15—O2 | −170.6 (3) | C8—C1—C2—C3 | −0.5 (6) |
C13—C14—C15—O3 | 9.8 (5) | C9—C5—C6—C7 | 2.1 (6) |
C14—N2—C10—C11 | 1.2 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···Cl1 | 0.82 (4) | 2.31 (4) | 3.124 (3) | 172 (3) |
O1W—H1WA···O2W | 0.85 (4) | 1.86 (4) | 2.697 (5) | 172 (5) |
N1—H1A···Cl3i | 0.86 (2) | 2.41 (3) | 3.201 (3) | 154 (5) |
O1W—H1WB···O4ii | 0.84 (4) | 2.04 (3) | 2.808 (4) | 152 (4) |
O3—H3···Cl3iii | 0.82 (3) | 2.20 (3) | 3.015 (3) | 173 (4) |
O2W—H2WA···Cl2iv | 0.86 (6) | 2.53 (5) | 3.361 (4) | 163 (5) |
O2W—H2WB···Cl1ii | 0.85 (5) | 2.50 (5) | 3.317 (4) | 160 (4) |
O5—H5···O1W | 0.82 (4) | 1.69 (4) | 2.477 (4) | 162 (5) |
C3—H3A···O2Wv | 0.93 | 2.56 | 3.473 (5) | 168 |
C6—H6···Cl2vi | 0.93 | 2.78 | 3.622 (4) | 151 |
C7—H7···O2vi | 0.93 | 2.44 | 3.356 (4) | 169 |
C11—H11···O5vii | 0.93 | 2.56 | 3.396 (5) | 150 |
C12—H12···O1Wvii | 0.93 | 2.58 | 3.412 (5) | 148 |
Symmetry codes: (i) x−1, y, z; (ii) −x+2, −y, −z+1; (iii) −x+1, −y+1, −z; (iv) x+1, y, z; (v) x−1, y+1, z; (vi) −x, −y+1, −z; (vii) −x+2, −y+1, −z+1. |
Funding information
The authors thank the Uzbekistan government for their direct financial support of this research. They also gratefully acknowledge the Fundamental Research Grant from the Agency for Innovative Development under the Ministry of Higher Education, Science, and Innovation of the Republic of Uzbekistan.
References
Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227. Web of Science CrossRef CAS Google Scholar
Albrecht, M., Fiege, M. & Osetska, O. (2008). Coord. Chem. Rev. 252, 812–824. Web of Science CrossRef CAS Google Scholar
Cherdtrakulkiat, R., Boonpangrak, S., Sinthupoom, N., Prachayasittikul, S., Ruchirawat, S. & Prachayasittikul, V. (2016). Biochem. Biophys. Rep. 6, 135–141. PubMed Google Scholar
Cölle, M., Dinnebier, R. E. & Brütting, W. (2002). Chem. Commun. 23, 2908–2909. Google Scholar
Cui, G. H., He, C. H., Jiao, C. H., Geng, J. C. & Blatov, V. A. (2012). CrystEngComm, 14, 4210–4216. Web of Science CSD CrossRef CAS Google Scholar
Dixit, R. B., Vanparia, S. F., Patel, T. S., Jagani, C. L., Doshi, H. V. & Dixit, B. C. (2010). Appl. Organomet. Chem. 24, 408–413. CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fainerman-Melnikova, M., Clegg, J. K., Pakchung, A. A. H., Jensen, P. & Codd, R. (2010). CrystEngComm, 12, 4217–4225. CAS Google Scholar
Farruggia, G., Iotti, S., Prodi, L., Montalti, M., Zaccheroni, N., Savage, P. B., Trapani, V., Sale, P. & Wolf, F. I. (2006). J. Am. Chem. Soc. 128, 344–350. CrossRef PubMed CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Katakura, R. & Koide, Y. (2006). Inorg. Chem. 45, 5730–5732. Web of Science CrossRef PubMed CAS Google Scholar
Kosa, S. A., Al-Zahrani, G. & Salam, M. A. (2012). J. Industrial Engineering Chem. 181–182, 159–168. CAS Google Scholar
Li, D. & Zhong, G.-Q. (2014). Sci. World J. 641608. Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Mei, Y., Bentley, P. A. & Wang, W. (2006). Tetrahedron Lett. 47, 2447–2449. CrossRef CAS Google Scholar
Montes, V. A., Pohl, R., Shinar, J. & Anzenbacher, P. Jr (2006). Chem. Eur. J. 12, 4523–4535. Web of Science CSD CrossRef PubMed CAS Google Scholar
Moon, S. Y., Cha, N. R., Kim, Y. H. & Chang, S. K. (2004). J. Org. Chem. 69, 181–183. CrossRef PubMed CAS Google Scholar
Nazarov, Y. E., Turaev, K. K., Alimnazarov, B. K., Suyunov, J. R., Umirova, G. A., Ibragimov, B. T. & Ashurov, J. M. (2024). IUCrData, 9, x240570. Google Scholar
Prasad, T. K. & Rajasekharan, M. V. (2007). Polyhedron, 26, 1364–1372. CSD CrossRef CAS Google Scholar
Qin, Q. P., Chen, Z. F., Qin, J. L., He, X. J., Li, Y. L., Liu, Y. C., Huang, K. B. & Liang, H. (2015). Eur. J. Med. Chem. 92, 302–313. CSD CrossRef CAS PubMed Google Scholar
Rbaa, M., Benhiba, F., Obot, I. B., Oudda, H., Warad, I., Lakhrissi, B. & Zarrouk, A. (2018). J. Mol. Liq. 276, 120–133. CrossRef Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shi, F. N., Cunha-Silva, L., Trindade, T., Paz, F. A. A. & Rocha, J. (2009). Cryst. Growth Des. 9, 2098–2109. CSD CrossRef CAS Google Scholar
Smith, G., Wermuth, U. D. & White, J. M. (2003). CrystEngComm, 5, 58–61. Web of Science CSD CrossRef CAS Google Scholar
Song, Y., Xu, H., Chen, W., Zhan, P. & Liu, X. (2015). Medicinal Chemistry Communication, 6, 61–74. CrossRef CAS Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tanner, P. A. & Duan, C.-K. (2010). Coord. Chem. Rev. 254, 3026–3029. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, R., Li, H. H., Van Hecke, K. & Cui, G. H. (2015). Z. Anorg. Allg Chem. 641, 642–649. CSD CrossRef CAS Google Scholar
Ye, B. H., Tong, M. L. & Chen, X. M. (2005). Coord. Chem. Rev. 249, 545–565. Web of Science CrossRef CAS Google Scholar
Yin, X., Ma, K., Wang, Y., Sun, Y., Shang, X.-F., Zhao, Z., Wang, R., Chen, Y., Zhu, J. & Liu, Y.-Q. (2020). J. Agric. Food Chem. 68, 11096–11104. CrossRef CAS PubMed Google Scholar
Zhang, H., Han, L.-F., Zachariasse, K. A. & Jiang, Y.-B. (2005). Org. Lett. 7, 4217–4220. CrossRef PubMed CAS Google Scholar
Zhang, X., Sun, F., Zhang, T., Jia, J., Su, H., Wang, C. & Zhu, G. (2015). J. Mol. Struct. 1100, 395–400. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.