research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Mol­ecular structure of tris­­[(6-bromo­pyridin-2-yl)meth­yl]amine

crossmark logo

aDepartment of Chemistry, Columbia University, New York, New York 10027, USA, and bDepartment of Chemistry & Physical Sciences, Pace University, New York, New York 10038, USA
*Correspondence e-mail: rupmacis@pace.edu

Edited by S. P. Kelley, University of Missouri-Columbia, USA (Received 8 July 2024; accepted 4 September 2024; online 10 September 2024)

Coordination compounds of polydentate nitro­gen ligands with metals are used extensively in research areas such as catalysis, and as models of complex active sites of enzymes in bioinorganic chemistry. Tris(2-pyridyl­meth­yl)amine (TPA) is a tripodal tetra­dentate ligand that is known to form coordination compounds with metals, including copper, iron and zinc. The related compound, tris­[(6-bromo­pyridin-2-yl)meth­yl]amine (TPABr3), C18H15Br3N4, which possesses a bromine atom on the 6-position of each of the three pyridyl moieties, is also known but has not been heavily investigated. The mol­ecular structure of TPABr3 as determined by X-ray diffraction is reported here. The TPABr3 molecule belongs to the triclinic, P[\overline{1}] space group and displays interesting intermolecular Br⋯Br interactions that provide a stabilizing influence within the molecule.

1. Chemical context

Tris(2-pyridyl­meth­yl)amine (TPA) was first reported in 1967 (Anderegg & Wenk, 1967[Anderegg, G. & Wenk, F. (1967). Helv. Chim. Acta, 50, 2330-2332.]), although more recent syntheses are known (Canary et al., 1998[Canary, J. W., Wang, Y. H., Roy, R., Que, L. & Miyake, H. (1998). Inorg. Synth. 32, 70-75.]; Bazley et al., 2018[Bazley, I. J., Erie, E. A., Feiereisel, G. M., LeWarne, C. J., Peterson, J. M., Sandquist, K. L., Oshin, K. D. & Zeller, M. (2018). J. Chem. Educ. 95, 876-881.]). TPA is a very versatile ligand and has been used to coordinate metal ions that include, for instance, copper, iron and chromium, thereby forming five- or six-coordinate complexes (Tyeklar et al., 1993[Tyeklar, Z., Jacobson, R. R., Wei, N., Murthy, N. N., Zubieta, J. & Karlin, K. D. (1993). J. Am. Chem. Soc. 115, 2677-2689.]; Jang et al., 1991[Jang, H. G., Cox, D. D. & Que, L. (1991). J. Am. Chem. Soc. 113, 9200-9204.]; Gafford & Holwerda, 1990[Gafford, B. G. & Holwerda, R. A. (1990). Inorg. Chem. 29, 233-238.]). A more comprehensive review of metal binding to TPA can be found elsewhere (Bravin et al., 2021[Bravin, C., Badetti, E., Licini, G. & Zonta, C. (2021). Coord. Chem. Rev. 427, 213558.]; Bazley et al., 2018[Bazley, I. J., Erie, E. A., Feiereisel, G. M., LeWarne, C. J., Peterson, J. M., Sandquist, K. L., Oshin, K. D. & Zeller, M. (2018). J. Chem. Educ. 95, 876-881.]). The TPA ligand has also been successfully employed in the construction of complexes for biological models, for example, copper-cluster enzymes involved in oxygen activation (Maiti et al., 2009[Maiti, D., Woertink, J. S., Ghiladi, R. A., Solomon, E. I. & Karlin, K. D. (2009). Inorg. Chem. 48, 8342-8356.]) and in iron di­oxy­genases (Costas et al., 2004[Costas, M., Mehn, M. P., Jensen, M. P. & Que, L. (2004). Chem. Rev. 104, 939-986.]). There is also an active inter­est in pursuing the synthesis of such ligands as biochemical sensors that can rapidly and selectively detect certain metals that are associated with the pathogenesis of diseases, such as Alzheimer's disease (Jomova et al., 2022[Jomova, K., Makova, M., Alomar, S. Y., Alwasel, S. H., Nepovimova, E., Kuca, K., Rhodes, C. J. & Valko, M. (2022). Chem. Biol. Interact. 367, 110173.]; Tyczynska et al., 2024[Tyczyńska, M., Gędek, M., Brachet, A., Stręk, W., Flieger, J., Teresiński, G. & Baj, J. (2024). J. Clin. Med. 13, 2381.]). In this regard, TPA has been used to prepare piperidine compounds that can differentially chelate trace metals such as zinc and copper (Dai et al., 2002[Dai, Z. H., Xu, X. D. & Canary, J. W. (2002). Chem. Commun. pp. 1414-1415.]). In addition to being used in biochemical sensor applications, other areas in which TPA has potential applications include anion sensors, mol­ecular switches, chiral probes and as building blocks in the synthesis of supra­molecular cages (Bravin et al., 2021[Bravin, C., Badetti, E., Licini, G. & Zonta, C. (2021). Coord. Chem. Rev. 427, 213558.]). Despite the prolific use of this ligand, its X-ray structure has only become available within the last ten years and has been chosen as the candidate to introduce crystallography to undergraduate students (Bats & Lerner, 2016[Bats, W. J. & Lerner, H.-W. (2016). Crystal Structure Determination (CCDC 1005049). CCDC, Ca, bridge, England. https://doi.org/10.5517/ccdc. csd. cc12qtyk.]; Bazley et al., 2018[Bazley, I. J., Erie, E. A., Feiereisel, G. M., LeWarne, C. J., Peterson, J. M., Sandquist, K. L., Oshin, K. D. & Zeller, M. (2018). J. Chem. Educ. 95, 876-881.]).

TPA ligands containing various substituted moieties are also known. For instance, TPA containing mono-, bis-, and tris-α-methyl substitutions in the ligand complexed to FeCl2 have been characterized (Benhamou et al., 2008[Benhamou, L., Lachkar, M., Mandon, D. & Welter, R. (2008). Dalton Trans. pp. 6996-7003.]). In addition, TPA ligands containing other alkyl or bromo substitutions that are also complexed to iron have been described as well as their ability to catalyze cyclo­hexane oxygenation by hydrogen peroxide (Guisado-Barrios et al., 2010[Guisado-Barrios, G., Slawin, A. M. Z. & Richens, D. T. (2010). J. Coord. Chem. 63, 2642-2658.]). Unexpectedly, a high turnover rate and efficient incorporation of oxygen from H2O2 into cyclo­hexane were reported for the iron complex of TPABr3, which was assumed to have the formula [Fe(TPABr3)(CH3CN)2]2+. However, a crystal structure of the TPABr3 ligand with or without the complexed metal has not been reported. Therefore, herein, we describe the mol­ecular structure as determined by X-ray diffraction. The synthesis of TPABr3 is depicted in the scheme and crystals were obtained from a solution in aceto­nitrile.

[Scheme 1]

2. Structural commentary

The structure of TPABr3, shown in Fig. 1[link], reveals that the compound is a tertiary amine with three 6-bromo-2-methyl­pyridine subunits. The central nitro­gen atom assumes a trigonal pyramidal geometry with CH2—N4—CH2 angles ranging from 110.4 (4)–111.4 (4)°. The N4—CH2 distances range from 1.456 (6)–1.469 (6) Å for N4—C1, N4—C2, and N4—C3. The C—Br distances range from 1.905 (6)–1.920 (6) Å for the C15—Br1, C25—Br2 and C35—Br3 bond lengths, which compare well with the C—Br distances in the tris­(bromo­pyrazolylmeth­yl)amine ligand that measure 1.881 (5) Å (Haldón et al., 2014[Haldón, E., Delgado-Rebollo, M., Prieto, A., Álvarez, E., Maya, C., Nicasio, M. C. & Pérez, P. J. (2014). Inorg. Chem. 53, 4192-4201.]).

[Figure 1]
Figure 1
Crystal structure of TPABr3. Displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features

Fig. 2[link] shows the packing in the unit cell along the a-axis direction. There are no significant inter­molecular hydrogen-bonding inter­actions. However, there are intra­molecular distances of 2.852, 2.765 and 2.793 Å for N4⋯H12A, N4⋯H22A and N4⋯H32A, respectively, which at best, may indicate a very weak inter­action.

[Figure 2]
Figure 2
Unit-cell packing of TPABr3.

The unit cell also shows two inter­molecular Br⋯Br inter­actions, with Br2⋯Br3 at 3.6540 (11) Å and Br1⋯Br3 at 3.7731 (11) Å, which are close to the sum of the van der Waals radii, which is approximately 3.7 Å for Br⋯Br. Inter­estingly, C—Br⋯Br—C inter­actions can occur over a 3.0–4.5 Å range and provide a stabilizing influence within the crystal (Capdevila-Cortada & Novoa, 2015[Capdevila-Cortada, M. & Novoa, J. J. (2015). CrystEngComm, 17, 3354-3365.]). The strength of the halogen–halogen inter­action depends on the halogen atom in the following order: I > Br > Cl > F (Awwadi et al., 2006[Awwadi, F. F., Willett, R. D., Peterson, K. A. & Twamley, B. (2006). Chem. A Eur. J. 12, 8952-8960.]). It has previously been noted that R—Br⋯Br—R contacts can occur according to two different geometries, classified as type I (symmetrical inter­actions where θ1 = θ2) and type II (bent inter­actions where θ1 ≃180° and θ2 ≃90°) (Sakurai et al., 1963[Sakurai, T., Sundaralingam, M. & Jeffrey, G. A. (1963). Acta Cryst. 16, 354-363.]; Desiraju & Parthasarathy, 1989[Desiraju, G. R. & Parthasarathy, R. (1989). J. Am. Chem. Soc. 111, 8725-8726.]; Cavallo et al., 2016[Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478-2601.]). In TPABr3, θ1 and θ2 are 160.82 and 74.14° for C15—Br1⋯Br3—C35, and 176.97 and 87.15° for C25—Br2⋯Br3—C35, respectively, indicating that they are type II inter­actions.

For comparison, the packing in the unit cell of the related tris­(bromopyrazolylmeth­yl)amine ligand is arranged in a different fashion, displaying inter­molecular pyrazolyl N⋯Br distances of 3.099 Å (Haldón et al., 2014[Haldón, E., Delgado-Rebollo, M., Prieto, A., Álvarez, E., Maya, C., Nicasio, M. C. & Pérez, P. J. (2014). Inorg. Chem. 53, 4192-4201.]). The N—C—N—N torsion angle (from the central nitro­gen atom to the nitro­gen atoms in the pyrazolyl ring) is between 95.20 and 95.25° compared to the corresponding values of 122.2 (5)–132.6 (5)° in TPABr3 for the N—C—C—N bonds, indicating the different degrees of rotation of the pyrazolyl versus pyridyl rings.

4. Database survey

Much effort has been expended synthesizing TPA ligands that contain novel substitutions on the pyridyl rings. For instance, TPA derivatives containing the following types of groups have been reported: (i) tripodal tetra­dentate ligands containing pyridyl-pivalamido groups have been prepared and complexed to copper and zinc ions (Harata et al., 1998[Harata, M., Hasegawa, K., Jitsukawa, K., Masuda, H. & Einaga, H. (1998). Bull. Chem. Soc. Jpn, 71, 1031-1038.]; Rivas et al., 2003[Mareque Rivas, J. C., Torres Martín de Rosales, R. & Parsons, S. (2003). Dalton Trans. pp. 2156-2163.]); (ii) TPA ligands containing pyridyl-tri­meth­oxy­phenyl groups have been synthesized (and complexed with copper and zinc ions) in an effort to enhance their solubility in aqueous and common organic solvents (Liang et al., 2009[Liang, J., Zhang, J., Zhu, L., Duarandin, A., Young, V. G., Geacintov, N. & Canary, J. W. (2009). Inorg. Chem. 48, 11196-11208.]); (iii) TPA-related derivatives containing carb­oxy­lic acid functionalities on the pyridyl rings have been synthesized and their complexation to gadolinium investigated (Bretonnière et al., 2001[Bretonnière, Y., Mazzanti, M., Pécaut, J., Dunand, F. A. & Merbach, A. E. (2001). Inorg. Chem. 40, 6737-6745.]); (iv) a TPA derivative containing thio­urea substitutions has been prepared and coordinated with different transition metal ions, forming seven co-ordinate MnII and CdII, six co-ordinate NiII and five co-ordinate CoII, CuII and ZnII complexes (Saad et al., 2012[Saad, F. A., Buurma, N. J., Amoroso, A. J., Knight, J. C. & Kariuki, B. M. (2012). Dalton Trans. 41, 4608-4617.]); (v) sulfonyl subunits have been attached to the pyridyl rings in order to make TPA highly water compatible, which allows for broader applicability to the biomedical arena (Salaam et al., 2020[Salaam, J., Pilet, G. & Hasserodt, J. (2020). Inorg. Chem. 59, 13812-13816.]); (vi) iso­quinoline-derivatized TPAs have been prepared for use as fluorescent zinc sensors (Mikata et al., 2014[Mikata, Y., Kawata, K., Takeuchi, S., Nakanishi, K., Konno, H., Itami, S., Yasuda, K., Tamotsu, S. & Burdette, S. C. (2014). Dalton Trans. 43, 10751-10759.], 2015[Mikata, Y., Nodomi, Y., Ohnishi, R., Kizu, A. & Konno, H. (2015). Dalton Trans. 44, 8021-8030.]), and (vii) other TPA-based ligands that have been prepared include those possessing phenyl­ethynyl units and their copper(II) complexes investigated (Lim et al., 2016[Lim, J., Lynch, V. M., Edupuganti, R., Ellington, A. & Anslyn, E. V. (2016). Dalton Trans. 45, 10585-10598.]). Furthermore, TPA ligands containing one and two chiral substituents on the tripodal skeleton have been synthesized using lipase enzyme and lanthanide complexation investigated (Yamada et al., 2003[Yamada, T., Shinoda, S., Sugimoto, H., Uenishi, J. & Tsukube, H. (2003). Inorg. Chem. 42, 7932-7937.]).

Tripod ligands containing pyrazolyl rather than pyridyl rings are also known. In this regard, novel tris­(pyrazolylmeth­yl)amine ligands that contain methyl and bromo substituents on the pyrazolyl moiety have been synthesized and structurally characterized (Haldón et al., 2014[Haldón, E., Delgado-Rebollo, M., Prieto, A., Álvarez, E., Maya, C., Nicasio, M. C. & Pérez, P. J. (2014). Inorg. Chem. 53, 4192-4201.]). The catalytic activities of the copper(I) complexes of these ligands were explored in carbene- and nitrene-transfer studies. In this case, the crystal structure for the tris­(bromo-pyrazolylmeth­yl)amine ligand is known (Haldón et al., 2014[Haldón, E., Delgado-Rebollo, M., Prieto, A., Álvarez, E., Maya, C., Nicasio, M. C. & Pérez, P. J. (2014). Inorg. Chem. 53, 4192-4201.]).

5. Synthesis and crystallization

The synthesis of TPABr3 is shown in the Scheme. The starting material, 2,6-di­bromo­pyridine (Compound 1), was reacted with n-butyl­lithium at 195 K to generate 2-bromo-6-li­thio­pyridine (not isolated), which was subsequently reacted with DMF followed by reduction with NaBH4 to give (6-bromo-2-pyrid­yl)methanol (compound 2). Using methane­sulfonyl chloride (MsCl) and tri­ethyl­amine (TEA), the alcohol compound 2 was converted to a mesylate compound 3. Mesylate 3 was reacted with NaN3 in an SN2 reaction to afford the organic azide (compound 4), which was subsequently reduced by PPh3 to a primary amine (compound 5). Reacting compound 5 with two equivalents of mesylate compound 3 resulted in the target compound TPABr3 6, with an overall yield of 49%.

The resulting compound, TPABr3 (0.0133 g; 0.024 mmol), was dissolved in aceto­nitrile (CH3CN; 2 mL) and allowed to evaporate. After 4 days at ambient temperature, colorless needles of TPABr3, suitable for X-ray diffraction, were crystallized from the solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. Hydrogen atoms on carbon were placed in calculated positions and included as riding contributions with isotropic displacement parameters Uiso(H) = 1.2Ueq(Csp2) or 1.5Ueq(Csp3) using SHELXL2019/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]). The structure contained poorly defined aceto­nitrile solvent mol­ecules that were removed by the SQUEEZE procedure in PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]), which identified a void volume of 167 Å3 containing approximately 47 electrons.

Table 1
Experimental details

Crystal data
Chemical formula C18H15Br3N4
Mr 527.07
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 180
a, b, c (Å) 6.2445 (8), 13.2335 (16), 13.4984 (16)
α, β, γ (°) 79.168 (2), 88.671 (2), 78.962 (2)
V3) 1075.2 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 5.64
Crystal size (mm) 0.15 × 0.13 × 0.04
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.535, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 11638, 3813, 2434
Rint 0.070
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.114, 1.02
No. of reflections 3813
No. of parameters 226
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.47, −0.67
Computer programs: APEX4 and SAINT (Bruker, 2014[Bruker (2014). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Tris[(6-bromopyridin-2-yl)methyl]amine top
Crystal data top
C18H15Br3N4Z = 2
Mr = 527.07F(000) = 512
Triclinic, P1Dx = 1.628 Mg m3
a = 6.2445 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.2335 (16) ÅCell parameters from 3031 reflections
c = 13.4984 (16) Åθ = 3.1–23.8°
α = 79.168 (2)°µ = 5.64 mm1
β = 88.671 (2)°T = 180 K
γ = 78.962 (2)°Plate, colorless
V = 1075.2 (2) Å30.15 × 0.13 × 0.04 mm
Data collection top
Bruker APEXII CCD
diffractometer
2434 reflections with I > 2σ(I)
φ and ω scansRint = 0.070
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 25.0°, θmin = 1.5°
Tmin = 0.535, Tmax = 0.746h = 77
11638 measured reflectionsk = 1515
3813 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0464P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3813 reflectionsΔρmax = 0.47 e Å3
226 parametersΔρmin = 0.67 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2019 (7)0.3566 (4)0.5337 (3)0.0361 (12)
N20.2962 (7)0.0992 (3)0.2191 (3)0.0326 (11)
N30.1478 (7)0.5757 (4)0.0911 (3)0.0297 (11)
N40.2814 (7)0.3485 (3)0.2805 (3)0.0289 (11)
C10.1888 (9)0.4160 (5)0.3517 (4)0.0339 (14)
H1B0.0338130.4109770.3636300.041*
H1C0.1951670.4898310.3225840.041*
C20.2338 (9)0.2435 (4)0.3100 (4)0.0375 (14)
H2B0.0820950.2443050.2896080.045*
H2C0.2451890.2223260.3843170.045*
C30.2015 (8)0.3948 (4)0.1774 (4)0.0352 (14)
H3B0.0401550.4132430.1776650.042*
H3C0.2429350.3421540.1336500.042*
C110.3149 (9)0.3831 (5)0.4508 (4)0.0362 (14)
C120.5393 (10)0.3798 (5)0.4535 (5)0.0520 (18)
H12A0.6158380.3977660.3930570.062*
C130.6481 (10)0.3503 (6)0.5449 (5)0.062 (2)
H13A0.8006190.3483820.5485340.074*
C140.5330 (9)0.3234 (5)0.6310 (5)0.0505 (18)
H14A0.6023370.3021680.6954440.061*
C150.3143 (10)0.3290 (5)0.6190 (4)0.0426 (15)
C210.3881 (8)0.1643 (4)0.2622 (4)0.0309 (13)
C220.6111 (9)0.1585 (5)0.2635 (4)0.0398 (15)
H22A0.6716720.2064810.2933510.048*
C230.7461 (9)0.0826 (5)0.2212 (4)0.0446 (16)
H23A0.8998730.0776950.2218810.054*
C240.6541 (9)0.0143 (5)0.1780 (5)0.0444 (16)
H24A0.7406740.0396750.1491280.053*
C250.4311 (9)0.0285 (5)0.1790 (5)0.0407 (15)
C310.2914 (8)0.4916 (4)0.1340 (4)0.0275 (13)
C320.5142 (8)0.4917 (5)0.1382 (4)0.0339 (14)
H32A0.6125250.4309200.1700200.041*
C330.5894 (9)0.5802 (4)0.0960 (4)0.0355 (14)
H33A0.7409960.5813010.0973810.043*
C340.4421 (9)0.6686 (5)0.0512 (4)0.0367 (15)
H34A0.4885570.7317870.0218530.044*
C350.2253 (8)0.6605 (5)0.0512 (4)0.0322 (14)
Br10.14783 (11)0.28852 (6)0.73619 (5)0.0588 (2)
Br20.29223 (11)0.06206 (6)0.11734 (6)0.0598 (2)
Br30.01178 (10)0.77792 (5)0.00858 (5)0.0454 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.031 (3)0.042 (3)0.038 (3)0.008 (2)0.001 (2)0.013 (2)
N20.024 (2)0.029 (3)0.048 (3)0.006 (2)0.002 (2)0.013 (2)
N30.027 (3)0.037 (3)0.026 (2)0.008 (2)0.003 (2)0.007 (2)
N40.026 (2)0.034 (3)0.027 (3)0.003 (2)0.0025 (19)0.009 (2)
C10.032 (3)0.046 (4)0.026 (3)0.010 (3)0.000 (2)0.008 (3)
C20.035 (3)0.034 (4)0.046 (4)0.012 (3)0.008 (3)0.007 (3)
C30.021 (3)0.046 (4)0.042 (4)0.011 (3)0.000 (2)0.012 (3)
C110.027 (3)0.047 (4)0.039 (4)0.010 (3)0.004 (3)0.020 (3)
C120.037 (4)0.081 (5)0.047 (4)0.026 (4)0.004 (3)0.020 (4)
C130.022 (3)0.109 (6)0.062 (5)0.024 (4)0.002 (3)0.022 (4)
C140.032 (4)0.078 (5)0.044 (4)0.007 (3)0.008 (3)0.017 (4)
C150.039 (4)0.051 (4)0.042 (4)0.014 (3)0.002 (3)0.017 (3)
C210.029 (3)0.033 (3)0.030 (3)0.004 (3)0.001 (2)0.005 (3)
C220.029 (3)0.050 (4)0.048 (4)0.021 (3)0.002 (3)0.012 (3)
C230.023 (3)0.050 (4)0.061 (4)0.008 (3)0.004 (3)0.010 (4)
C240.020 (3)0.049 (4)0.064 (4)0.001 (3)0.003 (3)0.017 (3)
C250.033 (3)0.037 (4)0.052 (4)0.010 (3)0.007 (3)0.003 (3)
C310.028 (3)0.037 (4)0.019 (3)0.009 (3)0.001 (2)0.009 (3)
C320.022 (3)0.042 (4)0.038 (3)0.007 (3)0.000 (2)0.008 (3)
C330.024 (3)0.044 (4)0.044 (4)0.011 (3)0.003 (3)0.017 (3)
C340.033 (3)0.047 (4)0.037 (3)0.018 (3)0.009 (3)0.017 (3)
C350.029 (3)0.040 (4)0.033 (3)0.010 (3)0.001 (2)0.016 (3)
Br10.0457 (4)0.0890 (6)0.0383 (4)0.0084 (4)0.0041 (3)0.0086 (4)
Br20.0428 (4)0.0583 (5)0.0889 (6)0.0087 (3)0.0046 (4)0.0410 (4)
Br30.0343 (4)0.0423 (4)0.0574 (4)0.0095 (3)0.0085 (3)0.0009 (3)
Geometric parameters (Å, º) top
N1—C151.317 (7)C13—C141.378 (8)
N1—C111.335 (7)C14—C151.366 (8)
N2—C251.320 (7)C15—Br11.920 (6)
N2—C211.343 (6)C21—C221.381 (7)
N3—C351.324 (6)C22—C231.384 (8)
N3—C311.334 (6)C23—C241.378 (8)
N4—C21.456 (6)C24—C251.369 (7)
N4—C11.468 (6)C25—Br21.920 (6)
N4—C31.469 (6)C31—C321.394 (7)
C1—C111.516 (7)C32—C331.365 (7)
C2—C211.511 (7)C33—C341.389 (8)
C3—C311.509 (7)C34—C351.378 (7)
C11—C121.395 (8)C35—Br31.905 (6)
C12—C131.376 (8)
C15—N1—C11116.0 (5)N2—C21—C22121.9 (5)
C25—N2—C21116.3 (5)N2—C21—C2116.2 (5)
C35—N3—C31117.2 (4)C22—C21—C2121.9 (5)
C2—N4—C1111.4 (4)C21—C22—C23119.7 (5)
C2—N4—C3110.4 (4)C24—C23—C22119.0 (5)
C1—N4—C3110.9 (4)C25—C24—C23116.4 (6)
N4—C1—C11110.2 (4)N2—C25—C24126.7 (5)
N4—C2—C21111.9 (4)N2—C25—Br2114.8 (4)
N4—C3—C31112.6 (4)C24—C25—Br2118.5 (5)
N1—C11—C12122.4 (5)N3—C31—C32122.2 (5)
N1—C11—C1117.0 (5)N3—C31—C3116.7 (4)
C12—C11—C1120.6 (5)C32—C31—C3121.1 (5)
C13—C12—C11119.0 (6)C33—C32—C31119.3 (5)
C12—C13—C14119.1 (6)C32—C33—C34119.3 (5)
C15—C14—C13116.6 (6)C35—C34—C33116.9 (5)
N1—C15—C14126.8 (6)N3—C35—C34125.1 (5)
N1—C15—Br1114.9 (4)N3—C35—Br3115.1 (4)
C14—C15—Br1118.3 (5)C34—C35—Br3119.8 (4)
C2—N4—C1—C1171.5 (5)N4—C2—C21—C2247.9 (7)
C3—N4—C1—C11165.2 (4)N2—C21—C22—C231.3 (9)
C1—N4—C2—C21159.9 (4)C2—C21—C22—C23178.2 (5)
C3—N4—C2—C2176.5 (5)C21—C22—C23—C240.3 (9)
C2—N4—C3—C31166.5 (4)C22—C23—C24—C251.1 (9)
C1—N4—C3—C3169.6 (5)C21—N2—C25—C240.7 (9)
C15—N1—C11—C121.3 (9)C21—N2—C25—Br2179.5 (4)
C15—N1—C11—C1179.6 (5)C23—C24—C25—N21.7 (10)
N4—C1—C11—N1122.2 (5)C23—C24—C25—Br2178.6 (5)
N4—C1—C11—C1257.0 (7)C35—N3—C31—C320.6 (7)
N1—C11—C12—C131.3 (10)C35—N3—C31—C3178.9 (4)
C1—C11—C12—C13179.6 (6)N4—C3—C31—N3131.2 (5)
C11—C12—C13—C140.8 (11)N4—C3—C31—C3249.3 (7)
C12—C13—C14—C150.4 (10)N3—C31—C32—C330.9 (8)
C11—N1—C15—C140.9 (9)C3—C31—C32—C33178.6 (5)
C11—N1—C15—Br1178.7 (4)C31—C32—C33—C340.9 (8)
C13—C14—C15—N10.5 (10)C32—C33—C34—C350.7 (8)
C13—C14—C15—Br1178.2 (5)C31—N3—C35—C340.4 (8)
C25—N2—C21—C220.8 (8)C31—N3—C35—Br3179.9 (4)
C25—N2—C21—C2178.7 (5)C33—C34—C35—N30.5 (8)
N4—C2—C21—N2132.6 (5)C33—C34—C35—Br3180.0 (4)
 

Acknowledgements

Gerard Parkin (Columbia University) is thanked for helpful discussions. RKU would like to thank Pace University for Scholarly Research support awards. TDM would like to thank the Collegiate Science and Technology Program (CSTEP) of Pace University for financial support.

References

First citationAnderegg, G. & Wenk, F. (1967). Helv. Chim. Acta, 50, 2330–2332.  CrossRef CAS Web of Science Google Scholar
First citationAwwadi, F. F., Willett, R. D., Peterson, K. A. & Twamley, B. (2006). Chem. A Eur. J. 12, 8952–8960.  Web of Science CrossRef CAS Google Scholar
First citationBats, W. J. & Lerner, H.-W. (2016). Crystal Structure Determination (CCDC 1005049). CCDC, Ca, bridge, England. https://doi.org/10.5517/ccdc. csd. cc12qtyk.  Google Scholar
First citationBazley, I. J., Erie, E. A., Feiereisel, G. M., LeWarne, C. J., Peterson, J. M., Sandquist, K. L., Oshin, K. D. & Zeller, M. (2018). J. Chem. Educ. 95, 876–881.  Web of Science CSD CrossRef CAS Google Scholar
First citationBenhamou, L., Lachkar, M., Mandon, D. & Welter, R. (2008). Dalton Trans. pp. 6996–7003.  Web of Science CSD CrossRef Google Scholar
First citationBravin, C., Badetti, E., Licini, G. & Zonta, C. (2021). Coord. Chem. Rev. 427, 213558.  Web of Science CrossRef Google Scholar
First citationBretonnière, Y., Mazzanti, M., Pécaut, J., Dunand, F. A. & Merbach, A. E. (2001). Inorg. Chem. 40, 6737–6745.  Web of Science PubMed Google Scholar
First citationBruker (2014). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCanary, J. W., Wang, Y. H., Roy, R., Que, L. & Miyake, H. (1998). Inorg. Synth. 32, 70–75.  Web of Science CrossRef CAS Google Scholar
First citationCapdevila-Cortada, M. & Novoa, J. J. (2015). CrystEngComm, 17, 3354–3365.  CAS Google Scholar
First citationCavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478–2601.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCostas, M., Mehn, M. P., Jensen, M. P. & Que, L. (2004). Chem. Rev. 104, 939–986.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDai, Z. H., Xu, X. D. & Canary, J. W. (2002). Chem. Commun. pp. 1414–1415.  Web of Science CrossRef Google Scholar
First citationDesiraju, G. R. & Parthasarathy, R. (1989). J. Am. Chem. Soc. 111, 8725–8726.  CrossRef CAS Web of Science Google Scholar
First citationGafford, B. G. & Holwerda, R. A. (1990). Inorg. Chem. 29, 233–238.  CrossRef CAS Web of Science Google Scholar
First citationGuisado-Barrios, G., Slawin, A. M. Z. & Richens, D. T. (2010). J. Coord. Chem. 63, 2642–2658.  CAS Google Scholar
First citationHaldón, E., Delgado-Rebollo, M., Prieto, A., Álvarez, E., Maya, C., Nicasio, M. C. & Pérez, P. J. (2014). Inorg. Chem. 53, 4192–4201.  Web of Science PubMed Google Scholar
First citationHarata, M., Hasegawa, K., Jitsukawa, K., Masuda, H. & Einaga, H. (1998). Bull. Chem. Soc. Jpn, 71, 1031–1038.  Web of Science CSD CrossRef CAS Google Scholar
First citationJang, H. G., Cox, D. D. & Que, L. (1991). J. Am. Chem. Soc. 113, 9200–9204.  CSD CrossRef CAS Web of Science Google Scholar
First citationJomova, K., Makova, M., Alomar, S. Y., Alwasel, S. H., Nepovimova, E., Kuca, K., Rhodes, C. J. & Valko, M. (2022). Chem. Biol. Interact. 367, 110173.  Web of Science CrossRef PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLiang, J., Zhang, J., Zhu, L., Duarandin, A., Young, V. G., Geacintov, N. & Canary, J. W. (2009). Inorg. Chem. 48, 11196–11208.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLim, J., Lynch, V. M., Edupuganti, R., Ellington, A. & Anslyn, E. V. (2016). Dalton Trans. 45, 10585–10598.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMaiti, D., Woertink, J. S., Ghiladi, R. A., Solomon, E. I. & Karlin, K. D. (2009). Inorg. Chem. 48, 8342–8356.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMareque Rivas, J. C., Torres Martín de Rosales, R. & Parsons, S. (2003). Dalton Trans. pp. 2156–2163.  Web of Science CrossRef Google Scholar
First citationMikata, Y., Kawata, K., Takeuchi, S., Nakanishi, K., Konno, H., Itami, S., Yasuda, K., Tamotsu, S. & Burdette, S. C. (2014). Dalton Trans. 43, 10751–10759.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMikata, Y., Nodomi, Y., Ohnishi, R., Kizu, A. & Konno, H. (2015). Dalton Trans. 44, 8021–8030.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSaad, F. A., Buurma, N. J., Amoroso, A. J., Knight, J. C. & Kariuki, B. M. (2012). Dalton Trans. 41, 4608–4617.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSakurai, T., Sundaralingam, M. & Jeffrey, G. A. (1963). Acta Cryst. 16, 354–363.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSalaam, J., Pilet, G. & Hasserodt, J. (2020). Inorg. Chem. 59, 13812–13816.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTyczyńska, M., Gędek, M., Brachet, A., Stręk, W., Flieger, J., Teresiński, G. & Baj, J. (2024). J. Clin. Med. 13, 2381.  Web of Science PubMed Google Scholar
First citationTyeklar, Z., Jacobson, R. R., Wei, N., Murthy, N. N., Zubieta, J. & Karlin, K. D. (1993). J. Am. Chem. Soc. 115, 2677–2689.  CSD CrossRef CAS Web of Science Google Scholar
First citationYamada, T., Shinoda, S., Sugimoto, H., Uenishi, J. & Tsukube, H. (2003). Inorg. Chem. 42, 7932–7937.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds