research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Color center creation by dipole stacking in crystals of 2-meth­­oxy-5-nitro­aniline

crossmark logo

aOligometrics, Inc., 2510 47th Street, Suite 208, Boulder, CO, 80301, USA
*Correspondence e-mail: jfilley@oligometrics.com

Edited by S. P. Kelley, University of Missouri-Columbia, USA (Received 15 August 2024; accepted 5 September 2024; online 10 September 2024)

This work describes the X-ray structure of orange–red crystals of 2-meth­oxy-5-nitro­aniline, C7H8N2O3. The compound displays concentration-dependent UV-Vis spectra, which is attributed to dipole-induced aggregation, and light absorption arising from an inter­molecular charge-transfer process that decreases in energy as the degree of aggregation increases. The crystals display π-stacking where the dipole moments align anti­parallel. Stacked mol­ecules inter­act with the next stack via hydrogen bonds, which is a state of maximum aggregation. Light absorption by charge transfer can be compared to colored inorganic semiconductors such as orange–red CdS, with a band gap of 2.0–2.5 eV.

1. Chemical context

The title compound is an inexpensive and versatile starting material with two chemically distinct nitro­gen atoms that can be functionalized is a variety of ways. The mol­ecule features para-oriented electron-donating and withdrawing groups as shown in the scheme, giving rise to a large dipole moment of 5.4 D (Buemi et al. 1979[Buemi, G., Millefiori, S., Zuccarello, F. & Millefiori, A. (1979). Can. J. Chem. 57, 2167-2171.]). During routine crystallization prior to its use in synthesis, we were struck by the beauty of its orange–red crystals and the ease of their formation. While dilute solutions of the compound in acetone are yellow (λmax = 380 nm), more concentrated solutions exhibit a striking longer wavelength absorption, which moves further into the visible portion of the spectrum as the concentration increases (Fig. 1[link]). These spectra are consistent with a concentration-dependent aggregation phenomenon aided by the strong dipole moment, which results in inter­molecular charge transfer, where the electronic transition comes at lower energies as the degree of aggregation increases. Presumably, at higher concentrations, light absorption would approach 490 nm, which would result in an orange–red solution according to chromaticity diagrams (Nassau, 1983[Nassau, K. (1983). The Physics and Chemistry of Color, p. 9. New York: Wiley.]). These concentrations cannot be achieved due to solubility limitations, but solid material with no solvent mol­ecules can be considered a state of maximum aggregation.

[Scheme 1]
[Figure 1]
Figure 1
Concentration-dependent spectra in acetone in the visible region for 2-meth­oxy-5-nitro­aniline (concentrations in mM). Inset: UV-Vis spectrum (0.1 mM).

Crystals of substituted anilines comparable to 2-meth­oxy-5-nitro­aniline have inter­esting non-linear optical properties (Ravikumara & Hubert Joe, 2010[Ravikumar, C. & Hubert Joe, I. (2010). Phys. Chem. Chem. Phys. 12, 9452-9460.]) and have been the subject of structure investigations (Rosli et al., 2007[Rosli, M. M., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o1039-o1040.]). We undertook an X-ray structure study of the title compound to help understand the color of the crystals, and found a π-stacked face-to-face arrangement of the mol­ecules with dipoles aligned anti­parallel, which can facilitate a charge-transfer mechanism for light absorption. The color of the title compound is akin to that seen in certain inorganic semiconductors such as CdS, where a band gap of 2.0–2.5 eV gives a similar orange–red color, and is the result of charge transfer within the crystal from the valence band to the conduction band (Pal et al., 1997[Pal, U., Silva-González, R., Martínez-Montes, G., Gracia-Jiménez, M., Vidal, M. A. & Torres, S. (1997). Thin Solid Films, 305, 345-350.]).

2. Structural commentary

The mol­ecular structure in Fig. 2[link] shows the pyramidal amino group, suggesting the amino group lone-pair electrons are not highly conjugated with the aromatic ring, consistent with an amino group meta to a nitro group.

[Figure 2]
Figure 2
Mol­ecular structure of 2-meth­oxy-5-nitro­aniline showing the pyramidal amino group. Atoms are displayed as ellipsoids at the 50% probability displacement level.

3. Supra­molecular features

Key features of the crystal packing are displayed in Fig. 3[link]. It can be seen that on a pairwise basis, the mol­ecules stack on top of each other with almost perfect alignment of the meth­oxy group of one mol­ecule and the nitro group of the next mol­ecule, with the dipoles oriented anti­parallel. Indeed, this is generally observed in crystals of mol­ecules with non-zero dipole moments, and in fact it is an ongoing challenge to design crystals with parallel dipole moments, since these are expected to have strong non-linear optical properties (Lewis et al., 2000[Lewis, M., Barnes, C. L. & Glaser, R. (2000). J. Chem. Crystallogr. 30, 489-496.]). Fig. 3[link] also shows an offset of about 1.7 Å for the next pair of stacked mol­ecules. The stacked columns are connected by hydrogen bonds with lengths of 2.34 (2) Å (Table 1[link]). Inter­estingly, these inter-stack hydrogen bonds connect both syn and anti amino group hydrogen atoms on one stack to only the syn oxygen atoms of the nitro group on a different stack (the anti nitro oxygen atoms are not involved in hydrogen bonds). In order for this to be true, the stacks that bear nitro group oxygen atom hydrogen-bond acceptors have to be parallel, and the syn acceptors are flipped with respect to each other. The angle between the planes defining the two stacks is 33.6  (7)°. It is hypothesized that the observed orange–red color of the crystals arises from inter­molecular charge transfer, amounting to a color center and colored semiconductor-like behavior.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.952 (16) 3.177 (15) 3.7473 (14) 120.2 (11)
C3—H3⋯O1i 0.944 (15) 3.039 (15) 3.6820 (14) 126.7 (11)
C3—H3⋯O2ii 0.944 (15) 2.646 (15) 3.3523 (14) 132.1 (11)
C6—H6⋯O1iii 0.958 (16) 3.006 (16) 3.7075 (14) 131.2 (11)
C6—H6⋯O2iv 0.958 (16) 2.527 (15) 3.3090 (14) 138.8 (12)
C6—H6⋯N2iv 0.958 (16) 3.130 (16) 3.9611 (14) 146.0 (12)
C7—H7A⋯O2ii 1.001 (17) 2.691 (17) 3.6087 (16) 152.5 (12)
C7—H7B⋯O3v 0.986 (16) 3.130 (15) 3.9801 (16) 145.2 (11)
C7—H7B⋯N1i 0.986 (16) 2.990 (16) 3.8090 (16) 141.1 (11)
N1—H1A⋯O3vi 0.885 (17) 2.335 (17) 3.0395 (13) 136.6 (14)
C7—H7C⋯N1vi 0.962 (16) 2.847 (16) 3.6953 (17) 147.6 (12)
N1—H1B⋯O3iv 0.869 (19) 2.337 (19) 3.1812 (13) 163.9 (15)
N1—H1B⋯O2iv 0.869 (19) 2.903 (18) 3.6404 (14) 143.7 (14)
N1—H1B⋯N2iv 0.869 (19) 2.944 (19) 3.7781 (14) 161.3 (14)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (v) [-x, -y+1, -z]; (vi) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Stacked mol­ecules of the title compound showing anti­parallel aligned dipoles and hydrogen bonding from the amino hydrogen atoms to syn nitro oxygen atoms.

4. Database survey

Related nitro anilines such as 4-meth­oxy-2-nitro­aniline have been subjected to X-ray structure analysis (Rosli et al., 2007[Rosli, M. M., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o1039-o1040.]), which shows a near planar amino group (the amino and nitro groups are ortho to each other and are therefore conjugated) and a slightly shorter N—H⋯O hydrogen bond of 2.20 Å. A neutron diffraction study found a slightly pyramidal amino group in 2-methyl-4-nitro­aniline (Whitten et al., 2006[Whitten, A. E., Turner, P., Klooster, W. T., Piltz, R. O. & Spackman, M. A. (2006). J. Phys. Chem. A, 110, 8763-8776.]). The compound 2-bromo-4-nitro­aniline has inter­molecular hydrogen bonding almost identical to that reported here (Arshad et al., 2009[Arshad, M. N., Tahir, M. N., Khan, I. U. & Shafiq, M. (2009). Acta Cryst. E65, o480.]).

5. Synthesis and crystallization

2-Meth­oxy-5-nitro­aniline was obtained from Aldrich and recrystallized from methanol. UV-VIS spectra were collected on a Perkin–Elmer Lambda 3A spectrophotometer. Spectra were collected using a path length of 1.0 cm in acetone solution. Images of mol­ecular structures were manipulated using Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C7H8N2O3
Mr 168.15
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 7.14981 (11), 9.79512 (11), 10.74206 (14)
β (°) 96.9437 (14)
V3) 746.78 (2)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.01
Crystal size (mm) 0.5 × 0.4 × 0.2
 
Data collection
Diffractometer Xcalibur, Onyx, Ultra
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.827, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 13822, 1543, 1398
Rint 0.049
(sin θ/λ)max−1) 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.097, 1.06
No. of reflections 1543
No. of parameters 141
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.25, −0.17
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013/4 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

2-Methoxy-5-nitroaniline top
Crystal data top
C7H8N2O3F(000) = 352
Mr = 168.15Dx = 1.496 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 7.14981 (11) ÅCell parameters from 7580 reflections
b = 9.79512 (11) Åθ = 4.1–75.9°
c = 10.74206 (14) ŵ = 1.01 mm1
β = 96.9437 (14)°T = 100 K
V = 746.78 (2) Å3Block, clear dark orange
Z = 40.5 × 0.4 × 0.2 mm
Data collection top
Xcalibur, Onyx, Ultra
diffractometer
1543 independent reflections
Radiation source: sealed X-ray tube, Enhance Ultra (Cu) X-ray Source1398 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.049
Detector resolution: 8.2603 pixels mm-1θmax = 76.1°, θmin = 7.1°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlisPro; Agilent, 2014)
k = 1212
Tmin = 0.827, Tmax = 1.000l = 1313
13822 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035All H-atom parameters refined
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0542P)2 + 0.2402P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1543 reflectionsΔρmax = 0.25 e Å3
141 parametersΔρmin = 0.16 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.43312 (12)0.35947 (8)0.24323 (7)0.0204 (2)
O30.09878 (13)0.51541 (9)0.30006 (8)0.0259 (2)
O20.05943 (13)0.70793 (9)0.20810 (9)0.0278 (2)
C30.28683 (16)0.55666 (12)0.13260 (11)0.0192 (3)
N20.11198 (14)0.58793 (10)0.20487 (9)0.0201 (2)
N10.38353 (15)0.20274 (10)0.04027 (10)0.0212 (2)
C50.19259 (16)0.53005 (11)0.08607 (10)0.0178 (3)
C10.32888 (16)0.33783 (11)0.02968 (11)0.0172 (3)
C60.24983 (16)0.39389 (12)0.08308 (10)0.0177 (3)
C20.34803 (16)0.42203 (12)0.13800 (10)0.0174 (3)
C40.20887 (16)0.61213 (12)0.01915 (11)0.0190 (3)
C70.45834 (19)0.43980 (13)0.35597 (11)0.0231 (3)
H40.167 (2)0.7045 (16)0.0136 (14)0.025 (4)*
H30.301 (2)0.6112 (15)0.2055 (14)0.022 (3)*
H60.236 (2)0.3386 (16)0.1572 (15)0.024 (4)*
H7A0.532 (2)0.5240 (17)0.3417 (14)0.032 (4)*
H7B0.335 (2)0.4632 (16)0.3830 (13)0.027 (4)*
H1A0.459 (2)0.1820 (16)0.1091 (16)0.027 (4)*
H7C0.527 (2)0.3821 (16)0.4180 (14)0.027 (4)*
H1B0.407 (2)0.1628 (18)0.0284 (17)0.035 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0242 (4)0.0200 (4)0.0163 (4)0.0008 (3)0.0000 (3)0.0008 (3)
O30.0314 (5)0.0261 (5)0.0197 (4)0.0031 (4)0.0004 (3)0.0019 (3)
O20.0309 (5)0.0211 (4)0.0317 (5)0.0056 (4)0.0046 (4)0.0078 (4)
C30.0174 (6)0.0190 (6)0.0215 (6)0.0021 (4)0.0036 (4)0.0039 (4)
N20.0175 (5)0.0207 (5)0.0225 (5)0.0020 (4)0.0037 (4)0.0045 (4)
N10.0264 (6)0.0183 (5)0.0185 (5)0.0029 (4)0.0012 (4)0.0010 (4)
C50.0142 (5)0.0196 (6)0.0199 (6)0.0012 (4)0.0034 (4)0.0029 (4)
C10.0144 (5)0.0174 (5)0.0202 (5)0.0017 (4)0.0042 (4)0.0003 (4)
C60.0165 (6)0.0191 (5)0.0180 (5)0.0016 (4)0.0040 (4)0.0015 (4)
C20.0146 (6)0.0199 (6)0.0179 (5)0.0014 (4)0.0025 (4)0.0013 (4)
C40.0149 (6)0.0165 (5)0.0263 (6)0.0001 (4)0.0050 (4)0.0006 (4)
C70.0265 (7)0.0249 (6)0.0176 (6)0.0007 (5)0.0010 (5)0.0023 (5)
Geometric parameters (Å, º) top
O1—C21.3627 (14)N1—H1B0.869 (19)
O1—C71.4373 (14)C5—C61.3943 (16)
O3—N21.2393 (13)C5—C41.3804 (16)
O2—N21.2332 (13)C1—C61.3866 (16)
C3—C21.3884 (16)C1—C21.4193 (16)
C3—C41.3881 (16)C6—H60.958 (16)
C3—H30.944 (15)C4—H40.952 (16)
N2—C51.4506 (14)C7—H7A1.001 (17)
N1—C11.3805 (15)C7—H7B0.986 (16)
N1—H1A0.885 (17)C7—H7C0.962 (16)
C2—O1—C7116.79 (9)C5—C6—H6121.4 (9)
C2—C3—H3120.1 (9)C1—C6—C5119.10 (10)
C4—C3—C2119.97 (10)C1—C6—H6119.5 (9)
C4—C3—H3119.9 (9)O1—C2—C3124.65 (10)
O3—N2—C5118.97 (9)O1—C2—C1114.07 (10)
O2—N2—O3122.04 (10)C3—C2—C1121.26 (10)
O2—N2—C5118.99 (10)C3—C4—H4121.1 (9)
C1—N1—H1A115.3 (10)C5—C4—C3118.43 (10)
C1—N1—H1B116.3 (11)C5—C4—H4120.4 (9)
H1A—N1—H1B116.4 (15)O1—C7—H7A109.7 (9)
C6—C5—N2118.58 (10)O1—C7—H7B110.4 (9)
C4—C5—N2118.54 (10)O1—C7—H7C105.3 (9)
C4—C5—C6122.87 (11)H7A—C7—H7B111.0 (13)
N1—C1—C6122.20 (10)H7A—C7—H7C110.9 (13)
N1—C1—C2119.42 (10)H7B—C7—H7C109.3 (12)
C6—C1—C2118.35 (10)
O3—N2—C5—C60.95 (16)C6—C1—C2—O1177.80 (9)
O3—N2—C5—C4179.20 (10)C6—C1—C2—C31.01 (17)
O2—N2—C5—C6179.34 (10)C2—C3—C4—C50.67 (17)
O2—N2—C5—C40.51 (16)C2—C1—C6—C50.09 (17)
N2—C5—C6—C1179.34 (9)C4—C3—C2—O1177.28 (10)
N2—C5—C4—C3179.72 (10)C4—C3—C2—C11.41 (17)
N1—C1—C6—C5178.05 (10)C4—C5—C6—C10.82 (18)
N1—C1—C2—O14.18 (15)C7—O1—C2—C30.66 (16)
N1—C1—C2—C3177.01 (10)C7—O1—C2—C1179.43 (9)
C6—C5—C4—C30.44 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.952 (16)3.177 (15)3.7473 (14)120.2 (11)
C3—H3···O1i0.944 (15)3.039 (15)3.6820 (14)126.7 (11)
C3—H3···O2ii0.944 (15)2.646 (15)3.3523 (14)132.1 (11)
C6—H6···O1iii0.958 (16)3.006 (16)3.7075 (14)131.2 (11)
C6—H6···O2iv0.958 (16)2.527 (15)3.3090 (14)138.8 (12)
C6—H6···N2iv0.958 (16)3.130 (16)3.9611 (14)146.0 (12)
C7—H7A···O2ii1.001 (17)2.691 (17)3.6087 (16)152.5 (12)
C7—H7B···O3v0.986 (16)3.130 (15)3.9801 (16)145.2 (11)
C7—H7B···N1i0.986 (16)2.990 (16)3.8090 (16)141.1 (11)
N1—H1A···O3vi0.885 (17)2.335 (17)3.0395 (13)136.6 (14)
C7—H7C···N1vi0.962 (16)2.847 (16)3.6953 (17)147.6 (12)
N1—H1B···O3iv0.869 (19)2.337 (19)3.1812 (13)163.9 (15)
N1—H1B···O2iv0.869 (19)2.903 (18)3.6404 (14)143.7 (14)
N1—H1B···N2iv0.869 (19)2.944 (19)3.7781 (14)161.3 (14)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+3/2, z+1/2; (iii) x1/2, y+1/2, z1/2; (iv) x+1/2, y1/2, z1/2; (v) x, y+1, z; (vi) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The author wishes to acknowledge the assistance of Jered Garrison at the University of Nebraska for crystal data collection and helpful discussions.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationArshad, M. N., Tahir, M. N., Khan, I. U. & Shafiq, M. (2009). Acta Cryst. E65, o480.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBuemi, G., Millefiori, S., Zuccarello, F. & Millefiori, A. (1979). Can. J. Chem. 57, 2167–2171.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLewis, M., Barnes, C. L. & Glaser, R. (2000). J. Chem. Crystallogr. 30, 489–496.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNassau, K. (1983). The Physics and Chemistry of Color, p. 9. New York: Wiley.  Google Scholar
First citationPal, U., Silva-González, R., Martínez-Montes, G., Gracia-Jiménez, M., Vidal, M. A. & Torres, S. (1997). Thin Solid Films, 305, 345–350.  CrossRef CAS Web of Science Google Scholar
First citationRavikumar, C. & Hubert Joe, I. (2010). Phys. Chem. Chem. Phys. 12, 9452–9460.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRosli, M. M., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o1039–o1040.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWhitten, A. E., Turner, P., Klooster, W. T., Piltz, R. O. & Spackman, M. A. (2006). J. Phys. Chem. A, 110, 8763–8776.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds