research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of sulfamethoxazolium methyl­sulfate monohydrate

crossmark logo

aInstituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias, Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario. Suipacha 531, 2000 Rosario, Argentina, and bDepartamento Física de la Materia Condensada, Gerencia de Investigación y, Aplicaciones, Centro Atómico Constituyentes, Comisión Nacional de Energía, Atómica, Av. Gral. Paz 1499, B1650KNA, San Martín, Buenos Aires, Argentina
*Correspondence e-mail: kaufman@iquir-conicet.gov.ar, calvo@iquir-conicet.gov.ar

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 1 September 2024; accepted 19 September 2024; online 24 September 2024)

The mol­ecular salt sulfamethoxazolium {or 4-[(5-methyl-1,2-oxazol-3-yl)sulf­amo­yl]anilinium methyl sulfate monohydrate}, C10H12N3O3S+·CH3O4S·H2O, was prepared by the reaction of sulfamethoxazole and H2SO4 in methanol and crystallized from methanol–ether–water. Protonation takes place at the nitro­gen atom of the primary amino group. In the crystal, N—H⋯O hydrogen bonds (water and methyl­sulfate anion) and inter­molecular N—H⋯N inter­actions involving the sulfonamide and isoxazole nitro­gen atoms, link the components into a tri-dimensional network, additional cohesion being provided by face-to-face ππ inter­actions between the phenyl rings of adjacent mol­ecules. A Hirshfeld surface analysis was used to verify the contributions of the different inter­molecular inter­actions, showing that the three most important contributions for the crystal packing are from H⋯O (54.1%), H⋯H (29.2%) and H⋯N (5.0%) inter­actions.

1. Chemical context

Sulfamethoxazole {SMX or 4-[(5-methyl­isoxazol-3-yl)amino­sulfon­yl]aniline} is a widely employed sulfa drug that is effective against Gram-negative and Gram-positive bacteria, and active against some protozoans and fungi (Manyando et al., 2013[Manyando, C., Njunju, E. M., D'Alessandro, U. & Van geertruyden, J. P. (2013). PLoS One, 8, e56916.]). Being structurally similar to para-amino­benzoic acid (PABA), it acts as a di­hydro­folate reductase inhibitor (Cushion & Walzer, 2009[Cushion, M. T. & Walzer, P. D. (2009). Curr. Med. Chem. 16, 2514-2530.]); it also competitively inhibits the enzyme di­hydro­pteroate synthase, preventing the biosynthesis of di­hydro­pteroic acid, a precursor of folic acid that is required for bacterial growth (Khalil et al., 2003[Khalil, I., RØnn, A. M., Alifrangis, M., Gabar, H. A., Satti, G. M. H. & Bygbjerg, I. C. (2003). Am. J. Trop. Med. Hyg. 68, 586-589.]).

SMX has both low solubility and permeability; therefore, it is a Class IV drug in the Biopharmaceutical Classification System (BCS). The poor solubility of SMX has elicited continuous inter­est in finding alternative forms of the drug with improved pharmacological profiles. As a result, several polymorphs (Price et al., 2005[Price, C. P., Grzesiak, A. L. & Matzger, A. J. (2005). J. Am. Chem. Soc. 127, 5512-5517.]), hydrates (Alsubaie et al., 2018[Alsubaie, M., Aljohani, M., Erxleben, A. & McArdle, P. (2018). Cryst. Growth Des. 18, 3902-3912.]; Takasuka & Nakai, 2001[Takasuka, M. & Nakai, H. (2001). Vib. Spectrosc. 25, 197-204.]), metal complexes (Habila et al., 2021[Habila, I., Saoudi, M., Berrah, F., Benmerad, B., Boudraa, M., Merazig, H. & Bouacida, S. (2021). J. Mol. Struct. 1244, 130903.]), co-crystals [including that with trimethoprim (Bettinetti & Giordano, 1988[Bettinetti, G. & Giordano, F. (1988). Drug Dev. Ind. Pharm. 14, 431-449.]), with which it forms a useful pharmaceutical association], and salts (de Moura Oliveira et al., 2019[Moura Oliveira, C. H. C. de, de Melo, C. & Doriguetto, A. C. (2019). New J. Chem. 43, 10250-10258.]) of SMX have been reported. In connection with our research program on the characterization of new solid phases derived from poorly soluble active pharmaceutical ingredients, herein we report on the crystal structure and the supra­molecular packing pattern of the acid methyl­sulfate monohydrate salt of SMX (SMXHMeSO4·H2O). Acid methyl­sulfate monohydrate salts of other active pharmaceutical ingredients have been reported (Gutiérrez et al., 2020[Gutiérrez, E. L., Godoy, A. A., Narda, G. E. & Ellena, J. (2020). CrystEngComm, 22, 6559-6568.]); among them is neostigmine methyl­sulfate, a cholinesterase inhibitor used in the treatment of myasthenia gravis and to reverse the effects of muscle relaxants (Papich, 2021[Papich, M. G. (2021). Neostigmine. In Papich Handbook of Veterinary Drugs, 5th ed., pp. 648-650. Amsterdam: Elsevier.]) and pralidoxime methyl­sulfate, a widely agent used to treat organophosphate poisoning (Thompson et al., 1987[Thompson, D. F., Thompson, G. D., Greenwood, R. B. & Trammel, H. L. (1987). Drug Intell. Clin. Pharm. 21, 590-593.]).

[Scheme 1]

2. Structural commentary

The crystals of the title monohydrate salt SMXHMeSO4·H2O, (I)[link], appear as small white rods under white light that display birefringence under polarized light (Fig. 1[link]) and have a melting point 374.5–375.5 K. The title compound crystallizes in the triclinic space group P[\overline{1}] with one of each component (sulfamethoxazolium cation, methyl­sulfate anion, and water) in the asymmetric unit (Fig. 2[link]).

[Figure 1]
Figure 1
Microscopic view of a crystal of the title compound under white (left) and polarized (right) light.
[Figure 2]
Figure 2
Crystal structure of title compound with the atom-labeling scheme (displacement ellipsoids are drawn at the 50% probability level).

The sulfamethoxazolium cation, which undergoes protonation at the primary amino nitro­gen, is L-shaped. The C6—C5—S8—N11 torsion angle is 96.4 (2)°, while the dihedral angle between the planes formed by the aromatic rings is 88.83 (13)° and the S8—N11—C12—N16 torsion angle is 162.5 (2)°.

The nitro­gen atom of the sulfonamide has sp2 character, as a result of conjugation; the S8—N11—C12 angle is 125.09 (17)° and the N—H moiety is almost coplanar with the isoxazole ring, with the H11—N11—C12—N16 torsion angle being −17°. The cation and the anion in the asymmetric unit are linked by the N1—H1B⋯O18 hydrogen bond (Fig. 3[link] and Table 1[link]). The methyl group of the anion occupies the hydro­phobic pocket formed by the aromatic rings of the cation, with H23C located 2.96 Å from the centroid of the phenyl ring and H23A 2.81 Å from the centroid of the isoxazole ring. The N1—H1C⋯O24 hydrogen bond links the water mol­ecule to the cation. Both sulfur atoms exhibit slightly distorted tetra­hedral geometries; the O9—S8—O10 and O18—S21—O20 angles have values of 119.97 (12) and 115.06 (14)°, respectively, presenting the maximum deviations from the expected ones.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O24 0.93 2.65 3.353 (3) 133
C4—H4⋯O24i 0.93 2.54 3.469 (3) 177
C13—H13⋯O10 0.93 2.54 3.023 (3) 113
N1—H1A⋯O19ii 0.89 1.91 2.800 (3) 175
N1—H1A⋯S21ii 0.89 2.94 3.774 (2) 156
N1—H1B⋯O18 0.89 1.95 2.761 (3) 152
N1—H1C⋯O24 0.89 1.89 2.772 (3) 170
N11—H11⋯N16iii 0.86 2.07 2.912 (3) 167
C23—H23B⋯O20iv 0.96 2.65 3.506 (4) 149
O24—H24A⋯O10v 0.76 (3) 2.54 (3) 3.140 (3) 137 (3)
O24—H24A⋯O15vi 0.76 (3) 2.47 (3) 3.072 (3) 137 (3)
O24—H24B⋯O19vii 0.81 (3) 2.03 (3) 2.821 (3) 163 (3)
Symmetry codes: (i) [-x, -y+1, -z+1]; (ii) [-x+1, -y, -z+1]; (iii) [-x+1, -y+1, -z]; (iv) [x+1, y, z]; (v) [-x+1, -y+1, -z+1]; (vi) [x-1, y, z+1]; (vii) [-x, -y, -z+1].
[Figure 3]
Figure 3
Crystal packing of the compound showing all the hydrogen-bonding inter­actions with an O atom as acceptor (cyan dashed lines) and the dimers formed by N—H⋯N inter­actions (magenta dashed lines).

3. Supra­molecular features

The salt structure is consolidated by a three-dimensional network of hydrogen bonds between the anions, cations, and water mol­ecules, as well as by ππ inter­actions between aromatic rings (Fig. 3[link], Tables 1[link] and 2[link]). Among the salient features, each water mol­ecule establishes hydrogen bonds with SMXH+ units, acting through O24 as an acceptor with H1C (protonated primary amino group, x, y, z) and through H24A as a donor with both, O10 (sulfonamide, −x + 1, −y + 1, −z + 1) and O15 (isoxazole, x − 1, y, z + 1) in a bifurcated inter­action. An additional hydrogen bond relates H24B with O19 of the methyl­sulfate anion (−x, −y, −z + 1).

Table 2
Selected details of π–π inter­actions (Å, °) for some sulfamethoxazolium salts

Structures with centroid–centroid separations < 6.0 Å and α < 20.00° according to PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]). Cg1, Cg2, Cg3 and Cg4 are the centroids of the O15/N16/C12–C14, C2–C7, O15′/N16′/C12′–C14′ and C2′–C7′ rings, respectively. α is the dihedral angle between planes I and J; ccd is the distance between ring centroids, ipd is the mean inter­planar distance (distance from one plane to the neighboring centroid), slippage is distance between Cg(I) and the perpendicular projection of Cg(J) on ring I and sa is the mean slippage angle (angle subtended by the inter-centroid vector to the plane normal). For additional details, see Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]).

Refcode Cg(I)⋯Cg(J) α ccd ipd slippage sa
(I) Cg1⋯Cg1i 0.02 (14) 4.8490 (16) 3.5028 (10) 3.353 43.7
  Cg2⋯Cg2ii 0.03 (11) 5.8838 (16) 3.0064 (10) 5.058 59.3
  Cg2⋯Cg2iii 0.03 (11) 4.3764 (14) 3.5674 (10) 2.535 35.4
CIDDAY Cg2⋯Cg2iv 0 3.8532 3.5757 1.436 21.9
TUJPEV Cg2⋯Cg2v 0 5.9284 3.3032 4.923 56.1
GAGLAS Cg1⋯Cg1vi 17 5.4016 3.4095 4.190 50.9
  Cg1⋯Cg2vii 0 4.2924 3.8496 1.899 26.3
RISZAV Cg1⋯Cg1viii 17 4.7430 3.8184 2.813 36.4
  Cg1⋯Cg1ix 17 4.7430 2.9750 3.694 51.2
  Cg1⋯Cg1x 0 4.4550 3.2790 3.016 42.6
  Cg2⋯Cg2xi 0 5.5620 3.0159 4.673 57.2
GOGLEW Cg1/Cg3xii 0 3.8495 3.3844 1.834 28.5
  Cg1⋯Cg3xiii 0 3.9641 3.2582 2.258 34.7
  Cg2⋯Cg2iii 0 5.3927 3.0874 4.421 55.1
  Cg4⋯Cg4xiv 0 5.3927 3.0831 4.424 55.1
AWARIC Cg1⋯Cg1xv 0 4.3792 4.1868 1.283 17.0
  Cg2⋯Cg2xvi 0 4.1198 3.4480 2.255 33.2
Symmetry codes: (i) 2 − x, 1 − y, −z; (ii) −1 + x, y, z; (iii) 1 − x, 1 − y, 1 − z; (iv) 1 − x, 2 − y, 1 − z; (v) 1 − x, 2 − y, 1 − z; (vi) 1 − x, y, [{1\over 2}] − z; (vii) 1 − x, −y, −z; (viii) [{1\over 2}] − x, −y, −[{1\over 2}] + z; (ix) [{1\over 2}] − x, −y, [{1\over 2}] + z; (x) 1 − x, −y, 2 − z; (xi) x, y, −1 + z; (xii) 1 − x, [{1\over 2}] + y, 1 − z; (xiii) 1 − x, [{1\over 2}] + y, 2 − z; (xiv) 1 − x, y, z; (xv) 2 − x, −y, −z; (xvi) 1 − x, −y, −1 − z.

Each methyl­sulfate anion establishes four inter­actions; two of them are hydrogen bonds O18⋯H1B (x, y, z) and O19⋯H1A (−x + 1, −y, −z + 1) with slightly different lengths (1.944 and 1.913 Å, respectively), that bridge a pair of adjacent SMX mol­ecules through their protonated amino moieties, while the third hydrogen bond is an inter­action with a water mol­ecule (O19⋯H24B). The fourth is a C—H⋯O inter­molecular inter­action between H23B and O20 of a neighboring methyl­sulfate anion (x + 1, y, z), which results in a chain of methyl­sulfate anions running along the a-axis direction.

In addition, the SMXH+ units are also directly connected through pairs of N11—H11⋯N16 hydrogen bonds (−x + 1, −y + 1, −z), which involve the isoxazole nitro­gen atom (N16) and the sulfonamide N—H moiety (N11—H11).

The structure also features face-to-face ππ inter­actions between the phenyl rings of adjacent mol­ecules, which adopt an anti­parallel arrangement, in parallel planes. In one of them (1 − x, 1 − y, 1 − z), the planes are 3.5674 (10) Å apart (Table 2[link]), and the stacked aromatic rings are slipped by 2.535 Å. This aromatic ring displacement (slippage) is the distance between the perpendicular projection of the centroid of one ring on the other and the centroid of the latter. In addition, the mean slippage angle (sa, the angle subtended by the inter-centroid vector to the plane normal) is 35.4°, whereas the distance between centroids is 4.3764 (14) Å. Face-to-face ππ inter­actions are also observed between the isoxazole rings (2 − x, 1 − y, −z), which are also arranged in an anti­parallel fashion. The inter­planar distance is 3.5028 (10) Å while the inter­centroid distance is 4.8490 (16) Å, resulting in a slippage angle of 43.7° and a slippage of 3.353 Å. Considering the geometrical requirements for inter­actions between aromatic rings (Hunter & Sanders, 1990[Hunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525-5534.]), the parameters of both slipped packings correspond to attractive inter­actions.

The ππ inter­actions between aromatic rings play an important role in controlling the packing or assembly of mol­ecules. Usually, they take the form of an offset or slipped stacking, where the rings are parallel displaced a certain distance (slippage, aromatic ring displacement). These inter­actions between aromatic rings of adjacent mol­ecules seem to be one of the characteristic features of the sulfamethoxazolium derivatives, being found in several congeners of the title compound (Table 2[link]).

The formation of anti­parallel π-stacking inter­actions in these compounds may contribute to the cohesion of the crystal, considering that the phenyl ring has an electron-poor region at the sulfonamide side, opposite to a more electron-rich zone on the protonated amino region. In addition, the positively charged atom contributes to the attractive πσ inter­action due to the induced σ polarization.

4. Hirshfeld surface analysis

The three-dimensional Hirshfeld surface (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) with a dnorm (normalized contact distance) plot (Fig. 4[link]) and two-dimensional fingerprint plots (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]) were generated with Crystal Explorer 17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). This analysis was carried out to verify the presence of inter­molecular inter­actions and hydrogen bonds in the crystal structure and assess the contributions from the different inter­molecular inter­actions in the title compound.

[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of the title mol­ecule plotted over dnorm.

The Hirshfeld surface was plotted over the range −0.6318 (red) to +1.4441 (blue) a.u. The red spots on the top left of the surface indicate the sites of the N11—H11⋯N16 inter­actions (−x + 1, −y + 1, −z) between the sulfonamide N—H moiety and the nitro­gen atom of the isoxazole, while at the top right, the place of the O⋯H inter­action between the sulfonamide and the isoxazole with water can be observed.

A C4—H4⋯O24 (x, y, z) inter­action site with water is also visible on top. In addition, the sites of inter­action of H2O with oxygen atoms of the neighbouring methyl­sulfate anion O24—H24B⋯O19 (−x, −y, −z + 1) are shown on the top right and the same inter­action can be observed at the bottom right. The 2D fingerprint plots (Fig. 5[link]) revealed that the greatest contributions to the total inter­molecular inter­actions (Fig. 5[link]A) are from H⋯O/O⋯H contacts (54.1%), which appear in the middle of the scattered points of the 2D fingerprint plot, along with two symmetrical broad wings (Fig. 5[link]B), followed by H⋯H contacts observed in the middle of the scattered points in the plot (29.2%, Fig. 5[link]C), and H⋯N/N⋯H contacts (5.0%, Fig. 5[link]D), which result from the inter­actions between the sulfonamide N—H moiety and the nitro­gen atom of the isoxazole to form a dimer, and are present as sharp symmetrical spikes at diagonal axes.

[Figure 5]
Figure 5
Two-dimensional fingerprint plots for the title mol­ecule showing (A) all inter­actions, and those delineated into (B) H⋯O/O⋯H inter­actions, (C) H⋯H inter­actions, (D) H⋯N/N⋯H inter­actions (E) H⋯C/C⋯H inter­actions, and (F) C⋯N/N⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

The proportions of these contributions are the expected ones due to the significant hydrogen content, which is present in the three components of the salt, and the fact that many of them are attached to heteroatoms. These inter­actions suggest that hydrogen bonding plays a major role in the crystal packing. The contributions to the Hirshfeld surface from other inter­atomic inter­actions include H⋯C/C⋯H, which are displayed as bump symmetrical spikes at diagonal axes (5.0%, Fig. 5[link]E), C⋯O/O⋯C (2.6%) and C⋯N/N⋯C contacts (1.0%, Fig. 5[link]F). In comparison, N⋯O/O⋯N (1.1%), C⋯S/S⋯C (0.1%), and H⋯S/S⋯H (0.1%) contacts represent additional, minor participations.

5. Database survey

A simple search in the Cambridge Structural Database (CSD, accessed via WebCSD on September 19, 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) with the keyword ‘sulfa­methoxazole’ gave 73 hits, of which only six involved the sulfamethoxazolium ion, and included the following salts: chloride (SIMJEE, Subashini et al., 2007[Subashini, A., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2007). Acta Cryst. E63, o4312-o4313.]), bromide (GAGLAS, de Moura Oliveira et al., 2019[Moura Oliveira, C. H. C. de, de Melo, C. & Doriguetto, A. C. (2019). New J. Chem. 43, 10250-10258.]), nitrate (GOGLEW, de Moura Oliveira et al., 2019[Moura Oliveira, C. H. C. de, de Melo, C. & Doriguetto, A. C. (2019). New J. Chem. 43, 10250-10258.]), penta­iodide monohydrate (CIDDAY, de Moura Oliveira et al., 2019[Moura Oliveira, C. H. C. de, de Melo, C. & Doriguetto, A. C. (2019). New J. Chem. 43, 10250-10258.]), 3,5-di­nitro­salicylate (TUJPEV, Malathy et al., 2015[Malathy, S., Nirmalram, J. S. & Muthiah, P. T. (2015). Acta Cryst. E71, 618-620.]), and the metallic complex catena-[bis­(sulfa­methox­azo­lium)(μ2-chlor­ido­tri­chlorido­cadmium(II) monohydrate] (RISZAV, Subashini et al., 2008[Subashini, A., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2008). Acta Cryst. E64, m250-m251.]). A more in-depth search of the database, using the keyword ‘sulfamethoxazolium’ uncovered the metallic complex tri­chloro-{4-[(5-methyl-1,2-oxazol-3-yl)sulfamo­yl]anilinium}zinc (AWARIC, Habila et al., 2021[Habila, I., Saoudi, M., Berrah, F., Benmerad, B., Boudraa, M., Merazig, H. & Bouacida, S. (2021). J. Mol. Struct. 1244, 130903.]) as the seventh member of this family of compounds.

In all cases, the structure of the protonated form of SMX is L-shaped, displaying dihedral angles between the mean planes of the phenyl ring and the isoxazole unit of 58° (SIMJEE), 75° (GAGLAS), 87° (GOGLEW), 87° (CIDDAY), 82° (TUJPEV), 88.3° (RISZAV) and 89.2° (AWARIC). The simple halide salts (chloride and bromide) displayed the smallest values for the dihedral angle between the planes containing the isoxazole and anilinium rings. The S8—N11—C12—N16 torsion angles of the compounds presented the following values: −57.2 (4)° (SIMJEE), −25.3 (4)° (GAGLAS), −26.38 (1)° (CIDDAY), −152.4 (4)/151.5 (4)° (GOGLEW), −164.3 (2)° (AWARIC), 164.49 (14)° (TUJPEV) and 158.6 (3)° (RISZAV). Accordingly, salts in this series could be grouped in two sets; on one side the halides, with a small torsion angle, measuring less than 60°, and the remaining compounds including SMXHMeSO4·H2O on the other, with large torsions, where the angles are above 150°. This suggests that the isoxazole ring in these compounds adopts two main orientations.

6. Synthesis and crystallization

A sample of sulfamethoxazole (250 mg, 0.99 mmol) was dissolved in methanol (25 mL) at room temperature and treated with a methano­lic solution of H2SO4 (0.507 M, 1.95 mL, 0.99 mmol). After stirring for 30 min, the solution was allowed to concentrate to 12 mL (3 days) at room temperature, when Et2O (54 mL) containing water (0.1%, 0.054 mL, 3 mmol) was added. The system was left to stand at room temperature and crystals (15 mg) were collected after 6 d.

7. Refinement

Table 3[link] summarizes crystal data, data collection, and structure refinement details. The H atoms were positioned geometrically and refined using a riding model: O—H = 0.82 Å, N—H = 0.86–0.89 Å, and C—H = 0.93–0.96 Å with Uiso(H) = 1.5Ueq(C,O,N) for methyl and ammonium H atoms and 1.2Ueq(C,N) for aromatic and other H atoms. Water H atoms were found in difference-Fourier maps and refined independently.

Table 3
Experimental details

Crystal data
Chemical formula C10H12N3O3S+·CH3O4S·H2O
Mr 383.39
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 298
a, b, c (Å) 5.8838 (8), 11.6532 (15), 12.3276 (16)
α, β, γ (°) 84.722 (6), 78.442 (5), 81.940 (5)
V3) 818.14 (19)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.37
Crystal size (mm) 1.00 × 0.35 × 0.12
 
Data collection
Diffractometer Bruker D8 Quest ECO
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.854, 0.956
No. of measured, independent and observed [I > 2σ(I)] reflections 18938, 3318, 2716
Rint 0.047
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.100, 1.06
No. of reflections 3318
No. of parameters 226
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.33, −0.32
Computer programs: APEX4 and SAINT (Bruker, 2019[Bruker (2019). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2019/1 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), POV-RAY (Cason, 2004[Cason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pty Ltd, Victoria, Australia. http://www. povray. org]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

4-[(5-Methyl-1,2-oxazol-3-yl)sulfamoyl]anilinium methyl sulfate monohydrate top
Crystal data top
C10H12N3O3S+·CH3O4S·H2OZ = 2
Mr = 383.39F(000) = 400
Triclinic, P1Dx = 1.556 Mg m3
a = 5.8838 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.6532 (15) ÅCell parameters from 1942 reflections
c = 12.3276 (16) Åθ = 2.3–26.2°
α = 84.722 (6)°µ = 0.37 mm1
β = 78.442 (5)°T = 298 K
γ = 81.940 (5)°Needle, colourless
V = 818.14 (19) Å31.00 × 0.35 × 0.12 mm
Data collection top
Bruker D8 Quest ECO
diffractometer
2716 reflections with I > 2σ(I)
Radiation source: Sealed tubeRint = 0.047
ω scanθmax = 26.4°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 77
Tmin = 0.854, Tmax = 0.956k = 1414
18938 measured reflectionsl = 1515
3318 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0142P)2 + 1.0486P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3318 reflectionsΔρmax = 0.33 e Å3
226 parametersΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C30.3075 (4)0.3673 (2)0.4655 (2)0.0359 (5)
H30.1524940.3845910.5004210.043*
C40.4132 (4)0.4451 (2)0.3856 (2)0.0375 (5)
H40.3301920.5154770.3663930.045*
C60.7715 (4)0.3127 (2)0.3633 (2)0.0368 (5)
H60.9269150.2952360.3290320.044*
C70.6653 (4)0.2354 (2)0.4430 (2)0.0367 (5)
H70.7480770.1652730.4629650.044*
C130.9869 (5)0.3140 (2)0.0578 (2)0.0475 (6)
H131.0965020.3125640.1029440.057*
N10.3214 (3)0.18050 (16)0.57383 (16)0.0334 (4)
H1A0.4183540.1498700.6187260.050*
H1B0.2841320.1243280.5388870.050*
H1C0.1922940.2165360.6134910.050*
C20.4356 (4)0.26394 (19)0.49225 (18)0.0293 (5)
C50.6438 (4)0.41640 (19)0.33507 (18)0.0301 (5)
S80.77327 (11)0.51495 (5)0.23174 (5)0.03585 (16)
O90.6651 (4)0.63011 (15)0.25416 (15)0.0480 (5)
O101.0205 (3)0.48770 (17)0.21978 (15)0.0489 (5)
N110.6972 (4)0.48975 (18)0.11723 (16)0.0389 (5)
H110.5957940.5402800.0922390.047*
C120.7835 (4)0.3928 (2)0.05656 (18)0.0357 (5)
C140.9881 (5)0.2412 (2)0.0204 (2)0.0488 (7)
O150.7978 (4)0.27161 (17)0.06734 (15)0.0530 (5)
N160.6641 (4)0.36926 (19)0.01609 (18)0.0452 (5)
C171.1508 (7)0.1406 (3)0.0656 (3)0.0721 (10)
H17A1.1968610.0902550.0055910.108*
H17B1.2866650.1676070.1122480.108*
H17C1.0742680.0987650.1083430.108*
O180.2313 (5)0.0622 (2)0.40614 (18)0.0788 (8)
O190.3568 (3)0.09508 (15)0.28979 (18)0.0516 (5)
O200.0403 (3)0.00330 (17)0.30985 (18)0.0548 (5)
S210.19689 (10)0.01013 (5)0.31111 (5)0.03422 (16)
O220.2620 (4)0.09783 (18)0.20879 (18)0.0594 (6)
C230.4913 (6)0.1348 (3)0.1905 (3)0.0656 (9)
H23A0.5385030.1581590.1134940.098*
H23B0.6009250.0716690.2114040.098*
H23C0.4871010.1990880.2346040.098*
O240.1063 (3)0.28881 (17)0.67780 (16)0.0431 (4)
H24A0.102 (5)0.317 (3)0.730 (3)0.052*
H24B0.199 (5)0.242 (3)0.696 (2)0.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C30.0297 (11)0.0353 (12)0.0408 (13)0.0011 (9)0.0058 (10)0.0009 (10)
C40.0379 (13)0.0318 (12)0.0416 (13)0.0005 (10)0.0101 (11)0.0037 (10)
C60.0303 (12)0.0414 (13)0.0354 (12)0.0026 (10)0.0007 (10)0.0000 (10)
C70.0348 (12)0.0320 (12)0.0390 (13)0.0026 (10)0.0031 (10)0.0021 (10)
C130.0503 (16)0.0525 (16)0.0381 (14)0.0032 (13)0.0121 (12)0.0013 (12)
N10.0324 (10)0.0298 (10)0.0361 (10)0.0043 (8)0.0029 (8)0.0005 (8)
C20.0331 (11)0.0284 (11)0.0277 (11)0.0075 (9)0.0062 (9)0.0021 (8)
C50.0359 (12)0.0309 (11)0.0262 (11)0.0089 (9)0.0101 (9)0.0003 (9)
S80.0424 (3)0.0375 (3)0.0309 (3)0.0151 (3)0.0095 (2)0.0020 (2)
O90.0693 (13)0.0306 (9)0.0461 (10)0.0144 (8)0.0106 (9)0.0014 (8)
O100.0410 (10)0.0654 (12)0.0441 (10)0.0233 (9)0.0105 (8)0.0070 (9)
N110.0472 (12)0.0394 (11)0.0315 (10)0.0008 (9)0.0142 (9)0.0012 (8)
C120.0431 (13)0.0385 (13)0.0244 (11)0.0097 (10)0.0045 (10)0.0059 (9)
C140.0604 (17)0.0471 (15)0.0342 (13)0.0007 (13)0.0039 (12)0.0015 (11)
O150.0699 (13)0.0505 (11)0.0399 (10)0.0009 (10)0.0138 (9)0.0115 (9)
N160.0529 (13)0.0470 (13)0.0366 (11)0.0016 (10)0.0116 (10)0.0070 (10)
C170.087 (3)0.063 (2)0.0548 (19)0.0158 (18)0.0010 (17)0.0110 (16)
O180.0975 (18)0.1011 (19)0.0486 (12)0.0523 (15)0.0010 (12)0.0284 (12)
O190.0400 (10)0.0333 (9)0.0801 (14)0.0002 (8)0.0135 (10)0.0011 (9)
O200.0323 (10)0.0514 (11)0.0801 (15)0.0074 (8)0.0105 (9)0.0018 (10)
S210.0355 (3)0.0317 (3)0.0360 (3)0.0073 (2)0.0072 (2)0.0005 (2)
O220.0530 (12)0.0613 (13)0.0628 (13)0.0149 (10)0.0189 (10)0.0302 (10)
C230.0603 (19)0.066 (2)0.069 (2)0.0264 (16)0.0070 (16)0.0193 (16)
O240.0424 (10)0.0425 (11)0.0451 (11)0.0108 (8)0.0041 (9)0.0080 (8)
Geometric parameters (Å, º) top
C3—C21.378 (3)S8—N111.626 (2)
C3—C41.388 (3)N11—C121.391 (3)
C3—H30.9300N11—H110.8600
C4—C51.384 (3)C12—N161.312 (3)
C4—H40.9300C14—O151.351 (3)
C6—C51.385 (3)C14—C171.481 (4)
C6—C71.385 (3)O15—N161.412 (3)
C6—H60.9300C17—H17A0.9600
C7—C21.374 (3)C17—H17B0.9600
C7—H70.9300C17—H17C0.9600
C13—C141.340 (4)O18—S211.429 (2)
C13—C121.405 (4)O19—S211.4472 (18)
C13—H130.9300O20—S211.4291 (18)
N1—C21.463 (3)S21—O221.5689 (19)
N1—H1A0.8900O22—C231.442 (3)
N1—H1B0.8900C23—H23A0.9600
N1—H1C0.8900C23—H23B0.9600
C5—S81.763 (2)C23—H23C0.9600
S8—O101.4253 (19)O24—H24A0.76 (3)
S8—O91.4285 (19)O24—H24B0.81 (3)
C2—C3—C4119.0 (2)N11—S8—C5106.22 (10)
C2—C3—H3120.5C12—N11—S8125.09 (17)
C4—C3—H3120.5C12—N11—H11117.5
C5—C4—C3119.0 (2)S8—N11—H11117.5
C5—C4—H4120.5N16—C12—N11117.4 (2)
C3—C4—H4120.5N16—C12—C13112.3 (2)
C5—C6—C7119.3 (2)N11—C12—C13130.3 (2)
C5—C6—H6120.4C13—C14—O15109.8 (2)
C7—C6—H6120.4C13—C14—C17134.3 (3)
C2—C7—C6118.9 (2)O15—C14—C17115.9 (3)
C2—C7—H7120.5C14—O15—N16108.66 (19)
C6—C7—H7120.5C12—N16—O15104.5 (2)
C14—C13—C12104.7 (2)C14—C17—H17A109.5
C14—C13—H13127.6C14—C17—H17B109.5
C12—C13—H13127.6H17A—C17—H17B109.5
C2—N1—H1A109.5C14—C17—H17C109.5
C2—N1—H1B109.5H17A—C17—H17C109.5
H1A—N1—H1B109.5H17B—C17—H17C109.5
C2—N1—H1C109.5O18—S21—O20115.06 (14)
H1A—N1—H1C109.5O18—S21—O19111.33 (15)
H1B—N1—H1C109.5O20—S21—O19113.41 (11)
C7—C2—C3122.3 (2)O18—S21—O22106.60 (14)
C7—C2—N1118.9 (2)O20—S21—O22103.29 (12)
C3—C2—N1118.9 (2)O19—S21—O22106.17 (12)
C4—C5—C6121.5 (2)C23—O22—S21117.03 (18)
C4—C5—S8118.33 (17)O22—C23—H23A109.5
C6—C5—S8120.15 (18)O22—C23—H23B109.5
O10—S8—O9119.97 (12)H23A—C23—H23B109.5
O10—S8—N11108.68 (11)O22—C23—H23C109.5
O9—S8—N11104.56 (11)H23A—C23—H23C109.5
O10—S8—C5107.58 (11)H23B—C23—H23C109.5
O9—S8—C5109.04 (11)H24A—O24—H24B106 (3)
C2—C3—C4—C50.2 (4)O9—S8—N11—C12172.3 (2)
C5—C6—C7—C20.1 (4)C5—S8—N11—C1272.5 (2)
C6—C7—C2—C30.4 (4)S8—N11—C12—N16162.55 (18)
C6—C7—C2—N1178.0 (2)S8—N11—C12—C1319.1 (4)
C4—C3—C2—C70.4 (4)C14—C13—C12—N161.1 (3)
C4—C3—C2—N1178.0 (2)C14—C13—C12—N11177.3 (2)
C3—C4—C5—C60.7 (4)C12—C13—C14—O150.4 (3)
C3—C4—C5—S8178.67 (18)C12—C13—C14—C17178.0 (3)
C7—C6—C5—C40.7 (4)C13—C14—O15—N160.4 (3)
C7—C6—C5—S8178.69 (18)C17—C14—O15—N16179.2 (2)
C4—C5—S8—O10160.72 (18)N11—C12—N16—O15177.28 (19)
C6—C5—S8—O1019.9 (2)C13—C12—N16—O151.4 (3)
C4—C5—S8—O929.1 (2)C14—O15—N16—C121.1 (3)
C6—C5—S8—O9151.45 (19)O18—S21—O22—C2355.1 (3)
C4—C5—S8—N1183.0 (2)O20—S21—O22—C23176.7 (2)
C6—C5—S8—N1196.4 (2)O19—S21—O22—C2363.7 (3)
O10—S8—N11—C1243.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O240.932.653.353 (3)133
C4—H4···O24i0.932.543.469 (3)177
C13—H13···O100.932.543.023 (3)113
N1—H1A···O19ii0.891.912.800 (3)175
N1—H1A···S21ii0.892.943.774 (2)156
N1—H1B···O180.891.952.761 (3)152
N1—H1C···O240.891.892.772 (3)170
N11—H11···N16iii0.862.072.912 (3)167
C23—H23B···O20iv0.962.653.506 (4)149
O24—H24A···O10v0.76 (3)2.54 (3)3.140 (3)137 (3)
O24—H24A···O15vi0.76 (3)2.47 (3)3.072 (3)137 (3)
O24—H24B···O19vii0.81 (3)2.03 (3)2.821 (3)163 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z+1; (iii) x+1, y+1, z; (iv) x+1, y, z; (v) x+1, y+1, z+1; (vi) x1, y, z+1; (vii) x, y, z+1.
Selected details of ππ interactions (Å, °) for some sulfamethoxazolium salts top
Structures with centroid–centroid separations < 6.0 Å and α < 20.00° according to PLATON (Spek, 2020). Cg1, Cg2, Cg3 and Cg4 are the centroids of the O15/N16/C12–C14, C2–C7, O15'/N16'/C12'–C14' and C2'–C7' rings, respectively. α is the dihedral angle between planes I and J; ccd is the distance between ring centroids, ipd is the mean interplanar distance (distance from one plane to the neighboring centroid), slippage is distance between Cg(I) and the perpendicular projection of Cg(J) on ring I and sa is the mean slippage angle (angle subtended by the inter-centroid vector to the plane normal). For additional details, see Janiak (2000).
RefcodeCg(I)···Cg(J)αccdipdslippagesa
(I)Cg1···Cg1i0.02 (14)4.8490 (16)3.5028 (10)3.35343.7
Cg2···Cg2ii0.03 (11)5.8838 (16)3.0064 (10)5.05859.3
Cg2···Cg2iii0.03 (11)4.3764 (14)3.5674 (10)2.53535.4
CIDDAYCg2···Cg2iv03.85323.57571.43621.9
TUJPEVCg2···Cg2v05.92843.30324.92356.1
GAGLASCg1···Cg1vi175.40163.40954.19050.9
Cg1···Cg2vii04.29243.84961.89926.3
RISZAVCg1···Cg1viii174.74303.81842.81336.4
Cg1···Cg1ix174.74302.97503.69451.2
Cg1···Cg1x04.45503.27903.01642.6
Cg2···Cg2xi05.56203.01594.67357.2
GOGLEWCg1/Cg3xii03.84953.38441.83428.5
Cg1···Cg3xiii03.96413.25822.25834.7
Cg2···Cg2iii05.39273.08744.42155.1
Cg4···Cg4xiv05.39273.08314.42455.1
AWARICCg1···Cg1xv04.37924.18681.28317.0
Cg2···Cg2xvi04.11983.44802.25533.2
Symmetry codes: (i) 2 - x, 1 - y, -z; (ii) -1 + x, y, z; (iii) 1 - x, 1 - y, 1 - z; (iv) 1 - x, 2 - y, 1 - z; (v) 1 - x, 2 - y, 1 - z; (vi) 1 - x, y, 1/2 - z; (vii) 1 - x, -y, -z; (viii) 1/2 - x, -y, -1/2 + z; (ix) 1/2 - x, -y, 1/2 + z; (x) 1 - x, -y, 2 - z; (xi) x, y, -1 + z; (xii) 1 - x, 1/2 + y, 1 - z; (xiii) 1 - x, 1/2 + y, 2 - z; (xiv) 1 - x, y, z; (xv) 2 - x, -y, -z; (xvi) 1 - x, -y, -1 - z.
 

Acknowledgements

Author contributions: Conceptualization, X-ray analysis and writing (manuscript editing and review), DRV, DFL, NLC, TSK, and ABM; synthesis, ABM, and TB; funding acquisition and supervision, NLC and TSK.

Funding information

Funding for this research was provided by: Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (grant No. PIP 2021-0765 to Teodoro S. Kaufman); Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) (grant No. PICT 2022-03-0139 to Natalia L. Calvo).

References

First citationAlsubaie, M., Aljohani, M., Erxleben, A. & McArdle, P. (2018). Cryst. Growth Des. 18, 3902–3912.  CSD CrossRef CAS Google Scholar
First citationBettinetti, G. & Giordano, F. (1988). Drug Dev. Ind. Pharm. 14, 431–449.  CrossRef CAS Google Scholar
First citationBruker (2019). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pty Ltd, Victoria, Australia. http://www. povray. org  Google Scholar
First citationCushion, M. T. & Walzer, P. D. (2009). Curr. Med. Chem. 16, 2514–2530.  CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGutiérrez, E. L., Godoy, A. A., Narda, G. E. & Ellena, J. (2020). CrystEngComm, 22, 6559–6568.  Google Scholar
First citationHabila, I., Saoudi, M., Berrah, F., Benmerad, B., Boudraa, M., Merazig, H. & Bouacida, S. (2021). J. Mol. Struct. 1244, 130903.  CSD CrossRef Google Scholar
First citationHunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525–5534.  CrossRef CAS Web of Science Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationKhalil, I., RØnn, A. M., Alifrangis, M., Gabar, H. A., Satti, G. M. H. & Bygbjerg, I. C. (2003). Am. J. Trop. Med. Hyg. 68, 586–589.  CrossRef PubMed CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMalathy, S., Nirmalram, J. S. & Muthiah, P. T. (2015). Acta Cryst. E71, 618–620.  CSD CrossRef IUCr Journals Google Scholar
First citationManyando, C., Njunju, E. M., D'Alessandro, U. & Van geertruyden, J. P. (2013). PLoS One, 8, e56916.  CrossRef PubMed Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMoura Oliveira, C. H. C. de, de Melo, C. & Doriguetto, A. C. (2019). New J. Chem. 43, 10250–10258.  Google Scholar
First citationPapich, M. G. (2021). Neostigmine. In Papich Handbook of Veterinary Drugs, 5th ed., pp. 648–650. Amsterdam: Elsevier.  Google Scholar
First citationPrice, C. P., Grzesiak, A. L. & Matzger, A. J. (2005). J. Am. Chem. Soc. 127, 5512–5517.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSubashini, A., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2007). Acta Cryst. E63, o4312–o4313.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSubashini, A., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2008). Acta Cryst. E64, m250–m251.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTakasuka, M. & Nakai, H. (2001). Vib. Spectrosc. 25, 197–204.  Web of Science CSD CrossRef CAS Google Scholar
First citationThompson, D. F., Thompson, G. D., Greenwood, R. B. & Trammel, H. L. (1987). Drug Intell. Clin. Pharm. 21, 590–593.  CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds