research communications
Synthesis, non-spherical structure
and Hirshfeld surface analysis of racemic 2,2′-diisobutoxy-1,1′-binaphthaleneaLaboratoire de Constitution et de Réaction de la Matière, Equipe Synthèse Organique, UFR de Sciences des Structures de la Matière et Technologie, Université, Félix Houphouët Boigny, 22 BP 582 Abidjan 22, Côte d'Ivoire, and bLaboratoire des Sciences de la Matière,de l'Environnement et de l'Energie Solaire, Equipe de Recherche de Cristallographie et Physique Moléculaire, Université Félix Houphouët-Boigny, 08 BP 582, Abidjan 22, Côte d'Ivoire
*Correspondence e-mail: eric.ziki@gmail.com
In the racemic title compound, C28H30O2, the naphthyl ring systems subtend a dihedral angle of 68.59 (1)° and the molecular conformation is consolidated by a pair of intramolecular C—H⋯π contacts. The crystal packing features a weak C—H⋯π contact and A Hirshfeld surface analysis of the reveals that the most significant contributions are from H⋯H (73.2%) and C⋯H/H⋯C (21.2%) contacts.
Keywords: 1–1′-binaphthyl derivative; non-spherical refinement; Hirshfeld surface analysis; crystal structure.
CCDC reference: 2384706
1. Chemical context
1-1′-Binaphthyl-based systems play an important role as ligands in the design of optically active materials (Tkachenko & Scheiner, 2019). They are also used for molecular recognition and asymmetric catalysis (Pu, 1998, 2024). The non-coplanar conformation of both naphthyl moieties coupled to their around the transannular are the basis of their optical activity (chirality). Furthermore, it has been shown that, when substitutions are carried out at the 2,2′-positions of the 1-1′-binaphthyl system, the chiral conformation of the resulting derivative is very stable (Hall & Turner, 1955; Dixon et al., 1971). Among these, 1-1′-bi-2-naphthol, C20H14O2, known as BINOL, with local C2 symmetry, has been used extensively in the production of chiral catalysts, dendrimers, molecular probes, metal–organic frameworks, covalent organic frameworks, etc. In addition, its hydroxyl functions can be functionalized to generate a wide range of 1-1′-binaphthyl derivatives. Many synthesis procedures of racemic BINOL have been developed using oxidizing agents such as Fe3+, Cu2+, Mn3+, Ti2+, Co3+, Ag2+ or Mo5+ (Waldvogel, 2002; Doussot et al., 2000; McKillop et al., 1980; Budniak et al., 2017) and pure enantiomers can be obtained from the their racemates via diastereoisomer derivatives and their resolution can be achieved by the formation of inclusion crystals with chiral host molecules (Hara et al., 2002). Another strategy involves the of racemates with copper complexes of chiral (Bringmann et al., 1990; Smrcina et al., 1992) or by enzymatic hydrolysis of (Miyamo et al., 1987; Kazlauskas et al., 1989). Optically pure enantiomers can also be synthesized directly and several methods have been reported for this purpose (Chow et al., 1996; Kawashima & Hirata, 1993; Wang et al., 1995).
The racemic title compound, C28H30O2 (I), is a 1-1′-binaphthyl derivative obtained by the functionalization of BINOL at the hydroxyl positions. Herein, we report its synthesis, spectroscopic characterization and molecular geometry, determined from single-crystal X-ray using a non-standard aspherical which combines quantum mechanical calculations and data from diffraction experiments into a single integrated tool (Jayatilaka & Dittrich, 2008; Capelli et al., 2014; Kleemiss et al., 2021). A Hirshfeld surface analysis (Spackman & Byrom, 1997; McKinnon et al., 1998; McKinnon et al., 2004) of the title compound was also performed.
2. Structural commentary
Compound (I) crystallizes in P21/c as a racemate (Fig. 1). The molecular structure comprises two β-naphthyl isobutyl ether moieties linked by a C1—C1′ whose length [1.4867 (3) Å] is in good agreement with the values reported for the same type of bond in related compounds (Allen & Bruno, 2010). Both ether units adopt extended conformations [C2—O1—C11—C12 = −175.59 (2)°; C2′—O1′—C11′—C12′ = −175.12 (2)°] and the C14H15O β-naphthyl isobutyl ether moieties exhibit very similar structural parameters with an alignment r.m.s.d. value of 0.023 Å (Fig. 2). The aromatic C—C bonds of the naphthyl ring systems have values in the same range as those obtained by Rivera et al. (2017). The planes of the naphthyl ring systems C1–C10 and C1′–C10′ (r.m.s deviations of 0.013 Å and 0.037 Å, respectively) form a twist angle of 68.59 (1)° compared to 68.52 (5)° in BINOL (ref, date). The Car—O and Calkyl—O ether bond lengths in (I) have comparable values to those found in related structures (Allen & Bruno, 2010). The molecular conformation of (I) is consolidated (Table 1) by intramolecular C13′—H13E⋯Cg1 and C13—H13A⋯Cg2 contacts, where Cg1 and Cg2 are the centroids of the C5–C10 and C5′–C10′ rings, respectively (Fig. 3, Table 1).
3. Supramolecular features
Although the molecule has two potential hydrogen-bond acceptor sites (atoms O1 and O2), no hydrogen bonding was found in this PLATON (Spek, 2020) reveals a C13—H13C⋯Cg2(x, − y, + z) (Table 1). In addition, the packing displays several C—H⋯H—C intermolecular contacts ranging from 2.33 to 2.53 Å. Matta (2006) reported that these closed-shell intermolecular interactions exhibit energetic stability, potentials typical of bound systems and stable equilibrium geometries.
Indeed, the minimization of steric effects within the molecule gives rise to a structural geometry whose intrinsic molecular and environmental parameters in the crystal would prevent the formation of hydrogen bonding. However, analysis using4. Database survey
A search of the Cambridge Structural Database (CSD version 5.45; Groom et al., 2016) for compounds containing the 1-1′-binaphthyl system with an ether moiety linked at the 2,2′ positions gave two hits [CSD refcodes PONTAO (Thoss et al., 2009) and PONTAO01 (Maria et al., 2017)], in which the asymmetric units contain two molecules.
5. Hirshfeld surface analysis
In order to quantify intermolecular interactions revealed by the PLATON analysis, Hirshfeld surface (HS) analysis was performed using CrystalExplorer21.5 (Spackman et al., 2021). Fig. 4 shows the three-dimensional HS of (I) mapped over dnorm on a scale ranging from −0.025 to 1.51 a.u. where the colour highlights the different intermolecular contacts: blue, white and red regions indicate contacts whose distances are almost equal, longer and shorter, respectively, than the sum of van der Waals radii. Fig. 5 displays the two-dimensional fingerprint plots of (di, de) points from all contacts contributing to the HS for all atoms. The H⋯H contacts are the most significant intermolecular interactions and contribute 73.2% whilst C⋯H/H⋯C contacts, which correspond to H⋯π stacking interactions, contribute 21.2%. As expected, the H⋯O contacts make a very weak contribution to the crystal packing at 3.6% and the other contacts C⋯C (1.9%) and C⋯O/O⋯C (0.1%) have a negligible contribution.
6. Synthesis and crystallization
BINOL was produced according to the method described by McKillop et al. (1980). In a 50 ml flask equipped with a magnetic stirrer, 1 eq. (0.70 mmol, 0.20 g) of BINOL was dissolved in 10 ml of ethanol and 10 eq of sodium hydroxide were added. The mixture was refluxed for 1 h and 21 eq. (14.70 mmol, 1.58 ml) of 1-bromo-2-methylpropane were added, then heating was maintained for 24 h. Following CCM, at the end of the reaction, several extractions with ethyl acetate were performed and the organic phase was dried with NaSO4, then concentrated under reduced pressure. The crude product was purified on a chromatographic silica gel column using hexane/ethyl acetate 90/10 as A chick yellow powder (60 mg, 21%) was obtained. Single crystals of (I) suitable for X-ray were grown by slow evaporation from the mixed solvents of hexane and ethyl acetate at room temperature.
Chick yellow powder, yield = 47%, m.p = 387–389 K. 1H NMR (500 MHz, CDCl3) δ (ppm) 7.88 (d, J = 9.0 Hz, 2H, HAr), 7.81 (dt, J = 8.2, 1.1 Hz, 2H, HAr), 7.36 (d, J = 9.0 Hz, 2H, HAr), 7.26 (ddd, J = 8.1, 5.8, 2.1 Hz, 2H, HAr), 7.21–7.13 (m, 4H, HAr), 3.67 (qd, J = 8.8, 6.4 Hz, 4H, –CH2–), 1.67 [dh, J = 13.2, 6.7 Hz, 2H, –CH–(CH3)2], 0.56 [d, J = 6.7 Hz, 6H, (CH3) –CH–], 0.54 [d, J = 6.7 Hz, 6H, (CH3)–CH–]. 13C NMR (126 MHz, CDCl3) δ (ppm) 154.66, 134.44, 129.30, 129.09, 127.85, 126.10, 125.65, 123.42, 120.71, 115.62, 76.06, 28.45, 18.98.
7. details
The was refined using SHELXL (Sheldrick, 2015b) with the standard independent atom model (IAM). Subsequently, this structural model was used as a starting point in a non-spherical procedure. The computational wavefunctions were determined with the ORCA program (Neese et al., 2020) using the DFT method at the PBE0/def2-TZVP level of theory. The non-spherical atomic form factors were calculated using NoSpherA2 (Kleemiss et al., 2021). Final refinements were performed with OLEX2.refine (Bourhis et al., 2015). All atoms including H atoms were refined anisotropically. Crystal data, data collection and structure details for the last least-squares are summarized in Table 2. This process leads to improved precision of the geometrical parameters and more physically realistic C—H separations. For example, the refined C2—O1 bond length obtained here with the non-spherical model is 1.3622 (3) Å compared to 1.3652 (5) Å with IAM and the refined C2—O1—C11 bond angles are 118.315 (17)° (non-spherical) and 118.13 (3)° (IAM). For the background to non-spherical see Sanjuan-Szklarz et al. (2020) and Jha et al. (2023).
of (I)Supporting information
CCDC reference: 2384706
https://doi.org/10.1107/S2056989024009101/hb8104sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024009101/hb8104Isup2.hkl
C28H30O2 | Dx = 1.204 Mg m−3 |
Mr = 398.55 | Melting point: 389 K |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 11.3889 (8) Å | Cell parameters from 17714 reflections |
b = 15.6537 (11) Å | θ = 3.0–44.7° |
c = 12.5193 (9) Å | µ = 0.07 mm−1 |
β = 99.920 (2)° | T = 100 K |
V = 2198.6 (3) Å3 | Prism, colourless |
Z = 4 | 0.48 × 0.31 × 0.23 mm |
F(000) = 856.478 |
Bruker D8 Venture diffractometer | 17714 independent reflections |
Radiation source: fine-focus sealed tube | 14265 reflections with I ≥ 2u(I) |
Mirror monochromator | Rint = 0.038 |
φ and ω scan | θmax = 44.7°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −22→22 |
Tmin = 0.000, Tmax = 0.000 | k = −30→30 |
215936 measured reflections | l = −24→24 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.023 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.050 | All H-atom parameters refined |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0137P)2 + 0.0711P] where P = (Fo2 + 2Fc2)/3 |
17714 reflections | (Δ/σ)max = 0.002 |
541 parameters | Δρmax = 0.20 e Å−3 |
0 restraints | Δρmin = −0.17 e Å−3 |
0 constraints |
x | y | z | Uiso*/Ueq | ||
O1' | 0.776199 (14) | 0.498356 (11) | 0.341745 (13) | 0.01666 (3) | |
O1 | 0.734447 (14) | 0.575536 (12) | 0.638617 (13) | 0.01737 (3) | |
C13' | 0.59639 (2) | 0.44710 (2) | 0.15859 (2) | 0.02417 (4) | |
C12' | 0.70148 (2) | 0.391771 (15) | 0.210094 (18) | 0.01879 (4) | |
C11' | 0.80870 (2) | 0.444976 (15) | 0.259094 (18) | 0.01713 (3) | |
C2' | 0.857985 (17) | 0.555997 (14) | 0.390229 (16) | 0.01385 (3) | |
C1' | 0.816020 (16) | 0.618843 (13) | 0.452436 (15) | 0.01271 (3) | |
C1 | 0.686874 (16) | 0.621349 (13) | 0.458654 (16) | 0.01309 (3) | |
C2 | 0.648288 (17) | 0.598891 (14) | 0.554230 (17) | 0.01449 (3) | |
C11 | 0.70253 (2) | 0.567336 (16) | 0.743665 (18) | 0.01806 (4) | |
C12 | 0.81506 (2) | 0.547883 (16) | 0.824239 (18) | 0.01962 (4) | |
C13 | 0.90482 (2) | 0.62078 (2) | 0.83150 (2) | 0.02380 (4) | |
C14 | 0.78109 (3) | 0.52831 (2) | 0.93444 (2) | 0.03137 (6) | |
C3 | 0.525397 (19) | 0.598393 (16) | 0.56113 (2) | 0.01904 (4) | |
C4 | 0.442362 (19) | 0.617508 (17) | 0.47119 (2) | 0.02111 (4) | |
C10 | 0.477288 (18) | 0.639919 (15) | 0.37163 (2) | 0.01831 (4) | |
C9 | 0.601102 (18) | 0.643888 (14) | 0.366043 (17) | 0.01499 (3) | |
C14' | 0.74018 (3) | 0.331031 (18) | 0.12705 (2) | 0.02435 (5) | |
C3' | 0.980012 (19) | 0.551723 (16) | 0.380747 (18) | 0.01786 (3) | |
C4' | 1.059045 (19) | 0.609785 (17) | 0.43474 (2) | 0.01970 (4) | |
C10' | 1.020820 (18) | 0.674390 (15) | 0.500151 (18) | 0.01737 (4) | |
C5' | 1.10225 (2) | 0.733859 (18) | 0.55771 (2) | 0.02357 (5) | |
C6' | 1.06387 (3) | 0.796215 (18) | 0.62076 (2) | 0.02631 (5) | |
C7' | 0.94151 (3) | 0.801770 (17) | 0.62857 (2) | 0.02385 (5) | |
C8' | 0.86073 (2) | 0.744848 (15) | 0.574119 (19) | 0.01854 (4) | |
C9' | 0.897770 (17) | 0.679042 (14) | 0.508850 (16) | 0.01448 (3) | |
C8 | 0.63491 (2) | 0.670193 (16) | 0.266644 (19) | 0.01898 (4) | |
C7 | 0.55041 (2) | 0.688558 (18) | 0.17723 (2) | 0.02395 (5) | |
C6 | 0.42742 (2) | 0.681410 (19) | 0.18200 (2) | 0.02650 (5) | |
C5 | 0.39219 (2) | 0.658060 (18) | 0.27738 (2) | 0.02444 (5) | |
H13D | 0.6189 (4) | 0.4843 (3) | 0.0920 (4) | 0.0446 (13) | |
H13E | 0.5691 (4) | 0.4921 (3) | 0.2162 (4) | 0.0384 (12) | |
H13F | 0.5196 (4) | 0.4074 (4) | 0.1267 (4) | 0.0510 (15) | |
H12' | 0.6746 (4) | 0.3538 (3) | 0.2761 (3) | 0.0326 (11) | |
H11C | 0.8815 (4) | 0.4033 (3) | 0.2933 (4) | 0.0337 (11) | |
H11D | 0.8373 (4) | 0.4850 (3) | 0.1965 (3) | 0.0306 (10) | |
H11A | 0.6380 (4) | 0.5162 (3) | 0.7433 (4) | 0.0360 (11) | |
H11B | 0.6621 (4) | 0.6265 (3) | 0.7650 (3) | 0.0355 (11) | |
H12 | 0.8545 (4) | 0.4902 (3) | 0.7947 (4) | 0.0343 (11) | |
H13A | 0.9295 (4) | 0.6347 (3) | 0.7529 (4) | 0.0387 (12) | |
H13B | 0.9853 (5) | 0.6062 (4) | 0.8885 (4) | 0.0524 (15) | |
H13C | 0.8669 (5) | 0.6788 (3) | 0.8581 (4) | 0.0472 (14) | |
H14A | 0.7414 (5) | 0.5840 (4) | 0.9646 (4) | 0.0519 (15) | |
H14B | 0.8591 (5) | 0.5115 (4) | 0.9937 (4) | 0.0610 (17) | |
H14C | 0.7172 (5) | 0.4763 (4) | 0.9293 (4) | 0.0532 (15) | |
H3 | 0.4960 (4) | 0.5800 (3) | 0.6352 (4) | 0.0368 (12) | |
H4 | 0.3491 (4) | 0.6135 (3) | 0.4759 (4) | 0.0402 (12) | |
H14D | 0.6658 (4) | 0.2919 (3) | 0.0891 (4) | 0.0437 (13) | |
H14E | 0.8111 (5) | 0.2894 (3) | 0.1636 (4) | 0.0430 (13) | |
H14F | 0.7714 (5) | 0.3666 (3) | 0.0630 (4) | 0.0430 (13) | |
H3' | 1.0126 (4) | 0.5020 (3) | 0.3349 (4) | 0.0362 (11) | |
H4' | 1.1523 (4) | 0.6049 (3) | 0.4296 (4) | 0.0378 (12) | |
H5' | 1.1953 (4) | 0.7284 (3) | 0.5514 (4) | 0.0402 (12) | |
H6' | 1.1258 (4) | 0.8434 (3) | 0.6632 (4) | 0.0470 (14) | |
H7' | 0.9117 (4) | 0.8505 (3) | 0.6778 (4) | 0.0439 (13) | |
H8' | 0.7674 (4) | 0.7488 (3) | 0.5805 (4) | 0.0316 (11) | |
H8 | 0.7285 (4) | 0.6756 (3) | 0.2629 (3) | 0.0335 (11) | |
H7 | 0.5776 (4) | 0.7082 (3) | 0.1026 (4) | 0.0428 (13) | |
H6 | 0.3615 (4) | 0.6941 (3) | 0.1094 (4) | 0.0448 (13) | |
H5 | 0.2992 (4) | 0.6533 (3) | 0.2823 (4) | 0.0424 (13) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1' | 0.01473 (6) | 0.01960 (7) | 0.01643 (6) | −0.00056 (5) | 0.00487 (5) | −0.00336 (5) |
O1 | 0.01438 (6) | 0.02456 (8) | 0.01393 (6) | 0.00018 (5) | 0.00453 (4) | 0.00063 (5) |
C13' | 0.02086 (10) | 0.03031 (12) | 0.02154 (10) | −0.00184 (9) | 0.00422 (8) | −0.00185 (9) |
C12' | 0.02491 (9) | 0.01793 (9) | 0.01485 (7) | −0.00341 (7) | 0.00716 (7) | −0.00102 (6) |
C11' | 0.01920 (8) | 0.01764 (8) | 0.01564 (7) | 0.00106 (7) | 0.00607 (6) | −0.00095 (6) |
C2' | 0.01112 (6) | 0.01761 (8) | 0.01319 (6) | 0.00082 (5) | 0.00311 (5) | 0.00077 (6) |
C1' | 0.01002 (6) | 0.01598 (7) | 0.01205 (6) | −0.00073 (5) | 0.00165 (5) | 0.00026 (5) |
C1 | 0.00996 (6) | 0.01569 (7) | 0.01349 (6) | −0.00009 (5) | 0.00166 (5) | −0.00110 (5) |
C2 | 0.01134 (6) | 0.01750 (8) | 0.01524 (7) | −0.00087 (6) | 0.00397 (5) | −0.00182 (6) |
C11 | 0.01926 (8) | 0.02077 (9) | 0.01563 (7) | −0.00217 (7) | 0.00720 (6) | 0.00007 (6) |
C12 | 0.02480 (10) | 0.02033 (9) | 0.01447 (7) | −0.00012 (7) | 0.00543 (7) | 0.00196 (7) |
C13 | 0.02319 (10) | 0.02987 (12) | 0.01826 (9) | −0.00493 (9) | 0.00332 (8) | 0.00032 (8) |
C14 | 0.04086 (16) | 0.03786 (16) | 0.01659 (9) | −0.00750 (13) | 0.00833 (10) | 0.00571 (10) |
C3 | 0.01227 (7) | 0.02384 (10) | 0.02220 (9) | −0.00155 (6) | 0.00635 (6) | −0.00351 (7) |
C4 | 0.01030 (7) | 0.02574 (10) | 0.02732 (10) | −0.00002 (7) | 0.00334 (7) | −0.00593 (8) |
C10 | 0.01116 (7) | 0.01935 (9) | 0.02290 (9) | 0.00211 (6) | −0.00134 (6) | −0.00484 (7) |
C9 | 0.01172 (6) | 0.01579 (8) | 0.01639 (7) | 0.00122 (5) | −0.00054 (5) | −0.00140 (6) |
C14' | 0.03660 (13) | 0.01943 (10) | 0.01878 (9) | −0.00291 (9) | 0.00972 (9) | −0.00368 (8) |
C3' | 0.01218 (7) | 0.02384 (10) | 0.01839 (8) | 0.00213 (6) | 0.00501 (6) | 0.00207 (7) |
C4' | 0.01049 (7) | 0.02758 (11) | 0.02121 (9) | −0.00055 (7) | 0.00324 (6) | 0.00521 (8) |
C10' | 0.01166 (7) | 0.02219 (9) | 0.01729 (8) | −0.00383 (6) | −0.00025 (6) | 0.00516 (7) |
C5' | 0.01586 (8) | 0.02704 (11) | 0.02524 (10) | −0.00856 (8) | −0.00369 (7) | 0.00664 (8) |
C6' | 0.02446 (11) | 0.02484 (11) | 0.02592 (11) | −0.01121 (9) | −0.00610 (8) | 0.00256 (9) |
C7' | 0.02753 (11) | 0.02049 (10) | 0.02134 (9) | −0.00791 (8) | −0.00194 (8) | −0.00221 (8) |
C8' | 0.01907 (8) | 0.01821 (9) | 0.01760 (8) | −0.00435 (7) | 0.00107 (6) | −0.00208 (6) |
C9' | 0.01218 (6) | 0.01710 (8) | 0.01350 (7) | −0.00279 (6) | 0.00037 (5) | 0.00179 (6) |
C8 | 0.01749 (8) | 0.02077 (9) | 0.01702 (8) | 0.00143 (7) | −0.00166 (6) | 0.00284 (7) |
C7 | 0.02476 (10) | 0.02396 (10) | 0.01983 (9) | 0.00367 (8) | −0.00547 (8) | 0.00346 (8) |
C6 | 0.02236 (10) | 0.02659 (11) | 0.02585 (11) | 0.00696 (8) | −0.00914 (8) | −0.00190 (9) |
C5 | 0.01440 (8) | 0.02673 (11) | 0.02878 (11) | 0.00514 (7) | −0.00592 (8) | −0.00621 (9) |
H13D | 0.043 (3) | 0.049 (3) | 0.044 (3) | 0.013 (3) | 0.012 (2) | 0.014 (3) |
H13E | 0.035 (3) | 0.044 (3) | 0.038 (3) | 0.003 (2) | 0.009 (2) | −0.004 (2) |
H13F | 0.035 (3) | 0.061 (4) | 0.055 (4) | −0.010 (3) | 0.000 (3) | −0.014 (3) |
H12' | 0.046 (3) | 0.031 (3) | 0.023 (2) | −0.009 (2) | 0.012 (2) | −0.0006 (19) |
H11C | 0.033 (3) | 0.035 (3) | 0.034 (3) | 0.006 (2) | 0.006 (2) | −0.005 (2) |
H11D | 0.034 (3) | 0.033 (2) | 0.028 (2) | −0.008 (2) | 0.012 (2) | −0.003 (2) |
H11A | 0.038 (3) | 0.042 (3) | 0.030 (3) | −0.012 (2) | 0.011 (2) | 0.000 (2) |
H11B | 0.040 (3) | 0.041 (3) | 0.027 (2) | 0.008 (2) | 0.010 (2) | −0.002 (2) |
H12 | 0.046 (3) | 0.029 (3) | 0.028 (3) | 0.006 (2) | 0.006 (2) | 0.001 (2) |
H13A | 0.039 (3) | 0.049 (3) | 0.030 (3) | −0.009 (2) | 0.011 (2) | 0.003 (2) |
H13B | 0.041 (3) | 0.072 (4) | 0.039 (3) | −0.012 (3) | −0.008 (2) | 0.012 (3) |
H13C | 0.047 (3) | 0.042 (3) | 0.054 (3) | −0.012 (3) | 0.014 (3) | −0.011 (3) |
H14A | 0.063 (4) | 0.065 (4) | 0.032 (3) | −0.008 (3) | 0.021 (3) | −0.002 (3) |
H14B | 0.061 (4) | 0.093 (5) | 0.025 (3) | −0.006 (4) | −0.001 (3) | 0.018 (3) |
H14C | 0.069 (4) | 0.060 (4) | 0.034 (3) | −0.025 (3) | 0.016 (3) | 0.011 (3) |
H3 | 0.023 (2) | 0.053 (3) | 0.037 (3) | −0.002 (2) | 0.011 (2) | −0.001 (2) |
H4 | 0.022 (2) | 0.056 (3) | 0.044 (3) | 0.004 (2) | 0.007 (2) | −0.006 (3) |
H14D | 0.051 (3) | 0.046 (3) | 0.037 (3) | −0.014 (3) | 0.017 (2) | −0.019 (2) |
H14E | 0.060 (3) | 0.034 (3) | 0.037 (3) | 0.007 (3) | 0.014 (3) | −0.004 (2) |
H14F | 0.061 (4) | 0.041 (3) | 0.032 (3) | −0.005 (3) | 0.023 (3) | −0.004 (2) |
H3' | 0.026 (2) | 0.040 (3) | 0.045 (3) | 0.003 (2) | 0.014 (2) | −0.002 (2) |
H4' | 0.023 (2) | 0.047 (3) | 0.043 (3) | 0.000 (2) | 0.006 (2) | 0.002 (2) |
H5' | 0.024 (2) | 0.042 (3) | 0.052 (3) | −0.013 (2) | 0.001 (2) | 0.003 (3) |
H6' | 0.033 (3) | 0.057 (3) | 0.045 (3) | −0.016 (3) | −0.008 (2) | −0.012 (3) |
H7' | 0.039 (3) | 0.043 (3) | 0.048 (3) | −0.013 (2) | 0.003 (2) | −0.009 (3) |
H8' | 0.032 (2) | 0.027 (2) | 0.036 (3) | −0.002 (2) | 0.005 (2) | −0.012 (2) |
H8 | 0.031 (2) | 0.045 (3) | 0.024 (2) | 0.004 (2) | 0.0031 (19) | 0.013 (2) |
H7 | 0.045 (3) | 0.048 (3) | 0.030 (3) | 0.006 (3) | −0.007 (2) | 0.011 (2) |
H6 | 0.032 (3) | 0.050 (3) | 0.046 (3) | 0.011 (2) | −0.011 (2) | 0.008 (3) |
H5 | 0.026 (3) | 0.056 (3) | 0.041 (3) | 0.003 (2) | −0.005 (2) | −0.006 (3) |
O1'—C11' | 1.4276 (3) | C3—C4 | 1.3729 (4) |
O1'—C2' | 1.3621 (3) | C3—H3 | 1.077 (4) |
O1—C2 | 1.3622 (3) | C4—C10 | 1.4162 (4) |
O1—C11 | 1.4293 (3) | C4—H4 | 1.075 (4) |
C13'—C12' | 1.5272 (4) | C10—C9 | 1.4252 (3) |
C13'—H13D | 1.083 (5) | C10—C5 | 1.4206 (3) |
C13'—H13E | 1.091 (5) | C9—C8 | 1.4253 (3) |
C13'—H13F | 1.091 (5) | C14'—H14D | 1.086 (5) |
C12'—C11' | 1.5176 (3) | C14'—H14E | 1.076 (5) |
C12'—C14' | 1.5287 (4) | C14'—H14F | 1.086 (5) |
C12'—H12' | 1.103 (4) | C3'—C4' | 1.3724 (4) |
C11'—H11C | 1.084 (4) | C3'—H3' | 1.071 (4) |
C11'—H11D | 1.096 (4) | C4'—C10' | 1.4162 (4) |
C2'—C1' | 1.3896 (3) | C4'—H4' | 1.078 (4) |
C2'—C3' | 1.4166 (3) | C10'—C5' | 1.4197 (3) |
C1'—C1 | 1.4867 (3) | C10'—C9' | 1.4261 (3) |
C1'—C9' | 1.4238 (3) | C5'—C6' | 1.3733 (5) |
C1—C2 | 1.3891 (3) | C5'—H5' | 1.080 (4) |
C1—C9 | 1.4258 (3) | C6'—C7' | 1.4163 (4) |
C2—C3 | 1.4170 (3) | C6'—H6' | 1.093 (4) |
C11—C12 | 1.5190 (4) | C7'—C8' | 1.3744 (3) |
C11—H11A | 1.086 (4) | C7'—H7' | 1.073 (5) |
C11—H11B | 1.088 (4) | C8'—C9' | 1.4232 (3) |
C12—C13 | 1.5243 (4) | C8'—H8' | 1.081 (4) |
C12—C14 | 1.5268 (4) | C8—C7 | 1.3750 (3) |
C12—H12 | 1.101 (4) | C8—H8 | 1.078 (4) |
C13—H13A | 1.091 (4) | C7—C6 | 1.4167 (4) |
C13—H13B | 1.085 (5) | C7—H7 | 1.078 (5) |
C13—H13C | 1.083 (5) | C6—C5 | 1.3732 (5) |
C14—H14A | 1.079 (6) | C6—H6 | 1.093 (4) |
C14—H14B | 1.088 (5) | C5—H5 | 1.074 (5) |
C14—H14C | 1.086 (5) | ||
C2'—O1'—C11' | 117.900 (17) | H14C—C14—H14B | 108.6 (4) |
C11—O1—C2 | 118.315 (17) | C4—C3—C2 | 119.79 (2) |
H13D—C13'—C12' | 110.9 (3) | H3—C3—C2 | 120.7 (2) |
H13E—C13'—C12' | 112.2 (3) | H3—C3—C4 | 119.4 (2) |
H13E—C13'—H13D | 107.1 (4) | C10—C4—C3 | 121.17 (2) |
H13F—C13'—C12' | 110.6 (3) | H4—C4—C3 | 119.3 (3) |
H13F—C13'—H13D | 107.8 (4) | H4—C4—C10 | 119.5 (3) |
H13F—C13'—H13E | 107.9 (4) | C9—C10—C4 | 118.97 (2) |
C11'—C12'—C13' | 112.14 (2) | C5—C10—C4 | 121.71 (2) |
C14'—C12'—C13' | 111.25 (2) | C5—C10—C9 | 119.32 (2) |
C14'—C12'—C11' | 108.06 (2) | C10—C9—C1 | 119.63 (2) |
H12'—C12'—C13' | 108.9 (2) | C8—C9—C1 | 122.086 (19) |
H12'—C12'—C11' | 107.5 (2) | C8—C9—C10 | 118.285 (19) |
H12'—C12'—C14' | 108.9 (2) | H14D—C14'—C12' | 110.7 (3) |
C12'—C11'—O1' | 108.854 (18) | H14E—C14'—C12' | 111.7 (2) |
H11C—C11'—O1' | 110.1 (2) | H14E—C14'—H14D | 108.4 (4) |
H11C—C11'—C12' | 109.6 (2) | H14F—C14'—C12' | 110.7 (3) |
H11D—C11'—O1' | 109.3 (2) | H14F—C14'—H14D | 107.2 (4) |
H11D—C11'—C12' | 110.0 (2) | H14F—C14'—H14E | 107.9 (4) |
H11D—C11'—H11C | 109.0 (3) | C4'—C3'—C2' | 119.81 (2) |
C1'—C2'—O1' | 116.352 (17) | H3'—C3'—C2' | 121.0 (2) |
C3'—C2'—O1' | 122.466 (19) | H3'—C3'—C4' | 119.2 (2) |
C3'—C2'—C1' | 121.164 (19) | C10'—C4'—C3' | 121.12 (2) |
C1—C1'—C2' | 119.137 (17) | H4'—C4'—C3' | 119.5 (3) |
C9'—C1'—C2' | 119.204 (18) | H4'—C4'—C10' | 119.3 (3) |
C9'—C1'—C1 | 121.659 (18) | C5'—C10'—C4' | 121.51 (2) |
C2—C1—C1' | 120.070 (17) | C9'—C10'—C4' | 118.988 (19) |
C9—C1—C1' | 120.620 (18) | C9'—C10'—C5' | 119.50 (2) |
C9—C1—C2 | 119.275 (18) | C6'—C5'—C10' | 120.86 (2) |
C1—C2—O1 | 116.325 (17) | H5'—C5'—C10' | 118.3 (3) |
C3—C2—O1 | 122.572 (19) | H5'—C5'—C6' | 120.8 (3) |
C3—C2—C1 | 121.080 (19) | C7'—C6'—C5' | 119.85 (2) |
C12—C11—O1 | 108.047 (18) | H6'—C6'—C5' | 121.1 (3) |
H11A—C11—O1 | 110.0 (2) | H6'—C6'—C7' | 119.0 (3) |
H11A—C11—C12 | 110.3 (2) | C8'—C7'—C6' | 120.57 (3) |
H11B—C11—O1 | 109.6 (2) | H7'—C7'—C6' | 119.8 (2) |
H11B—C11—C12 | 110.6 (2) | H7'—C7'—C8' | 119.7 (3) |
H11B—C11—H11A | 108.3 (3) | C9'—C8'—C7' | 120.97 (2) |
C13—C12—C11 | 111.71 (2) | H8'—C8'—C7' | 120.6 (2) |
C14—C12—C11 | 108.91 (2) | H8'—C8'—C9' | 118.4 (2) |
C14—C12—C13 | 111.60 (2) | C10'—C9'—C1' | 119.71 (2) |
H12—C12—C11 | 106.7 (2) | C8'—C9'—C1' | 122.050 (19) |
H12—C12—C13 | 109.0 (2) | C8'—C9'—C10' | 118.242 (19) |
H12—C12—C14 | 108.7 (2) | C7—C8—C9 | 120.98 (2) |
H13A—C13—C12 | 111.7 (3) | H8—C8—C9 | 118.6 (2) |
H13B—C13—C12 | 111.3 (3) | H8—C8—C7 | 120.4 (2) |
H13B—C13—H13A | 108.4 (4) | C6—C7—C8 | 120.51 (3) |
H13C—C13—C12 | 110.4 (3) | H7—C7—C8 | 120.0 (2) |
H13C—C13—H13A | 106.7 (4) | H7—C7—C6 | 119.5 (2) |
H13C—C13—H13B | 108.1 (4) | C5—C6—C7 | 119.79 (2) |
H14A—C14—C12 | 109.9 (3) | H6—C6—C7 | 119.6 (3) |
H14B—C14—C12 | 111.1 (3) | H6—C6—C5 | 120.6 (3) |
H14B—C14—H14A | 107.3 (4) | C6—C5—C10 | 121.04 (2) |
H14C—C14—C12 | 111.6 (3) | H5—C5—C10 | 118.5 (3) |
H14C—C14—H14A | 108.0 (4) | H5—C5—C6 | 120.5 (3) |
O1'—C11'—C12'—C13' | 60.63 (2) | C1—C2—C3—C4 | 2.26 (3) |
O1'—C11'—C12'—C14' | −176.40 (2) | C1—C9—C10—C4 | 3.02 (2) |
O1'—C2'—C1'—C1 | −2.31 (2) | C1—C9—C10—C5 | −176.67 (2) |
O1'—C2'—C1'—C9' | 177.507 (17) | C1—C9—C8—C7 | 177.56 (2) |
O1'—C2'—C3'—C4' | −177.60 (2) | C2—C3—C4—C10 | −1.58 (3) |
O1—C2—C1—C1' | 0.17 (2) | C3—C4—C10—C9 | −1.05 (3) |
O1—C2—C1—C9 | 178.054 (19) | C3—C4—C10—C5 | 178.64 (2) |
O1—C2—C3—C4 | −175.95 (2) | C4—C10—C9—C8 | −177.27 (2) |
O1—C11—C12—C13 | 62.99 (2) | C4—C10—C5—C6 | 178.65 (3) |
O1—C11—C12—C14 | −173.29 (2) | C10—C9—C8—C7 | −2.14 (3) |
C2'—C1'—C1—C2 | 109.31 (2) | C10—C5—C6—C7 | −0.70 (3) |
C2'—C1'—C1—C9 | −68.54 (2) | C9—C8—C7—C6 | −0.21 (3) |
C2'—C1'—C9'—C10' | 0.44 (2) | C3'—C4'—C10'—C5' | 178.96 (2) |
C2'—C1'—C9'—C8' | −179.856 (19) | C3'—C4'—C10'—C9' | −0.49 (3) |
C2'—C3'—C4'—C10' | −0.05 (3) | C4'—C10'—C5'—C6' | 179.95 (2) |
C1'—C1—C2—C3 | −178.14 (2) | C4'—C10'—C9'—C8' | −179.43 (2) |
C1'—C1—C9—C10 | 175.502 (19) | C10'—C5'—C6'—C7' | −0.19 (3) |
C1'—C1—C9—C8 | −4.19 (2) | C10'—C9'—C8'—C7' | −0.86 (2) |
C1'—C9'—C10'—C4' | 0.29 (2) | C5'—C6'—C7'—C8' | 0.46 (3) |
C1'—C9'—C10'—C5' | −179.17 (2) | C6'—C7'—C8'—C9' | 0.08 (3) |
C1'—C9'—C8'—C7' | 179.43 (2) | C8—C7—C6—C5 | 1.66 (3) |
Cg1 and Cg2 are the centroids of the C5–C10 and C5'–C10' rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13A···Cg2 | 1.091 (4) | 2.998 (5) | 4.0338 (4) | 158.7 (3) |
C13′—H13E···Cg1 | 1.091 (5) | 2.877 (5) | 3.8615 (4) | 150.1 (3) |
C13—H13C···Cg2i | 1.083 (5) | 2.987 (5) | 3.6455 (4) | 119.6 (3) |
Symmetry code: (i) x, −y+3/2, z+1/2. |
Acknowledgements
The authors thank the PMD2X X-ray diffraction facility (https://crm2.univ-lorraine.fr/lab/fr/services/pmd2x) of the Institut Jean Barriol, Université de Lorraine, for X-ray diffraction measurements and the AFRAMED project. CCDC is also thanked for providing access to the Cambridge Structural Database through the FAIRE program. The authors are very grateful to UNESCO, CNRS and the IUCr for their support to the AFRAMED project. The authors also thank PASRES for funding Coulibaly's thesis project. The authors pay a fitting tribute to Professor Ané Adjou of the Félix Houphouët-Boigny University, Supervisor of Coulibaly's PhD, who passed away in October 2023 before the thesis defence.
Funding information
Funding for this research was provided by: PASRES, a strategic support program for scientific research in Ivory Coast (studentship No. 235/1st session of 2020 to Pénayori Marie-Aimée Coulibaly).
References
Allen, F. H. & Bruno, I. J. (2010). Acta Cryst. B66, 380–386. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Bringmann, G., Walter, R. & Weirich, R. (1990). Angew. Chem. Int. Ed. Engl. 9, 977–991. CrossRef Google Scholar
Bruker (2019). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Budniak, A. K., Masny, M., Prezelj, K., Grzeszkiewicz, M., Gawraczyński, J., Dobrzycki, Ł., Cyrański, M. K., Koźmiński, W., Mazej, Z., Fijałkowski, K. J., Grochala, W. & Leszczyński, P. J. (2017). New J. Chem. 41, 10742–10749. CSD CrossRef CAS Google Scholar
Capelli, S. C., Bürgi, H.-B., Dittrich, B., Grabowsky, S. & Jayatilaka, D. (2014). IUCrJ, 1, 361–379. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Chow, H. F., Wan, C. W. & Ng, M. K. (1996). J. Org. Chem. 61, 8712–8714. CrossRef CAS Google Scholar
Dixon, W., Harris, M. M. & Mazengo, R. Z. (1971). J. Chem. Soc. B, 775–778. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Doussot, J., Guy, A. & Ferroud, C. (2000). Tetrahredon Lett. 41, 2545–2547. CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hall, D. M., Turner, E. E. & Howlett, K. E. (1955). J. Chem. Soc. 1242–1251. Google Scholar
Hara, T., Kawashima, H., Ishigooka, M., Kashiyama, M., Takanashi, S. & Hosokawa, Y. (2002). Hepatogastroenterology, 49, 561–563. PubMed Google Scholar
Jayatilaka, D. & Dittrich, B. (2008). Acta Cryst. A64, 383–393. Web of Science CrossRef CAS IUCr Journals Google Scholar
Jha, K. K., Kleemiss, F., Chodkiewicz, M. L. & Dominiak, P. M. (2023). J. Appl. Cryst. 56, 116–127. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kawashima, M. & Hirata, R. (1993). Bull. Chem. Soc. Jpn, 66, 2002–2005. CrossRef CAS Google Scholar
Kazlauskas, R. J. (1989). J. Am. Chem. Soc. 111, 4953–4959. CrossRef CAS Google Scholar
Kleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, L., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkotter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci. 12, 1675–1692. CSD CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Maria, T. M. R., Marins, F. A., Costa, J. B. S., Silva, M. R., Carrilho, R. M. B., Monteiro, C. J. P., Pereira, M. M. & Eusébio, M. E. S. (2017). Thermochim. Acta, 648, 32–43. CSD CrossRef CAS Google Scholar
Matta, C. F. (2006). Hydrogen Bonding – New Insights, edited by S. Grabowski, pp. 337–375. Dordrecht: Springer. Google Scholar
McKillop, A., Turrell, A. G., Young, D. W. & Taylor, E. C. (1980). J. Am. Chem. Soc. 102, 6504–6512. CrossRef CAS Google Scholar
McKinnon, J. J., Mitchell, A. S. & Spackman, M. A. (1998). Chem. Eur. J. 4, 2136–2141. CrossRef CAS Google Scholar
McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668. Web of Science CrossRef CAS IUCr Journals Google Scholar
Miyano, T. & Beukes, N. J. (1987). Econ. Geol. 82, 706–718. CrossRef CAS Google Scholar
Neese, F., Wennmohs, F., Becker, U. & Riplinge, C. (2020). J. Chem. Phys. 152, 224108. CrossRef PubMed Google Scholar
Pu, L. (1998). Chem. Rev. 98, 2405–2494. Web of Science CrossRef PubMed CAS Google Scholar
Pu, L. (2024). Chem. Rev. 124, 6643–6689. CrossRef CAS PubMed Google Scholar
Rivera, A., Cepeda-Santamaría, J. E., Ríos-Motta, J. & Bolte, M. (2017). Acta Cryst. E73, 832–834. CSD CrossRef IUCr Journals Google Scholar
Sanjuan-Szklarz, W. F., Woińska, M., Domagała, S., Dominiak, P. M., Grabowsky, S., Jayatilaka, D., Gutmann, M. & Woźniak, K. (2020). IUCrJ, 7, 920–933. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Smrcina, M., Lorenc, M., Hanus, V., Sedmera, P. & Kocovsky, P. (1992). J. Org. Chem. 57, 1917–1920. CrossRef CAS Google Scholar
Spackman, M. A. & Byrom, P. G. G. (1997). Chem. Phys. Lett. 267, 215–220. CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Thoss, M., Seidel, R. W. & Feigel, M. (2009). Acta Cryst. E65, o243. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tkachenko, N. V. amp; Scheiner, S. (2019). ACS Omega, 4, 6044–6049. CrossRef CAS PubMed Google Scholar
Waldvogel, S. L. (2002). Synlett, 4, 622–624. CrossRef Google Scholar
Wang, M., Liu, S. Z., Liu, J. & Hu, B. F. (1995). J. Org. Chem. 60, 7364–7365. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.