research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, non-spherical structure refinement and Hirshfeld surface analysis of racemic 2,2′-diisobut­­oxy-1,1′-bi­naphthalene

crossmark logo

aLaboratoire de Constitution et de Réaction de la Matière, Equipe Synthèse Organique, UFR de Sciences des Structures de la Matière et Technologie, Université, Félix Houphouët Boigny, 22 BP 582 Abidjan 22, Côte d'Ivoire, and bLaboratoire des Sciences de la Matière,de l'Environnement et de l'Energie Solaire, Equipe de Recherche de Cristallographie et Physique Moléculaire, Université Félix Houphouët-Boigny, 08 BP 582, Abidjan 22, Côte d'Ivoire
*Correspondence e-mail: eric.ziki@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 24 July 2024; accepted 17 September 2024; online 24 September 2024)

In the racemic title compound, C28H30O2, the naphthyl ring systems subtend a dihedral angle of 68.59 (1)° and the mol­ecular conformation is consolidated by a pair of intra­molecular C—H⋯π contacts. The crystal packing features a weak C—H⋯π contact and van der Waals forces. A Hirshfeld surface analysis of the crystal structure reveals that the most significant contributions are from H⋯H (73.2%) and C⋯H/H⋯C (21.2%) contacts.

1. Chemical context

1-1′-Binaphthyl-based systems play an important role as ligands in the design of optically active materials (Tkachenko & Scheiner, 2019[Tkachenko, N. V. amp; Scheiner, S. (2019). ACS Omega, 4, 6044-6049.]). They are also used for mol­ecular recog­nition and asymmetric catalysis (Pu, 1998[Pu, L. (1998). Chem. Rev. 98, 2405-2494.], 2024[Pu, L. (2024). Chem. Rev. 124, 6643-6689.]). The non-coplanar conformation of both naphthyl moieties coupled to their restricted rotation around the transannular covalent bond are the basis of their optical activity (chirality). Furthermore, it has been shown that, when substitutions are carried out at the 2,2′-positions of the 1-1′-binaphthyl system, the chiral conformation of the resulting derivative is very stable (Hall & Turner, 1955[Hall, D. M., Turner, E. E. & Howlett, K. E. (1955). J. Chem. Soc. 1242-1251.]; Dixon et al., 1971[Dixon, W., Harris, M. M. & Mazengo, R. Z. (1971). J. Chem. Soc. B, 775-778.]). Among these, 1-1′-bi-2-naphthol, C20H14O2, known as BINOL, with local C2 symmetry, has been used extensively in the production of chiral catalysts, dendrimers, mol­ecular probes, metal–organic frameworks, covalent organic frameworks, etc. In addition, its hydroxyl functions can be functionalized to generate a wide range of 1-1′-binaphthyl derivatives. Many synthesis procedures of racemic BINOL have been developed using oxidizing agents such as Fe3+, Cu2+, Mn3+, Ti2+, Co3+, Ag2+ or Mo5+ (Waldvogel, 2002[Waldvogel, S. L. (2002). Synlett, 4, 622-624.]; Doussot et al., 2000[Doussot, J., Guy, A. & Ferroud, C. (2000). Tetrahredon Lett. 41, 2545-2547.]; McKillop et al., 1980[McKillop, A., Turrell, A. G., Young, D. W. & Taylor, E. C. (1980). J. Am. Chem. Soc. 102, 6504-6512.]; Budniak et al., 2017[Budniak, A. K., Masny, M., Prezelj, K., Grzeszkiewicz, M., Gawraczyński, J., Dobrzycki, Ł., Cyrański, M. K., Koźmiński, W., Mazej, Z., Fijałkowski, K. J., Grochala, W. & Leszczyński, P. J. (2017). New J. Chem. 41, 10742-10749.]) and pure enanti­omers can be obtained from the their racemates via diastereoisomer derivatives and their resolution can be achieved by the formation of inclusion crystals with chiral host mol­ecules (Hara et al., 2002[Hara, T., Kawashima, H., Ishigooka, M., Kashiyama, M., Takanashi, S. & Hosokawa, Y. (2002). Hepatogastroenterology, 49, 561-563.]). Another strategy involves the deracemization of racemates with copper complexes of chiral amines (Bringmann et al., 1990[Bringmann, G., Walter, R. & Weirich, R. (1990). Angew. Chem. Int. Ed. Engl. 9, 977-991.]; Smrcina et al., 1992[Smrcina, M., Lorenc, M., Hanus, V., Sedmera, P. & Kocovsky, P. (1992). J. Org. Chem. 57, 1917-1920.]) or by enzymatic hydrolysis of esters (Miyamo et al., 1987[Miyano, T. & Beukes, N. J. (1987). Econ. Geol. 82, 706-718.]; Kazlauskas et al., 1989[Kazlauskas, R. J. (1989). J. Am. Chem. Soc. 111, 4953-4959.]). Optically pure enanti­omers can also be synthesized directly and several methods have been reported for this purpose (Chow et al., 1996[Chow, H. F., Wan, C. W. & Ng, M. K. (1996). J. Org. Chem. 61, 8712-8714.]; Kawashima & Hirata, 1993[Kawashima, M. & Hirata, R. (1993). Bull. Chem. Soc. Jpn, 66, 2002-2005.]; Wang et al., 1995[Wang, M., Liu, S. Z., Liu, J. & Hu, B. F. (1995). J. Org. Chem. 60, 7364-7365.]).

[Scheme 1]

The racemic title compound, C28H30O2 (I)[link], is a 1-1′-bi­naphthyl derivative obtained by the functionalization of BINOL at the hydroxyl positions. Herein, we report its synthesis, spectroscopic characterization and mol­ecular geometry, determined from single-crystal X-ray diffraction analysis using a non-standard aspherical refinement, which combines quantum mechanical calculations and data from diffraction experiments into a single integrated tool (Jayatilaka & Dittrich, 2008[Jayatilaka, D. & Dittrich, B. (2008). Acta Cryst. A64, 383-393.]; Capelli et al., 2014[Capelli, S. C., Bürgi, H.-B., Dittrich, B., Grabowsky, S. & Jayatilaka, D. (2014). IUCrJ, 1, 361-379.]; Kleemiss et al., 2021[Kleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, L., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkotter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci. 12, 1675-1692.]). A Hirshfeld surface analysis (Spackman & Byrom, 1997[Spackman, M. A. & Byrom, P. G. G. (1997). Chem. Phys. Lett. 267, 215-220.]; McKinnon et al., 1998[McKinnon, J. J., Mitchell, A. S. & Spackman, M. A. (1998). Chem. Eur. J. 4, 2136-2141.]; McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.]) of the title compound was also performed.

2. Structural commentary

Compound (I)[link] crystallizes in space group P21/c as a racemate (Fig. 1[link]). The mol­ecular structure comprises two β-naphthyl isobutyl ether moieties linked by a C1—C1′ covalent bond whose length [1.4867 (3) Å] is in good agreement with the values reported for the same type of bond in related compounds (Allen & Bruno, 2010[Allen, F. H. & Bruno, I. J. (2010). Acta Cryst. B66, 380-386.]). Both ether units adopt extended conformations [C2—O1—C11—C12 = −175.59 (2)°; C2′—O1′—C11′—C12′ = −175.12 (2)°] and the C14H15O β-naphthyl isobutyl ether moieties exhibit very similar structural parameters with an alignment r.m.s.d. value of 0.023 Å (Fig. 2[link]). The aromatic C—C bonds of the naphthyl ring systems have values in the same range as those obtained by Rivera et al. (2017[Rivera, A., Cepeda-Santamaría, J. E., Ríos-Motta, J. & Bolte, M. (2017). Acta Cryst. E73, 832-834.]). The planes of the naphthyl ring systems C1–C10 and C1′–C10′ (r.m.s deviations of 0.013 Å and 0.037 Å, respectively) form a twist angle of 68.59 (1)° compared to 68.52 (5)° in BINOL (ref, date). The Car—O and Calk­yl—O ether bond lengths in (I)[link] have comparable values to those found in related structures (Allen & Bruno, 2010[Allen, F. H. & Bruno, I. J. (2010). Acta Cryst. B66, 380-386.]). The mol­ecular conformation of (I)[link] is consolidated (Table 1[link]) by intra­molecular C13′—H13ECg1 and C13—H13ACg2 contacts, where Cg1 and Cg2 are the centroids of the C5–C10 and C5′–C10′ rings, respectively (Fig. 3[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C5–C10 and C5′–C10′ rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13ACg2 1.091 (4) 2.998 (5) 4.0338 (4) 158.7 (3)
C13′—H13ECg1 1.091 (5) 2.877 (5) 3.8615 (4) 150.1 (3)
C13—H13CCg2i 1.083 (5) 2.987 (5) 3.6455 (4) 119.6 (3)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] with displacement ellipsoids for all atoms including H drawn at the 50% probability level.
[Figure 2]
Figure 2
An overlay diagram of the β-naphthyl isobutyl ether moieties of (I)[link].
[Figure 3]
Figure 3
The intra­molecular C—H⋯π inter­actions in (I)[link], shown as double dotted lines with centroids as green spheres.

3. Supra­molecular features

Although the mol­ecule has two potential hydrogen-bond acceptor sites (atoms O1 and O2), no hydrogen bonding was found in this crystal structure. Indeed, the minimization of steric effects within the mol­ecule gives rise to a structural geometry whose intrinsic mol­ecular and environmental parameters in the crystal would prevent the formation of hydrogen bonding. However, analysis using PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) reveals a C13—H13CCg2(x, [{3\over 2}] − y, [{1\over 2}] + z) (Table 1[link]). In addition, the packing displays several C—H⋯H—C inter­molecular contacts ranging from 2.33 to 2.53 Å. Matta (2006[Matta, C. F. (2006). Hydrogen Bonding - New Insights, edited by S. Grabowski, pp. 337-375. Dordrecht: Springer.]) reported that these closed-shell inter­molecular inter­actions exhibit energetic stability, potentials typical of bound systems and stable equilibrium geometries.

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.45; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for compounds containing the 1-1′-binaphthyl system with an ether moiety linked at the 2,2′ positions gave two hits [CSD refcodes PONTAO (Thoss et al., 2009[Thoss, M., Seidel, R. W. & Feigel, M. (2009). Acta Cryst. E65, o243.]) and PONTAO01 (Maria et al., 2017[Maria, T. M. R., Marins, F. A., Costa, J. B. S., Silva, M. R., Carrilho, R. M. B., Monteiro, C. J. P., Pereira, M. M. & Eusébio, M. E. S. (2017). Thermochim. Acta, 648, 32-43.])], in which the asymmetric units contain two mol­ecules.

5. Hirshfeld surface analysis

In order to qu­antify inter­molecular inter­actions revealed by the PLATON analysis, Hirshfeld surface (HS) analysis was performed using CrystalExplorer21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). Fig. 4[link] shows the three-dimensional HS of (I)[link] mapped over dnorm on a scale ranging from −0.025 to 1.51 a.u. where the colour highlights the different inter­molecular contacts: blue, white and red regions indicate contacts whose distances are almost equal, longer and shorter, respectively, than the sum of van der Waals radii. Fig. 5[link] displays the two-dimensional fingerprint plots of (di, de) points from all contacts contributing to the HS for all atoms. The H⋯H contacts are the most significant inter­molecular inter­actions and contribute 73.2% whilst C⋯H/H⋯C contacts, which correspond to H⋯π stacking inter­actions, contribute 21.2%. As expected, the H⋯O contacts make a very weak contribution to the crystal packing at 3.6% and the other contacts C⋯C (1.9%) and C⋯O/O⋯C (0.1%) have a negligible contribution.

[Figure 4]
Figure 4
The three-dimensional Hirshfeld surface representation of (I)[link] plotted over dnorm.
[Figure 5]
Figure 5
The two-dimensional fingerprint plots of (I)[link] showing (a) the overall inter­actions and (b)–(f) those delineated into H⋯H, C⋯H/H⋯C, O⋯H/H⋯O, C⋯C and O⋯C/C⋯O contacts, respectively.

6. Synthesis and crystallization

BINOL was produced according to the method described by McKillop et al. (1980[McKillop, A., Turrell, A. G., Young, D. W. & Taylor, E. C. (1980). J. Am. Chem. Soc. 102, 6504-6512.]). In a 50 ml flask equipped with a magnetic stirrer, 1 eq. (0.70 mmol, 0.20 g) of BINOL was dissolved in 10 ml of ethanol and 10 eq of sodium hydroxide were added. The mixture was refluxed for 1 h and 21 eq. (14.70 mmol, 1.58 ml) of 1-bromo-2-methyl­propane were added, then heating was maintained for 24 h. Following CCM, at the end of the reaction, several extractions with ethyl acetate were performed and the organic phase was dried with NaSO4, then concentrated under reduced pressure. The crude product was purified on a chromatographic silica gel column using hexa­ne/ethyl acetate 90/10 as eluent. A chick yellow powder (60 mg, 21%) was obtained. Single crystals of (I)[link] suitable for X-ray diffraction analysis were grown by slow evaporation from the mixed solvents of hexane and ethyl acetate at room temperature.

[Scheme 2]

Chick yellow powder, yield = 47%, m.p = 387–389 K. 1H NMR (500 MHz, CDCl3) δ (ppm) 7.88 (d, J = 9.0 Hz, 2H, HAr), 7.81 (dt, J = 8.2, 1.1 Hz, 2H, HAr), 7.36 (d, J = 9.0 Hz, 2H, HAr), 7.26 (ddd, J = 8.1, 5.8, 2.1 Hz, 2H, HAr), 7.21–7.13 (m, 4H, HAr), 3.67 (qd, J = 8.8, 6.4 Hz, 4H, –CH2–), 1.67 [dh, J = 13.2, 6.7 Hz, 2H, –CH–(CH3)2], 0.56 [d, J = 6.7 Hz, 6H, (CH3) –CH–], 0.54 [d, J = 6.7 Hz, 6H, (CH3)–CH–]. 13C NMR (126 MHz, CDCl3) δ (ppm) 154.66, 134.44, 129.30, 129.09, 127.85, 126.10, 125.65, 123.42, 120.71, 115.62, 76.06, 28.45, 18.98.

7. Refinement details

The crystal structure of (I)[link] was refined using SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) with the standard independent atom model (IAM). Subsequently, this structural model was used as a starting point in a non-spherical refinement procedure. The computational wavefunctions were determined with the ORCA program (Neese et al., 2020[Neese, F., Wennmohs, F., Becker, U. & Riplinge, C. (2020). J. Chem. Phys. 152, 224108.]) using the DFT method at the PBE0/def2-TZVP level of theory. The non-spherical atomic form factors were calculated using NoSpherA2 (Kleemiss et al., 2021[Kleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, L., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkotter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci. 12, 1675-1692.]). Final refinements were performed with OLEX2.refine (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]). All atoms including H atoms were refined anisotropically. Crystal data, data collection and structure refinement details for the last least-squares refinement are summarized in Table 2[link]. This process leads to improved precision of the geometrical parameters and more physically realistic C—H separations. For example, the refined C2—O1 bond length obtained here with the non-spherical model is 1.3622 (3) Å compared to 1.3652 (5) Å with IAM and the refined C2—O1—C11 bond angles are 118.315 (17)° (non-spherical) and 118.13 (3)° (IAM). For the background to non-spherical refinement, see Sanjuan-Szklarz et al. (2020[Sanjuan-Szklarz, W. F., Woińska, M., Domagała, S., Dominiak, P. M., Grabowsky, S., Jayatilaka, D., Gutmann, M. & Woźniak, K. (2020). IUCrJ, 7, 920-933.]) and Jha et al. (2023[Jha, K. K., Kleemiss, F., Chodkiewicz, M. L. & Dominiak, P. M. (2023). J. Appl. Cryst. 56, 116-127.]).

Table 2
Experimental details

Crystal data
Chemical formula C28H30O2
Mr 398.55
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 11.3889 (8), 15.6537 (11), 12.5193 (9)
β (°) 99.920 (2)
V3) 2198.6 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.48 × 0.31 × 0.23
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.000, 0.000
No. of measured, independent and observed [I ≥ 2u(I)] reflections 215936, 17714, 14265
Rint 0.038
(sin θ/λ)max−1) 0.989
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.050, 1.08
No. of reflections 17714
No. of parameters 541
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.20, −0.17
Computer programs: APEX4 and SAINT (Bruker, 2019[Bruker (2019). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2.refine (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

2,2'-Diisobutoxy-1,1'-binaphthalene top
Crystal data top
C28H30O2Dx = 1.204 Mg m3
Mr = 398.55Melting point: 389 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.3889 (8) ÅCell parameters from 17714 reflections
b = 15.6537 (11) Åθ = 3.0–44.7°
c = 12.5193 (9) ŵ = 0.07 mm1
β = 99.920 (2)°T = 100 K
V = 2198.6 (3) Å3Prism, colourless
Z = 40.48 × 0.31 × 0.23 mm
F(000) = 856.478
Data collection top
Bruker D8 Venture
diffractometer
17714 independent reflections
Radiation source: fine-focus sealed tube14265 reflections with I 2u(I)
Mirror monochromatorRint = 0.038
φ and ω scanθmax = 44.7°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2222
Tmin = 0.000, Tmax = 0.000k = 3030
215936 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: difference Fourier map
wR(F2) = 0.050All H-atom parameters refined
S = 1.08 w = 1/[σ2(Fo2) + (0.0137P)2 + 0.0711P]
where P = (Fo2 + 2Fc2)/3
17714 reflections(Δ/σ)max = 0.002
541 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.17 e Å3
0 constraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1'0.776199 (14)0.498356 (11)0.341745 (13)0.01666 (3)
O10.734447 (14)0.575536 (12)0.638617 (13)0.01737 (3)
C13'0.59639 (2)0.44710 (2)0.15859 (2)0.02417 (4)
C12'0.70148 (2)0.391771 (15)0.210094 (18)0.01879 (4)
C11'0.80870 (2)0.444976 (15)0.259094 (18)0.01713 (3)
C2'0.857985 (17)0.555997 (14)0.390229 (16)0.01385 (3)
C1'0.816020 (16)0.618843 (13)0.452436 (15)0.01271 (3)
C10.686874 (16)0.621349 (13)0.458654 (16)0.01309 (3)
C20.648288 (17)0.598891 (14)0.554230 (17)0.01449 (3)
C110.70253 (2)0.567336 (16)0.743665 (18)0.01806 (4)
C120.81506 (2)0.547883 (16)0.824239 (18)0.01962 (4)
C130.90482 (2)0.62078 (2)0.83150 (2)0.02380 (4)
C140.78109 (3)0.52831 (2)0.93444 (2)0.03137 (6)
C30.525397 (19)0.598393 (16)0.56113 (2)0.01904 (4)
C40.442362 (19)0.617508 (17)0.47119 (2)0.02111 (4)
C100.477288 (18)0.639919 (15)0.37163 (2)0.01831 (4)
C90.601102 (18)0.643888 (14)0.366043 (17)0.01499 (3)
C14'0.74018 (3)0.331031 (18)0.12705 (2)0.02435 (5)
C3'0.980012 (19)0.551723 (16)0.380747 (18)0.01786 (3)
C4'1.059045 (19)0.609785 (17)0.43474 (2)0.01970 (4)
C10'1.020820 (18)0.674390 (15)0.500151 (18)0.01737 (4)
C5'1.10225 (2)0.733859 (18)0.55771 (2)0.02357 (5)
C6'1.06387 (3)0.796215 (18)0.62076 (2)0.02631 (5)
C7'0.94151 (3)0.801770 (17)0.62857 (2)0.02385 (5)
C8'0.86073 (2)0.744848 (15)0.574119 (19)0.01854 (4)
C9'0.897770 (17)0.679042 (14)0.508850 (16)0.01448 (3)
C80.63491 (2)0.670193 (16)0.266644 (19)0.01898 (4)
C70.55041 (2)0.688558 (18)0.17723 (2)0.02395 (5)
C60.42742 (2)0.681410 (19)0.18200 (2)0.02650 (5)
C50.39219 (2)0.658060 (18)0.27738 (2)0.02444 (5)
H13D0.6189 (4)0.4843 (3)0.0920 (4)0.0446 (13)
H13E0.5691 (4)0.4921 (3)0.2162 (4)0.0384 (12)
H13F0.5196 (4)0.4074 (4)0.1267 (4)0.0510 (15)
H12'0.6746 (4)0.3538 (3)0.2761 (3)0.0326 (11)
H11C0.8815 (4)0.4033 (3)0.2933 (4)0.0337 (11)
H11D0.8373 (4)0.4850 (3)0.1965 (3)0.0306 (10)
H11A0.6380 (4)0.5162 (3)0.7433 (4)0.0360 (11)
H11B0.6621 (4)0.6265 (3)0.7650 (3)0.0355 (11)
H120.8545 (4)0.4902 (3)0.7947 (4)0.0343 (11)
H13A0.9295 (4)0.6347 (3)0.7529 (4)0.0387 (12)
H13B0.9853 (5)0.6062 (4)0.8885 (4)0.0524 (15)
H13C0.8669 (5)0.6788 (3)0.8581 (4)0.0472 (14)
H14A0.7414 (5)0.5840 (4)0.9646 (4)0.0519 (15)
H14B0.8591 (5)0.5115 (4)0.9937 (4)0.0610 (17)
H14C0.7172 (5)0.4763 (4)0.9293 (4)0.0532 (15)
H30.4960 (4)0.5800 (3)0.6352 (4)0.0368 (12)
H40.3491 (4)0.6135 (3)0.4759 (4)0.0402 (12)
H14D0.6658 (4)0.2919 (3)0.0891 (4)0.0437 (13)
H14E0.8111 (5)0.2894 (3)0.1636 (4)0.0430 (13)
H14F0.7714 (5)0.3666 (3)0.0630 (4)0.0430 (13)
H3'1.0126 (4)0.5020 (3)0.3349 (4)0.0362 (11)
H4'1.1523 (4)0.6049 (3)0.4296 (4)0.0378 (12)
H5'1.1953 (4)0.7284 (3)0.5514 (4)0.0402 (12)
H6'1.1258 (4)0.8434 (3)0.6632 (4)0.0470 (14)
H7'0.9117 (4)0.8505 (3)0.6778 (4)0.0439 (13)
H8'0.7674 (4)0.7488 (3)0.5805 (4)0.0316 (11)
H80.7285 (4)0.6756 (3)0.2629 (3)0.0335 (11)
H70.5776 (4)0.7082 (3)0.1026 (4)0.0428 (13)
H60.3615 (4)0.6941 (3)0.1094 (4)0.0448 (13)
H50.2992 (4)0.6533 (3)0.2823 (4)0.0424 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1'0.01473 (6)0.01960 (7)0.01643 (6)0.00056 (5)0.00487 (5)0.00336 (5)
O10.01438 (6)0.02456 (8)0.01393 (6)0.00018 (5)0.00453 (4)0.00063 (5)
C13'0.02086 (10)0.03031 (12)0.02154 (10)0.00184 (9)0.00422 (8)0.00185 (9)
C12'0.02491 (9)0.01793 (9)0.01485 (7)0.00341 (7)0.00716 (7)0.00102 (6)
C11'0.01920 (8)0.01764 (8)0.01564 (7)0.00106 (7)0.00607 (6)0.00095 (6)
C2'0.01112 (6)0.01761 (8)0.01319 (6)0.00082 (5)0.00311 (5)0.00077 (6)
C1'0.01002 (6)0.01598 (7)0.01205 (6)0.00073 (5)0.00165 (5)0.00026 (5)
C10.00996 (6)0.01569 (7)0.01349 (6)0.00009 (5)0.00166 (5)0.00110 (5)
C20.01134 (6)0.01750 (8)0.01524 (7)0.00087 (6)0.00397 (5)0.00182 (6)
C110.01926 (8)0.02077 (9)0.01563 (7)0.00217 (7)0.00720 (6)0.00007 (6)
C120.02480 (10)0.02033 (9)0.01447 (7)0.00012 (7)0.00543 (7)0.00196 (7)
C130.02319 (10)0.02987 (12)0.01826 (9)0.00493 (9)0.00332 (8)0.00032 (8)
C140.04086 (16)0.03786 (16)0.01659 (9)0.00750 (13)0.00833 (10)0.00571 (10)
C30.01227 (7)0.02384 (10)0.02220 (9)0.00155 (6)0.00635 (6)0.00351 (7)
C40.01030 (7)0.02574 (10)0.02732 (10)0.00002 (7)0.00334 (7)0.00593 (8)
C100.01116 (7)0.01935 (9)0.02290 (9)0.00211 (6)0.00134 (6)0.00484 (7)
C90.01172 (6)0.01579 (8)0.01639 (7)0.00122 (5)0.00054 (5)0.00140 (6)
C14'0.03660 (13)0.01943 (10)0.01878 (9)0.00291 (9)0.00972 (9)0.00368 (8)
C3'0.01218 (7)0.02384 (10)0.01839 (8)0.00213 (6)0.00501 (6)0.00207 (7)
C4'0.01049 (7)0.02758 (11)0.02121 (9)0.00055 (7)0.00324 (6)0.00521 (8)
C10'0.01166 (7)0.02219 (9)0.01729 (8)0.00383 (6)0.00025 (6)0.00516 (7)
C5'0.01586 (8)0.02704 (11)0.02524 (10)0.00856 (8)0.00369 (7)0.00664 (8)
C6'0.02446 (11)0.02484 (11)0.02592 (11)0.01121 (9)0.00610 (8)0.00256 (9)
C7'0.02753 (11)0.02049 (10)0.02134 (9)0.00791 (8)0.00194 (8)0.00221 (8)
C8'0.01907 (8)0.01821 (9)0.01760 (8)0.00435 (7)0.00107 (6)0.00208 (6)
C9'0.01218 (6)0.01710 (8)0.01350 (7)0.00279 (6)0.00037 (5)0.00179 (6)
C80.01749 (8)0.02077 (9)0.01702 (8)0.00143 (7)0.00166 (6)0.00284 (7)
C70.02476 (10)0.02396 (10)0.01983 (9)0.00367 (8)0.00547 (8)0.00346 (8)
C60.02236 (10)0.02659 (11)0.02585 (11)0.00696 (8)0.00914 (8)0.00190 (9)
C50.01440 (8)0.02673 (11)0.02878 (11)0.00514 (7)0.00592 (8)0.00621 (9)
H13D0.043 (3)0.049 (3)0.044 (3)0.013 (3)0.012 (2)0.014 (3)
H13E0.035 (3)0.044 (3)0.038 (3)0.003 (2)0.009 (2)0.004 (2)
H13F0.035 (3)0.061 (4)0.055 (4)0.010 (3)0.000 (3)0.014 (3)
H12'0.046 (3)0.031 (3)0.023 (2)0.009 (2)0.012 (2)0.0006 (19)
H11C0.033 (3)0.035 (3)0.034 (3)0.006 (2)0.006 (2)0.005 (2)
H11D0.034 (3)0.033 (2)0.028 (2)0.008 (2)0.012 (2)0.003 (2)
H11A0.038 (3)0.042 (3)0.030 (3)0.012 (2)0.011 (2)0.000 (2)
H11B0.040 (3)0.041 (3)0.027 (2)0.008 (2)0.010 (2)0.002 (2)
H120.046 (3)0.029 (3)0.028 (3)0.006 (2)0.006 (2)0.001 (2)
H13A0.039 (3)0.049 (3)0.030 (3)0.009 (2)0.011 (2)0.003 (2)
H13B0.041 (3)0.072 (4)0.039 (3)0.012 (3)0.008 (2)0.012 (3)
H13C0.047 (3)0.042 (3)0.054 (3)0.012 (3)0.014 (3)0.011 (3)
H14A0.063 (4)0.065 (4)0.032 (3)0.008 (3)0.021 (3)0.002 (3)
H14B0.061 (4)0.093 (5)0.025 (3)0.006 (4)0.001 (3)0.018 (3)
H14C0.069 (4)0.060 (4)0.034 (3)0.025 (3)0.016 (3)0.011 (3)
H30.023 (2)0.053 (3)0.037 (3)0.002 (2)0.011 (2)0.001 (2)
H40.022 (2)0.056 (3)0.044 (3)0.004 (2)0.007 (2)0.006 (3)
H14D0.051 (3)0.046 (3)0.037 (3)0.014 (3)0.017 (2)0.019 (2)
H14E0.060 (3)0.034 (3)0.037 (3)0.007 (3)0.014 (3)0.004 (2)
H14F0.061 (4)0.041 (3)0.032 (3)0.005 (3)0.023 (3)0.004 (2)
H3'0.026 (2)0.040 (3)0.045 (3)0.003 (2)0.014 (2)0.002 (2)
H4'0.023 (2)0.047 (3)0.043 (3)0.000 (2)0.006 (2)0.002 (2)
H5'0.024 (2)0.042 (3)0.052 (3)0.013 (2)0.001 (2)0.003 (3)
H6'0.033 (3)0.057 (3)0.045 (3)0.016 (3)0.008 (2)0.012 (3)
H7'0.039 (3)0.043 (3)0.048 (3)0.013 (2)0.003 (2)0.009 (3)
H8'0.032 (2)0.027 (2)0.036 (3)0.002 (2)0.005 (2)0.012 (2)
H80.031 (2)0.045 (3)0.024 (2)0.004 (2)0.0031 (19)0.013 (2)
H70.045 (3)0.048 (3)0.030 (3)0.006 (3)0.007 (2)0.011 (2)
H60.032 (3)0.050 (3)0.046 (3)0.011 (2)0.011 (2)0.008 (3)
H50.026 (3)0.056 (3)0.041 (3)0.003 (2)0.005 (2)0.006 (3)
Geometric parameters (Å, º) top
O1'—C11'1.4276 (3)C3—C41.3729 (4)
O1'—C2'1.3621 (3)C3—H31.077 (4)
O1—C21.3622 (3)C4—C101.4162 (4)
O1—C111.4293 (3)C4—H41.075 (4)
C13'—C12'1.5272 (4)C10—C91.4252 (3)
C13'—H13D1.083 (5)C10—C51.4206 (3)
C13'—H13E1.091 (5)C9—C81.4253 (3)
C13'—H13F1.091 (5)C14'—H14D1.086 (5)
C12'—C11'1.5176 (3)C14'—H14E1.076 (5)
C12'—C14'1.5287 (4)C14'—H14F1.086 (5)
C12'—H12'1.103 (4)C3'—C4'1.3724 (4)
C11'—H11C1.084 (4)C3'—H3'1.071 (4)
C11'—H11D1.096 (4)C4'—C10'1.4162 (4)
C2'—C1'1.3896 (3)C4'—H4'1.078 (4)
C2'—C3'1.4166 (3)C10'—C5'1.4197 (3)
C1'—C11.4867 (3)C10'—C9'1.4261 (3)
C1'—C9'1.4238 (3)C5'—C6'1.3733 (5)
C1—C21.3891 (3)C5'—H5'1.080 (4)
C1—C91.4258 (3)C6'—C7'1.4163 (4)
C2—C31.4170 (3)C6'—H6'1.093 (4)
C11—C121.5190 (4)C7'—C8'1.3744 (3)
C11—H11A1.086 (4)C7'—H7'1.073 (5)
C11—H11B1.088 (4)C8'—C9'1.4232 (3)
C12—C131.5243 (4)C8'—H8'1.081 (4)
C12—C141.5268 (4)C8—C71.3750 (3)
C12—H121.101 (4)C8—H81.078 (4)
C13—H13A1.091 (4)C7—C61.4167 (4)
C13—H13B1.085 (5)C7—H71.078 (5)
C13—H13C1.083 (5)C6—C51.3732 (5)
C14—H14A1.079 (6)C6—H61.093 (4)
C14—H14B1.088 (5)C5—H51.074 (5)
C14—H14C1.086 (5)
C2'—O1'—C11'117.900 (17)H14C—C14—H14B108.6 (4)
C11—O1—C2118.315 (17)C4—C3—C2119.79 (2)
H13D—C13'—C12'110.9 (3)H3—C3—C2120.7 (2)
H13E—C13'—C12'112.2 (3)H3—C3—C4119.4 (2)
H13E—C13'—H13D107.1 (4)C10—C4—C3121.17 (2)
H13F—C13'—C12'110.6 (3)H4—C4—C3119.3 (3)
H13F—C13'—H13D107.8 (4)H4—C4—C10119.5 (3)
H13F—C13'—H13E107.9 (4)C9—C10—C4118.97 (2)
C11'—C12'—C13'112.14 (2)C5—C10—C4121.71 (2)
C14'—C12'—C13'111.25 (2)C5—C10—C9119.32 (2)
C14'—C12'—C11'108.06 (2)C10—C9—C1119.63 (2)
H12'—C12'—C13'108.9 (2)C8—C9—C1122.086 (19)
H12'—C12'—C11'107.5 (2)C8—C9—C10118.285 (19)
H12'—C12'—C14'108.9 (2)H14D—C14'—C12'110.7 (3)
C12'—C11'—O1'108.854 (18)H14E—C14'—C12'111.7 (2)
H11C—C11'—O1'110.1 (2)H14E—C14'—H14D108.4 (4)
H11C—C11'—C12'109.6 (2)H14F—C14'—C12'110.7 (3)
H11D—C11'—O1'109.3 (2)H14F—C14'—H14D107.2 (4)
H11D—C11'—C12'110.0 (2)H14F—C14'—H14E107.9 (4)
H11D—C11'—H11C109.0 (3)C4'—C3'—C2'119.81 (2)
C1'—C2'—O1'116.352 (17)H3'—C3'—C2'121.0 (2)
C3'—C2'—O1'122.466 (19)H3'—C3'—C4'119.2 (2)
C3'—C2'—C1'121.164 (19)C10'—C4'—C3'121.12 (2)
C1—C1'—C2'119.137 (17)H4'—C4'—C3'119.5 (3)
C9'—C1'—C2'119.204 (18)H4'—C4'—C10'119.3 (3)
C9'—C1'—C1121.659 (18)C5'—C10'—C4'121.51 (2)
C2—C1—C1'120.070 (17)C9'—C10'—C4'118.988 (19)
C9—C1—C1'120.620 (18)C9'—C10'—C5'119.50 (2)
C9—C1—C2119.275 (18)C6'—C5'—C10'120.86 (2)
C1—C2—O1116.325 (17)H5'—C5'—C10'118.3 (3)
C3—C2—O1122.572 (19)H5'—C5'—C6'120.8 (3)
C3—C2—C1121.080 (19)C7'—C6'—C5'119.85 (2)
C12—C11—O1108.047 (18)H6'—C6'—C5'121.1 (3)
H11A—C11—O1110.0 (2)H6'—C6'—C7'119.0 (3)
H11A—C11—C12110.3 (2)C8'—C7'—C6'120.57 (3)
H11B—C11—O1109.6 (2)H7'—C7'—C6'119.8 (2)
H11B—C11—C12110.6 (2)H7'—C7'—C8'119.7 (3)
H11B—C11—H11A108.3 (3)C9'—C8'—C7'120.97 (2)
C13—C12—C11111.71 (2)H8'—C8'—C7'120.6 (2)
C14—C12—C11108.91 (2)H8'—C8'—C9'118.4 (2)
C14—C12—C13111.60 (2)C10'—C9'—C1'119.71 (2)
H12—C12—C11106.7 (2)C8'—C9'—C1'122.050 (19)
H12—C12—C13109.0 (2)C8'—C9'—C10'118.242 (19)
H12—C12—C14108.7 (2)C7—C8—C9120.98 (2)
H13A—C13—C12111.7 (3)H8—C8—C9118.6 (2)
H13B—C13—C12111.3 (3)H8—C8—C7120.4 (2)
H13B—C13—H13A108.4 (4)C6—C7—C8120.51 (3)
H13C—C13—C12110.4 (3)H7—C7—C8120.0 (2)
H13C—C13—H13A106.7 (4)H7—C7—C6119.5 (2)
H13C—C13—H13B108.1 (4)C5—C6—C7119.79 (2)
H14A—C14—C12109.9 (3)H6—C6—C7119.6 (3)
H14B—C14—C12111.1 (3)H6—C6—C5120.6 (3)
H14B—C14—H14A107.3 (4)C6—C5—C10121.04 (2)
H14C—C14—C12111.6 (3)H5—C5—C10118.5 (3)
H14C—C14—H14A108.0 (4)H5—C5—C6120.5 (3)
O1'—C11'—C12'—C13'60.63 (2)C1—C2—C3—C42.26 (3)
O1'—C11'—C12'—C14'176.40 (2)C1—C9—C10—C43.02 (2)
O1'—C2'—C1'—C12.31 (2)C1—C9—C10—C5176.67 (2)
O1'—C2'—C1'—C9'177.507 (17)C1—C9—C8—C7177.56 (2)
O1'—C2'—C3'—C4'177.60 (2)C2—C3—C4—C101.58 (3)
O1—C2—C1—C1'0.17 (2)C3—C4—C10—C91.05 (3)
O1—C2—C1—C9178.054 (19)C3—C4—C10—C5178.64 (2)
O1—C2—C3—C4175.95 (2)C4—C10—C9—C8177.27 (2)
O1—C11—C12—C1362.99 (2)C4—C10—C5—C6178.65 (3)
O1—C11—C12—C14173.29 (2)C10—C9—C8—C72.14 (3)
C2'—C1'—C1—C2109.31 (2)C10—C5—C6—C70.70 (3)
C2'—C1'—C1—C968.54 (2)C9—C8—C7—C60.21 (3)
C2'—C1'—C9'—C10'0.44 (2)C3'—C4'—C10'—C5'178.96 (2)
C2'—C1'—C9'—C8'179.856 (19)C3'—C4'—C10'—C9'0.49 (3)
C2'—C3'—C4'—C10'0.05 (3)C4'—C10'—C5'—C6'179.95 (2)
C1'—C1—C2—C3178.14 (2)C4'—C10'—C9'—C8'179.43 (2)
C1'—C1—C9—C10175.502 (19)C10'—C5'—C6'—C7'0.19 (3)
C1'—C1—C9—C84.19 (2)C10'—C9'—C8'—C7'0.86 (2)
C1'—C9'—C10'—C4'0.29 (2)C5'—C6'—C7'—C8'0.46 (3)
C1'—C9'—C10'—C5'179.17 (2)C6'—C7'—C8'—C9'0.08 (3)
C1'—C9'—C8'—C7'179.43 (2)C8—C7—C6—C51.66 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C5–C10 and C5'–C10' rings, respectively.
D—H···AD—HH···AD···AD—H···A
C13—H13A···Cg21.091 (4)2.998 (5)4.0338 (4)158.7 (3)
C13—H13E···Cg11.091 (5)2.877 (5)3.8615 (4)150.1 (3)
C13—H13C···Cg2i1.083 (5)2.987 (5)3.6455 (4)119.6 (3)
Symmetry code: (i) x, y+3/2, z+1/2.
 

Acknowledgements

The authors thank the PMD2X X-ray diffraction facility (https://crm2.univ-lorraine.fr/lab/fr/services/pmd2x) of the Institut Jean Barriol, Université de Lorraine, for X-ray diffraction measurements and the AFRAMED project. CCDC is also thanked for providing access to the Cambridge Structural Database through the FAIRE program. The authors are very grateful to UNESCO, CNRS and the IUCr for their support to the AFRAMED project. The authors also thank PASRES for funding Coulibaly's thesis project. The authors pay a fitting tribute to Professor Ané Adjou of the Félix Houphouët-Boigny University, Supervisor of Coulibaly's PhD, who passed away in October 2023 before the thesis defence.

Funding information

Funding for this research was provided by: PASRES, a strategic support program for scientific research in Ivory Coast (studentship No. 235/1st session of 2020 to Pénayori Marie-Aimée Coulibaly).

References

First citationAllen, F. H. & Bruno, I. J. (2010). Acta Cryst. B66, 380–386.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBringmann, G., Walter, R. & Weirich, R. (1990). Angew. Chem. Int. Ed. Engl. 9, 977–991.  CrossRef Google Scholar
First citationBruker (2019). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBudniak, A. K., Masny, M., Prezelj, K., Grzeszkiewicz, M., Gawraczyński, J., Dobrzycki, Ł., Cyrański, M. K., Koźmiński, W., Mazej, Z., Fijałkowski, K. J., Grochala, W. & Leszczyński, P. J. (2017). New J. Chem. 41, 10742–10749.  CSD CrossRef CAS Google Scholar
First citationCapelli, S. C., Bürgi, H.-B., Dittrich, B., Grabowsky, S. & Jayatilaka, D. (2014). IUCrJ, 1, 361–379.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationChow, H. F., Wan, C. W. & Ng, M. K. (1996). J. Org. Chem. 61, 8712–8714.  CrossRef CAS Google Scholar
First citationDixon, W., Harris, M. M. & Mazengo, R. Z. (1971). J. Chem. Soc. B, 775–778.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDoussot, J., Guy, A. & Ferroud, C. (2000). Tetrahredon Lett. 41, 2545–2547.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHall, D. M., Turner, E. E. & Howlett, K. E. (1955). J. Chem. Soc. 1242–1251.  Google Scholar
First citationHara, T., Kawashima, H., Ishigooka, M., Kashiyama, M., Takanashi, S. & Hosokawa, Y. (2002). Hepatogastroenterology, 49, 561–563.  PubMed Google Scholar
First citationJayatilaka, D. & Dittrich, B. (2008). Acta Cryst. A64, 383–393.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJha, K. K., Kleemiss, F., Chodkiewicz, M. L. & Dominiak, P. M. (2023). J. Appl. Cryst. 56, 116–127.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKawashima, M. & Hirata, R. (1993). Bull. Chem. Soc. Jpn, 66, 2002–2005.  CrossRef CAS Google Scholar
First citationKazlauskas, R. J. (1989). J. Am. Chem. Soc. 111, 4953–4959.  CrossRef CAS Google Scholar
First citationKleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, L., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkotter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci. 12, 1675–1692.  CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMaria, T. M. R., Marins, F. A., Costa, J. B. S., Silva, M. R., Carrilho, R. M. B., Monteiro, C. J. P., Pereira, M. M. & Eusébio, M. E. S. (2017). Thermochim. Acta, 648, 32–43.  CSD CrossRef CAS Google Scholar
First citationMatta, C. F. (2006). Hydrogen Bonding – New Insights, edited by S. Grabowski, pp. 337–375. Dordrecht: Springer.  Google Scholar
First citationMcKillop, A., Turrell, A. G., Young, D. W. & Taylor, E. C. (1980). J. Am. Chem. Soc. 102, 6504–6512.  CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Mitchell, A. S. & Spackman, M. A. (1998). Chem. Eur. J. 4, 2136–2141.  CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMiyano, T. & Beukes, N. J. (1987). Econ. Geol. 82, 706–718.  CrossRef CAS Google Scholar
First citationNeese, F., Wennmohs, F., Becker, U. & Riplinge, C. (2020). J. Chem. Phys. 152, 224108.  CrossRef PubMed Google Scholar
First citationPu, L. (1998). Chem. Rev. 98, 2405–2494.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPu, L. (2024). Chem. Rev. 124, 6643–6689.  CrossRef CAS PubMed Google Scholar
First citationRivera, A., Cepeda-Santamaría, J. E., Ríos-Motta, J. & Bolte, M. (2017). Acta Cryst. E73, 832–834.  CSD CrossRef IUCr Journals Google Scholar
First citationSanjuan-Szklarz, W. F., Woińska, M., Domagała, S., Dominiak, P. M., Grabowsky, S., Jayatilaka, D., Gutmann, M. & Woźniak, K. (2020). IUCrJ, 7, 920–933.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmrcina, M., Lorenc, M., Hanus, V., Sedmera, P. & Kocovsky, P. (1992). J. Org. Chem. 57, 1917–1920.  CrossRef CAS Google Scholar
First citationSpackman, M. A. & Byrom, P. G. G. (1997). Chem. Phys. Lett. 267, 215–220.  CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThoss, M., Seidel, R. W. & Feigel, M. (2009). Acta Cryst. E65, o243.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTkachenko, N. V. amp; Scheiner, S. (2019). ACS Omega, 4, 6044–6049.  CrossRef CAS PubMed Google Scholar
First citationWaldvogel, S. L. (2002). Synlett, 4, 622–624.  CrossRef Google Scholar
First citationWang, M., Liu, S. Z., Liu, J. & Hu, B. F. (1995). J. Org. Chem. 60, 7364–7365.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds