research communications
Synthesis,
and Hirshfeld surface analysis of 4′-cyano-[1,1′-biphenyl]-4-yl 3-(benzyloxy)benzoateaDepartment of Physics, Yuvaraja's College, University of Mysore, Mysore, 570005, Karnaataka, India, bDepartment of Physics, Maharani's Science College for Women(Autonomous) Mysore, Karnataka, 750005, India, cRaman Research Institute, C. V. Raman, Avenue, Sadashivanagar, Bangalore, Karnataka, India, and dDepartment of PG Studies and Research in Physics, Albert Einstein Block, UCS, Tumkur University, Tumkur, Karnataka 572103, India
*Correspondence e-mail: palaksha.bspm@gmail.com
In the title compound, C27H19O3N, the dihedral angle between the aromatic rings of the biphenyl unit is 38.14 (2)° and the C—O—C—C torsion angle in the benzyloxy benzene fragment is 179.1 (2)°. In the crystal, the molecules are linked by weak C—H⋯O interactions forming S(9) chains propagating along [010]. The most important contributions to the Hirshfeld surface arise from H⋯H (32.4%) and C⋯H/H⋯C (37.0%) contacts.
CCDC reference: 2380701
1. Chemical context
Cyanobiphenyl-substituted derivatives can act as biological inhibitors and potential agents for the treatment of Alzheimer's disease (Godyń et al., 2021) as well as antibacterial and antimalarial drugs (Malani et al., 2013). Benzyloxy derivatives exhibit anti-bacterial, anti-platelet and anti-malarial activities (Kaushik et al., 2018; de Candia et al., 2015; Mohebi et al., 2022) and related pyrimidinylphenylamine derivatives are most active towards the inhibition of HIV-1 (Rai et al., 2013). The cyanobiphenyl and (benzyloxy)benzoate groups exhibit distinct structural geometries and these derivatives play significant roles in the construction of organic materials (Srinivasa et al., 2015), which have been investigated for their display technology applications, such as optoelectronic materials, sensor materials, light-emitting diodes, and photovoltaic solar cells (Goodby et al., 2022; Srinivasa et al., 2024). As part of our studies of this family of materials, we now present the synthesis, structure and Hirshfeld surface analysis of the title compound, C27H19NO3 (I).
2. Structural commentary
The molecular structure of (I) is shown in Fig. 1. The aromatic rings in the molecule are designated as A (C2–C7), B (C8–C13), C (C15–C20) and D (C22–C27) and the dihedral angles between the rings A/B = 38.14 (2), A/C = 8.29 (3) and A/D = 50.66 (2)°, whereas B/C, B/D and C/D are 46.43 (4), 83.95 (2) and 44.01 (2)°, respectively. The torsion angle associated with the phenyl benzoate group (C11—O1—C14—C15) is −177.8 (2)° and that for the benzyloxy group (C22—C21—O3—C17) is 179.1 (2)°. Otherwise, the bond distances and angles may be regarded as normal.
3. Supramolecular features
The ), which forms an S(9) chain propagating along the [010] direction as shown in Fig. 2. Furthermore, the packing is consolidated by three weak C—H⋯π interactions as shown in Fig. 3. In addition there exists an aromatic π–π stacking interaction between the C2–C7 and C15–C20 rings with a centroid–centroid distance of 3.9282 (19) Å (Fig. 4).
features a weak C3—H3⋯O1 interaction (Table 14. Hirshfeld surface analysis
CrystalExplorer17.5 (Turner et al., 2017) was used to perform a Hirshfeld surface analysis to further quantify the various intermolecular interactions. Fig. 5 illustrates the Hirshfeld surface mapped over dnorm with red spots corresponding to short contacts. The fingerprint plots (Fig. 6) indicate that the major contributions to the are from H⋯H (36.2%), C⋯H/H⋯C (33.8%), O⋯H/H⋯O (12.1.6%), N⋯H/H⋯N (10.1.8%) and C⋯C (5.0%) contacts. The characteristic spikes in the O⋯H/H⋯O plot indicate the existence of the C—H⋯O hydrogen bond listed in Table 1.
5. Database survey
A search of the Cambridge Structural Database (CSD, version 5.42, update of November 2020; Groom et al., 2016) for molecules containing the 4′-cyano-[1,1′-biphenyl] fragment resulted in two matches with CSD refcodes PIFZEN and PIFZIR (Jakubowski et al., 2023). In these structures, the dihedral angle between the 4-cyanophenoxy ring and the neighbouring ring are 31.71 (2) and 38.95 (3)°, respectively, compared to 38.14 (2)° for (I). For molecules containing the (benzyloxy)benzoate fragment, a search resulted in thirteen matches: in all of these, the torsion angle of the linking C—O—C—C unit indicates a conformation close to anti.
6. Synthesis and crystallization
A mixture of 3-(benzyloxy)benzoic acid (1 eq., 0.228 g) and 4′-hydroxy-[1,1′-biphenyl]-4-carbonitrile (1 eq., 0.195 g), dicyclohexylcarbodiimide (1.2 eq.) and a catalytic amount of dimethylaminopyrimidine were stirred in dry dichloromethane at room temperature overnight. After completion of the reaction, the product mass was subjected to . Melting point = 398 K, analysis (%) calculated for C27H19NO3, C 79.98, H 4.72, N 3.45; found C 78.01; H 4.76, N 3.48. 1H NMR (500 MHz, CDCl3, δ/ppm): 7.82 (m, 4H, Ar-H), 7.65 (m, 4H, Ar-H), 7.44 (m, 4H, Ar-H), 7.23 (m, 5H, Ar-H), 5.24 (s, 2H, Ar—CH2—O—).
with silica gel and chloroform as The crude product was recrystallized from chloroform solution to yield colourless blocks of (I)7. Refinement
Crystal data, data collection and structure . All the H-atoms were positioned with idealized geometry and refined using a riding model with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).
details are summarized in Table 2Supporting information
CCDC reference: 2380701
https://doi.org/10.1107/S2056989024008570/hb8105sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024008570/hb8105Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024008570/hb8105Isup3.cml
C27H19NO3 | Rod |
Mr = 405.43 | Dx = 1.297 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.4289 (10) Å | Cell parameters from 3639 reflections |
b = 9.6739 (9) Å | θ = 3.5–25.1° |
c = 11.4872 (11) Å | µ = 0.09 mm−1 |
β = 97.668 (4)° | T = 270 K |
V = 1038.43 (18) Å3 | Block, colourless |
Z = 2 | 0.42 × 0.38 × 0.24 mm |
F(000) = 424 |
Bruker SMART APEXII CCD diffractometer | 3639 independent reflections |
Radiation source: fine-focus sealed tube | 3308 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.052 |
Detector resolution: 1.09 pixels mm-1 | θmax = 25.0°, θmin = 3.6° |
φ and Ω scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −11→11 |
Tmin = 0.966, Tmax = 0.981 | l = −13→13 |
27994 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.038 | H-atom parameters constrained |
wR(F2) = 0.080 | w = 1/[σ2(Fo2) + (0.0339P)2 + 0.1198P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
3639 reflections | Δρmax = 0.11 e Å−3 |
280 parameters | Δρmin = −0.16 e Å−3 |
1 restraint | Absolute structure: Flack x determined using 1347 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
0.012 constraints | Absolute structure parameter: 0.0 (5) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.7334 (2) | 0.77894 (19) | 0.21126 (16) | 0.0509 (5) | |
O3 | 0.8888 (2) | 0.5498 (2) | −0.24091 (16) | 0.0555 (6) | |
O2 | 0.7452 (3) | 0.5514 (2) | 0.17589 (19) | 0.0695 (7) | |
C11 | 0.6854 (3) | 0.7566 (3) | 0.3203 (2) | 0.0430 (7) | |
C13 | 0.7200 (3) | 0.7988 (3) | 0.5258 (2) | 0.0443 (7) | |
H13 | 0.775740 | 0.834123 | 0.592030 | 0.053* | |
C21 | 0.8166 (3) | 0.4201 (3) | −0.2372 (2) | 0.0484 (7) | |
H21A | 0.715024 | 0.435077 | −0.236419 | 0.058* | |
H21B | 0.853943 | 0.369863 | −0.166652 | 0.058* | |
C10 | 0.5549 (3) | 0.6967 (3) | 0.3284 (2) | 0.0506 (7) | |
H10 | 0.498693 | 0.663636 | 0.261571 | 0.061* | |
C16 | 0.8197 (3) | 0.6095 (3) | −0.0507 (2) | 0.0414 (6) | |
H16 | 0.783496 | 0.521562 | −0.040255 | 0.050* | |
C8 | 0.5898 (3) | 0.7372 (3) | 0.5372 (2) | 0.0384 (6) | |
C22 | 0.8404 (3) | 0.3390 (3) | −0.3434 (2) | 0.0401 (6) | |
C12 | 0.7683 (3) | 0.8085 (3) | 0.4174 (2) | 0.0450 (7) | |
H12 | 0.855882 | 0.849784 | 0.410635 | 0.054* | |
C20 | 0.8662 (3) | 0.8422 (3) | 0.0195 (2) | 0.0488 (7) | |
H20 | 0.860968 | 0.910130 | 0.076078 | 0.059* | |
C27 | 0.8103 (3) | 0.3941 (3) | −0.4553 (3) | 0.0481 (7) | |
H27 | 0.775214 | 0.483768 | −0.465142 | 0.058* | |
C17 | 0.8782 (3) | 0.6410 (3) | −0.1512 (2) | 0.0421 (6) | |
C9 | 0.5083 (3) | 0.6864 (3) | 0.4366 (2) | 0.0470 (7) | |
H9 | 0.420768 | 0.644553 | 0.442524 | 0.056* | |
C15 | 0.8154 (3) | 0.7109 (3) | 0.0354 (2) | 0.0391 (6) | |
C6 | 0.5598 (3) | 0.8325 (3) | 0.7351 (2) | 0.0461 (7) | |
H6 | 0.611277 | 0.910110 | 0.717919 | 0.055* | |
C5 | 0.5377 (3) | 0.7261 (3) | 0.6536 (2) | 0.0393 (6) | |
C2 | 0.4316 (3) | 0.7098 (3) | 0.8675 (2) | 0.0493 (7) | |
C4 | 0.4646 (3) | 0.6095 (3) | 0.6828 (2) | 0.0496 (7) | |
H4 | 0.451143 | 0.536161 | 0.630193 | 0.060* | |
C19 | 0.9250 (3) | 0.8715 (3) | −0.0818 (3) | 0.0550 (8) | |
H19 | 0.959121 | 0.959983 | −0.093327 | 0.066* | |
C23 | 0.8922 (3) | 0.2051 (3) | −0.3313 (3) | 0.0475 (7) | |
H23 | 0.911977 | 0.166328 | −0.256862 | 0.057* | |
N1 | 0.3247 (4) | 0.6894 (4) | 1.0630 (3) | 0.0907 (11) | |
C7 | 0.5067 (3) | 0.8251 (3) | 0.8410 (2) | 0.0506 (7) | |
H7 | 0.521498 | 0.897631 | 0.894393 | 0.061* | |
C3 | 0.4113 (3) | 0.6006 (3) | 0.7889 (3) | 0.0552 (8) | |
H3 | 0.362120 | 0.521913 | 0.807373 | 0.066* | |
C14 | 0.7605 (3) | 0.6679 (3) | 0.1449 (3) | 0.0450 (7) | |
C18 | 0.9338 (3) | 0.7717 (3) | −0.1657 (2) | 0.0515 (8) | |
H18 | 0.976819 | 0.791722 | −0.232010 | 0.062* | |
C26 | 0.8322 (3) | 0.3164 (3) | −0.5526 (3) | 0.0549 (8) | |
H26 | 0.811223 | 0.353879 | −0.627419 | 0.066* | |
C25 | 0.8848 (3) | 0.1843 (3) | −0.5389 (3) | 0.0588 (8) | |
H25 | 0.900050 | 0.132486 | −0.604287 | 0.071* | |
C1 | 0.3728 (4) | 0.6998 (4) | 0.9774 (3) | 0.0635 (9) | |
C24 | 0.9147 (3) | 0.1288 (3) | −0.4283 (3) | 0.0561 (8) | |
H24 | 0.950410 | 0.039321 | −0.418934 | 0.067* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0725 (14) | 0.0391 (10) | 0.0449 (11) | 0.0014 (10) | 0.0219 (10) | −0.0050 (9) |
O3 | 0.0780 (15) | 0.0486 (12) | 0.0448 (11) | −0.0129 (11) | 0.0262 (10) | −0.0078 (9) |
O2 | 0.112 (2) | 0.0427 (12) | 0.0623 (14) | −0.0043 (13) | 0.0450 (13) | −0.0047 (11) |
C11 | 0.0543 (17) | 0.0372 (15) | 0.0398 (15) | 0.0058 (13) | 0.0142 (13) | −0.0018 (12) |
C13 | 0.0456 (16) | 0.0440 (15) | 0.0421 (15) | −0.0021 (13) | 0.0016 (12) | −0.0031 (12) |
C21 | 0.0514 (17) | 0.0455 (16) | 0.0506 (17) | −0.0032 (13) | 0.0152 (14) | −0.0025 (14) |
C10 | 0.0530 (17) | 0.0555 (18) | 0.0437 (16) | −0.0063 (15) | 0.0079 (13) | −0.0136 (14) |
C16 | 0.0458 (15) | 0.0361 (14) | 0.0431 (15) | −0.0021 (12) | 0.0085 (12) | 0.0004 (12) |
C8 | 0.0385 (14) | 0.0334 (14) | 0.0435 (15) | 0.0041 (11) | 0.0066 (11) | −0.0026 (11) |
C22 | 0.0382 (14) | 0.0404 (15) | 0.0432 (16) | −0.0017 (12) | 0.0103 (12) | −0.0023 (12) |
C12 | 0.0445 (15) | 0.0408 (15) | 0.0508 (17) | −0.0009 (13) | 0.0110 (13) | −0.0008 (13) |
C20 | 0.0572 (17) | 0.0453 (17) | 0.0435 (16) | −0.0077 (14) | 0.0050 (13) | −0.0047 (13) |
C27 | 0.0515 (17) | 0.0429 (16) | 0.0514 (18) | 0.0016 (13) | 0.0130 (14) | −0.0007 (13) |
C17 | 0.0487 (15) | 0.0428 (15) | 0.0350 (15) | −0.0007 (13) | 0.0060 (12) | −0.0027 (12) |
C9 | 0.0429 (15) | 0.0548 (17) | 0.0445 (16) | −0.0065 (14) | 0.0102 (12) | −0.0083 (14) |
C15 | 0.0385 (14) | 0.0403 (15) | 0.0386 (14) | 0.0012 (12) | 0.0048 (11) | −0.0003 (12) |
C6 | 0.0544 (17) | 0.0361 (15) | 0.0479 (17) | 0.0009 (13) | 0.0068 (13) | −0.0029 (13) |
C5 | 0.0402 (14) | 0.0386 (14) | 0.0387 (14) | 0.0057 (12) | 0.0033 (11) | −0.0012 (12) |
C2 | 0.0559 (18) | 0.0544 (18) | 0.0377 (15) | 0.0068 (15) | 0.0067 (13) | −0.0004 (15) |
C4 | 0.0586 (18) | 0.0489 (17) | 0.0427 (16) | −0.0082 (14) | 0.0119 (13) | −0.0097 (13) |
C19 | 0.071 (2) | 0.0476 (17) | 0.0465 (17) | −0.0191 (16) | 0.0078 (15) | −0.0018 (14) |
C23 | 0.0473 (16) | 0.0450 (16) | 0.0511 (16) | −0.0004 (14) | 0.0091 (13) | 0.0027 (14) |
N1 | 0.114 (3) | 0.112 (3) | 0.0516 (18) | 0.004 (2) | 0.0303 (18) | −0.0054 (19) |
C7 | 0.0602 (18) | 0.0490 (17) | 0.0418 (16) | 0.0078 (15) | 0.0039 (14) | −0.0123 (13) |
C3 | 0.063 (2) | 0.0538 (17) | 0.0510 (17) | −0.0105 (16) | 0.0151 (15) | −0.0012 (14) |
C14 | 0.0506 (16) | 0.0398 (15) | 0.0465 (16) | −0.0002 (13) | 0.0131 (13) | −0.0048 (13) |
C18 | 0.0608 (19) | 0.0557 (17) | 0.0390 (16) | −0.0142 (15) | 0.0105 (14) | 0.0036 (15) |
C26 | 0.0610 (19) | 0.062 (2) | 0.0428 (17) | −0.0149 (16) | 0.0112 (14) | −0.0030 (15) |
C25 | 0.061 (2) | 0.056 (2) | 0.063 (2) | −0.0137 (17) | 0.0226 (16) | −0.0223 (17) |
C1 | 0.074 (2) | 0.070 (2) | 0.0475 (19) | 0.0047 (19) | 0.0114 (16) | −0.0063 (18) |
C24 | 0.0561 (19) | 0.0386 (16) | 0.076 (2) | −0.0020 (14) | 0.0166 (16) | −0.0101 (16) |
O1—C14 | 1.361 (3) | C27—H27 | 0.9300 |
O1—C11 | 1.405 (3) | C17—C18 | 1.387 (4) |
O3—C17 | 1.370 (3) | C9—H9 | 0.9300 |
O3—C21 | 1.431 (3) | C15—C14 | 1.482 (4) |
O2—C14 | 1.197 (3) | C6—C7 | 1.378 (4) |
C11—C12 | 1.369 (4) | C6—C5 | 1.388 (4) |
C11—C10 | 1.374 (4) | C6—H6 | 0.9300 |
C13—C12 | 1.386 (4) | C5—C4 | 1.386 (4) |
C13—C8 | 1.386 (4) | C2—C7 | 1.377 (4) |
C13—H13 | 0.9300 | C2—C3 | 1.386 (4) |
C21—C22 | 1.492 (4) | C2—C1 | 1.448 (4) |
C21—H21A | 0.9700 | C4—C3 | 1.381 (4) |
C21—H21B | 0.9700 | C4—H4 | 0.9300 |
C10—C9 | 1.376 (4) | C19—C18 | 1.374 (4) |
C10—H10 | 0.9300 | C19—H19 | 0.9300 |
C16—C17 | 1.379 (4) | C23—C24 | 1.376 (4) |
C16—C15 | 1.398 (4) | C23—H23 | 0.9300 |
C16—H16 | 0.9300 | N1—C1 | 1.141 (4) |
C8—C9 | 1.389 (4) | C7—H7 | 0.9300 |
C8—C5 | 1.488 (3) | C3—H3 | 0.9300 |
C22—C27 | 1.385 (4) | C18—H18 | 0.9300 |
C22—C23 | 1.385 (4) | C26—C25 | 1.372 (5) |
C12—H12 | 0.9300 | C26—H26 | 0.9300 |
C20—C15 | 1.378 (4) | C25—C24 | 1.373 (4) |
C20—C19 | 1.384 (4) | C25—H25 | 0.9300 |
C20—H20 | 0.9300 | C24—H24 | 0.9300 |
C27—C26 | 1.385 (4) | ||
C14—O1—C11 | 119.0 (2) | C20—C15—C14 | 122.5 (2) |
C17—O3—C21 | 117.4 (2) | C16—C15—C14 | 116.8 (2) |
C12—C11—C10 | 121.2 (2) | C7—C6—C5 | 121.2 (3) |
C12—C11—O1 | 117.0 (3) | C7—C6—H6 | 119.4 |
C10—C11—O1 | 121.6 (2) | C5—C6—H6 | 119.4 |
C12—C13—C8 | 121.0 (3) | C4—C5—C6 | 118.3 (2) |
C12—C13—H13 | 119.5 | C4—C5—C8 | 120.7 (2) |
C8—C13—H13 | 119.5 | C6—C5—C8 | 121.0 (2) |
O3—C21—C22 | 108.2 (2) | C7—C2—C3 | 120.3 (3) |
O3—C21—H21A | 110.1 | C7—C2—C1 | 120.9 (3) |
C22—C21—H21A | 110.1 | C3—C2—C1 | 118.8 (3) |
O3—C21—H21B | 110.1 | C3—C4—C5 | 121.1 (3) |
C22—C21—H21B | 110.1 | C3—C4—H4 | 119.5 |
H21A—C21—H21B | 108.4 | C5—C4—H4 | 119.5 |
C11—C10—C9 | 119.2 (3) | C18—C19—C20 | 120.9 (3) |
C11—C10—H10 | 120.4 | C18—C19—H19 | 119.5 |
C9—C10—H10 | 120.4 | C20—C19—H19 | 119.5 |
C17—C16—C15 | 119.4 (2) | C24—C23—C22 | 120.7 (3) |
C17—C16—H16 | 120.3 | C24—C23—H23 | 119.6 |
C15—C16—H16 | 120.3 | C22—C23—H23 | 119.6 |
C13—C8—C9 | 118.2 (2) | C2—C7—C6 | 119.7 (3) |
C13—C8—C5 | 121.2 (2) | C2—C7—H7 | 120.2 |
C9—C8—C5 | 120.6 (2) | C6—C7—H7 | 120.2 |
C27—C22—C23 | 118.6 (3) | C4—C3—C2 | 119.5 (3) |
C27—C22—C21 | 121.5 (3) | C4—C3—H3 | 120.3 |
C23—C22—C21 | 119.9 (3) | C2—C3—H3 | 120.3 |
C11—C12—C13 | 119.1 (3) | O2—C14—O1 | 122.5 (3) |
C11—C12—H12 | 120.4 | O2—C14—C15 | 125.9 (3) |
C13—C12—H12 | 120.4 | O1—C14—C15 | 111.5 (2) |
C15—C20—C19 | 119.1 (3) | C19—C18—C17 | 119.8 (3) |
C15—C20—H20 | 120.5 | C19—C18—H18 | 120.1 |
C19—C20—H20 | 120.5 | C17—C18—H18 | 120.1 |
C22—C27—C26 | 120.4 (3) | C25—C26—C27 | 120.3 (3) |
C22—C27—H27 | 119.8 | C25—C26—H26 | 119.9 |
C26—C27—H27 | 119.8 | C27—C26—H26 | 119.9 |
O3—C17—C16 | 124.4 (2) | C26—C25—C24 | 119.8 (3) |
O3—C17—C18 | 115.5 (2) | C26—C25—H25 | 120.1 |
C16—C17—C18 | 120.1 (2) | C24—C25—H25 | 120.1 |
C10—C9—C8 | 121.2 (3) | N1—C1—C2 | 178.4 (4) |
C10—C9—H9 | 119.4 | C25—C24—C23 | 120.3 (3) |
C8—C9—H9 | 119.4 | C25—C24—H24 | 119.9 |
C20—C15—C16 | 120.6 (2) | C23—C24—H24 | 119.9 |
C14—O1—C11—C12 | 120.6 (3) | C9—C8—C5—C4 | 37.8 (4) |
C14—O1—C11—C10 | −65.3 (4) | C13—C8—C5—C6 | 38.2 (4) |
C17—O3—C21—C22 | 179.1 (2) | C9—C8—C5—C6 | −141.5 (3) |
C12—C11—C10—C9 | −1.4 (4) | C6—C5—C4—C3 | 1.8 (4) |
O1—C11—C10—C9 | −175.3 (3) | C8—C5—C4—C3 | −177.6 (3) |
C12—C13—C8—C9 | −0.5 (4) | C15—C20—C19—C18 | −0.3 (5) |
C12—C13—C8—C5 | 179.8 (2) | C27—C22—C23—C24 | 0.7 (4) |
O3—C21—C22—C27 | −52.9 (3) | C21—C22—C23—C24 | 180.0 (3) |
O3—C21—C22—C23 | 127.8 (3) | C3—C2—C7—C6 | 1.0 (5) |
C10—C11—C12—C13 | 0.8 (4) | C1—C2—C7—C6 | −179.1 (3) |
O1—C11—C12—C13 | 174.9 (2) | C5—C6—C7—C2 | 0.7 (4) |
C8—C13—C12—C11 | 0.2 (4) | C5—C4—C3—C2 | −0.2 (4) |
C23—C22—C27—C26 | −0.2 (4) | C7—C2—C3—C4 | −1.2 (5) |
C21—C22—C27—C26 | −179.5 (3) | C1—C2—C3—C4 | 178.9 (3) |
C21—O3—C17—C16 | 9.1 (4) | C11—O1—C14—O2 | 0.0 (4) |
C21—O3—C17—C18 | −172.0 (3) | C11—O1—C14—C15 | −177.8 (2) |
C15—C16—C17—O3 | 179.6 (3) | C20—C15—C14—O2 | −162.2 (3) |
C15—C16—C17—C18 | 0.8 (4) | C16—C15—C14—O2 | 14.9 (4) |
C11—C10—C9—C8 | 1.0 (4) | C20—C15—C14—O1 | 15.5 (4) |
C13—C8—C9—C10 | −0.1 (4) | C16—C15—C14—O1 | −167.4 (2) |
C5—C8—C9—C10 | 179.6 (3) | C20—C19—C18—C17 | 2.4 (5) |
C19—C20—C15—C16 | −1.6 (4) | O3—C17—C18—C19 | 178.4 (3) |
C19—C20—C15—C14 | 175.4 (3) | C16—C17—C18—C19 | −2.7 (4) |
C17—C16—C15—C20 | 1.3 (4) | C22—C27—C26—C25 | −0.4 (4) |
C17—C16—C15—C14 | −175.9 (2) | C27—C26—C25—C24 | 0.5 (4) |
C7—C6—C5—C4 | −2.0 (4) | C26—C25—C24—C23 | 0.0 (4) |
C7—C6—C5—C8 | 177.3 (3) | C22—C23—C24—C25 | −0.6 (4) |
C13—C8—C5—C4 | −142.5 (3) |
Cg4 is the centroid of the C22–C27 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O1i | 0.93 | 2.52 | 3.395 (4) | 158 |
CH—H4···Cg2i | 0.93 | 2.97 | 3.805 (3) | 151 |
C9—H9···Cg4ii | 0.93 | 2.90 | 3.579 (3) | 131 |
C12—H12···Cg4iii | 0.93 | 2.77 | 3.485 (13) | 135 |
Symmetry codes: (i) −x+1, y−1/2, −z+1; (ii) −x+1, y+1/2, −z; (iii) −x+2, y+1/2, −z. |
Acknowledgements
HM extends his gratitude to Kishore and Shivakumar, C. SSCU, IISc for their help in collecting SCXRD data.
Funding information
BSPM thanks the Vision Group on Science and Technology, Government of Karnataka, for the award of a major project under the CISEE scheme (reference No. VGST/ CISEE/GRD-319/2014–15) to carry out this work at the Department of PG Studies and Research in Physics, Albert Einstein Block, UCS, Tumkur University.
References
Bruker (2014). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Candia, M. de, Marini, E., Zaetta, G., Cellamare, S., Di Stilo, A. & Altomare, C. D. (2015). Eur. J. Pharm. Sci. 72, 69–80. Web of Science PubMed Google Scholar
Godyń, J., Zaręba, P., Łażewska, D., Stary, D., Reiner-Link, D., Frank, A., Latacz, G., Mogilski, S., Kaleta, M., Doroz-Płonka, A., Lubelska, A., Honkisz-Orzechowska, E., Olejarz-Maciej, A., Handzlik, J., Stark, H., Kieć-Kononowicz, K., Malawska, B. & Bajda, M. (2021). Bioorg. Chem. 114, 105129. Web of Science PubMed Google Scholar
Goodby, J. W., Cowling, S. J., Bradbury, C. K. & Mandle, R. J. (2022). Liq. Cryst. 49, 908–933. Web of Science CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Jakubowski, R., Januszko, A., William Tilford, R., Radziszewski, G. J., Pietrzak, A., Young, V. G. Jr & Kaszyński, P. (2023). Chem. A Eur. J. 29, e202203948. Web of Science CSD CrossRef Google Scholar
Kaushik, C. P., Pahwa, A., Kumar, D., Kumar, A., Singh, D., Kumar, K. & Luxmi, R. (2018). J. Heterocycl. Chem. 55, 1720–1728. Web of Science CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Malani, M. H. & Dholakiya, B. Z. (2013). Bioorg. Chem. 51, 16–23. Web of Science CrossRef CAS PubMed Google Scholar
Mohebi, M., Fayazi, N., Esmaeili, S., Rostami, M., Bagheri, F., Aliabadi, A., Asadi, P. & Saghaie, L. (2022). Res Pharma Sci, 17, 252–264. Web of Science CrossRef Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rai, D., Chen, W., Tian, Y., Chen, X., Zhan, P., De Clercq, E., Pannecouque, C., Balzarini, J. & Liu, X. (2013). Bioorg. Med. Chem. 21, 7398–7405. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Srinivasa, H. T. & Hariprasad, S. (2024). Phase Transit. 97, 201–211. Web of Science CrossRef CAS Google Scholar
Srinivasa, H. T., Palakshamurthy, B. S., Velmurugan, D., Devarajegowda, H. C. & Hariprasad, S. (2015). Acta Chim. Slov. 62, 768–774. Web of Science CAS PubMed Google Scholar
Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. http:// hirshfeldsurface. net. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.