research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of 4′-cyano-[1,1′-biphen­yl]-4-yl 3-(benz­yl­oxy)benzoate

crossmark logo

aDepartment of Physics, Yuvaraja's College, University of Mysore, Mysore, 570005, Karnaataka, India, bDepartment of Physics, Maharani's Science College for Women(Autonomous) Mysore, Karnataka, 750005, India, cRaman Research Institute, C. V. Raman, Avenue, Sadashivanagar, Bangalore, Karnataka, India, and dDepartment of PG Studies and Research in Physics, Albert Einstein Block, UCS, Tumkur University, Tumkur, Karnataka 572103, India
*Correspondence e-mail: palaksha.bspm@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 13 August 2024; accepted 29 August 2024; online 12 September 2024)

In the title compound, C27H19O3N, the dihedral angle between the aromatic rings of the biphenyl unit is 38.14 (2)° and the C—O—C—C torsion angle in the benz­yloxy benzene fragment is 179.1 (2)°. In the crystal, the mol­ecules are linked by weak C—H⋯O inter­actions forming S(9) chains propagating along [010]. The most important contributions to the Hirshfeld surface arise from H⋯H (32.4%) and C⋯H/H⋯C (37.0%) contacts.

1. Chemical context

Cyano­biphenyl-substituted derivatives can act as biological inhibitors and potential agents for the treatment of Alzheimer's disease (Godyń et al., 2021[Godyń, J., Zaręba, P., Łażewska, D., Stary, D., Reiner-Link, D., Frank, A., Latacz, G., Mogilski, S., Kaleta, M., Doroz-Płonka, A., Lubelska, A., Honkisz-Orzechowska, E., Olejarz-Maciej, A., Handzlik, J., Stark, H., Kieć-Kononowicz, K., Malawska, B. & Bajda, M. (2021). Bioorg. Chem. 114, 105129.]) as well as anti­bacterial and anti­malarial drugs (Malani et al., 2013[Malani, M. H. & Dholakiya, B. Z. (2013). Bioorg. Chem. 51, 16-23.]). Benz­yloxy derivatives exhibit anti-bacterial, anti-platelet and anti-malarial activities (Kaushik et al., 2018[Kaushik, C. P., Pahwa, A., Kumar, D., Kumar, A., Singh, D., Kumar, K. & Luxmi, R. (2018). J. Heterocycl. Chem. 55, 1720-1728.]; de Candia et al., 2015[Candia, M. de, Marini, E., Zaetta, G., Cellamare, S., Di Stilo, A. & Altomare, C. D. (2015). Eur. J. Pharm. Sci. 72, 69-80.]; Mohebi et al., 2022[Mohebi, M., Fayazi, N., Esmaeili, S., Rostami, M., Bagheri, F., Aliabadi, A., Asadi, P. & Saghaie, L. (2022). Res Pharma Sci, 17, 252-264.]) and related pyrimidinyl­phenyl­amine derivatives are most active towards the inhibition of HIV-1 (Rai et al., 2013[Rai, D., Chen, W., Tian, Y., Chen, X., Zhan, P., De Clercq, E., Pannecouque, C., Balzarini, J. & Liu, X. (2013). Bioorg. Med. Chem. 21, 7398-7405.]). The cyano­biphenyl and (benz­yloxy)benzoate groups exhibit distinct structural geometries and these derivatives play significant roles in the construction of organic liquid crystal materials (Srinivasa et al., 2015[Srinivasa, H. T., Palakshamurthy, B. S., Velmurugan, D., Devarajegowda, H. C. & Hariprasad, S. (2015). Acta Chim. Slov. 62, 768-774.]), which have been investigated for their display technology applications, such as optoelectronic materials, sensor materials, light-emitting diodes, and photovoltaic solar cells (Goodby et al., 2022[Goodby, J. W., Cowling, S. J., Bradbury, C. K. & Mandle, R. J. (2022). Liq. Cryst. 49, 908-933.]; Srinivasa et al., 2024[Srinivasa, H. T. & Hariprasad, S. (2024). Phase Transit. 97, 201-211.]). As part of our studies of this family of materials, we now present the synthesis, structure and Hirshfeld surface analysis of the title compound, C27H19NO3 (I)[link].

[Scheme 1]

2. Structural commentary

The mol­ecular structure of (I)[link] is shown in Fig. 1[link]. The aromatic rings in the mol­ecule are designated as A (C2–C7), B (C8–C13), C (C15–C20) and D (C22–C27) and the dihedral angles between the rings A/B = 38.14 (2), A/C = 8.29 (3) and A/D = 50.66 (2)°, whereas B/C, B/D and C/D are 46.43 (4), 83.95 (2) and 44.01 (2)°, respectively. The torsion angle associated with the phenyl benzoate group (C11—O1—C14—C15) is −177.8 (2)° and that for the benz­yloxy group (C22—C21—O3—C17) is 179.1 (2)°. Otherwise, the bond distances and angles may be regarded as normal.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

The crystal structure features a weak C3—H3⋯O1 inter­action (Table 1[link]), which forms an S(9) chain propagating along the [010] direction as shown in Fig. 2[link]. Furthermore, the packing is consolidated by three weak C—H⋯π inter­actions as shown in Fig. 3[link]. In addition there exists an aromatic ππ stacking inter­action between the C2–C7 and C15–C20 rings with a centroid–centroid distance of 3.9282 (19) Å (Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C22–C27 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.93 2.52 3.395 (4) 158
CH—H4⋯Cg2i 0.93 2.97 3.805 (3) 151
C9—H9⋯Cg4ii 0.93 2.90 3.579 (3) 131
C12—H12⋯Cg4iii 0.93 2.77 3.485 (13) 135
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+1]; (ii) [-x+1, y+{\script{1\over 2}}, -z]; (iii) [-x+2, y+{\script{1\over 2}}, -z].
[Figure 2]
Figure 2
The crystal structure of (I)[link] with a weak C—H ⋯ O inter­action forming an S(9) chain running along the [010] direction.
[Figure 3]
Figure 3
The mol­ecular packing of (I)[link] with C—H⋯π inter­actions depicted by dashed lines.
[Figure 4]
Figure 4
The mol­ecular packing of (I)[link] with ππ inter­actions depicted by pale green coloured dashed lines.

4. Hirshfeld surface analysis

CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. http:// hirshfeldsurface. net.]) was used to perform a Hirshfeld surface analysis to further qu­antify the various inter­molecular inter­actions. Fig. 5[link] illustrates the Hirshfeld surface mapped over dnorm with red spots corresponding to short contacts. The fingerprint plots (Fig. 6[link]) indicate that the major contributions to the crystal structure are from H⋯H (36.2%), C⋯H/H⋯C (33.8%), O⋯H/H⋯O (12.1.6%), N⋯H/H⋯N (10.1.8%) and C⋯C (5.0%) contacts. The characteristic spikes in the O⋯H/H⋯O plot indicate the existence of the C—H⋯O hydrogen bond listed in Table 1[link].

[Figure 5]
Figure 5
Hirshfeld surface representation for (I)[link] plotted over dnorm.
[Figure 6]
Figure 6
The full two-dimensional fingerprint plots for the title compound, showing all inter­actions and delineated into H⋯H, C⋯H/H⋯C, O⋯H/H⋯O, N⋯H/H⋯N and C⋯C inter­actions.

5. Database survey

A search of the Cambridge Structural Database (CSD, version 5.42, update of November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for mol­ecules containing the 4′-cyano-[1,1′-biphen­yl] fragment resulted in two matches with CSD refcodes PIFZEN and PIFZIR (Jakubowski et al., 2023[Jakubowski, R., Januszko, A., William Tilford, R., Radziszewski, G. J., Pietrzak, A., Young, V. G. Jr & Kaszyński, P. (2023). Chem. A Eur. J. 29, e202203948.]). In these structures, the dihedral angle between the 4-cyano­phen­oxy ring and the neighbouring ring are 31.71 (2) and 38.95 (3)°, respectively, compared to 38.14 (2)° for (I)[link]. For mol­ecules containing the (benz­yloxy)benzoate fragment, a search resulted in thirteen matches: in all of these, the torsion angle of the linking C—O—C—C unit indicates a conformation close to anti.

6. Synthesis and crystallization

A mixture of 3-(benz­yloxy)benzoic acid (1 eq., 0.228 g) and 4′-hy­droxy-[1,1′-biphen­yl]-4-carbo­nitrile (1 eq., 0.195 g), di­cyclo­hexyl­carbodi­imide (1.2 eq.) and a catalytic amount of di­methyl­amino­pyrimidine were stirred in dry di­chloro­methane at room temperature overnight. After completion of the reaction, the product mass was subjected to column chromatography with silica gel and chloro­form as eluent. The crude product was recrystallized from chloro­form solution to yield colourless blocks of (I)[link]. Melting point = 398 K, analysis (%) calculated for C27H19NO3, C 79.98, H 4.72, N 3.45; found C 78.01; H 4.76, N 3.48. 1H NMR (500 MHz, CDCl3, δ/ppm): 7.82 (m, 4H, Ar-H), 7.65 (m, 4H, Ar-H), 7.44 (m, 4H, Ar-H), 7.23 (m, 5H, Ar-H), 5.24 (s, 2H, Ar—CH2—O—).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All the H-atoms were positioned with idealized geometry and refined using a riding model with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Table 2
Experimental details

Crystal data
Chemical formula C27H19NO3
Mr 405.43
Crystal system, space group Monoclinic, P21
Temperature (K) 270
a, b, c (Å) 9.4289 (10), 9.6739 (9), 11.4872 (11)
β (°) 97.668 (4)
V3) 1038.43 (18)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.42 × 0.38 × 0.24
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.966, 0.981
No. of measured, independent and observed [I > 2σ(I)] reflections 27994, 3639, 3308
Rint 0.052
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.080, 1.08
No. of reflections 3639
No. of parameters 280
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.11, −0.16
Absolute structure Flack x determined using 1347 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.0 (5)
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Supporting information


Computing details top

4'-Cyano-[1,1'-biphenyl]-4-yl 3-(benzyloxy)benzoate top
Crystal data top
C27H19NO3Rod
Mr = 405.43Dx = 1.297 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 9.4289 (10) ÅCell parameters from 3639 reflections
b = 9.6739 (9) Åθ = 3.5–25.1°
c = 11.4872 (11) ŵ = 0.09 mm1
β = 97.668 (4)°T = 270 K
V = 1038.43 (18) Å3Block, colourless
Z = 20.42 × 0.38 × 0.24 mm
F(000) = 424
Data collection top
Bruker SMART APEXII CCD
diffractometer
3639 independent reflections
Radiation source: fine-focus sealed tube3308 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 1.09 pixels mm-1θmax = 25.0°, θmin = 3.6°
φ and Ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1111
Tmin = 0.966, Tmax = 0.981l = 1313
27994 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0339P)2 + 0.1198P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3639 reflectionsΔρmax = 0.11 e Å3
280 parametersΔρmin = 0.16 e Å3
1 restraintAbsolute structure: Flack x determined using 1347 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0.012 constraintsAbsolute structure parameter: 0.0 (5)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7334 (2)0.77894 (19)0.21126 (16)0.0509 (5)
O30.8888 (2)0.5498 (2)0.24091 (16)0.0555 (6)
O20.7452 (3)0.5514 (2)0.17589 (19)0.0695 (7)
C110.6854 (3)0.7566 (3)0.3203 (2)0.0430 (7)
C130.7200 (3)0.7988 (3)0.5258 (2)0.0443 (7)
H130.7757400.8341230.5920300.053*
C210.8166 (3)0.4201 (3)0.2372 (2)0.0484 (7)
H21A0.7150240.4350770.2364190.058*
H21B0.8539430.3698630.1666520.058*
C100.5549 (3)0.6967 (3)0.3284 (2)0.0506 (7)
H100.4986930.6636360.2615710.061*
C160.8197 (3)0.6095 (3)0.0507 (2)0.0414 (6)
H160.7834960.5215620.0402550.050*
C80.5898 (3)0.7372 (3)0.5372 (2)0.0384 (6)
C220.8404 (3)0.3390 (3)0.3434 (2)0.0401 (6)
C120.7683 (3)0.8085 (3)0.4174 (2)0.0450 (7)
H120.8558820.8497840.4106350.054*
C200.8662 (3)0.8422 (3)0.0195 (2)0.0488 (7)
H200.8609680.9101300.0760780.059*
C270.8103 (3)0.3941 (3)0.4553 (3)0.0481 (7)
H270.7752140.4837680.4651420.058*
C170.8782 (3)0.6410 (3)0.1512 (2)0.0421 (6)
C90.5083 (3)0.6864 (3)0.4366 (2)0.0470 (7)
H90.4207680.6445530.4425240.056*
C150.8154 (3)0.7109 (3)0.0354 (2)0.0391 (6)
C60.5598 (3)0.8325 (3)0.7351 (2)0.0461 (7)
H60.6112770.9101100.7179190.055*
C50.5377 (3)0.7261 (3)0.6536 (2)0.0393 (6)
C20.4316 (3)0.7098 (3)0.8675 (2)0.0493 (7)
C40.4646 (3)0.6095 (3)0.6828 (2)0.0496 (7)
H40.4511430.5361610.6301930.060*
C190.9250 (3)0.8715 (3)0.0818 (3)0.0550 (8)
H190.9591210.9599830.0933270.066*
C230.8922 (3)0.2051 (3)0.3313 (3)0.0475 (7)
H230.9119770.1663280.2568620.057*
N10.3247 (4)0.6894 (4)1.0630 (3)0.0907 (11)
C70.5067 (3)0.8251 (3)0.8410 (2)0.0506 (7)
H70.5214980.8976310.8943930.061*
C30.4113 (3)0.6006 (3)0.7889 (3)0.0552 (8)
H30.3621200.5219130.8073730.066*
C140.7605 (3)0.6679 (3)0.1449 (3)0.0450 (7)
C180.9338 (3)0.7717 (3)0.1657 (2)0.0515 (8)
H180.9768190.7917220.2320100.062*
C260.8322 (3)0.3164 (3)0.5526 (3)0.0549 (8)
H260.8112230.3538790.6274190.066*
C250.8848 (3)0.1843 (3)0.5389 (3)0.0588 (8)
H250.9000500.1324860.6042870.071*
C10.3728 (4)0.6998 (4)0.9774 (3)0.0635 (9)
C240.9147 (3)0.1288 (3)0.4283 (3)0.0561 (8)
H240.9504100.0393210.4189340.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0725 (14)0.0391 (10)0.0449 (11)0.0014 (10)0.0219 (10)0.0050 (9)
O30.0780 (15)0.0486 (12)0.0448 (11)0.0129 (11)0.0262 (10)0.0078 (9)
O20.112 (2)0.0427 (12)0.0623 (14)0.0043 (13)0.0450 (13)0.0047 (11)
C110.0543 (17)0.0372 (15)0.0398 (15)0.0058 (13)0.0142 (13)0.0018 (12)
C130.0456 (16)0.0440 (15)0.0421 (15)0.0021 (13)0.0016 (12)0.0031 (12)
C210.0514 (17)0.0455 (16)0.0506 (17)0.0032 (13)0.0152 (14)0.0025 (14)
C100.0530 (17)0.0555 (18)0.0437 (16)0.0063 (15)0.0079 (13)0.0136 (14)
C160.0458 (15)0.0361 (14)0.0431 (15)0.0021 (12)0.0085 (12)0.0004 (12)
C80.0385 (14)0.0334 (14)0.0435 (15)0.0041 (11)0.0066 (11)0.0026 (11)
C220.0382 (14)0.0404 (15)0.0432 (16)0.0017 (12)0.0103 (12)0.0023 (12)
C120.0445 (15)0.0408 (15)0.0508 (17)0.0009 (13)0.0110 (13)0.0008 (13)
C200.0572 (17)0.0453 (17)0.0435 (16)0.0077 (14)0.0050 (13)0.0047 (13)
C270.0515 (17)0.0429 (16)0.0514 (18)0.0016 (13)0.0130 (14)0.0007 (13)
C170.0487 (15)0.0428 (15)0.0350 (15)0.0007 (13)0.0060 (12)0.0027 (12)
C90.0429 (15)0.0548 (17)0.0445 (16)0.0065 (14)0.0102 (12)0.0083 (14)
C150.0385 (14)0.0403 (15)0.0386 (14)0.0012 (12)0.0048 (11)0.0003 (12)
C60.0544 (17)0.0361 (15)0.0479 (17)0.0009 (13)0.0068 (13)0.0029 (13)
C50.0402 (14)0.0386 (14)0.0387 (14)0.0057 (12)0.0033 (11)0.0012 (12)
C20.0559 (18)0.0544 (18)0.0377 (15)0.0068 (15)0.0067 (13)0.0004 (15)
C40.0586 (18)0.0489 (17)0.0427 (16)0.0082 (14)0.0119 (13)0.0097 (13)
C190.071 (2)0.0476 (17)0.0465 (17)0.0191 (16)0.0078 (15)0.0018 (14)
C230.0473 (16)0.0450 (16)0.0511 (16)0.0004 (14)0.0091 (13)0.0027 (14)
N10.114 (3)0.112 (3)0.0516 (18)0.004 (2)0.0303 (18)0.0054 (19)
C70.0602 (18)0.0490 (17)0.0418 (16)0.0078 (15)0.0039 (14)0.0123 (13)
C30.063 (2)0.0538 (17)0.0510 (17)0.0105 (16)0.0151 (15)0.0012 (14)
C140.0506 (16)0.0398 (15)0.0465 (16)0.0002 (13)0.0131 (13)0.0048 (13)
C180.0608 (19)0.0557 (17)0.0390 (16)0.0142 (15)0.0105 (14)0.0036 (15)
C260.0610 (19)0.062 (2)0.0428 (17)0.0149 (16)0.0112 (14)0.0030 (15)
C250.061 (2)0.056 (2)0.063 (2)0.0137 (17)0.0226 (16)0.0223 (17)
C10.074 (2)0.070 (2)0.0475 (19)0.0047 (19)0.0114 (16)0.0063 (18)
C240.0561 (19)0.0386 (16)0.076 (2)0.0020 (14)0.0166 (16)0.0101 (16)
Geometric parameters (Å, º) top
O1—C141.361 (3)C27—H270.9300
O1—C111.405 (3)C17—C181.387 (4)
O3—C171.370 (3)C9—H90.9300
O3—C211.431 (3)C15—C141.482 (4)
O2—C141.197 (3)C6—C71.378 (4)
C11—C121.369 (4)C6—C51.388 (4)
C11—C101.374 (4)C6—H60.9300
C13—C121.386 (4)C5—C41.386 (4)
C13—C81.386 (4)C2—C71.377 (4)
C13—H130.9300C2—C31.386 (4)
C21—C221.492 (4)C2—C11.448 (4)
C21—H21A0.9700C4—C31.381 (4)
C21—H21B0.9700C4—H40.9300
C10—C91.376 (4)C19—C181.374 (4)
C10—H100.9300C19—H190.9300
C16—C171.379 (4)C23—C241.376 (4)
C16—C151.398 (4)C23—H230.9300
C16—H160.9300N1—C11.141 (4)
C8—C91.389 (4)C7—H70.9300
C8—C51.488 (3)C3—H30.9300
C22—C271.385 (4)C18—H180.9300
C22—C231.385 (4)C26—C251.372 (5)
C12—H120.9300C26—H260.9300
C20—C151.378 (4)C25—C241.373 (4)
C20—C191.384 (4)C25—H250.9300
C20—H200.9300C24—H240.9300
C27—C261.385 (4)
C14—O1—C11119.0 (2)C20—C15—C14122.5 (2)
C17—O3—C21117.4 (2)C16—C15—C14116.8 (2)
C12—C11—C10121.2 (2)C7—C6—C5121.2 (3)
C12—C11—O1117.0 (3)C7—C6—H6119.4
C10—C11—O1121.6 (2)C5—C6—H6119.4
C12—C13—C8121.0 (3)C4—C5—C6118.3 (2)
C12—C13—H13119.5C4—C5—C8120.7 (2)
C8—C13—H13119.5C6—C5—C8121.0 (2)
O3—C21—C22108.2 (2)C7—C2—C3120.3 (3)
O3—C21—H21A110.1C7—C2—C1120.9 (3)
C22—C21—H21A110.1C3—C2—C1118.8 (3)
O3—C21—H21B110.1C3—C4—C5121.1 (3)
C22—C21—H21B110.1C3—C4—H4119.5
H21A—C21—H21B108.4C5—C4—H4119.5
C11—C10—C9119.2 (3)C18—C19—C20120.9 (3)
C11—C10—H10120.4C18—C19—H19119.5
C9—C10—H10120.4C20—C19—H19119.5
C17—C16—C15119.4 (2)C24—C23—C22120.7 (3)
C17—C16—H16120.3C24—C23—H23119.6
C15—C16—H16120.3C22—C23—H23119.6
C13—C8—C9118.2 (2)C2—C7—C6119.7 (3)
C13—C8—C5121.2 (2)C2—C7—H7120.2
C9—C8—C5120.6 (2)C6—C7—H7120.2
C27—C22—C23118.6 (3)C4—C3—C2119.5 (3)
C27—C22—C21121.5 (3)C4—C3—H3120.3
C23—C22—C21119.9 (3)C2—C3—H3120.3
C11—C12—C13119.1 (3)O2—C14—O1122.5 (3)
C11—C12—H12120.4O2—C14—C15125.9 (3)
C13—C12—H12120.4O1—C14—C15111.5 (2)
C15—C20—C19119.1 (3)C19—C18—C17119.8 (3)
C15—C20—H20120.5C19—C18—H18120.1
C19—C20—H20120.5C17—C18—H18120.1
C22—C27—C26120.4 (3)C25—C26—C27120.3 (3)
C22—C27—H27119.8C25—C26—H26119.9
C26—C27—H27119.8C27—C26—H26119.9
O3—C17—C16124.4 (2)C26—C25—C24119.8 (3)
O3—C17—C18115.5 (2)C26—C25—H25120.1
C16—C17—C18120.1 (2)C24—C25—H25120.1
C10—C9—C8121.2 (3)N1—C1—C2178.4 (4)
C10—C9—H9119.4C25—C24—C23120.3 (3)
C8—C9—H9119.4C25—C24—H24119.9
C20—C15—C16120.6 (2)C23—C24—H24119.9
C14—O1—C11—C12120.6 (3)C9—C8—C5—C437.8 (4)
C14—O1—C11—C1065.3 (4)C13—C8—C5—C638.2 (4)
C17—O3—C21—C22179.1 (2)C9—C8—C5—C6141.5 (3)
C12—C11—C10—C91.4 (4)C6—C5—C4—C31.8 (4)
O1—C11—C10—C9175.3 (3)C8—C5—C4—C3177.6 (3)
C12—C13—C8—C90.5 (4)C15—C20—C19—C180.3 (5)
C12—C13—C8—C5179.8 (2)C27—C22—C23—C240.7 (4)
O3—C21—C22—C2752.9 (3)C21—C22—C23—C24180.0 (3)
O3—C21—C22—C23127.8 (3)C3—C2—C7—C61.0 (5)
C10—C11—C12—C130.8 (4)C1—C2—C7—C6179.1 (3)
O1—C11—C12—C13174.9 (2)C5—C6—C7—C20.7 (4)
C8—C13—C12—C110.2 (4)C5—C4—C3—C20.2 (4)
C23—C22—C27—C260.2 (4)C7—C2—C3—C41.2 (5)
C21—C22—C27—C26179.5 (3)C1—C2—C3—C4178.9 (3)
C21—O3—C17—C169.1 (4)C11—O1—C14—O20.0 (4)
C21—O3—C17—C18172.0 (3)C11—O1—C14—C15177.8 (2)
C15—C16—C17—O3179.6 (3)C20—C15—C14—O2162.2 (3)
C15—C16—C17—C180.8 (4)C16—C15—C14—O214.9 (4)
C11—C10—C9—C81.0 (4)C20—C15—C14—O115.5 (4)
C13—C8—C9—C100.1 (4)C16—C15—C14—O1167.4 (2)
C5—C8—C9—C10179.6 (3)C20—C19—C18—C172.4 (5)
C19—C20—C15—C161.6 (4)O3—C17—C18—C19178.4 (3)
C19—C20—C15—C14175.4 (3)C16—C17—C18—C192.7 (4)
C17—C16—C15—C201.3 (4)C22—C27—C26—C250.4 (4)
C17—C16—C15—C14175.9 (2)C27—C26—C25—C240.5 (4)
C7—C6—C5—C42.0 (4)C26—C25—C24—C230.0 (4)
C7—C6—C5—C8177.3 (3)C22—C23—C24—C250.6 (4)
C13—C8—C5—C4142.5 (3)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C22–C27 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.523.395 (4)158
CH—H4···Cg2i0.932.973.805 (3)151
C9—H9···Cg4ii0.932.903.579 (3)131
C12—H12···Cg4iii0.932.773.485 (13)135
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+1, y+1/2, z; (iii) x+2, y+1/2, z.
 

Acknowledgements

HM extends his gratitude to Kishore and Shivakumar, C. SSCU, IISc for their help in collecting SCXRD data.

Funding information

BSPM thanks the Vision Group on Science and Technology, Government of Karnataka, for the award of a major project under the CISEE scheme (reference No. VGST/ CISEE/GRD-319/2014–15) to carry out this work at the Department of PG Studies and Research in Physics, Albert Einstein Block, UCS, Tumkur University.

References

First citationBruker (2014). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCandia, M. de, Marini, E., Zaetta, G., Cellamare, S., Di Stilo, A. & Altomare, C. D. (2015). Eur. J. Pharm. Sci. 72, 69–80.  Web of Science PubMed Google Scholar
First citationGodyń, J., Zaręba, P., Łażewska, D., Stary, D., Reiner-Link, D., Frank, A., Latacz, G., Mogilski, S., Kaleta, M., Doroz-Płonka, A., Lubelska, A., Honkisz-Orzechowska, E., Olejarz-Maciej, A., Handzlik, J., Stark, H., Kieć-Kononowicz, K., Malawska, B. & Bajda, M. (2021). Bioorg. Chem. 114, 105129.  Web of Science PubMed Google Scholar
First citationGoodby, J. W., Cowling, S. J., Bradbury, C. K. & Mandle, R. J. (2022). Liq. Cryst. 49, 908–933.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJakubowski, R., Januszko, A., William Tilford, R., Radziszewski, G. J., Pietrzak, A., Young, V. G. Jr & Kaszyński, P. (2023). Chem. A Eur. J. 29, e202203948.  Web of Science CSD CrossRef Google Scholar
First citationKaushik, C. P., Pahwa, A., Kumar, D., Kumar, A., Singh, D., Kumar, K. & Luxmi, R. (2018). J. Heterocycl. Chem. 55, 1720–1728.  Web of Science CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMalani, M. H. & Dholakiya, B. Z. (2013). Bioorg. Chem. 51, 16–23.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMohebi, M., Fayazi, N., Esmaeili, S., Rostami, M., Bagheri, F., Aliabadi, A., Asadi, P. & Saghaie, L. (2022). Res Pharma Sci, 17, 252–264.  Web of Science CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRai, D., Chen, W., Tian, Y., Chen, X., Zhan, P., De Clercq, E., Pannecouque, C., Balzarini, J. & Liu, X. (2013). Bioorg. Med. Chem. 21, 7398–7405.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSrinivasa, H. T. & Hariprasad, S. (2024). Phase Transit. 97, 201–211.  Web of Science CrossRef CAS Google Scholar
First citationSrinivasa, H. T., Palakshamurthy, B. S., Velmurugan, D., Devarajegowda, H. C. & Hariprasad, S. (2015). Acta Chim. Slov. 62, 768–774.  Web of Science CAS PubMed Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. http:// hirshfeldsurface. net.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds