research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Structure of 2,3,5-tri­phenyl­tetra­zol-3-ium chloride hemi­penta­hydrate

crossmark logo

aDepartment of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA 70813, USA, and bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
*Correspondence e-mail: rao_uppu@subr.edu

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 18 September 2024; accepted 24 September 2024; online 30 September 2024)

The title hydrated mol­ecular salt, C19H15N4+·Cl·2.5H2O, has two tri­phenyl­tetra­zolium cations, two chloride anions and five water mol­ecules in the asymmetric unit. The cations differ in the conformations of the phenyl rings with respect to the heterocyclic core, most notably for the C-bonded phenyl ring, for which the N—C—C—C torsion angles differ by 36.4 (3)°. This is likely a result of one cation accepting an O—H⋯N hydrogen bond from a water mol­ecule [O⋯N = 3.1605 (15) Å], while the other cation accepts no hydrogen bonds. In the extended structure, the water mol­ecules are involved in centrosymmetric (H2O)2Cl2 rings as well as (H2O)4 chains. An unusual O—H⋯π inter­action and weak C—H⋯O and C—H⋯Cl hydrogen bonds are also observed.

1. Chemical context

2,3,5-Tri­phenyl­tetra­zolium chloride, commonly known as tetra­zolium red or TTC, is a versatile redox indicator extensively used in biochemical experiments, especially for evaluating cellular viability (Rich et al., 2001[Rich, P. R., Mischis, L. A., Purton, S. & Wiskich, J. T. (2001). FEMS Microbiol. Lett. 202, 181-187.]) and seed quality control in various crops (França-Neto & Krzyzanowski, 2019[França-Neto, J. D. & Krzyzanowski, F. C. (2019). J. Seed Sci. 41, 359-366.]). Beyond these applications, TTC demonstrates inducible antagonistic activity in the Bacillales effective against a host of microbes including R. solanacearum, E. coli, and Staphylococcus sp (Sierra-Zapata et al., 2020[Sierra-Zapata, L., Álvarez, J. C., Romero-Tabarez, M., Silby, M. W., Traxler, M. F., Behie, S. W., Pessotti, R. C. & Villegas-Escobar, V. (2020). Sci. Rep. 10, 5563.]). Furthermore, the utility of TTC extends to infarct (localized dead tissue) measurement of the brain and heart in experimental animal studies (Sanchez-Bezanilla et al., 2021[Sanchez-Bezanilla, S., Hood, R. J., Collins-Praino, L. E., Turner, R. J., Walker, F. R., Nilsson, M. & Ong, L. K. (2021). J. Cereb. Blood Flow Metab. 41, 2439-2455.]), validation of automated colony counting systems (Frost et al., 2016[Frost, H. R., Tsoi, S. K., Baker, C. A., Laho, D., Sanderson-Smith, M. L., Steer, A. C. & Smeesters, P. R. (2016). BMC Res. Notes, 9, 72.]), and studying heat tolerance in cotton (Jaconis et al., 2021[Jaconis, S. Y., Thompson, A. J. E., Smith, S. L., Trimarchi, C., Cottee, N. S., Bange, M. P. & Conaty, W. C. (2021). Sci. Rep. 11, 5419.]), as well as assessing fine-root vitality in coniferous forest stands (Clemensson-Lindell, 1994[Clemensson-Lindell, A. (1994). Plant Soil, 159, 297-300.]). Despite its widespread use, the crystallographic aspects of TTC have been relatively unexplored, and we now describe the crystal structure of the title hydrated mol­ecular salt, C19H15N4+ Cl·2.5H2O (I)[link],

This is important, because the nuances in the conformations of the pendant tetra­zolium rings may influence the transport mechanisms of TTC across biological membranes and its reduction by mitochondrial NADH: ubi­quinone oxidoreduc­tase (Complex 1) or other cellular sites (Ling et al., 1957[Ling, K. H., Su, T. C. & Tung, T. C. (1957). Arch. Biochem. Biophys. 71, 126-129.]; Rich et al., 2001[Rich, P. R., Mischis, L. A., Purton, S. & Wiskich, J. T. (2001). FEMS Microbiol. Lett. 202, 181-187.]). Exploring these structural intricacies is expected to deepen our comprehension of the various applications of TTC, ranging from assessing cell viability to seed testing, measuring infarcts, and exploring its anti­microbial quorum-sensing properties.

[Scheme 1]

2. Structural commentary

The asymmetric unit of (I)[link] is shown in Fig. 1[link]. The central N—N distance in the heterocycle is 1.3341 (14) Å in the N1 mol­ecule and 1.3324 (14) Å in the N5 mol­ecule, while the other heterocyclic N—N distances are in the range 1.3066 (15) to 1.3137 (15) Å. The heterocyclic C—N distances are in the range 1.3442 (16) to 1.3500 (16) Å over the two cations. The two independent tetra­zolium cations differ somewhat in their phenyl group conformations, one having N—N—C—C torsion angles about the N—C(phen­yl) bond of 48.25 (18)° for N3—N2—C8—C13 and 50.30 (18)° for N2—N3—C14—C15 and the other having corresponding torsion angles of 57.24 (17)° for N7—N6—C27—C28 and 61.37 (17)° for N6—N7—C33—C34. The C-bound phenyl group also differs in conformation, having an N1—C1—C2—C3 torsion angle of 12.26 (19)° in one cation and N5—C20—C21—C22 = −24.14 (19)° in the other. These conformational differences are apparent in the overlay plot, Fig. 2[link] (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). They may result from the fact that the N1 cation accepts a hydrogen bond from a water mol­ecule with an O⋯N distance of 3.1605 (15) Å (Table 1[link]), while the other does not.

Table 1
Hydrogen-bond geometry (Å, °)

Cg6 is the centroid of the C21–C26 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1W⋯Cl2i 0.85 (1) 2.30 (1) 3.1483 (12) 178 (2)
O1—H2W⋯N4 0.85 (1) 2.34 (2) 3.1605 (15) 160 (2)
O2—H3W⋯Cl2 0.84 (1) 2.30 (1) 3.1302 (12) 176 (2)
O2—H4W⋯Cl2ii 0.84 (1) 2.34 (1) 3.1740 (12) 175 (2)
O3—H5W⋯O2 0.85 (1) 1.98 (1) 2.8246 (16) 175 (2)
O3—H6W⋯O5 0.85 (1) 2.16 (2) 3.0040 (17) 171 (2)
O4—H7W⋯Cl1iii 0.85 (1) 2.32 (2) 3.1687 (14) 179 (3)
O4—H8W⋯Cl1 0.85 (1) 2.35 (2) 3.2008 (14) 178 (2)
O5—H9W⋯O4ii 0.86 (1) 1.90 (1) 2.7503 (17) 175 (2)
O5—H10WCg6 0.85 (1) 2.76 (2) 3.4646 (14) 141 (2)
C4—H4⋯O2iv 0.95 2.55 3.461 (2) 160
C11—H11⋯O5v 0.95 2.59 3.429 (2) 147
C15—H15⋯Cl1 0.95 2.82 3.6219 (14) 143
C16—H16⋯O5ii 0.95 2.48 3.4084 (19) 165
C17—H17⋯O2ii 0.95 2.42 3.359 (2) 168
C26—H26⋯O5vi 0.95 2.50 3.4440 (19) 173
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x+1, -y+2, -z+1]; (iii) [-x+1, -y+1, -z]; (iv) [-x+2, -y+1, -z+1]; (v) [-x+2, -y+2, -z+1]; (vi) [-x+1, -y+2, -z+2].
[Figure 1]
Figure 1
The asymmetric unit of (I)[link] showing 50% displacement ellipsoids. Hydrogen bonds are indicated by dashed lines and the orange circle represents the centroid of the C21–C26 ring.
[Figure 2]
Figure 2
Superimposed structures of the N1 and N5 tri­phenyl­tetra­zolium cations in (I)[link].

3. Supra­molecular features

The hydrogen bonding is illustrated in Fig. 3[link] and the unit-cell packing is shown in Fig. 4[link]. As mentioned in the Structural commentary, one of the two independent cations accepts no hydrogen bonds, while the other accepts an O—H⋯N hydrogen bond from a water mol­ecule. The remaining water mol­ecules and chloride ions form arrays with chains propagating in the [011] direction, consisting of four hydrogen-bonded water mol­ecules, linked by two independent centrosymmetric (H2O)2Cl2 rings having graph-set notation (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]) R42(8). The O4⋯Cl1 distances in one ring are 3.1687 (14) and 3.12008 (14) Å and the O2⋯Cl2 distances in the other ring are 3.1302 (12) and 3.1740 (12) Å. The O⋯O distances in the four-water mol­ecule chain are in the range 2.7503 (17) to 3.0040 (17) Å. The water mol­ecule (O1) that donates a hydrogen bond to a tetra­zolium N atom also donates one to an (H2O)2Cl2 ring, with an O1⋯Cl2 distance of 3.1483 (12) Å. Atom O5 forms an unusual O—H⋯π bond to the C21–C26 benzene ring and various weak C—H⋯O and C—H⋯Cl hydrogen bonds are also observed (Table 1[link]). The O—H⋯π contact (Allen et al., 1996[Allen, F. H., Howard, J. A. K., Hoy, V. J., Desiraju, G. R., Reddy, D. S. & Wilson, C. C. (1996). J. Am. Chem. Soc. 118, 4081-4084.]; Di Mino et al., 2023[Di Mino, C., Seel, A. G., Clancy, A. J., Headen, T. F., Földes, T., Rosta, E., Sella, A. & Skipper, N. T. (2023). Nat. Commun. 14, 5900.]) involves the only water hydrogen atom (H10W) that does not donate a conventional hydrogen bond. The H⋯Cg distance is 2.76 (2) Å, the O⋯Cg distance is 3.4646 (14) Å, and the angle about H is 140.8 (18)°.

[Figure 3]
Figure 3
Hydrogen bonding (dashed blue lines) in (I)[link].
[Figure 4]
Figure 4
View of the unit-cell packing of (I)[link].

4. Database survey

We deposited the structure of (I)[link] to the Cambridge Structural Database (CSD, version 5.45, Update 1, March 2024, Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) recently as refcode ROJSUI (Chikkula et al., 2023[Chikkula, K. V., Hines, J. E. IIIrd, Babu, S., Fronczek, F. R. & Uppu, R. M. (2023). CSD Communication (No. 2314756). CCDC Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc2hppkg]). A search of the CSD for other salts of the same cation revealed that the structures of 2,3,5-tri­phenyl­tetra­zolium chloride as the aceto­nitrile solvate (LAWXUD), ethanol solvate (LAWYEO) and monohydrate (LAWYAK) have been reported by Golovanov et al. (2005[Golovanov, D. G., Perekalin, D. S., Yakovenko, A. A., Antipin, M. Y. & Lyssenko, K. A. (2005). Mendeleev Commun. 15, 237-239.]). In addition, the bromide salt ethanol solvate (LEGNUI; Fun et al., 2012a[Fun, H.-K., Chia, T. S., Mostafa, G. A. E., Hefnawy, M. M. & Abdel-Aziz, H. A. (2012a). Acta Cryst. E68, o2566.]) and iodide salt (QECKEQ; Fun et al., 2012b[Fun, H.-K., Chia, T. S., Mostafa, G. A. E., Abunassif, M. M. & Abdel-Aziz, H. A. (2012b). Acta Cryst. E68, o2621.]) have been described. These structures have a wide range of N—N—C—C torsion angle magnitudes to the N-bound phenyl groups (41.3–86.5°), but a much smaller range of N—C—C—C torsion angle magnitudes to the C-bound phenyl group (2.2–12.6°).

5. Synthesis and crystallization

TTC was obtained from Sigma-Aldrich (CAS 298-96-4; purity >98% by HPLC) and was used without purification. Single crystals were prepared by slow cooling of a nearly saturated solution of TTC in boiling distilled water (resistance: 18.2 MΩ cm−1).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were located in difference maps, and those on C were treated as riding in geometrically idealized positions having C—H = 0.95 Å and Uiso(H) = 1.2Ueq of the parent C atom. Coordinates of water H atoms were refined with all O—H distances restrained to be approximately equal. Their Uiso values were set to 1.5Ueq times their attached O atom.

Table 2
Experimental details

Crystal data
Chemical formula C19H15N4+·Cl·2.5H2O
Mr 379.84
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 9.5599 (4), 11.8056 (5), 17.5322 (7)
α, β, γ (°) 94.808 (2), 104.562 (2), 95.408 (2)
V3) 1894.70 (14)
Z 4
Radiation type Ag Kα, λ = 0.56086 Å
μ (mm−1) 0.12
Crystal size (mm) 0.32 × 0.28 × 0.25
 
Data collection
Diffractometer Bruker D8 Venture DUO with Photon III C14
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.944, 0.970
No. of measured, independent and observed [I > 2σ(I)] reflections 125520, 15816, 13259
Rint 0.084
(sin θ/λ)max−1) 0.794
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.141, 1.16
No. of reflections 15816
No. of parameters 508
No. of restraints 45
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.63, −0.67
Computer programs: APEX4 and SAINT (Bruker, 2022[Bruker (2022). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

2,3,5-Triphenyltetrazol-3-ium chloride hemipentahydrate top
Crystal data top
C19H15N4+·Cl·2.5H2OZ = 4
Mr = 379.84F(000) = 796
Triclinic, P1Dx = 1.332 Mg m3
a = 9.5599 (4) ÅAg Kα radiation, λ = 0.56086 Å
b = 11.8056 (5) ÅCell parameters from 9994 reflections
c = 17.5322 (7) Åθ = 2.6–26.3°
α = 94.808 (2)°µ = 0.12 mm1
β = 104.562 (2)°T = 100 K
γ = 95.408 (2)°Fragment, colourless
V = 1894.70 (14) Å30.32 × 0.28 × 0.25 mm
Data collection top
Bruker D8 Venture DUO with Photon III C14
diffractometer
13259 reflections with I > 2σ(I)
Radiation source: IµS 3.0 microfocusRint = 0.084
φ and ω scansθmax = 26.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1515
Tmin = 0.944, Tmax = 0.970k = 1818
125520 measured reflectionsl = 2727
15816 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.063H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.0502P)2 + 1.073P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max = 0.001
15816 reflectionsΔρmax = 0.63 e Å3
508 parametersΔρmin = 0.67 e Å3
45 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.70828 (4)0.44966 (3)0.10654 (2)0.02287 (8)
Cl20.36722 (5)0.81273 (4)0.47669 (2)0.03148 (10)
N11.06087 (12)0.41493 (9)0.30022 (7)0.01281 (18)
N21.01796 (12)0.51703 (9)0.29532 (6)0.01148 (18)
N30.91361 (12)0.52776 (9)0.33271 (6)0.01127 (18)
N40.88812 (12)0.43342 (9)0.36428 (7)0.01265 (18)
C10.98037 (13)0.36431 (10)0.34357 (7)0.0119 (2)
C20.99419 (14)0.24860 (10)0.36518 (7)0.0127 (2)
C31.11278 (15)0.19497 (12)0.35379 (8)0.0168 (2)
H31.1842210.2341810.3332440.020*
C41.12526 (17)0.08350 (12)0.37282 (9)0.0207 (3)
H41.2060660.0466870.3658490.025*
C51.01958 (19)0.02616 (12)0.40200 (9)0.0226 (3)
H51.0271710.0505370.4136280.027*
C60.90284 (18)0.08019 (12)0.41429 (8)0.0204 (3)
H60.8318860.0408120.4350810.025*
C70.88968 (15)0.19187 (11)0.39619 (8)0.0154 (2)
H70.8103270.2291960.4048590.019*
C81.08402 (13)0.60275 (10)0.25710 (7)0.0118 (2)
C91.10553 (15)0.56581 (12)0.18416 (8)0.0153 (2)
H91.0703340.4902110.1594630.018*
C101.18016 (16)0.64285 (13)0.14837 (8)0.0186 (2)
H101.1977340.6199240.0987010.022*
C111.22917 (15)0.75340 (13)0.18512 (9)0.0195 (3)
H111.2790700.8061020.1600790.023*
C121.20566 (15)0.78746 (12)0.25834 (9)0.0177 (2)
H121.2396570.8633050.2828500.021*
C131.13283 (14)0.71156 (11)0.29605 (8)0.0145 (2)
H131.1173140.7335480.3463800.017*
C140.83772 (14)0.62624 (10)0.33853 (7)0.0122 (2)
C150.77717 (15)0.67406 (12)0.27005 (8)0.0160 (2)
H150.7868060.6439830.2198910.019*
C160.70196 (16)0.76752 (13)0.27755 (9)0.0210 (3)
H160.6613650.8038990.2321340.025*
C170.68564 (17)0.80833 (13)0.35140 (10)0.0233 (3)
H170.6326020.8716110.3558010.028*
C180.74620 (18)0.75730 (13)0.41848 (9)0.0228 (3)
H180.7336520.7853800.4684210.027*
C190.82497 (16)0.66550 (12)0.41304 (8)0.0176 (2)
H190.8686330.6307470.4586920.021*
N50.34121 (12)0.77429 (9)0.78463 (6)0.01196 (18)
N60.45974 (12)0.72436 (9)0.79383 (6)0.01103 (17)
N70.54655 (11)0.75476 (9)0.86647 (6)0.01081 (17)
N80.48642 (12)0.82506 (9)0.90686 (6)0.01171 (18)
C200.35971 (13)0.83685 (10)0.85526 (7)0.01125 (19)
C210.25809 (14)0.91367 (11)0.87263 (7)0.0126 (2)
C220.16689 (15)0.95904 (12)0.81057 (8)0.0167 (2)
H220.1683260.9379030.7573080.020*
C230.07367 (18)1.03559 (13)0.82727 (10)0.0233 (3)
H230.0112391.0670610.7853000.028*
C240.07175 (18)1.06608 (14)0.90525 (10)0.0257 (3)
H240.0075321.1179970.9164410.031*
C250.16344 (17)1.02088 (13)0.96690 (9)0.0214 (3)
H250.1617441.0421651.0200990.026*
C260.25762 (15)0.94473 (12)0.95119 (8)0.0164 (2)
H260.3208610.9141900.9933320.020*
C270.49263 (13)0.64728 (11)0.73433 (7)0.0121 (2)
C280.52080 (14)0.53771 (11)0.75180 (8)0.0153 (2)
H280.5176850.5129970.8015990.018*
C290.55378 (15)0.46552 (13)0.69343 (9)0.0200 (3)
H290.5732120.3898350.7030920.024*
C300.55841 (16)0.50361 (15)0.62116 (9)0.0237 (3)
H300.5823470.4540210.5820320.028*
C310.52840 (17)0.61350 (15)0.60550 (8)0.0224 (3)
H310.5309200.6381980.5556100.027*
C320.49462 (15)0.68766 (13)0.66259 (8)0.0169 (2)
H320.4737630.7629900.6527200.020*
C330.69328 (13)0.72747 (11)0.89345 (7)0.01130 (19)
C340.79458 (14)0.76919 (12)0.85529 (8)0.0147 (2)
H340.7676380.8121680.8115420.018*
C350.93677 (14)0.74586 (13)0.88334 (8)0.0176 (2)
H351.0089940.7726560.8583640.021*
C360.97440 (15)0.68333 (13)0.94797 (8)0.0184 (2)
H361.0722490.6681840.9669140.022*
C370.86978 (15)0.64294 (13)0.98493 (8)0.0181 (2)
H370.8963090.6003031.0288870.022*
C380.72645 (14)0.66494 (12)0.95758 (8)0.0149 (2)
H380.6536760.6379220.9821190.018*
O10.83271 (13)0.41876 (10)0.53365 (6)0.0209 (2)
H1W0.780 (2)0.3554 (14)0.5308 (14)0.031*
H2W0.828 (3)0.430 (2)0.4856 (9)0.031*
O20.53149 (13)0.99355 (10)0.61966 (6)0.0212 (2)
H3W0.484 (2)0.9458 (17)0.5819 (11)0.032*
H4W0.558 (3)1.0481 (16)0.5968 (13)0.032*
O30.57974 (15)0.96751 (10)0.78259 (7)0.0254 (2)
H5W0.564 (3)0.980 (2)0.7343 (9)0.038*
H6W0.556 (3)1.0222 (17)0.8094 (13)0.038*
O40.46846 (15)0.62378 (11)0.07228 (8)0.0277 (2)
H7W0.420 (3)0.605 (2)0.0242 (9)0.041*
H8W0.533 (2)0.5782 (19)0.0806 (15)0.041*
O50.49505 (13)1.14221 (10)0.89204 (7)0.0219 (2)
H9W0.502 (3)1.2147 (12)0.9044 (14)0.033*
H10W0.435 (2)1.1154 (19)0.9169 (13)0.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02495 (17)0.01712 (15)0.02952 (18)0.00068 (12)0.01420 (14)0.00123 (12)
Cl20.0403 (2)0.0297 (2)0.01840 (16)0.01646 (17)0.00415 (15)0.00281 (13)
N10.0144 (5)0.0092 (4)0.0156 (5)0.0019 (3)0.0053 (4)0.0011 (3)
N20.0119 (4)0.0099 (4)0.0132 (4)0.0011 (3)0.0047 (3)0.0006 (3)
N30.0112 (4)0.0095 (4)0.0137 (4)0.0012 (3)0.0044 (3)0.0010 (3)
N40.0132 (5)0.0093 (4)0.0157 (5)0.0009 (3)0.0041 (4)0.0019 (3)
C10.0115 (5)0.0101 (5)0.0136 (5)0.0010 (4)0.0031 (4)0.0003 (4)
C20.0143 (5)0.0089 (5)0.0141 (5)0.0014 (4)0.0024 (4)0.0008 (4)
C30.0162 (6)0.0147 (5)0.0191 (6)0.0041 (4)0.0034 (4)0.0001 (4)
C40.0234 (7)0.0164 (6)0.0212 (6)0.0087 (5)0.0017 (5)0.0005 (5)
C50.0344 (8)0.0123 (6)0.0197 (6)0.0065 (5)0.0023 (6)0.0040 (5)
C60.0301 (7)0.0132 (5)0.0172 (6)0.0009 (5)0.0055 (5)0.0033 (4)
C70.0182 (6)0.0128 (5)0.0148 (5)0.0005 (4)0.0039 (4)0.0014 (4)
C80.0110 (5)0.0104 (5)0.0141 (5)0.0001 (4)0.0035 (4)0.0027 (4)
C90.0155 (6)0.0155 (5)0.0151 (5)0.0002 (4)0.0051 (4)0.0013 (4)
C100.0174 (6)0.0224 (6)0.0176 (6)0.0010 (5)0.0071 (5)0.0057 (5)
C110.0141 (6)0.0202 (6)0.0249 (6)0.0008 (5)0.0053 (5)0.0094 (5)
C120.0153 (6)0.0126 (5)0.0240 (6)0.0014 (4)0.0036 (5)0.0031 (5)
C130.0131 (5)0.0121 (5)0.0171 (5)0.0004 (4)0.0025 (4)0.0008 (4)
C140.0113 (5)0.0095 (5)0.0155 (5)0.0017 (4)0.0028 (4)0.0001 (4)
C150.0141 (5)0.0162 (5)0.0168 (5)0.0031 (4)0.0017 (4)0.0026 (4)
C160.0168 (6)0.0173 (6)0.0272 (7)0.0054 (5)0.0001 (5)0.0053 (5)
C170.0188 (6)0.0154 (6)0.0339 (8)0.0072 (5)0.0036 (6)0.0023 (5)
C180.0247 (7)0.0195 (6)0.0238 (7)0.0064 (5)0.0067 (5)0.0054 (5)
C190.0198 (6)0.0168 (6)0.0162 (5)0.0057 (5)0.0041 (5)0.0012 (4)
N50.0105 (4)0.0126 (4)0.0125 (4)0.0020 (3)0.0026 (3)0.0003 (3)
N60.0102 (4)0.0119 (4)0.0098 (4)0.0003 (3)0.0012 (3)0.0002 (3)
N70.0093 (4)0.0126 (4)0.0097 (4)0.0001 (3)0.0022 (3)0.0008 (3)
N80.0100 (4)0.0132 (4)0.0118 (4)0.0004 (3)0.0037 (3)0.0005 (3)
C200.0104 (5)0.0112 (5)0.0121 (5)0.0004 (4)0.0037 (4)0.0006 (4)
C210.0112 (5)0.0115 (5)0.0146 (5)0.0005 (4)0.0036 (4)0.0014 (4)
C220.0182 (6)0.0145 (5)0.0170 (5)0.0042 (4)0.0037 (5)0.0005 (4)
C230.0243 (7)0.0189 (6)0.0261 (7)0.0102 (5)0.0037 (6)0.0000 (5)
C240.0239 (7)0.0206 (7)0.0320 (8)0.0076 (5)0.0079 (6)0.0086 (6)
C250.0191 (6)0.0226 (7)0.0216 (6)0.0007 (5)0.0078 (5)0.0085 (5)
C260.0138 (5)0.0192 (6)0.0147 (5)0.0001 (4)0.0034 (4)0.0031 (4)
C270.0099 (5)0.0141 (5)0.0115 (5)0.0005 (4)0.0028 (4)0.0028 (4)
C280.0120 (5)0.0148 (5)0.0178 (5)0.0012 (4)0.0026 (4)0.0010 (4)
C290.0137 (6)0.0188 (6)0.0245 (6)0.0038 (5)0.0020 (5)0.0070 (5)
C300.0152 (6)0.0338 (8)0.0194 (6)0.0061 (5)0.0030 (5)0.0111 (6)
C310.0188 (6)0.0358 (8)0.0124 (5)0.0046 (6)0.0048 (5)0.0026 (5)
C320.0150 (6)0.0224 (6)0.0124 (5)0.0022 (5)0.0029 (4)0.0004 (4)
C330.0086 (5)0.0132 (5)0.0114 (5)0.0003 (4)0.0022 (4)0.0005 (4)
C340.0129 (5)0.0172 (5)0.0133 (5)0.0023 (4)0.0041 (4)0.0002 (4)
C350.0106 (5)0.0225 (6)0.0188 (6)0.0032 (4)0.0057 (4)0.0029 (5)
C360.0105 (5)0.0223 (6)0.0201 (6)0.0021 (5)0.0019 (4)0.0032 (5)
C370.0146 (6)0.0211 (6)0.0169 (6)0.0031 (5)0.0003 (4)0.0034 (5)
C380.0124 (5)0.0176 (6)0.0148 (5)0.0010 (4)0.0037 (4)0.0033 (4)
O10.0232 (5)0.0212 (5)0.0167 (4)0.0017 (4)0.0049 (4)0.0001 (4)
O20.0286 (6)0.0174 (5)0.0175 (5)0.0028 (4)0.0063 (4)0.0006 (4)
O30.0351 (6)0.0179 (5)0.0252 (5)0.0014 (4)0.0106 (5)0.0064 (4)
O40.0305 (6)0.0227 (5)0.0326 (6)0.0015 (5)0.0165 (5)0.0037 (5)
O50.0256 (5)0.0187 (5)0.0214 (5)0.0009 (4)0.0070 (4)0.0037 (4)
Geometric parameters (Å, º) top
N1—N21.3120 (15)N7—C331.4395 (16)
N1—C11.3455 (16)N8—C201.3442 (16)
N2—N31.3341 (14)C20—C211.4586 (17)
N2—C81.4415 (16)C21—C221.3927 (19)
N3—N41.3137 (15)C21—C261.3965 (18)
N3—C141.4370 (16)C22—C231.391 (2)
N4—C11.3500 (16)C22—H220.9500
C1—C21.4569 (17)C23—C241.389 (2)
C2—C71.3966 (18)C23—H230.9500
C2—C31.3979 (18)C24—C251.389 (2)
C3—C41.393 (2)C24—H240.9500
C3—H30.9500C25—C261.389 (2)
C4—C51.389 (2)C25—H250.9500
C4—H40.9500C26—H260.9500
C5—C61.390 (2)C27—C321.3858 (18)
C5—H50.9500C27—C281.3893 (19)
C6—C71.3914 (19)C28—C291.3927 (19)
C6—H60.9500C28—H280.9500
C7—H70.9500C29—C301.389 (2)
C8—C131.3835 (17)C29—H290.9500
C8—C91.3870 (18)C30—C311.390 (2)
C9—C101.3886 (19)C30—H300.9500
C9—H90.9500C31—C321.3934 (19)
C10—C111.389 (2)C31—H310.9500
C10—H100.9500C32—H320.9500
C11—C121.391 (2)C33—C381.3834 (18)
C11—H110.9500C33—C341.3854 (17)
C12—C131.3922 (19)C34—C351.3866 (19)
C12—H120.9500C34—H340.9500
C13—H130.9500C35—C361.394 (2)
C14—C151.3859 (18)C35—H350.9500
C14—C191.3877 (18)C36—C371.391 (2)
C15—C161.387 (2)C36—H360.9500
C15—H150.9500C37—C381.3902 (19)
C16—C171.394 (2)C37—H370.9500
C16—H160.9500C38—H380.9500
C17—C181.387 (2)O1—H1W0.851 (14)
C17—H170.9500O1—H2W0.853 (14)
C18—C191.387 (2)O2—H3W0.836 (14)
C18—H180.9500O2—H4W0.838 (14)
C19—H190.9500O3—H5W0.849 (14)
N5—N61.3066 (15)O3—H6W0.849 (14)
N5—C201.3498 (16)O4—H7W0.852 (14)
N6—N71.3324 (14)O4—H8W0.849 (14)
N6—C271.4404 (16)O5—H9W0.857 (14)
N7—N81.3103 (14)O5—H10W0.854 (14)
N2—N1—C1103.93 (10)N7—N6—C27124.54 (10)
N1—N2—N3110.20 (10)N8—N7—N6110.23 (10)
N1—N2—C8122.11 (10)N8—N7—C33124.23 (10)
N3—N2—C8127.63 (10)N6—N7—C33125.03 (10)
N4—N3—N2109.93 (10)N7—N8—C20103.56 (10)
N4—N3—C14123.73 (10)N8—C20—N5112.38 (11)
N2—N3—C14126.34 (10)N8—C20—C21123.45 (11)
N3—N4—C1103.88 (10)N5—C20—C21124.09 (11)
N1—C1—N4112.03 (11)C22—C21—C26120.79 (12)
N1—C1—C2122.91 (11)C22—C21—C20119.33 (11)
N4—C1—C2125.05 (11)C26—C21—C20119.83 (12)
C7—C2—C3120.57 (12)C23—C22—C21119.41 (13)
C7—C2—C1120.39 (11)C23—C22—H22120.3
C3—C2—C1119.04 (12)C21—C22—H22120.3
C4—C3—C2119.40 (13)C24—C23—C22120.09 (15)
C4—C3—H3120.3C24—C23—H23120.0
C2—C3—H3120.3C22—C23—H23120.0
C5—C4—C3120.02 (13)C25—C24—C23120.21 (14)
C5—C4—H4120.0C25—C24—H24119.9
C3—C4—H4120.0C23—C24—H24119.9
C4—C5—C6120.46 (13)C24—C25—C26120.37 (13)
C4—C5—H5119.8C24—C25—H25119.8
C6—C5—H5119.8C26—C25—H25119.8
C5—C6—C7120.12 (14)C25—C26—C21119.12 (13)
C5—C6—H6119.9C25—C26—H26120.4
C7—C6—H6119.9C21—C26—H26120.4
C6—C7—C2119.40 (13)C32—C27—C28123.81 (12)
C6—C7—H7120.3C32—C27—N6117.50 (12)
C2—C7—H7120.3C28—C27—N6118.68 (11)
C13—C8—C9123.75 (12)C27—C28—C29117.38 (13)
C13—C8—N2120.11 (11)C27—C28—H28121.3
C9—C8—N2115.91 (11)C29—C28—H28121.3
C8—C9—C10117.88 (12)C30—C29—C28120.35 (14)
C8—C9—H9121.1C30—C29—H29119.8
C10—C9—H9121.1C28—C29—H29119.8
C9—C10—C11120.09 (13)C29—C30—C31120.68 (13)
C9—C10—H10120.0C29—C30—H30119.7
C11—C10—H10120.0C31—C30—H30119.7
C10—C11—C12120.44 (13)C30—C31—C32120.33 (14)
C10—C11—H11119.8C30—C31—H31119.8
C12—C11—H11119.8C32—C31—H31119.8
C11—C12—C13120.70 (13)C27—C32—C31117.43 (14)
C11—C12—H12119.7C27—C32—H32121.3
C13—C12—H12119.7C31—C32—H32121.3
C8—C13—C12117.14 (12)C38—C33—C34123.74 (12)
C8—C13—H13121.4C38—C33—N7118.40 (11)
C12—C13—H13121.4C34—C33—N7117.82 (11)
C15—C14—C19123.67 (12)C33—C34—C35117.50 (12)
C15—C14—N3118.95 (11)C33—C34—H34121.3
C19—C14—N3117.34 (11)C35—C34—H34121.3
C14—C15—C16117.46 (13)C34—C35—C36120.40 (12)
C14—C15—H15121.3C34—C35—H35119.8
C16—C15—H15121.3C36—C35—H35119.8
C15—C16—C17120.35 (14)C37—C36—C35120.51 (13)
C15—C16—H16119.8C37—C36—H36119.7
C17—C16—H16119.8C35—C36—H36119.7
C18—C17—C16120.54 (13)C38—C37—C36120.04 (13)
C18—C17—H17119.7C38—C37—H37120.0
C16—C17—H17119.7C36—C37—H37120.0
C19—C18—C17120.35 (14)C33—C38—C37117.80 (12)
C19—C18—H18119.8C33—C38—H38121.1
C17—C18—H18119.8C37—C38—H38121.1
C18—C19—C14117.61 (13)H1W—O1—H2W105 (2)
C18—C19—H19121.2H3W—O2—H4W103 (2)
C14—C19—H19121.2H5W—O3—H6W110 (2)
N6—N5—C20103.54 (10)H7W—O4—H8W105 (2)
N5—N6—N7110.29 (10)H9W—O5—H10W103 (2)
N5—N6—C27125.17 (10)
C1—N1—N2—N31.18 (13)C20—N5—N6—N70.02 (13)
C1—N1—N2—C8176.26 (11)C20—N5—N6—C27179.94 (11)
N1—N2—N3—N41.26 (14)N5—N6—N7—N80.34 (14)
C8—N2—N3—N4175.99 (11)C27—N6—N7—N8179.58 (11)
N1—N2—N3—C14178.51 (11)N5—N6—N7—C33171.74 (11)
C8—N2—N3—C144.2 (2)C27—N6—N7—C338.34 (18)
N2—N3—N4—C10.74 (13)N6—N7—N8—C200.53 (13)
C14—N3—N4—C1179.04 (11)C33—N7—N8—C20171.62 (11)
N2—N1—C1—N40.73 (14)N7—N8—C20—N50.56 (14)
N2—N1—C1—C2178.88 (11)N7—N8—C20—C21176.25 (11)
N3—N4—C1—N10.00 (14)N6—N5—C20—N80.37 (14)
N3—N4—C1—C2179.60 (12)N6—N5—C20—C21176.42 (11)
N1—C1—C2—C7167.19 (12)N8—C20—C21—C22152.30 (13)
N4—C1—C2—C713.25 (19)N5—C20—C21—C2224.14 (19)
N1—C1—C2—C312.26 (19)N8—C20—C21—C2624.95 (19)
N4—C1—C2—C3167.30 (13)N5—C20—C21—C26158.61 (12)
C7—C2—C3—C40.7 (2)C26—C21—C22—C230.4 (2)
C1—C2—C3—C4178.73 (12)C20—C21—C22—C23177.66 (13)
C2—C3—C4—C50.7 (2)C21—C22—C23—C240.1 (2)
C3—C4—C5—C61.6 (2)C22—C23—C24—C250.4 (3)
C4—C5—C6—C71.0 (2)C23—C24—C25—C260.1 (2)
C5—C6—C7—C20.4 (2)C24—C25—C26—C210.4 (2)
C3—C2—C7—C61.3 (2)C22—C21—C26—C250.7 (2)
C1—C2—C7—C6178.16 (12)C20—C21—C26—C25177.93 (12)
N1—N2—C8—C13128.71 (13)N5—N6—C27—C3257.53 (17)
N3—N2—C8—C1348.25 (18)N7—N6—C27—C32122.57 (13)
N1—N2—C8—C945.93 (17)N5—N6—C27—C28122.66 (14)
N3—N2—C8—C9137.11 (13)N7—N6—C27—C2857.24 (17)
C13—C8—C9—C100.1 (2)C32—C27—C28—C290.5 (2)
N2—C8—C9—C10174.54 (12)N6—C27—C28—C29179.33 (12)
C8—C9—C10—C110.8 (2)C27—C28—C29—C300.3 (2)
C9—C10—C11—C120.8 (2)C28—C29—C30—C310.9 (2)
C10—C11—C12—C130.0 (2)C29—C30—C31—C320.7 (2)
C9—C8—C13—C120.9 (2)C28—C27—C32—C310.6 (2)
N2—C8—C13—C12175.12 (12)N6—C27—C32—C31179.15 (12)
C11—C12—C13—C80.9 (2)C30—C31—C32—C270.1 (2)
N4—N3—C14—C15129.44 (13)N8—N7—C33—C3868.04 (16)
N2—N3—C14—C1550.30 (18)N6—N7—C33—C38120.96 (13)
N4—N3—C14—C1948.26 (17)N8—N7—C33—C34109.63 (14)
N2—N3—C14—C19132.00 (13)N6—N7—C33—C3461.37 (17)
C19—C14—C15—C161.1 (2)C38—C33—C34—C350.3 (2)
N3—C14—C15—C16178.63 (12)N7—C33—C34—C35177.85 (11)
C14—C15—C16—C171.8 (2)C33—C34—C35—C360.5 (2)
C15—C16—C17—C181.0 (2)C34—C35—C36—C370.4 (2)
C16—C17—C18—C190.6 (2)C35—C36—C37—C380.1 (2)
C17—C18—C19—C141.3 (2)C34—C33—C38—C370.1 (2)
C15—C14—C19—C180.4 (2)N7—C33—C38—C37177.58 (12)
N3—C14—C19—C18177.15 (13)C36—C37—C38—C330.1 (2)
Hydrogen-bond geometry (Å, º) top
Cg6 is the centroid of the C21–C26 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1W···Cl2i0.85 (1)2.30 (1)3.1483 (12)178 (2)
O1—H2W···N40.85 (1)2.34 (2)3.1605 (15)160 (2)
O2—H3W···Cl20.84 (1)2.30 (1)3.1302 (12)176 (2)
O2—H4W···Cl2ii0.84 (1)2.34 (1)3.1740 (12)175 (2)
O3—H5W···O20.85 (1)1.98 (1)2.8246 (16)175 (2)
O3—H6W···O50.85 (1)2.16 (2)3.0040 (17)171 (2)
O4—H7W···Cl1iii0.85 (1)2.32 (2)3.1687 (14)179 (3)
O4—H8W···Cl10.85 (1)2.35 (2)3.2008 (14)178 (2)
O5—H9W···O4ii0.86 (1)1.90 (1)2.7503 (17)175 (2)
O5—H10W···Cg60.85 (1)2.76 (2)3.4646 (14)141 (2)
C4—H4···O2iv0.952.553.461 (2)160
C11—H11···O5v0.952.593.429 (2)147
C15—H15···Cl10.952.823.6219 (14)143
C16—H16···O5ii0.952.483.4084 (19)165
C17—H17···O2ii0.952.423.359 (2)168
C26—H26···O5vi0.952.503.4440 (19)173
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x+1, y+1, z; (iv) x+2, y+1, z+1; (v) x+2, y+2, z+1; (vi) x+1, y+2, z+2.
 

Funding information

Research reported in this publication was supported by the National Science Foundation (NSF) under grant No. 1736136, CREST Center for Next Generation Multifunctional Composites (NextGen Composites Phase II). Purchase of the diffractometer was funded by NSF MRI award CHE-2215262. The contents of this article are solely the responsibility of authors and do not represent the official views of the NSF.

References

First citationAllen, F. H., Howard, J. A. K., Hoy, V. J., Desiraju, G. R., Reddy, D. S. & Wilson, C. C. (1996). J. Am. Chem. Soc. 118, 4081–4084.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2022). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChikkula, K. V., Hines, J. E. IIIrd, Babu, S., Fronczek, F. R. & Uppu, R. M. (2023). CSD Communication (No. 2314756). CCDC Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc2hppkg  Google Scholar
First citationClemensson-Lindell, A. (1994). Plant Soil, 159, 297–300.  CAS Google Scholar
First citationDi Mino, C., Seel, A. G., Clancy, A. J., Headen, T. F., Földes, T., Rosta, E., Sella, A. & Skipper, N. T. (2023). Nat. Commun. 14, 5900.  CrossRef PubMed Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFrança-Neto, J. D. & Krzyzanowski, F. C. (2019). J. Seed Sci. 41, 359–366.  Google Scholar
First citationFrost, H. R., Tsoi, S. K., Baker, C. A., Laho, D., Sanderson-Smith, M. L., Steer, A. C. & Smeesters, P. R. (2016). BMC Res. Notes, 9, 72.  Google Scholar
First citationFun, H.-K., Chia, T. S., Mostafa, G. A. E., Abunassif, M. M. & Abdel-Aziz, H. A. (2012b). Acta Cryst. E68, o2621.  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Chia, T. S., Mostafa, G. A. E., Hefnawy, M. M. & Abdel-Aziz, H. A. (2012a). Acta Cryst. E68, o2566.  CrossRef IUCr Journals Google Scholar
First citationGolovanov, D. G., Perekalin, D. S., Yakovenko, A. A., Antipin, M. Y. & Lyssenko, K. A. (2005). Mendeleev Commun. 15, 237–239.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJaconis, S. Y., Thompson, A. J. E., Smith, S. L., Trimarchi, C., Cottee, N. S., Bange, M. P. & Conaty, W. C. (2021). Sci. Rep. 11, 5419.  CrossRef PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLing, K. H., Su, T. C. & Tung, T. C. (1957). Arch. Biochem. Biophys. 71, 126–129.  CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRich, P. R., Mischis, L. A., Purton, S. & Wiskich, J. T. (2001). FEMS Microbiol. Lett. 202, 181–187.  CrossRef PubMed CAS Google Scholar
First citationSanchez-Bezanilla, S., Hood, R. J., Collins-Praino, L. E., Turner, R. J., Walker, F. R., Nilsson, M. & Ong, L. K. (2021). J. Cereb. Blood Flow Metab. 41, 2439–2455.  CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSierra-Zapata, L., Álvarez, J. C., Romero-Tabarez, M., Silby, M. W., Traxler, M. F., Behie, S. W., Pessotti, R. C. & Villegas-Escobar, V. (2020). Sci. Rep. 10, 5563.  PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds