research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(μ2-5-nona­noylquinolin-8-olato)bis­­[aqua­di­chlorido­indium(III)]

crossmark logo

aTechnische Universität Bergakademie Freiberg, Leipziger Str. 29, D-09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: monika.mazik@chemie.tu-freiberg.de

Edited by T. Akitsu, Tokyo University of Science, Japan (Received 26 July 2024; accepted 10 September 2024; online 17 September 2024)

Crystallization of 5-nona­noyl-8-hy­droxy­quinoline in the presence of InCl3 in aceto­nitrile yields a dinuclear InIII complex crystallizing in the space group P[\overline{1}]. In this complex, [In2(C18H22NO2)2Cl4(H2O)2], each indium ion is sixfold coordinated by two chloride ions, one water mol­ecule and two 8-quinolino­late ions. The crystal of the title complex is composed of two-dimensional supra­molecular aggregates, resulting from the linkage of the Owater—H⋯O=C and Owater—H⋯Cl hydrogen bonds as well as bifurcated Carene—H⋯Cl contacts.

1. Chemical context

As a result of the remarkable complexing properties of 8-hy­droxy­quinoline and its substituted derivatives towards various metal ions, their use as extracting agents for these ionic substrates has received much attention (for examples, see: Uhlemann et al., 1984[Uhlemann, E., Weber, W., Fischer, C. & Raab, M. (1984). Anal. Chim. Acta, 156, 201-206.]; Filik et al., 1994[Filik, H. & Apak, R. (1994). Sep. Sci. Technol. 29, 2047-2066.]; Gloe et al., 1996[Gloe, K., Stephan, H., Krüger, T., Möckel, A., Woller, N., Subklew, G., Schwuger, M. J., Neumann, R. & Weber, E. (1996). Prog. Colloid Polym. Sci. 101, 145-148.]; Yamada et al., 2006[Yamada, H., Hayashi, H. & Yasui, T. (2006). Anal. Sci. 22, 371-376.]). In addition, their application in the formation of luminescent coordination compounds has been the subject of intensive research (Matsumura et al., 1996[Matsumura, M. & Akai, T. (1996). Jpn. J. Appl. Phys. 35, 5357-5360.]; Montes et al., 2006[Montes, V. A., Pohl, R., Shinar, J. & Anzenbacher, P. (2006). Chem. Eur. J. 12, 4523-4535.]; Feng et al., 2007[Feng, L., Wang, X., Zhao, S. & Chen, Z. (2007). Spectrochim. Acta A Mol. Biomol. Spectrosc. 68, 646-650.], 2008[Feng, L., Wang, X. & Chen, Z. (2008). Spectrochim. Acta A Mol. Biomol. Spectrosc. 71, 312-316.]). Furthermore, 8-hy­droxy­quinoline-based building blocks have been used to construct artificial receptors, such as carbohydrate receptors (Mazik et al., 2011[Mazik, M. & Geffert, C. (2011). Org. Biomol. Chem. 9, 2319-2326.]; Geffert et al., 2013[Geffert, C., Kuschel, M. & Mazik, M. (2013). J. Org. Chem. 78, 292-300.]), and have formed the basis for the development of various supra­molecular architectures (Albrecht et al., 2008[Albrecht, M., Fiege, M. & Osetska, O. (2008). Coord. Chem. Rev. 252, 812-824.]).

Our previous studies on the extraction of indium ions by 8-hy­droxy­quinolines bearing alkanoyl or alkyl groups of different chain lengths showed that the 5-alkanoyl derivatives are more effective indium extractors than the analogues containing 5-alkyl-, 7-alkanoyl- or 7-alkyl substituents (Schulze et al., 2019[Schulze, M., Löwe, R., Pollex, R. & Mazik, M. (2019). Monatsh. Chem. 150, 983-990.]). The derivative with the n-nona­noyl group at the 5-position proved to be a particularly effective extractor for indium ions, showing not only the best selectivity for indium over iron and zinc ions, but also the most favorable extraction kinetics under the chosen experimental conditions.

[Scheme 1]

In this article we describe the crystal structure of a dinuclear InIII complex obtained by crystallization of 5-nona­noyl-8-hy­droxy­quinoline in the presence of InCl3 in aceto­nitrile.

2. Structural commentary

The title complex crystallizes in the centrosymmetric space group P[\overline{1}] with one half of the complex in the asymmetric unit of the cell. This structural motif is expanded by an inversion center to form a dinuclear complex as depicted in Fig. 1[link]. Within the asymmetric unit, the indium ion is fivefold coordinated via one water mol­ecule and two chloride ions as well as the atoms N1 and O1 of the bidentate quinolino­late ligand. The sixth coordination site of the metal center is occupied by the quinolino­late oxygen atom O1 of the inversion-related fragment of the complex, so that each InIII center adopts a distorted octa­hedral coordination geometry of the composition NO3Cl2. The In—Y bond lengths (Y = N, O, Cl) are listed in Table 1[link] and range between 2.17 and 2.43 Å. The nona­noyl fragment of the quinolino­late ligand exists in an elongated conformation. The complex structure is stabilized by intra­molecular hydrogen bonds involving the water hydrogen atom H3B and the chloride ion Cl2 [d(H⋯Cl) = 2.27 (4) Å, O—H⋯Cl = 165 (4)°] as well as C—H⋯O contacts between the nona­noyl oxygen atom O2 and the arene hydrogen atom H3 [d(H⋯O) = 2.21 Å, C—H⋯O = 122°].

Table 1
Geometric data (Å, °) for short intra- and inter­molecular inter­actions

CgA is the centroid of the N1/C1–C4/C9 ring.

In—Y   In–Y    
In1—O1i 2.166 (3) In1—N1ii 2.241 (4)  
In1—O1ii 2.209 (3) In1—Cl1ii 2.382 (2)  
In1—O3ii 2.227 (4) In1—Cl2ii 2.430 (2)  
         
D—H⋯A/Cg D—H H⋯A/Cg DA/Cg D—H⋯A/Cg
O3—H3A⋯O2iii 0.84 (4) 1.84 (4) 2.668 (4) 168 (5)
O3—H3B⋯Cl2i 0.92 (4) 2.27 (4) 3.165 (4) 165 (4)
C1—H1⋯Cl1iv 0.95 2.76 3.417 (6) 127
C2—H2⋯Cl1iv 0.95 2.89 3.469 (5) 120
C3—H3⋯O2ii 0.95 2.21 2.835 (6) 122
C15—H15ACgAv 0.99 2.94 3.766 (6) 141
Symmetry codes: (i) x − 1, −y + 1, −z + 1; (ii) x, y, z; (iii) −x + 2, −y, −z + 1; (iv) −x + 1, −y, −z + 1; (v) x + 1, y, z.
[Figure 1]
Figure 1
Perspective view of the mol­ecular structure of the title complex including the labeling of atoms in the asymmetric unit. The ellipsoids correspond to the thermal displacement at 50% probability.

3. Supra­molecular features

Regarding the packing behavior of the dinuclear complexes, hydrogen bonds play an important role. On one hand, the observed inter­action between the water hydrogen atom H3A and the carbonyl oxygen atom O2 [d =1.84 (4) Å, C—H⋯O = 168 (5)°; see Fig. 2[link]] of adjacent mol­ecules leads to the formation of infinite supra­molecular chains in the [10[\overline{1}]] direction. On the other hand, weaker Carene—H⋯Cl hydrogen bonds with the chloride ion Cl2 acting as a bifurcated acceptor for H1 and H2 of the neighboring mol­ecule (see Fig. 3[link]a and Table 1[link]) crosslink these chains along the b axis to form a two-dimensional supra­molecular network.

[Figure 2]
Figure 2
Supra­molecular chain formed by strong hydrogen bonds; color code: N – blue, O – red, Cl – green, In – magenta, C/H – gray.
[Figure 3]
Figure 3
(a) Chain-like association of complex mol­ecules via C—H⋯Cl inter­actions; color code: N – blue, O – red, Cl – green, In – magenta, C/H – gray. (b) Excerpt of the packing structure showing two supra­molecular networks assembled via hydrogen bonds (dashed lines). Their mutual inter­actions are largely restricted to dispersive forces between inter­locking aliphatic moieties. (c) Graphical representation of weak inter­actions in which the aliphatic substituents participate.

The packing structure of the complex shown in Fig. 3[link]b indicates that the parallel orientation of the aliphatic C8H17 units has a strong influence on the cohesion of the crystal structure by van der Waals forces. They are supported by C—H⋯π inter­actions between H15A and the heterocyclic subunit (A) of the quinoline scaffold (see Fig. 3[link]c and Table 1[link]). In addition, the inter­actions between H17B and C6 of the quinoline ring appear to have a stabilizing effect. Other contacts involving the aromatic rings are absent in the crystal, as the closest CgCg distances between their centroids amount to about 4.2 Å.

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.44, update of September 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for indium complexes with ligands based on 8-hy­droxy­quinoline yielded 15 hits. The quinolines often occur as individual ligands within the complexes, but sometimes they are also incorporated as a subunit of larger mol­ecules.

Common to all complexes is that the 8-quinolino­late acts as a chelating ligand, complexing the indium ion via its oxygen and ring nitro­gen atom. The reported indium complexes are predominantly mononuclear. However, three dinuclear complexes are also included in the database entries mentioned above. In the case of the dinuclear chelate complexes, the indium ions possess coordination numbers of six (ALESES; Alexander et al., 2021[Alexander, O. T., Duvenhage, M. M., Kroon, R. E., Brink, A. & Visser, H. G. (2021). New J. Chem. 45, 2132-2140.]) or five (SOMYOL, SOMZEC; Kwak et al., 2019[Kwak, S. W., Kim, M. B., Shin, H., Lee, J. H., Hwang, H., Ryu, J. Y., Lee, J., Kim, M., Chung, Y., Choe, J. C., Kim, Y., Lee, K. M. & Park, M. H. (2019). Inorg. Chem. 58, 8056-8063.]). The mononuclear complexes mostly have a coordination number of six, but occasionally the indium ion is coordinated five-, seven- or eightfold.

In the crystal structure with the reference code ALESES, the indium ion adopts a coordination environment of the composition N2O3Cl. Since this complex lacks a quinoline-bound keto group and no water mol­ecule is involved, a strand-like association as in the crystal structure of the title complex cannot be observed. Instead, weak Car­yl—H⋯Cl and Car­yl—H⋯O hydrogen bonds as well as ππ contacts between the quinoline units of adjacent complexes lead to the formation of two-dimensional supra­molecular networks. The packing structures of the complexes with the reference codes SOMYOL and SOMZEC, containing NO2C2-coordinated indium ions, consist of an infinite strand-like arrangement of mol­ecules connected by ππ inter­actions similar to those mentioned above.

5. Synthesis and crystallization

5-Nonanoyl-8-hy­droxy­quinoline (50 mg, 0.18 mmol) and indium(III) chloride (116 mg, 0.52 mmol) were stirred in methanol (5 mL) for 30 min at room temperature and the solvent was removed under vacuum. Afterwards the residue was crystallized by slow evaporation from aceto­nitrile. 5-Nonanoyl-8-hy­droxy­quinoline was synthesized according to the literature procedure (Uhlemann et al., 1981[Uhlemann, E., Mickler, W., Ludwig, E., Ludwig, E. & Klose, G. (1981). J. Prakt. Chem. 323, 521-524.]).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All non-hydrogen atoms were refined anisotropically. Both hydrogen atoms of the water mol­ecule (H3A, H3B) were located in difference-Fourier maps and placed accordingly. The remaining hydrogen atoms were positioned geometrically and refined isotropically using a riding model, with C—H bond distances of 0.95 Å (ar­yl), 0.98 Å (methyl­ene) and 0.99 Å (meth­yl). The thermal displace­ment ellipsoids of all hydrogen atoms were set to Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5 Ueq(C/O), the latter applying to methyl and water moieties.

Table 2
Experimental details

Crystal data
Chemical formula [In2(C18H22NO2)2Cl4(H2O)2]
Mr 976.20
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 163
a, b, c (Å) 10.297 (4), 10.940 (4), 11.711 (5)
α, β, γ (°) 63.57 (3), 72.47 (3), 62.92 (3)
V3) 1043.8 (8)
Z 1
Radiation type Mo Kα
μ (mm−1) 1.40
Crystal size (mm) 0.19 × 0.10 × 0.07
 
Data collection
Diffractometer Stoe Stadivari
Absorption correction Multi-scan (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-AREA Recipe, X-RED32 and LANA. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.766, 0.907
No. of measured, independent and observed [I > 2σ(I)] reflections 62899, 62899, 42801
Rint 0.039
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.061, 0.88
No. of reflections 62899
No. of parameters 234
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.94, −0.74
Computer programs: X-AREA, X-RED32 and LANA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-AREA Recipe, X-RED32 and LANA. Stoe & Cie, Darmstadt, Germany.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

The crystal was refined as a two-component non-merohedral twin, whereby the main domain makes up 72% of the crystal. The two domains were identified and integrated simultaneously via the Recipe/Index/Refine and Integrate modules, respectively, of the X-AREA program suite, followed by absorption correction and scaling of the resulting HKLF5 dataset via the modules X-RED32 and LANA, respectively (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-AREA Recipe, X-RED32 and LANA. Stoe & Cie, Darmstadt, Germany.]). The reflection file employed in the subsequent refinement contained reflections from the two individual domains as well as reflections to which both domains contributed.

By recognizing twinning, the R-values as well as the maximum residual electron density (Table 2[link]) improved drastically compared to the model based on untreated HKLF4 data (R1 = 7.24%, wR2 = 22.71%, maximum electron density = 3.94 e Å−3).

Supporting information


Computing details top

Bis(µ2-5-nonanoylquinolin-8-olato)bis[aquadichloridoindium(III)] top
Crystal data top
[In2(C18H22NO2)2Cl4(H2O)2]Z = 1
Mr = 976.20F(000) = 492
Triclinic, P1Dx = 1.553 Mg m3
a = 10.297 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.940 (4) ÅCell parameters from 24127 reflections
c = 11.711 (5) Åθ = 2.2–28.7°
α = 63.57 (3)°µ = 1.40 mm1
β = 72.47 (3)°T = 163 K
γ = 62.92 (3)°Plate, colourless
V = 1043.8 (8) Å30.19 × 0.10 × 0.07 mm
Data collection top
Stoe Stadivari
diffractometer
62899 independent reflections
Radiation source: Primux 50 Mo42801 reflections with I > 2σ(I)
Graded multilayer mirror monochromatorRint = 0.039
Detector resolution: 5.81 pixels mm-1θmax = 27.5°, θmin = 2.2°
rotation method, ω scansh = 1313
Absorption correction: multi-scan
(X-Red32; Stoe & Cie, 2002)
k = 1414
Tmin = 0.766, Tmax = 0.907l = 1515
62899 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.0118P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.88(Δ/σ)max = 0.001
62899 reflectionsΔρmax = 0.94 e Å3
234 parametersΔρmin = 0.74 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7219 (4)0.0957 (5)0.3966 (5)0.0270 (12)
H10.64200.06620.41430.032*
C20.8613 (4)0.0088 (5)0.3551 (4)0.0284 (12)
H20.87600.07880.34590.034*
C30.9763 (4)0.0515 (5)0.3279 (4)0.0260 (12)
H31.07100.00550.29730.031*
C40.9562 (4)0.1795 (5)0.3447 (4)0.0202 (11)
C51.0678 (4)0.2360 (5)0.3187 (4)0.0226 (11)
C61.0297 (4)0.3609 (5)0.3417 (5)0.0266 (12)
H61.10390.39730.32550.032*
C70.8868 (4)0.4380 (5)0.3880 (4)0.0260 (12)
H70.86680.52230.40530.031*
C80.7761 (4)0.3912 (5)0.4080 (4)0.0202 (11)
C90.8106 (4)0.2605 (5)0.3875 (4)0.0202 (11)
C101.2233 (4)0.1595 (5)0.2701 (5)0.0252 (12)
C111.3194 (4)0.2486 (5)0.2001 (5)0.0274 (12)
H11A1.32430.28940.25840.033*
H11B1.27200.33280.12550.033*
C121.4756 (4)0.1645 (5)0.1521 (5)0.0301 (13)
H12A1.47340.13170.08660.036*
H12B1.52280.07600.22440.036*
C131.5642 (4)0.2633 (5)0.0937 (5)0.0312 (13)
H13A1.56210.29800.15950.037*
H13B1.51560.35100.02160.037*
C141.7255 (4)0.1892 (5)0.0439 (5)0.0327 (13)
H14A1.76930.09050.10890.039*
H14B1.72960.17610.03560.039*
C151.8144 (4)0.2809 (5)0.0162 (5)0.0340 (13)
H15A1.80620.29690.09530.041*
H15B1.77100.37850.05010.041*
C161.9767 (4)0.2114 (5)0.0297 (5)0.0404 (14)
H16A2.01830.10970.03200.048*
H16B1.98610.20580.11400.048*
C172.0644 (4)0.2983 (6)0.0424 (5)0.0453 (15)
H17A2.05490.30390.04200.054*
H17B2.02250.40010.10390.054*
C182.2278 (4)0.2295 (6)0.0887 (5)0.066 (2)
H18A2.27190.13170.02480.099*
H18B2.27810.29240.10010.099*
H18C2.23790.22030.17070.099*
Cl10.34019 (11)0.21319 (13)0.53300 (14)0.0374 (4)
Cl20.38785 (12)0.53711 (14)0.27233 (13)0.0403 (4)
In10.47713 (3)0.36247 (4)0.47732 (4)0.02240 (9)
N10.6970 (3)0.2161 (4)0.4119 (4)0.0220 (9)
O10.6352 (2)0.4620 (3)0.4468 (3)0.0220 (8)
O21.2707 (3)0.0302 (3)0.2842 (4)0.0403 (10)
O30.5333 (3)0.2442 (3)0.6779 (3)0.0288 (9)
H3A0.588 (4)0.154 (5)0.700 (5)0.043*
H3B0.559 (4)0.294 (5)0.707 (4)0.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.026 (3)0.023 (3)0.035 (4)0.012 (2)0.000 (2)0.013 (3)
C20.029 (2)0.019 (3)0.040 (4)0.007 (2)0.000 (2)0.017 (3)
C30.023 (2)0.019 (3)0.030 (3)0.003 (2)0.001 (2)0.012 (3)
C40.021 (2)0.016 (3)0.021 (3)0.004 (2)0.002 (2)0.007 (2)
C50.018 (2)0.019 (3)0.029 (3)0.003 (2)0.003 (2)0.011 (2)
C60.016 (2)0.024 (3)0.039 (4)0.007 (2)0.001 (2)0.014 (3)
C70.023 (2)0.019 (3)0.039 (4)0.006 (2)0.001 (2)0.017 (3)
C80.019 (2)0.016 (3)0.021 (3)0.003 (2)0.002 (2)0.007 (2)
C90.019 (2)0.016 (3)0.025 (3)0.003 (2)0.006 (2)0.008 (2)
C100.021 (2)0.024 (3)0.030 (3)0.003 (2)0.007 (2)0.013 (3)
C110.021 (2)0.027 (3)0.035 (4)0.009 (2)0.002 (2)0.015 (3)
C120.018 (2)0.033 (3)0.039 (4)0.004 (2)0.001 (2)0.020 (3)
C130.023 (2)0.033 (3)0.037 (4)0.009 (2)0.000 (2)0.017 (3)
C140.022 (2)0.037 (3)0.037 (4)0.008 (2)0.000 (2)0.017 (3)
C150.026 (3)0.036 (3)0.038 (4)0.013 (2)0.000 (2)0.013 (3)
C160.026 (3)0.056 (4)0.040 (4)0.018 (3)0.004 (2)0.020 (3)
C170.032 (3)0.068 (4)0.036 (4)0.029 (3)0.003 (3)0.013 (3)
C180.033 (3)0.106 (6)0.065 (5)0.036 (3)0.008 (3)0.035 (4)
Cl10.0307 (6)0.0322 (8)0.0596 (11)0.0178 (6)0.0014 (6)0.0234 (8)
Cl20.0544 (8)0.0296 (8)0.0394 (10)0.0098 (7)0.0191 (7)0.0124 (7)
In10.01802 (15)0.01785 (17)0.0336 (2)0.00564 (12)0.00088 (14)0.01387 (16)
N10.0185 (18)0.018 (2)0.030 (3)0.0068 (17)0.0014 (17)0.011 (2)
O10.0158 (15)0.0197 (17)0.032 (2)0.0057 (13)0.0026 (13)0.0154 (17)
O20.0220 (17)0.022 (2)0.069 (3)0.0035 (15)0.0001 (17)0.018 (2)
O30.0322 (18)0.0194 (19)0.032 (2)0.0070 (15)0.0026 (16)0.0109 (18)
Geometric parameters (Å, º) top
C1—N11.308 (5)C13—H13A0.9900
C1—C21.396 (5)C13—H13B0.9900
C1—H10.9500C14—C151.522 (5)
C2—C31.367 (5)C14—H14A0.9900
C2—H20.9500C14—H14B0.9900
C3—C41.414 (5)C15—C161.524 (5)
C3—H30.9500C15—H15A0.9900
C4—C91.420 (5)C15—H15B0.9900
C4—C51.437 (5)C16—C171.522 (6)
C5—C61.368 (6)C16—H16A0.9900
C5—C101.497 (5)C16—H16B0.9900
C6—C71.402 (5)C17—C181.534 (5)
C6—H60.9500C17—H17A0.9900
C7—C81.372 (5)C17—H17B0.9900
C7—H70.9500C18—H18A0.9800
C8—O11.344 (4)C18—H18B0.9800
C8—C91.421 (6)C18—H18C0.9800
C9—N11.370 (5)Cl1—In12.3825 (14)
C10—O21.215 (5)Cl2—In12.4302 (19)
C10—C111.511 (5)In1—O1i2.166 (3)
C11—C121.522 (5)In1—O12.209 (3)
C11—H11A0.9900In1—O32.227 (4)
C11—H11B0.9900In1—N12.241 (3)
C12—C131.528 (5)O1—In1i2.166 (3)
C12—H12A0.9900O3—H3A0.84 (4)
C12—H12B0.9900O3—H3B0.92 (4)
C13—C141.538 (5)
N1—C1—C2122.5 (4)C15—C14—H14B109.4
N1—C1—H1118.7C13—C14—H14B109.4
C2—C1—H1118.7H14A—C14—H14B108.0
C3—C2—C1119.0 (4)C14—C15—C16114.1 (4)
C3—C2—H2120.5C14—C15—H15A108.7
C1—C2—H2120.5C16—C15—H15A108.7
C2—C3—C4120.8 (4)C14—C15—H15B108.7
C2—C3—H3119.6C16—C15—H15B108.7
C4—C3—H3119.6H15A—C15—H15B107.6
C3—C4—C9116.0 (4)C17—C16—C15112.3 (4)
C3—C4—C5125.9 (4)C17—C16—H16A109.1
C9—C4—C5118.0 (4)C15—C16—H16A109.1
C6—C5—C4118.3 (4)C17—C16—H16B109.1
C6—C5—C10120.2 (4)C15—C16—H16B109.1
C4—C5—C10121.4 (4)H16A—C16—H16B107.9
C5—C6—C7123.5 (4)C16—C17—C18112.7 (4)
C5—C6—H6118.2C16—C17—H17A109.0
C7—C6—H6118.2C18—C17—H17A109.0
C8—C7—C6119.7 (4)C16—C17—H17B109.0
C8—C7—H7120.2C18—C17—H17B109.0
C6—C7—H7120.2H17A—C17—H17B107.8
O1—C8—C7123.6 (4)C17—C18—H18A109.5
O1—C8—C9117.5 (3)C17—C18—H18B109.5
C7—C8—C9118.9 (4)H18A—C18—H18B109.5
N1—C9—C4121.8 (4)C17—C18—H18C109.5
N1—C9—C8116.8 (4)H18A—C18—H18C109.5
C4—C9—C8121.4 (4)H18B—C18—H18C109.5
O2—C10—C5121.4 (4)O1i—In1—O172.65 (11)
O2—C10—C11120.6 (4)O1i—In1—O378.60 (12)
C5—C10—C11118.0 (4)O1—In1—O384.69 (12)
C10—C11—C12115.3 (4)O1i—In1—N1144.79 (11)
C10—C11—H11A108.5O1—In1—N173.40 (11)
C12—C11—H11A108.5O3—In1—N189.29 (13)
C10—C11—H11B108.5O1i—In1—Cl1112.71 (8)
C12—C11—H11B108.5O1—In1—Cl1169.15 (8)
H11A—C11—H11B107.5O3—In1—Cl187.16 (9)
C11—C12—C13109.9 (3)N1—In1—Cl199.38 (10)
C11—C12—H12A109.7O1i—In1—Cl289.09 (9)
C13—C12—H12A109.7O1—In1—Cl291.53 (9)
C11—C12—H12B109.7O3—In1—Cl2167.69 (9)
C13—C12—H12B109.7N1—In1—Cl2100.88 (11)
H12A—C12—H12B108.2Cl1—In1—Cl297.88 (6)
C12—C13—C14114.7 (4)C1—N1—C9119.8 (3)
C12—C13—H13A108.6C1—N1—In1124.9 (3)
C14—C13—H13A108.6C9—N1—In1115.3 (3)
C12—C13—H13B108.6C8—O1—In1i134.6 (2)
C14—C13—H13B108.6C8—O1—In1117.0 (2)
H13A—C13—H13B107.6In1i—O1—In1107.35 (11)
C15—C14—C13111.3 (4)In1—O3—H3A118 (3)
C15—C14—H14A109.4In1—O3—H3B115 (3)
C13—C14—H14A109.4H3A—O3—H3B112 (4)
N1—C1—C2—C30.8 (7)C4—C5—C10—O220.8 (7)
C1—C2—C3—C41.7 (7)C6—C5—C10—C1123.3 (6)
C2—C3—C4—C91.6 (7)C4—C5—C10—C11157.9 (4)
C2—C3—C4—C5179.6 (4)O2—C10—C11—C120.7 (7)
C3—C4—C5—C6179.3 (5)C5—C10—C11—C12179.4 (4)
C9—C4—C5—C62.8 (7)C10—C11—C12—C13175.2 (4)
C3—C4—C5—C100.5 (7)C11—C12—C13—C14178.9 (4)
C9—C4—C5—C10178.4 (4)C12—C13—C14—C15166.9 (4)
C4—C5—C6—C70.8 (7)C13—C14—C15—C16178.2 (4)
C10—C5—C6—C7179.6 (4)C14—C15—C16—C17173.9 (4)
C5—C6—C7—C82.3 (7)C15—C16—C17—C18179.9 (4)
C6—C7—C8—O1177.0 (4)C2—C1—N1—C90.3 (7)
C6—C7—C8—C93.2 (7)C2—C1—N1—In1179.8 (3)
C3—C4—C9—N10.5 (6)C4—C9—N1—C10.5 (7)
C5—C4—C9—N1178.6 (4)C8—C9—N1—C1179.1 (4)
C3—C4—C9—C8180.0 (4)C4—C9—N1—In1179.6 (3)
C5—C4—C9—C81.8 (7)C8—C9—N1—In10.8 (5)
O1—C8—C9—N11.4 (6)C7—C8—O1—In1i12.1 (7)
C7—C8—C9—N1178.4 (4)C9—C8—O1—In1i167.7 (3)
O1—C8—C9—C4179.1 (4)C7—C8—O1—In1178.5 (4)
C7—C8—C9—C41.1 (7)C9—C8—O1—In11.3 (5)
C6—C5—C10—O2157.9 (5)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2ii0.84 (4)1.84 (4)2.668 (4)168 (5)
O3—H3B···Cl2i0.92 (4)2.27 (4)3.165 (4)165 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y, z+1.
Geometric data (Å, °) for short intra- and intermolecular interactions top
CgA is the centroid of the N1/C1–C4/C9 ring.
In—YIn–Y
In1—O1i2.166 (3)In1—N1ii2.241 (4)
In1—O1ii2.209 (3)In1—Cl1ii2.382 (2)
In1—O3ii2.227 (4)In1—Cl2ii2.430 (2)
D—H···A/CgD—HH···A/CgDA/CgD—H···A/Cg
O3—H3A···O2iii0.84 (4)1.84 (4)2.668 (4)168 (5)
O3—H3B···Cl2i0.92 (4)2.27 (4)3.165 (4)165 (4)
C1—H1···Cl1iv0.952.763.417 (6)127
C2—H2···Cl1iv0.952.893.469 (5)120
C3—H3···O2ii0.952.212.835 (6)122
C15—H15A···CgAv0.992.943.766 (6)141
Symmetry codes: (i) x - 1, -y + 1, -z + 1; (ii) x, y, z; (iii) -x + 2, -y,-z+1; (iv) -x + 1, -y, -z + 1; (v) x + 1, y, z.
 

Acknowledgements

We would like to thank the Audi Stiftung für Umwelt for funding. Open Access Funding by the Publication Fund of the Technische Universität Bergakademie Freiberg is gratefully acknowledged.

References

First citationAlbrecht, M., Fiege, M. & Osetska, O. (2008). Coord. Chem. Rev. 252, 812–824.  Web of Science CrossRef CAS Google Scholar
First citationAlexander, O. T., Duvenhage, M. M., Kroon, R. E., Brink, A. & Visser, H. G. (2021). New J. Chem. 45, 2132–2140.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFeng, L., Wang, X. & Chen, Z. (2008). Spectrochim. Acta A Mol. Biomol. Spectrosc. 71, 312–316.  Web of Science CrossRef PubMed Google Scholar
First citationFeng, L., Wang, X., Zhao, S. & Chen, Z. (2007). Spectrochim. Acta A Mol. Biomol. Spectrosc. 68, 646–650.  Web of Science CrossRef PubMed Google Scholar
First citationFilik, H. & Apak, R. (1994). Sep. Sci. Technol. 29, 2047–2066.  CrossRef CAS Google Scholar
First citationGeffert, C., Kuschel, M. & Mazik, M. (2013). J. Org. Chem. 78, 292–300.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGloe, K., Stephan, H., Krüger, T., Möckel, A., Woller, N., Subklew, G., Schwuger, M. J., Neumann, R. & Weber, E. (1996). Prog. Colloid Polym. Sci. 101, 145–148.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKwak, S. W., Kim, M. B., Shin, H., Lee, J. H., Hwang, H., Ryu, J. Y., Lee, J., Kim, M., Chung, Y., Choe, J. C., Kim, Y., Lee, K. M. & Park, M. H. (2019). Inorg. Chem. 58, 8056–8063.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMatsumura, M. & Akai, T. (1996). Jpn. J. Appl. Phys. 35, 5357–5360.  CAS Google Scholar
First citationMazik, M. & Geffert, C. (2011). Org. Biomol. Chem. 9, 2319–2326.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMontes, V. A., Pohl, R., Shinar, J. & Anzenbacher, P. (2006). Chem. Eur. J. 12, 4523–4535.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchulze, M., Löwe, R., Pollex, R. & Mazik, M. (2019). Monatsh. Chem. 150, 983–990.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA, X-AREA Recipe, X-RED32 and LANA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationUhlemann, E., Mickler, W., Ludwig, E., Ludwig, E. & Klose, G. (1981). J. Prakt. Chem. 323, 521–524.  CrossRef CAS Google Scholar
First citationUhlemann, E., Weber, W., Fischer, C. & Raab, M. (1984). Anal. Chim. Acta, 156, 201–206.  CrossRef CAS Google Scholar
First citationYamada, H., Hayashi, H. & Yasui, T. (2006). Anal. Sci. 22, 371–376.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds