research communications
and supramolecular features of a host–guest based on A1/A2-hetero-difunctionalized pillar[5]arene
aDepartment of Chemistry, Kuwait University, PO Box 5969, Safat 13060, Kuwait
*Correspondence e-mail: t.alazemi@ku.edu.kw
A host–guest supramolecular PilButBrOH) with adiponitrile (ADN), C47H53.18Br0.82O10·C6H8N2. The adiponitrile guest is stabilized within the electron-rich cavity of the pillar[5]arene host via multiple C—H⋯O and C—H⋯π interactions. Both functional groups on the macrocyclic rim are engaged in supramolecular interactions with an adjacent via hydrogen-bonding (O—H⋯N or C—H⋯Br) interactions, resulting in the formation of a supramolecular dimer in the crystal structure.
was obtained from the co-crystallization of A1/A2-bromobutoxy-hydroxy difunctionalized pillar[5]arene (Keywords: crystal structure; hetero difunctionalized pillar[5]arene; inclusion complex; supramolecular dimer.
CCDC reference: 2357919
1. Chemical context
Pillar[n]arenes are highly studied scaffolds among the macrocyclic compounds because of their ease of formation, rigid shape, capacious cavities, and well-defined conformations (Ogoshi et al., 2016). The ease of facile functionalization at the macrocyclic rims along with their adaptable capacity to create inclusion complexes with target guests (charged/neutral) via non-bonding interactions make pillararene systems interesting functional materials in supramolecular chemistry (Guo et al., 2018; Al-Azemi & Vinodh, 2020; Vinodh et al., 2023; Yang et al., 2024). Such tunable functionalilization and binding properties enables the pillararene family to find promising applications over multiple fields including drug delivery, nanomaterials, sensors, transmembrance channels, and catalysis (Guo et al., 2020; Li et al., 2020; Zhu et al., 2021; Wang et al., 2022a; Zyryanov et al., 2023). Selective manipulation of supramolecular materials based on the pillararene framework could be achieved by carefully tuning these macrocycles with suitable functional groups. The design and synthesis of a numerous variety of mono-/di-/per-functionalized pillararenes and their supramolecular interactions have been reported (Ogoshi et al., 2016; Fang et al., 2020). However, the incorporation of different kinds of functional groups on the same pillararene macrocycle has rarely been encountered even if such heterofunctional macrocycles are expected to be interesting supramolecular systems (Al-Azemi & Vinodh, 2021, 2022). Previously, we reported the synthesis of macrocyclic systems comprising A1/A2 bromoalkoxy-hydroxy pillar[5]arenes accompanied by their supramolecular self assembly in solution (Al-Azemi & Vinodh, 2021). In this communication, we report the X-ray single crystal data of an comprising an A1/A2 bromobutoxy-hydroxy difunctionalized pillar[5]arene host and an adiponitrile guest. The structural details of this pillar[5]arene system along with the supramolecular interactions of this in its crystal network are addressed and discussed.
2. Structural commentary
The bromobutoxy-hydroxy difunctionalized pillar[5]arene (PilButBrOH) crystallizes in the monoclinic P21/n. In the one molecule of adiponitrile (ADN) is encapsulated within the cavity of the pillar[5]arene, resulting in the formation of a host–guest supramolecular (PilButBrOH·ADN). The structure of the pillar[5]arene is a pentagonal-shaped macrocycle having n-bromobutoxy substitution, which is projected outward from the rim as depicted in Fig. 1. The hydroxy group is oriented opposite to the n-bromobutoxy moiety and both these functional groups serve as active sites for supramolecular interactions. The encapsulated guest adiponitrile molecule engaged in multiple non-bonding interactions with its macrocyclic host via C—H⋯O or C—H⋯π interactions as shown in Fig. 2 and Table 1.
|
3. Supramolecular features
Efficient supramolecular interactions are present in the crystal network of PilButBrOH·ADN. Both the hydroxy and bromo moieties of this difunctionalized pillar[5]arene are engaged in supramolecular interactions with its neighboring counterparts, as demonstrated in Fig. 3. The OH of PilButBrOH (pillar[5]arene A) is found to be interacting with a nitrogen atom of the entrapped adiponitrile molecule of the adjacent macrocycle (pillar[5]arene B). The OH of this pillar[5]arene B, in turn, interacts with the nitrogen atom of the adiponitrile molecule that is encapsulated within the pillar[5]arene (A). As a result, a 1:1 pillar[5]arene (A)-pillar[5]arene (B) supramolecular dimer is formed through hydroxyl-mediated interaction in the The 4-bromobutoxy in pillar[5]arene (A), on the other hand, interacts with the periphery of another PilButBrOH molecule (pillar[5]arene C) from a different by a Br⋯H—C interaction. As in the case of the hydroxy group interactions, the 4-bromobutoxy moiety of this pillar[5]arene (C) interacts with the periphery of pillar[5]arene (A) through a second Br⋯H—C interaction. These two complementary Br⋯H—C interactions enable the parent pillar[5]arene (A) to behave as a 1:1 pillar[5]arene (A)–pillar[5]arene (C) supramolecular dimer. Quantitative details of the hydroxy- and bromobutoxy-based supramolecular interactions observed in the PilButBrOH·ADN systems are given in Table 2. In addition to the hydroxy-mediated supramolecular interactions, two complementary N⋯H—C interactions are also observed between pillar[5]arene A and pillar[5]arene B, involving the same nitrogen atoms of the adiponitrile guests as demonstrated in Fig. 4. On the whole, the terminal nitrogen atoms of the adiponitrile guest are bonded to two neighboring pillar[5]arene molecules from two different asymmetric units through one N⋯O—H and two N⋯H—C interactions and thus contribute significantly to the supramolecular interactions of this crystal network. In addition to the N⋯O—H and N⋯H—C mentioned above, a second N⋯H—C interaction is observed between the adiponitrile guest in one pillar[5]arene and a methoxy moiety of an adjacent pillar[5]arene molecule from a different as illustrated in Fig. 4. Finally, there is an intermolecular C—H⋯O bond between a methyl moiety of the pillar[5]arene and an oxygen atom of a methoxy-oxygen of a neighbouring pillar[5]arene, which is also depicted in Fig. 4. The quantitative details of all these intermolecular supramolecular interactions are given in Table 2. As a result of all these supramolecular interactions, each given pillar[5]arene is bonded to four adjacent pillar[5]arene molecules in its crystal network, which are clearly shown in Fig. 4.
4. Hirshfeld surface analysis
A Hirshfeld surface analysis was performed using CrystalExplorer17 (Turner et al., 2017). The Hirshfeld surface (HS) mapped with the dnorm function for PilButBrOH·ADN is shown in Fig. 5. The strong N⋯H—O supramolecular interactions between the hydroxy fraction of a given pillar[5]arene molecule and an adiponitrile guest belonging to its adjacent pillar[5]arene counterpart appear as intense red spots in the HS diagram. Intermolecular C—H⋯Br interactions are shown in this figure as white regions. From the 2D fingerprint plots (McKinnon et al., 2007), the major intermolecular interactions in the PilButBrOH·ADN system are H⋯H (60.6%), C⋯H/H⋯C (16.1%), Br⋯H/H⋯Br (8.0%), O⋯H/H⋯O (7.0%) and, N⋯H/H⋯N (6.8%).
5. Database survey
A search in the Cambridge Structural Database (version 5.45, last update June 2024; Groom et al., 2016) revealed that no A1/A2-difunctionalized pillar[5]arene substituted with a hydroxy-bromobutoxy combination has been reported. The database search showed that the of a mono ortho-fluorophenyl substituted A1/A2-dihydroxypillar[5]arenes has been reported (CASFEL; Wang et al., 2022b). While one of hydroxyl groups of the parent pillar[5]arene in this crystal is found to be interacting with fluorophenyl moiety of an adjacent pillar[5]arene, the other is bonded to the solvent acetonitrile. The fluorine atom in this pillar[5]arene also interacts with the acetonitrile solvent. Similarly, a dibromo-substituted A1/A2-dihydroxy pillar[5]arene has also been reported (LIMHEW; Strutt et al., 2013). As in the case of PilButBrOH·ADN, both the hydroxy as well as the bromine moieties in this pillar[5]arene are engaged in efficient supramolecular interactions with its neighboring pillar[5]arene counterparts. Furthermore, mono ortho-allyl-substituted monohydroxypillar[5]arene has been reported in the literature (VECBAJ; Bojtár et al., 2017). While the hydroxy fraction in this pillar[5]arene interacts with an adjacent pillar[5]arene via a C—H⋯O hydrogen bond, the allyl fraction interacts with another pillar[5]arene through a C—H⋯π bond. A non-symmetric pillar[5]arene bearing bromobutoxy and propargyloxy substitution has been reported as well (VEFQEF; Ding et al., 2017). In this crystal, the bromobutoxy group of the parent pillar[5]arene is bonded to another bromobutoxy moiety of a second pillar[5]arene by complementary Br⋯Br interactions and the propargyloxy group interacts with the propargyloxy group of a third pillar[5]arene by a C—H⋯π bond.
Many reports on pillar[5]arenes encapsulated with adiponitrile or other α,ω-dicyanoalkanes guests were found in the database in which the supramolecular interactions of the guest species are dependent on the structural details of the host pillar[5]arenes as well as the alkyl chain length of the dicyanoalkanes. A series of pillar[5]arene-adiponitrile host–guest inclusion complexes has been reported in which the pillar[5]arenes are n-alkyloxy (n-butoxy, n-pentyloxy, n-hexyloxy and n-heptyloxy) derivatives (CUDYUY, CUDZIN, CUDZAF and CUDZEJ; Ji et al., 2020). The adiponitrile guest in all these inclusion complexes is located well inside the macrocyclic cavity and does not participate in any supramolecular interactions except for the corresponding host pillar[5]arenes. The crystal structures of host–guest inclusion complexes comprising pillar[5]arene-adiponitrile systems in which one of the pillar[5]arene meso-positions is embedded with aggregation-induced emission luminogens have appeared in the literature (IFIQEX and IFIQIB; Zhang et al., 2023). In the IFIQIB crystal where (4-bromophenyl)methylidene is the emission luminogen embedded to the pillar[5]arene, each end of the adiponitrile guest is bonded to an ethoxy fraction of a different pillar[5]arene molecule and thus forms a supramolecular in the crystal. At the same time, in the IFIQEX crystal where 2,7-dibromo-9H-fluoren-9-ylidene is the embedded luminogen, the adiponitrile guest does not participate in any supramolecular interactions, except for the corresponding host pillar[5]arene. Furthermore, the of a bis(pyrazin-2-yloxy)hexane functionalized pillar[5]arene host entrapped with adiponitrile guest is reported. In this crystal, the adiponitrile is also engaged in supramolecular polymer formation by interacting with both ends of its pillar[5]arene neighbors (RESHEF; Yang et al., 2018). Host–guest inclusion complexes of pillar[5]-bis-thiacrown with various α,ω-dicyanoalkanes guests including adiponitrile have also been reported (CILROH, CILRUN, CILSAU, CILSEY and CILSIC; Lee et al., 2019b). It is observed that when the length of the alkyl chain of the dicyanoalkane increases, they show a higher tendency to be involved in non-bonding interactions with other pillar[5]arenes. The of a novel tricylic host molecule consisting of two pillar[5]arene units and a crown ether ring, which selectively binds an adiponitrile guest molecule in one pillar[5]arene cavity, has also been reported (SULJIU; Hu et al., 2015). This entrapped adiponitrile is engaged in supramolecular interactions with an adjacent pillar[5]arene through one of its nitrile ends. The of an A1/A2-thiopyridyl pillar[5]arene with an encapsulated 1,8-dicyanooctane guest is reported where one end of the guest species is interacted with an adjacent pillar[5]arene. Furthermore, the combination of this host–guest system with silver(I) ion afforded a diperiodic poly-pseudo-rotaxane (DOQZAN and DOQZOB; Lee et al., 2019a). The 1,8-dicyanooctane guest in this poly-pseudo-rotaxane also participates in supramolecular interactions with the thiopyridyl moiety of a neighboring pillar[5]arene as well as with the trifluoro acetate anion present in the crystal. The of this crystal contains another 1,8-dicyanooctane molecule that is not encapsulated by any pillar[5]arene macrocycle. Both terminals of this dinitrile molecule are involved in CN⋯Ag bonds with the AgI ion of the complex to complete the formation of the crystal network. A novel A1/A2-thiopyridyl pillar[5]arene host and 1,8-dicyanooctane guest yielded a monoperiodic poly-pseudo-rotaxane with HgCl2 and its has also been published (TECZAG; Kim et al., 2022). The 1,8-dicyanooctane guest does not really contribute to the supramolecular interactions in this crystal network except for a single CN⋯H—C interaction with an adjacent pillar[5]arene.
6. Synthesis and crystallization
The synthesis and characterization of PilButBrOH has been described earlier (Al-Azemi & Vinodh, 2021) and is as follows. The first step is the synthesis of A1/A2-bromobutoxy-benzyloxy difunctionalized pillar[5]arene by the co-condensation method (Al-Azemi & Vinodh, 2021). The benzyloxy was converted to the hydroxy derivatives by catalytic hydrogenation (PilButBrOH). NMR data of PilButBrOH: 1H NMR (600 MHz, CDCl3) δ: 1.60 (m, 4H), 3.20 (m, 2H), 3.59 (m, 2H), 3.64 (s, 4H), 3.73 (m, 14H), 3.75 (m, 6H), 3.79 (m, 10H) 6.68 (m, 4H), 6.81 (s, 2H), 6.83 (s, 2H), 6.85 ppm (s, 2H). 13C NMR (150 MHz, CDCl3) δ: 28.1, 28.5, 28.8, 29.2, 29.6, 29.6, 29.9, 30.3, 31.1, 33.5, 55.6, 55.9, 56.0, 56.1, 56.2, 56.5, 56.6, 68.0, 113.3, 113.8, 113.9, 114.2, 114.4, 114.5, 114.8, 119.1, 123.6, 125.3, 127.1, 128.0, 128.0, 128.3, 128.4, 128.5, 128.8, 129.5, 129.6, 130.0, 133.6, 146.7, 147.7, 148.8, 150.3, 150.9, 150.9, 151.0, 151.0, 151.1, 151.2, 151.2, 152.0 ppm.
Colorless blocks of PilButBrOH·ADN crystals suitable for single crystal analysis were grown by dissolving PilButBrOH (25 mg) in chloroform:adiponitrile solvent mixture (90:10 v/v, 1 mL) and subjected to slow solvent evaporation. NMR data of PilButBrOH·ADN (1:1 molar equivalent): 1H NMR (600 MHz, CDCl3) δ: 1.67 (m, 4H), 1.90 (m, 4H), 2.16 (m, 4H), 3.40 (m, 2H), 3.59 (s, 2H), 3.66 (m, 2H), 3.70 (s, 4H), 3.81 (m, 28H), 6.71 (s, 2H), 6.75 (s, 2H), 6.89 (s, 2H), 6.93 ppm (s, 4H). 13C NMR (150 MHz, CDCl3) δ: 16.7, 24.4, 27.9, 29.4, 29.4, 29.5, 31.4, 33.8, 55.7, 55.8, 55.8, 56.0, 62.2, 113.4, 113.6, 113.9, 118.9, 123.6, 128.2, 128.7, 129.7, 113.0, 146.9, 150.6, 150.6, 151.1, 188.6 ppm.
7. Refinement
Crystal data, data collection and structure . During the we noticed that the catalytic reductive debenzylation used to prepare the PilButBrOH caused an undesired side reaction, and in ∼18.5% of the bromobutoxy spacers, the bromine was replaced by a hydrogen atom, leading to a simple butoxy side chain. This required a refining disorder in disorder because the side chain is disordered over three positions (79.74:6.53:13.73%), where the main position further splits between 18.46% of n-BuO and 61.28% of 4-BrBuO fractions. This led to a 2.4% lower R1 value and a significant drop in the residuals. The three parts of the bromobutoxy chain were placed into PART 1– PART 3, and each part was assigned a different free variable (FV). Therefore, PART 1 was assigned FV2, PART2 FV3, and PART 3 used FV4. Thereafter, the H2Br substituents of C39A were placed in PART 1 and assigned FV 6, while three hydrogen atoms assigned to the same C39A atom corresponding to the de-brominated n-BuO chain were placed into PART 4 and assigned FV7. SUMP 1 0.00001 1 2 1 3 1 4 was used to constrain the occupancy of the three side chains to 1, while SUMP 0 0.00001 − 1 2 1 6 1 7 was used to ensure that the sum of the FV6 and FV7 was equal to FV2. BIND 1 4 was used to resolve the connectivity around C39A. FV 5 was used to refine the proportion of the two positions (62.5:37.5%) of the disordered enclosed adiponitrile molecule and FV8 for a similar of a disordered O–CH3 methyl group (92.36:7.64% proportion). Additionally, SIMU, RIGU and EADP were used to restrain/constrain the thermal displacement parameters of the disordered atoms, and SAME, SADI and DFIX were used to adjust the geometry of the disordered fragments. After this there was still residual electron density around the 4-BrBuO side chain, but any further was unsuccessful, and as the highest peak is 0.4 e Å−3, it was deemed unnecessary. For the sake of clarity, only the positions with the largest occupancy for all three disordered groups were used in the above discussions: 4-BrBuO (O1A, C36A, C37A, C38A, C39A, H39A, H39B, Br1A); adiponitrile (N1, C48, C49, C50, C51, C52, C53, N2) and OMe (C41).
details are summarized in Table 3
|
All carbon-bound hydrogen atoms were positioned geometrically with C—H distances for methyl, methylene, aromatic H atoms being 0.96, 0.97 and 0.93 Å, respectively, and the thermal factors of hydrogen atoms were refined with Uiso(H) = 1.2Ueq(C), except for hydrogen atoms from methyl groups, where Uiso(H) = 1.5Ueq(C) was used. The acidic proton H2 from the OH group was located from the residual electron-density map and refined with Uiso(H2) = 1.5Ueq(O2). No distance restraints were necessary in this case, as the O—H bond length refined to 0.89 (4) Å.
Supporting information
CCDC reference: 2357919
https://doi.org/10.1107/S2056989024009216/jq2036sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024009216/jq2036Isup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024009216/jq2036Isup4.mol
NMR Data. DOI: https://doi.org/10.1107/S2056989024009216/jq2036sup5.doc
C47H53.18Br0.82O10·C6H8N2 | F(000) = 2007 |
Mr = 951.38 | Dx = 1.241 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71075 Å |
a = 11.9686 (12) Å | Cell parameters from 22410 reflections |
b = 21.180 (2) Å | θ = 3.0–25.0° |
c = 20.107 (2) Å | µ = 0.72 mm−1 |
β = 92.659 (7)° | T = 150 K |
V = 5091.5 (9) Å3 | Block, colorless |
Z = 4 | 0.20 × 0.20 × 0.18 mm |
Rigaku R-AXIS RAPID diffractometer | 5350 reflections with I > 2σ(I) |
Detector resolution: 10.000 pixels mm-1 | Rint = 0.053 |
ω scans | θmax = 25.0°, θmin = 3.1° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −13→14 |
Tmin = 0.403, Tmax = 0.853 | k = −25→25 |
46597 measured reflections | l = −23→23 |
8895 independent reflections |
Refinement on F2 | 1090 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.054 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.170 | w = 1/[σ2(Fo2) + (0.0926P)2 + 0.6834P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
8895 reflections | Δρmax = 0.39 e Å−3 |
797 parameters | Δρmin = −0.23 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The single-crystal data were collected on Rigaku Rapid II diffractometer using MoKα radiation at 150 K. The data were processed by ′CrystalClear′ software package (Rigaku, 2016). The structure was solved by direct methods using the ′CrystalStructure′ crystallographic software package (Rigaku, 2017) and the refinement was performed using SHELXL2019/2 (Sheldrick 2015). |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1A | 0.6290 (3) | 0.16658 (14) | 0.9994 (3) | 0.0801 (12) | 0.7974 (18) |
C36A | 0.6399 (4) | 0.12395 (19) | 0.9457 (2) | 0.0924 (11) | 0.7974 (18) |
H36A | 0.650499 | 0.147636 | 0.903999 | 0.111* | 0.7974 (18) |
H36B | 0.571359 | 0.097991 | 0.939611 | 0.111* | 0.7974 (18) |
C37A | 0.7409 (3) | 0.08159 (17) | 0.9615 (2) | 0.0946 (11) | 0.7974 (18) |
H37A | 0.764911 | 0.062328 | 0.919651 | 0.113* | 0.7974 (18) |
H37B | 0.803342 | 0.107934 | 0.979815 | 0.113* | 0.7974 (18) |
C38A | 0.7186 (4) | 0.03050 (17) | 1.0098 (2) | 0.0943 (11) | 0.7974 (18) |
H38A | 0.655068 | 0.004602 | 0.992045 | 0.113* | 0.7974 (18) |
H38B | 0.696536 | 0.049642 | 1.052126 | 0.113* | 0.7974 (18) |
C39A | 0.8194 (4) | −0.0120 (2) | 1.0235 (3) | 0.1039 (12) | 0.7974 (18) |
H39C | 0.800416 | −0.044823 | 1.055529 | 0.156* | 0.185 (2) |
H39D | 0.840585 | −0.031888 | 0.981949 | 0.156* | 0.185 (2) |
H39E | 0.882060 | 0.013160 | 1.042042 | 0.156* | 0.185 (2) |
H39A | 0.882816 | 0.013282 | 1.042305 | 0.125* | 0.613 (2) |
H39B | 0.842215 | −0.031297 | 0.981418 | 0.125* | 0.613 (2) |
Br1A | 0.78238 (16) | −0.07848 (6) | 1.08639 (10) | 0.1313 (6) | 0.613 (2) |
C2 | 0.5502 (2) | 0.21390 (12) | 0.99377 (14) | 0.0638 (6) | |
O1B | 0.624 (2) | 0.1640 (10) | 0.9986 (19) | 0.088 (2) | 0.0653 (18) |
C36B | 0.579 (3) | 0.1058 (15) | 1.019 (3) | 0.0906 (19) | 0.0653 (18) |
H36C | 0.524773 | 0.089375 | 0.984859 | 0.109* | 0.0653 (18) |
H36D | 0.538763 | 0.111889 | 1.061026 | 0.109* | 0.0653 (18) |
C37B | 0.674 (3) | 0.0589 (15) | 1.031 (2) | 0.0951 (18) | 0.0653 (18) |
H37C | 0.693953 | 0.040168 | 0.988283 | 0.114* | 0.0653 (18) |
H37D | 0.740998 | 0.081463 | 1.050136 | 0.114* | 0.0653 (18) |
C38B | 0.643 (3) | 0.0064 (16) | 1.079 (2) | 0.101 (2) | 0.0653 (18) |
H38C | 0.569503 | −0.011058 | 1.064222 | 0.121* | 0.0653 (18) |
H38D | 0.637271 | 0.024094 | 1.123931 | 0.121* | 0.0653 (18) |
C39B | 0.730 (3) | −0.0466 (16) | 1.081 (3) | 0.103 (2) | 0.0653 (18) |
H39F | 0.695006 | −0.082283 | 1.055912 | 0.124* | 0.0653 (18) |
H39G | 0.737403 | −0.060307 | 1.128092 | 0.124* | 0.0653 (18) |
Br1B | 0.8751 (12) | −0.0392 (6) | 1.0518 (8) | 0.157 (4) | 0.0653 (18) |
O1C | 0.610 (2) | 0.1593 (6) | 1.0088 (14) | 0.089 (2) | 0.137 (2) |
C36C | 0.5682 (19) | 0.1004 (7) | 0.9850 (14) | 0.0909 (18) | 0.137 (2) |
H36G | 0.557441 | 0.101303 | 0.935927 | 0.109* | 0.137 (2) |
H36H | 0.495352 | 0.090996 | 1.004264 | 0.109* | 0.137 (2) |
C37C | 0.6552 (18) | 0.0497 (8) | 1.0064 (14) | 0.0963 (18) | 0.137 (2) |
H37E | 0.705832 | 0.044146 | 0.969300 | 0.116* | 0.137 (2) |
H37F | 0.700855 | 0.066859 | 1.044556 | 0.116* | 0.137 (2) |
C38C | 0.6152 (16) | −0.0155 (8) | 1.0262 (14) | 0.102 (2) | 0.137 (2) |
H38E | 0.557749 | −0.028763 | 0.992022 | 0.123* | 0.137 (2) |
H38F | 0.576759 | −0.010603 | 1.068400 | 0.123* | 0.137 (2) |
C39C | 0.6982 (17) | −0.0711 (9) | 1.0359 (14) | 0.104 (2) | 0.137 (2) |
H39H | 0.719706 | −0.084975 | 0.991229 | 0.125* | 0.137 (2) |
H39I | 0.657568 | −0.106576 | 1.055778 | 0.125* | 0.137 (2) |
Br1C | 0.8224 (7) | −0.0586 (4) | 1.0850 (4) | 0.123 (2) | 0.137 (2) |
O2 | 0.32430 (17) | 0.36174 (11) | 0.97909 (12) | 0.0890 (7) | |
H2 | 0.345 (3) | 0.392 (2) | 1.007 (2) | 0.133* | |
O3 | 0.36303 (18) | 0.18197 (9) | 0.79308 (11) | 0.0850 (6) | |
O4 | 0.31980 (16) | 0.43675 (9) | 0.73885 (12) | 0.0880 (6) | |
O5 | 0.58873 (18) | 0.29024 (11) | 0.59519 (12) | 0.0942 (7) | |
O6 | 0.68225 (18) | 0.52704 (10) | 0.69892 (12) | 0.0929 (7) | |
O7 | 0.96315 (19) | 0.34123 (13) | 0.70008 (11) | 0.1027 (7) | |
O8 | 0.92576 (17) | 0.51595 (9) | 0.90155 (10) | 0.0831 (6) | |
O9 | 0.99031 (15) | 0.27027 (9) | 0.92914 (10) | 0.0770 (5) | |
O10 | 0.71311 (16) | 0.40323 (10) | 1.09101 (11) | 0.0843 (6) | |
C1 | 0.5692 (2) | 0.26687 (12) | 1.03394 (12) | 0.0578 (6) | |
C3 | 0.4574 (2) | 0.21092 (12) | 0.94922 (13) | 0.0642 (7) | |
H3 | 0.446014 | 0.174378 | 0.922357 | 0.077* | |
C4 | 0.38090 (19) | 0.26075 (12) | 0.94341 (12) | 0.0581 (6) | |
C5 | 0.3994 (2) | 0.31285 (13) | 0.98418 (14) | 0.0633 (7) | |
C6 | 0.4921 (2) | 0.31522 (13) | 1.02912 (13) | 0.0632 (7) | |
H6 | 0.502177 | 0.351119 | 1.057085 | 0.076* | |
C7 | 0.2827 (2) | 0.25796 (14) | 0.89323 (13) | 0.0657 (7) | |
H7A | 0.219818 | 0.282628 | 0.910294 | 0.079* | |
H7B | 0.257697 | 0.213594 | 0.888113 | 0.079* | |
C8 | 0.31140 (18) | 0.28380 (12) | 0.82541 (13) | 0.0581 (6) | |
C9 | 0.3536 (2) | 0.24494 (12) | 0.77650 (14) | 0.0623 (7) | |
C10 | 0.3833 (2) | 0.26966 (13) | 0.71589 (14) | 0.0650 (7) | |
H10 | 0.412121 | 0.242392 | 0.683312 | 0.078* | |
C11 | 0.37159 (19) | 0.33375 (13) | 0.70209 (13) | 0.0597 (7) | |
C12 | 0.32887 (19) | 0.37222 (12) | 0.75059 (14) | 0.0620 (7) | |
C13 | 0.29948 (19) | 0.34732 (12) | 0.81074 (14) | 0.0627 (7) | |
H13 | 0.270159 | 0.374657 | 0.843089 | 0.075* | |
C14 | 0.4071 (2) | 0.36041 (14) | 0.63637 (13) | 0.0712 (7) | |
H14A | 0.355321 | 0.394869 | 0.622366 | 0.085* | |
H14B | 0.400995 | 0.326889 | 0.602080 | 0.085* | |
C15 | 0.5260 (2) | 0.38577 (13) | 0.63998 (13) | 0.0644 (7) | |
C16 | 0.6152 (2) | 0.34916 (14) | 0.62035 (13) | 0.0705 (7) | |
C17 | 0.7242 (2) | 0.37320 (16) | 0.62685 (13) | 0.0755 (8) | |
H17 | 0.784561 | 0.348427 | 0.612307 | 0.091* | |
C18 | 0.7458 (2) | 0.43200 (15) | 0.65388 (13) | 0.0708 (8) | |
C19 | 0.6564 (2) | 0.46855 (14) | 0.67296 (14) | 0.0701 (7) | |
C20 | 0.5483 (2) | 0.44537 (13) | 0.66553 (14) | 0.0679 (7) | |
H20 | 0.487826 | 0.471059 | 0.678307 | 0.082* | |
C21 | 0.8663 (2) | 0.45534 (18) | 0.66408 (14) | 0.0849 (9) | |
H21A | 0.914090 | 0.433802 | 0.632229 | 0.102* | |
H21B | 0.869131 | 0.501278 | 0.655220 | 0.102* | |
C22 | 0.9104 (2) | 0.44229 (16) | 0.73460 (14) | 0.0718 (8) | |
C23 | 0.9576 (2) | 0.38387 (16) | 0.75118 (14) | 0.0745 (8) | |
C24 | 0.9968 (2) | 0.37175 (15) | 0.81623 (14) | 0.0700 (7) | |
H24 | 1.031625 | 0.332414 | 0.826518 | 0.084* | |
C25 | 0.9860 (2) | 0.41602 (13) | 0.86613 (13) | 0.0615 (7) | |
C26 | 0.9373 (2) | 0.47422 (13) | 0.85017 (14) | 0.0651 (7) | |
C27 | 0.9021 (2) | 0.48698 (15) | 0.78402 (14) | 0.0719 (8) | |
H27 | 0.871791 | 0.527304 | 0.773017 | 0.086* | |
C28 | 1.0249 (2) | 0.40075 (13) | 0.93719 (13) | 0.0616 (7) | |
H28A | 1.045515 | 0.440415 | 0.960741 | 0.074* | |
H28B | 1.092461 | 0.373846 | 0.936705 | 0.074* | |
C29 | 0.93527 (19) | 0.36686 (12) | 0.97484 (12) | 0.0558 (6) | |
C30 | 0.91911 (19) | 0.30210 (12) | 0.96954 (12) | 0.0573 (6) | |
C31 | 0.8354 (2) | 0.27243 (12) | 1.00360 (12) | 0.0580 (6) | |
H31 | 0.825188 | 0.228128 | 0.999134 | 0.070* | |
C32 | 0.76635 (19) | 0.30670 (12) | 1.04419 (12) | 0.0563 (6) | |
C33 | 0.7833 (2) | 0.37116 (13) | 1.05013 (13) | 0.0610 (6) | |
C34 | 0.8661 (2) | 0.40060 (13) | 1.01550 (13) | 0.0611 (6) | |
H34 | 0.875820 | 0.444963 | 1.019692 | 0.073* | |
C35 | 0.6736 (2) | 0.27279 (13) | 1.07921 (13) | 0.0639 (7) | |
H35A | 0.699691 | 0.230184 | 1.092965 | 0.077* | |
H35B | 0.655725 | 0.296497 | 1.119790 | 0.077* | |
C40 | 0.4037 (4) | 0.13995 (15) | 0.7448 (2) | 0.1170 (13) | |
H40A | 0.410223 | 0.097424 | 0.763809 | 0.175* | |
H40B | 0.477344 | 0.154233 | 0.731587 | 0.175* | |
H40C | 0.351694 | 0.139182 | 0.705724 | 0.175* | |
C41 | 0.2117 (3) | 0.46022 (18) | 0.7290 (2) | 0.1021 (14) | 0.924 (6) |
H41A | 0.170966 | 0.434965 | 0.694951 | 0.153* | 0.924 (6) |
H41B | 0.214907 | 0.504254 | 0.714200 | 0.153* | 0.924 (6) |
H41C | 0.172973 | 0.457976 | 0.770806 | 0.153* | 0.924 (6) |
C41A | 0.278 (4) | 0.4748 (12) | 0.7877 (15) | 0.1021 (14) | 0.076 (6) |
H41D | 0.220495 | 0.451679 | 0.810934 | 0.153* | 0.076 (6) |
H41E | 0.244799 | 0.512832 | 0.767147 | 0.153* | 0.076 (6) |
H41F | 0.338605 | 0.486876 | 0.819496 | 0.153* | 0.076 (6) |
C42 | 0.6756 (3) | 0.25247 (19) | 0.5720 (2) | 0.1175 (13) | |
H42A | 0.728380 | 0.242243 | 0.609163 | 0.176* | |
H42B | 0.714638 | 0.275492 | 0.537782 | 0.176* | |
H42C | 0.644114 | 0.213369 | 0.552992 | 0.176* | |
C43 | 0.5938 (4) | 0.56629 (17) | 0.7188 (3) | 0.1271 (15) | |
H43A | 0.624596 | 0.606040 | 0.736633 | 0.191* | |
H43B | 0.552693 | 0.544818 | 0.753306 | 0.191* | |
H43C | 0.542938 | 0.575135 | 0.680366 | 0.191* | |
C44 | 1.0073 (3) | 0.2809 (2) | 0.7151 (2) | 0.1240 (15) | |
H44A | 0.999801 | 0.254001 | 0.675511 | 0.186* | |
H44B | 0.966173 | 0.261987 | 0.751158 | 0.186* | |
H44C | 1.086475 | 0.284786 | 0.729159 | 0.186* | |
C45 | 0.8753 (3) | 0.57512 (15) | 0.88739 (18) | 0.0958 (10) | |
H45A | 0.801195 | 0.568578 | 0.865718 | 0.144* | |
H45B | 0.922067 | 0.599197 | 0.857699 | 0.144* | |
H45C | 0.867760 | 0.598595 | 0.928942 | 0.144* | |
C46 | 0.9785 (3) | 0.20465 (15) | 0.9228 (2) | 0.0969 (10) | |
H46A | 0.902734 | 0.194691 | 0.905415 | 0.145* | |
H46B | 0.991513 | 0.184781 | 0.966509 | 0.145* | |
H46C | 1.033093 | 0.188620 | 0.892113 | 0.145* | |
C47 | 0.7317 (3) | 0.46807 (16) | 1.1017 (2) | 0.1099 (12) | |
H47A | 0.720997 | 0.490778 | 1.059422 | 0.165* | |
H47B | 0.808300 | 0.474616 | 1.119713 | 0.165* | |
H47C | 0.678705 | 0.483998 | 1.133428 | 0.165* | |
N1 | 0.6884 (13) | 0.1826 (4) | 0.7681 (6) | 0.153 (4) | 0.625 (8) |
C48 | 0.7035 (17) | 0.2360 (4) | 0.7776 (7) | 0.126 (2) | 0.625 (8) |
C49 | 0.7166 (6) | 0.3028 (3) | 0.7960 (5) | 0.120 (2) | 0.625 (8) |
H49A | 0.713396 | 0.328781 | 0.755032 | 0.144* | 0.625 (8) |
H49B | 0.791025 | 0.309049 | 0.818579 | 0.144* | 0.625 (8) |
C50 | 0.6293 (7) | 0.3247 (3) | 0.8404 (5) | 0.105 (2) | 0.625 (8) |
H50A | 0.633032 | 0.300413 | 0.882539 | 0.127* | 0.625 (8) |
H50B | 0.554041 | 0.318957 | 0.818674 | 0.127* | 0.625 (8) |
C51 | 0.6521 (7) | 0.3963 (3) | 0.8546 (5) | 0.106 (2) | 0.625 (8) |
H51A | 0.727090 | 0.401772 | 0.876720 | 0.127* | 0.625 (8) |
H51B | 0.649674 | 0.420260 | 0.812291 | 0.127* | 0.625 (8) |
C52 | 0.5652 (7) | 0.4198 (3) | 0.8981 (5) | 0.124 (2) | 0.625 (8) |
H52A | 0.491540 | 0.418426 | 0.873661 | 0.148* | 0.625 (8) |
H52B | 0.561603 | 0.391966 | 0.937502 | 0.148* | 0.625 (8) |
C53 | 0.5886 (14) | 0.4848 (4) | 0.9202 (6) | 0.120 (2) | 0.625 (8) |
N2 | 0.610 (2) | 0.5372 (5) | 0.9327 (8) | 0.135 (4) | 0.625 (8) |
N1B | 0.710 (2) | 0.1922 (8) | 0.7416 (8) | 0.141 (5) | 0.375 (8) |
C48B | 0.702 (3) | 0.2278 (8) | 0.7850 (11) | 0.126 (3) | 0.375 (8) |
C49B | 0.7096 (12) | 0.2804 (6) | 0.8328 (8) | 0.124 (2) | 0.375 (8) |
H49C | 0.690537 | 0.264687 | 0.877251 | 0.149* | 0.375 (8) |
H49D | 0.787609 | 0.296010 | 0.836214 | 0.149* | 0.375 (8) |
C50B | 0.6352 (14) | 0.3327 (6) | 0.8139 (7) | 0.109 (3) | 0.375 (8) |
H50C | 0.556833 | 0.317813 | 0.809341 | 0.131* | 0.375 (8) |
H50D | 0.656074 | 0.350849 | 0.770884 | 0.131* | 0.375 (8) |
C51B | 0.6481 (14) | 0.3837 (6) | 0.8706 (8) | 0.110 (3) | 0.375 (8) |
H51C | 0.636013 | 0.364028 | 0.914362 | 0.132* | 0.375 (8) |
H51D | 0.724370 | 0.401802 | 0.871721 | 0.132* | 0.375 (8) |
C52B | 0.5655 (11) | 0.4332 (5) | 0.8572 (8) | 0.119 (2) | 0.375 (8) |
H52C | 0.489617 | 0.416165 | 0.863136 | 0.142* | 0.375 (8) |
H52D | 0.569423 | 0.447405 | 0.810428 | 0.142* | 0.375 (8) |
C53B | 0.586 (2) | 0.4876 (7) | 0.9023 (10) | 0.122 (3) | 0.375 (8) |
N2B | 0.595 (4) | 0.5254 (10) | 0.9442 (11) | 0.125 (5) | 0.375 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1A | 0.0864 (19) | 0.0704 (15) | 0.0815 (19) | 0.0161 (14) | −0.0167 (17) | −0.0070 (14) |
C36A | 0.109 (2) | 0.076 (2) | 0.091 (2) | 0.0240 (19) | −0.014 (2) | −0.0088 (19) |
C37A | 0.106 (2) | 0.082 (2) | 0.095 (2) | 0.0166 (19) | −0.008 (2) | −0.0168 (19) |
C38A | 0.109 (2) | 0.075 (2) | 0.096 (2) | 0.0220 (19) | −0.026 (2) | −0.0154 (19) |
C39A | 0.123 (3) | 0.082 (2) | 0.104 (3) | 0.025 (2) | −0.024 (2) | −0.011 (2) |
Br1A | 0.1659 (13) | 0.0687 (6) | 0.1577 (10) | 0.0128 (6) | −0.0089 (9) | 0.0205 (5) |
C2 | 0.0599 (14) | 0.0644 (15) | 0.0668 (16) | 0.0060 (12) | −0.0001 (13) | 0.0072 (13) |
O1B | 0.097 (4) | 0.076 (4) | 0.088 (4) | 0.018 (4) | −0.013 (4) | −0.007 (4) |
C36B | 0.102 (3) | 0.077 (3) | 0.091 (3) | 0.017 (3) | −0.015 (3) | −0.009 (3) |
C37B | 0.109 (3) | 0.079 (3) | 0.095 (3) | 0.020 (3) | −0.019 (3) | −0.009 (3) |
C38B | 0.116 (4) | 0.083 (4) | 0.100 (4) | 0.019 (4) | −0.021 (4) | −0.009 (4) |
C39B | 0.120 (4) | 0.083 (4) | 0.104 (4) | 0.024 (4) | −0.024 (4) | −0.008 (4) |
Br1B | 0.170 (7) | 0.137 (6) | 0.160 (7) | 0.052 (5) | −0.043 (6) | 0.011 (6) |
O1C | 0.099 (4) | 0.078 (3) | 0.089 (4) | 0.020 (3) | −0.014 (4) | −0.004 (3) |
C36C | 0.102 (3) | 0.079 (3) | 0.091 (3) | 0.017 (3) | −0.014 (3) | −0.006 (3) |
C37C | 0.110 (3) | 0.080 (3) | 0.096 (3) | 0.020 (3) | −0.019 (3) | −0.009 (3) |
C38C | 0.117 (4) | 0.086 (3) | 0.101 (4) | 0.019 (3) | −0.020 (4) | −0.011 (3) |
C39C | 0.123 (4) | 0.085 (4) | 0.103 (4) | 0.017 (4) | −0.023 (4) | −0.009 (4) |
Br1C | 0.148 (5) | 0.113 (5) | 0.102 (3) | 0.022 (3) | −0.053 (3) | 0.013 (3) |
O2 | 0.0690 (12) | 0.0927 (15) | 0.1039 (17) | 0.0229 (11) | −0.0103 (11) | −0.0164 (12) |
O3 | 0.1092 (15) | 0.0611 (12) | 0.0851 (14) | −0.0004 (10) | 0.0072 (12) | 0.0008 (10) |
O4 | 0.0700 (12) | 0.0691 (13) | 0.1262 (19) | 0.0058 (10) | 0.0201 (12) | 0.0198 (12) |
O5 | 0.0907 (15) | 0.0946 (15) | 0.0968 (16) | −0.0027 (12) | 0.0002 (12) | −0.0255 (13) |
O6 | 0.0884 (14) | 0.0832 (15) | 0.1061 (17) | −0.0238 (12) | −0.0066 (12) | −0.0036 (12) |
O7 | 0.0955 (16) | 0.141 (2) | 0.0710 (14) | 0.0204 (15) | 0.0009 (12) | −0.0235 (14) |
O8 | 0.1018 (15) | 0.0726 (12) | 0.0727 (13) | 0.0003 (11) | −0.0176 (11) | −0.0014 (10) |
O9 | 0.0733 (12) | 0.0696 (12) | 0.0897 (14) | 0.0030 (9) | 0.0211 (10) | −0.0075 (10) |
O10 | 0.0774 (12) | 0.0824 (14) | 0.0948 (15) | −0.0006 (10) | 0.0237 (11) | −0.0218 (11) |
C1 | 0.0551 (14) | 0.0694 (16) | 0.0494 (14) | −0.0076 (12) | 0.0076 (11) | 0.0051 (12) |
C3 | 0.0643 (15) | 0.0651 (16) | 0.0629 (16) | −0.0047 (13) | 0.0007 (13) | 0.0001 (13) |
C4 | 0.0454 (13) | 0.0715 (16) | 0.0581 (15) | −0.0034 (12) | 0.0077 (11) | 0.0081 (13) |
C5 | 0.0508 (14) | 0.0729 (17) | 0.0665 (17) | 0.0039 (13) | 0.0069 (12) | 0.0012 (14) |
C6 | 0.0573 (15) | 0.0718 (17) | 0.0610 (16) | 0.0002 (13) | 0.0069 (12) | −0.0058 (13) |
C7 | 0.0496 (14) | 0.0774 (17) | 0.0704 (18) | −0.0031 (12) | 0.0053 (12) | 0.0044 (14) |
C8 | 0.0400 (12) | 0.0714 (17) | 0.0624 (16) | −0.0043 (11) | −0.0034 (11) | 0.0002 (14) |
C9 | 0.0616 (15) | 0.0580 (16) | 0.0663 (17) | −0.0066 (12) | −0.0073 (13) | −0.0001 (13) |
C10 | 0.0618 (15) | 0.0700 (17) | 0.0624 (17) | −0.0061 (13) | −0.0054 (13) | −0.0094 (14) |
C11 | 0.0485 (13) | 0.0697 (17) | 0.0601 (16) | −0.0111 (12) | −0.0063 (12) | 0.0016 (13) |
C12 | 0.0450 (13) | 0.0616 (16) | 0.0791 (19) | −0.0024 (11) | 0.0008 (13) | 0.0053 (14) |
C13 | 0.0472 (13) | 0.0686 (17) | 0.0724 (18) | 0.0005 (12) | 0.0038 (12) | −0.0025 (14) |
C14 | 0.0646 (16) | 0.0861 (19) | 0.0617 (17) | −0.0132 (14) | −0.0078 (13) | 0.0032 (15) |
C15 | 0.0644 (16) | 0.0801 (18) | 0.0483 (15) | −0.0102 (14) | −0.0015 (12) | 0.0078 (13) |
C16 | 0.0712 (18) | 0.086 (2) | 0.0543 (16) | −0.0078 (15) | −0.0018 (13) | −0.0027 (14) |
C17 | 0.0666 (17) | 0.110 (2) | 0.0503 (16) | 0.0020 (17) | 0.0033 (13) | 0.0023 (16) |
C18 | 0.0655 (17) | 0.098 (2) | 0.0485 (15) | −0.0183 (16) | −0.0021 (13) | 0.0108 (15) |
C19 | 0.0722 (18) | 0.0805 (19) | 0.0568 (16) | −0.0163 (15) | −0.0040 (14) | 0.0104 (14) |
C20 | 0.0636 (16) | 0.0759 (18) | 0.0640 (17) | −0.0056 (14) | 0.0000 (13) | 0.0058 (14) |
C21 | 0.0647 (17) | 0.130 (3) | 0.0598 (17) | −0.0223 (17) | −0.0010 (13) | 0.0135 (18) |
C22 | 0.0491 (14) | 0.108 (2) | 0.0584 (17) | −0.0166 (15) | 0.0036 (12) | 0.0102 (17) |
C23 | 0.0547 (15) | 0.111 (2) | 0.0580 (18) | −0.0107 (16) | 0.0094 (13) | −0.0128 (17) |
C24 | 0.0519 (14) | 0.095 (2) | 0.0634 (17) | −0.0009 (14) | 0.0040 (13) | 0.0011 (16) |
C25 | 0.0464 (13) | 0.0799 (18) | 0.0583 (16) | −0.0140 (13) | 0.0032 (11) | 0.0018 (14) |
C26 | 0.0556 (14) | 0.0728 (18) | 0.0663 (18) | −0.0140 (13) | −0.0019 (13) | 0.0073 (15) |
C27 | 0.0619 (16) | 0.0845 (19) | 0.0682 (19) | −0.0200 (14) | −0.0092 (14) | 0.0146 (16) |
C28 | 0.0508 (13) | 0.0718 (16) | 0.0614 (16) | −0.0066 (12) | −0.0047 (12) | 0.0032 (13) |
C29 | 0.0482 (13) | 0.0664 (16) | 0.0521 (14) | −0.0036 (11) | −0.0063 (11) | 0.0032 (12) |
C30 | 0.0499 (13) | 0.0699 (16) | 0.0520 (14) | 0.0049 (12) | 0.0030 (11) | −0.0019 (12) |
C31 | 0.0593 (14) | 0.0590 (14) | 0.0551 (15) | 0.0004 (12) | −0.0049 (12) | 0.0047 (12) |
C32 | 0.0506 (13) | 0.0736 (17) | 0.0443 (13) | 0.0004 (12) | −0.0025 (11) | 0.0030 (12) |
C33 | 0.0542 (14) | 0.0698 (17) | 0.0587 (16) | 0.0036 (13) | 0.0011 (12) | −0.0059 (13) |
C34 | 0.0557 (14) | 0.0658 (15) | 0.0615 (16) | −0.0020 (13) | −0.0012 (13) | −0.0059 (13) |
C35 | 0.0570 (14) | 0.0820 (18) | 0.0525 (15) | −0.0044 (13) | 0.0008 (12) | 0.0070 (13) |
C40 | 0.166 (4) | 0.063 (2) | 0.123 (3) | 0.001 (2) | 0.020 (3) | −0.016 (2) |
C41 | 0.083 (2) | 0.091 (3) | 0.133 (4) | 0.030 (2) | 0.026 (2) | 0.026 (2) |
C41A | 0.083 (2) | 0.091 (3) | 0.133 (4) | 0.030 (2) | 0.026 (2) | 0.026 (2) |
C42 | 0.119 (3) | 0.110 (3) | 0.122 (3) | 0.028 (2) | −0.009 (2) | −0.035 (2) |
C43 | 0.119 (3) | 0.080 (2) | 0.181 (4) | −0.003 (2) | −0.007 (3) | −0.018 (3) |
C44 | 0.112 (3) | 0.166 (4) | 0.094 (3) | 0.038 (3) | 0.002 (2) | −0.055 (3) |
C45 | 0.111 (3) | 0.079 (2) | 0.095 (2) | 0.0090 (18) | −0.018 (2) | 0.0075 (18) |
C46 | 0.087 (2) | 0.082 (2) | 0.124 (3) | 0.0067 (17) | 0.025 (2) | −0.022 (2) |
C47 | 0.114 (3) | 0.084 (2) | 0.134 (3) | 0.005 (2) | 0.028 (2) | −0.031 (2) |
N1 | 0.168 (7) | 0.123 (5) | 0.169 (8) | 0.028 (5) | 0.016 (7) | −0.022 (6) |
C48 | 0.122 (4) | 0.120 (4) | 0.134 (5) | 0.014 (4) | −0.001 (4) | −0.015 (4) |
C49 | 0.121 (4) | 0.122 (4) | 0.119 (4) | −0.009 (3) | 0.024 (3) | 0.001 (3) |
C50 | 0.099 (3) | 0.106 (3) | 0.112 (4) | −0.009 (3) | 0.013 (3) | −0.008 (3) |
C51 | 0.099 (3) | 0.109 (4) | 0.111 (4) | −0.009 (3) | 0.011 (3) | −0.012 (3) |
C52 | 0.126 (4) | 0.110 (3) | 0.137 (5) | −0.015 (3) | 0.029 (4) | −0.012 (4) |
C53 | 0.120 (4) | 0.107 (4) | 0.133 (6) | −0.010 (4) | 0.011 (5) | −0.026 (4) |
N2 | 0.128 (8) | 0.106 (5) | 0.171 (7) | −0.005 (5) | 0.017 (6) | −0.030 (6) |
N1B | 0.155 (9) | 0.135 (8) | 0.135 (9) | 0.023 (7) | 0.017 (8) | −0.022 (6) |
C48B | 0.126 (5) | 0.120 (5) | 0.133 (5) | 0.008 (5) | 0.001 (5) | −0.015 (5) |
C49B | 0.122 (4) | 0.125 (5) | 0.126 (5) | 0.004 (4) | −0.003 (5) | −0.006 (4) |
C50B | 0.103 (4) | 0.108 (4) | 0.116 (5) | −0.005 (4) | 0.008 (5) | −0.009 (4) |
C51B | 0.102 (4) | 0.108 (4) | 0.119 (5) | −0.009 (4) | 0.015 (4) | −0.012 (4) |
C52B | 0.120 (4) | 0.115 (4) | 0.121 (5) | −0.004 (4) | 0.003 (5) | −0.015 (4) |
C53B | 0.120 (5) | 0.109 (5) | 0.137 (6) | −0.009 (5) | 0.008 (6) | −0.029 (4) |
N2B | 0.128 (10) | 0.106 (8) | 0.142 (8) | −0.011 (8) | 0.004 (8) | −0.028 (6) |
O1A—C2 | 1.377 (3) | C16—C17 | 1.400 (4) |
O1A—C36A | 1.419 (5) | C17—C18 | 1.378 (4) |
C36A—C37A | 1.527 (4) | C17—H17 | 0.9500 |
C36A—H36A | 0.9900 | C18—C19 | 1.389 (4) |
C36A—H36B | 0.9900 | C18—C21 | 1.529 (4) |
C37A—C38A | 1.486 (4) | C19—C20 | 1.386 (4) |
C37A—H37A | 0.9900 | C20—H20 | 0.9500 |
C37A—H37B | 0.9900 | C21—C22 | 1.516 (4) |
C38A—C39A | 1.521 (4) | C21—H21A | 0.9900 |
C38A—H38A | 0.9900 | C21—H21B | 0.9900 |
C38A—H38B | 0.9900 | C22—C27 | 1.379 (4) |
C39A—Br1A | 1.956 (5) | C22—C23 | 1.394 (4) |
C39A—H39C | 0.9800 | C23—C24 | 1.393 (4) |
C39A—H39D | 0.9800 | C24—C25 | 1.384 (4) |
C39A—H39E | 0.9800 | C24—H24 | 0.9500 |
C39A—H39A | 0.9900 | C25—C26 | 1.394 (4) |
C39A—H39B | 0.9900 | C25—C28 | 1.517 (4) |
C2—O1B | 1.377 (6) | C26—C27 | 1.403 (4) |
C2—O1C | 1.383 (7) | C27—H27 | 0.9500 |
C2—C1 | 1.395 (4) | C28—C29 | 1.521 (3) |
C2—C3 | 1.395 (3) | C28—H28A | 0.9900 |
O1B—C36B | 1.42 (2) | C28—H28B | 0.9900 |
C36B—C37B | 1.526 (6) | C29—C34 | 1.388 (3) |
C36B—H36C | 0.9900 | C29—C30 | 1.389 (3) |
C36B—H36D | 0.9900 | C30—C31 | 1.390 (3) |
C37B—C38B | 1.520 (6) | C31—C32 | 1.393 (3) |
C37B—H37C | 0.9900 | C31—H31 | 0.9500 |
C37B—H37D | 0.9900 | C32—C33 | 1.384 (4) |
C38B—C39B | 1.524 (6) | C32—C35 | 1.522 (3) |
C38B—H38C | 0.9900 | C33—C34 | 1.386 (4) |
C38B—H38D | 0.9900 | C34—H34 | 0.9500 |
C39B—Br1B | 1.868 (18) | C35—H35A | 0.9900 |
C39B—H39F | 0.9900 | C35—H35B | 0.9900 |
C39B—H39G | 0.9900 | C40—H40A | 0.9800 |
O1C—C36C | 1.418 (17) | C40—H40B | 0.9800 |
C36C—C37C | 1.544 (9) | C40—H40C | 0.9800 |
C36C—H36G | 0.9900 | C41—H41A | 0.9800 |
C36C—H36H | 0.9900 | C41—H41B | 0.9800 |
C37C—C38C | 1.520 (9) | C41—H41C | 0.9800 |
C37C—H37E | 0.9900 | C41A—H41D | 0.9800 |
C37C—H37F | 0.9900 | C41A—H41E | 0.9800 |
C38C—C39C | 1.546 (9) | C41A—H41F | 0.9800 |
C38C—H38E | 0.9900 | C42—H42A | 0.9800 |
C38C—H38F | 0.9900 | C42—H42B | 0.9800 |
C39C—Br1C | 1.766 (16) | C42—H42C | 0.9800 |
C39C—H39H | 0.9900 | C43—H43A | 0.9800 |
C39C—H39I | 0.9900 | C43—H43B | 0.9800 |
O2—C5 | 1.372 (3) | C43—H43C | 0.9800 |
O2—H2 | 0.89 (4) | C44—H44A | 0.9800 |
O3—C9 | 1.378 (3) | C44—H44B | 0.9800 |
O3—C40 | 1.419 (4) | C44—H44C | 0.9800 |
O4—C41A | 1.382 (10) | C45—H45A | 0.9800 |
O4—C12 | 1.390 (3) | C45—H45B | 0.9800 |
O4—C41 | 1.392 (4) | C45—H45C | 0.9800 |
O5—C16 | 1.378 (3) | C46—H46A | 0.9800 |
O5—C42 | 1.408 (4) | C46—H46B | 0.9800 |
O6—C19 | 1.374 (3) | C46—H46C | 0.9800 |
O6—C43 | 1.419 (4) | C47—H47A | 0.9800 |
O7—C23 | 1.372 (3) | C47—H47B | 0.9800 |
O7—C44 | 1.410 (5) | C47—H47C | 0.9800 |
O8—C26 | 1.372 (3) | N1—C48 | 1.160 (6) |
O8—C45 | 1.414 (3) | C48—C49 | 1.469 (6) |
O9—C30 | 1.380 (3) | C49—C50 | 1.481 (6) |
O9—C46 | 1.402 (3) | C49—H49A | 0.9900 |
O10—C33 | 1.381 (3) | C49—H49B | 0.9900 |
O10—C47 | 1.406 (4) | C50—C51 | 1.564 (6) |
C1—C6 | 1.379 (3) | C50—H50A | 0.9900 |
C1—C35 | 1.517 (3) | C50—H50B | 0.9900 |
C3—C4 | 1.399 (3) | C51—C52 | 1.476 (6) |
C3—H3 | 0.9500 | C51—H51A | 0.9900 |
C4—C5 | 1.386 (4) | C51—H51B | 0.9900 |
C4—C7 | 1.515 (3) | C52—C53 | 1.469 (5) |
C5—C6 | 1.399 (4) | C52—H52A | 0.9900 |
C6—H6 | 0.9500 | C52—H52B | 0.9900 |
C7—C8 | 1.523 (4) | C53—N2 | 1.165 (6) |
C7—H7A | 0.9900 | N1B—C48B | 1.161 (7) |
C7—H7B | 0.9900 | C48B—C49B | 1.472 (6) |
C8—C13 | 1.383 (3) | C49B—C50B | 1.460 (9) |
C8—C9 | 1.395 (4) | C49B—H49C | 0.9900 |
C9—C10 | 1.388 (4) | C49B—H49D | 0.9900 |
C10—C11 | 1.391 (4) | C50B—C51B | 1.572 (10) |
C10—H10 | 0.9500 | C50B—H50C | 0.9900 |
C11—C12 | 1.387 (4) | C50B—H50D | 0.9900 |
C11—C14 | 1.516 (4) | C51B—C52B | 1.458 (10) |
C12—C13 | 1.380 (4) | C51B—H51C | 0.9900 |
C13—H13 | 0.9500 | C51B—H51D | 0.9900 |
C14—C15 | 1.520 (4) | C52B—C53B | 1.478 (6) |
C14—H14A | 0.9900 | C52B—H52C | 0.9900 |
C14—H14B | 0.9900 | C52B—H52D | 0.9900 |
C15—C20 | 1.384 (4) | C53B—N2B | 1.165 (7) |
C15—C16 | 1.391 (4) | ||
C2—O1A—C36A | 119.1 (3) | O6—C19—C18 | 116.4 (2) |
O1A—C36A—C37A | 108.3 (3) | C20—C19—C18 | 120.0 (3) |
O1A—C36A—H36A | 110.0 | C15—C20—C19 | 121.7 (3) |
C37A—C36A—H36A | 110.0 | C15—C20—H20 | 119.1 |
O1A—C36A—H36B | 110.0 | C19—C20—H20 | 119.1 |
C37A—C36A—H36B | 110.0 | C22—C21—C18 | 110.6 (2) |
H36A—C36A—H36B | 108.4 | C22—C21—H21A | 109.5 |
C38A—C37A—C36A | 113.5 (4) | C18—C21—H21A | 109.5 |
C38A—C37A—H37A | 108.9 | C22—C21—H21B | 109.5 |
C36A—C37A—H37A | 108.9 | C18—C21—H21B | 109.5 |
C38A—C37A—H37B | 108.9 | H21A—C21—H21B | 108.1 |
C36A—C37A—H37B | 108.9 | C27—C22—C23 | 118.6 (3) |
H37A—C37A—H37B | 107.7 | C27—C22—C21 | 121.0 (3) |
C37A—C38A—C39A | 112.7 (4) | C23—C22—C21 | 120.4 (3) |
C37A—C38A—H38A | 109.1 | O7—C23—C24 | 123.8 (3) |
C39A—C38A—H38A | 109.1 | O7—C23—C22 | 116.0 (3) |
C37A—C38A—H38B | 109.1 | C24—C23—C22 | 120.2 (3) |
C39A—C38A—H38B | 109.1 | C25—C24—C23 | 121.2 (3) |
H38A—C38A—H38B | 107.8 | C25—C24—H24 | 119.4 |
C38A—C39A—Br1A | 110.0 (3) | C23—C24—H24 | 119.4 |
C38A—C39A—H39C | 109.5 | C24—C25—C26 | 119.0 (2) |
Br1A—C39A—H39C | 0.9 | C24—C25—C28 | 120.2 (2) |
C38A—C39A—H39D | 109.5 | C26—C25—C28 | 120.8 (2) |
Br1A—C39A—H39D | 108.6 | O8—C26—C25 | 116.9 (2) |
H39C—C39A—H39D | 109.5 | O8—C26—C27 | 123.6 (3) |
C38A—C39A—H39E | 109.5 | C25—C26—C27 | 119.5 (3) |
Br1A—C39A—H39E | 109.8 | C22—C27—C26 | 121.5 (3) |
H39C—C39A—H39E | 109.5 | C22—C27—H27 | 119.3 |
H39D—C39A—H39E | 109.5 | C26—C27—H27 | 119.3 |
C38A—C39A—H39A | 109.7 | C25—C28—C29 | 112.13 (19) |
Br1A—C39A—H39A | 109.7 | C25—C28—H28A | 109.2 |
H39C—C39A—H39A | 109.3 | C29—C28—H28A | 109.2 |
H39D—C39A—H39A | 109.4 | C25—C28—H28B | 109.2 |
H39E—C39A—H39A | 0.2 | C29—C28—H28B | 109.2 |
C38A—C39A—H39B | 109.7 | H28A—C28—H28B | 107.9 |
Br1A—C39A—H39B | 109.7 | C34—C29—C30 | 118.0 (2) |
H39C—C39A—H39B | 110.6 | C34—C29—C28 | 120.2 (2) |
H39D—C39A—H39B | 1.4 | C30—C29—C28 | 121.8 (2) |
H39E—C39A—H39B | 108.2 | O9—C30—C29 | 116.1 (2) |
H39A—C39A—H39B | 108.2 | O9—C30—C31 | 123.2 (2) |
O1B—C2—C1 | 119.4 (5) | C29—C30—C31 | 120.7 (2) |
O1A—C2—C1 | 116.4 (2) | C30—C31—C32 | 121.0 (2) |
O1C—C2—C1 | 118.5 (5) | C30—C31—H31 | 119.5 |
O1B—C2—C3 | 119.9 (5) | C32—C31—H31 | 119.5 |
O1A—C2—C3 | 122.8 (3) | C33—C32—C31 | 118.4 (2) |
O1C—C2—C3 | 119.2 (5) | C33—C32—C35 | 122.2 (2) |
C1—C2—C3 | 120.8 (2) | C31—C32—C35 | 119.4 (2) |
C2—O1B—C36B | 116 (3) | O10—C33—C32 | 116.5 (2) |
O1B—C36B—C37B | 108.6 (17) | O10—C33—C34 | 123.2 (2) |
O1B—C36B—H36C | 110.0 | C32—C33—C34 | 120.4 (2) |
C37B—C36B—H36C | 110.0 | C33—C34—C29 | 121.6 (2) |
O1B—C36B—H36D | 110.0 | C33—C34—H34 | 119.2 |
C37B—C36B—H36D | 110.0 | C29—C34—H34 | 119.2 |
H36C—C36B—H36D | 108.3 | C1—C35—C32 | 111.1 (2) |
C38B—C37B—C36B | 111.8 (8) | C1—C35—H35A | 109.4 |
C38B—C37B—H37C | 109.3 | C32—C35—H35A | 109.4 |
C36B—C37B—H37C | 109.3 | C1—C35—H35B | 109.4 |
C38B—C37B—H37D | 109.3 | C32—C35—H35B | 109.4 |
C36B—C37B—H37D | 109.3 | H35A—C35—H35B | 108.0 |
H37C—C37B—H37D | 107.9 | O3—C40—H40A | 109.5 |
C37B—C38B—C39B | 111.9 (8) | O3—C40—H40B | 109.5 |
C37B—C38B—H38C | 109.2 | H40A—C40—H40B | 109.5 |
C39B—C38B—H38C | 109.2 | O3—C40—H40C | 109.5 |
C37B—C38B—H38D | 109.2 | H40A—C40—H40C | 109.5 |
C39B—C38B—H38D | 109.2 | H40B—C40—H40C | 109.5 |
H38C—C38B—H38D | 107.9 | O4—C41—H41A | 109.5 |
C38B—C39B—Br1B | 124.6 (15) | O4—C41—H41B | 109.5 |
C38B—C39B—H39F | 106.2 | H41A—C41—H41B | 109.5 |
Br1B—C39B—H39F | 106.2 | O4—C41—H41C | 109.5 |
C38B—C39B—H39G | 106.2 | H41A—C41—H41C | 109.5 |
Br1B—C39B—H39G | 106.2 | H41B—C41—H41C | 109.5 |
H39F—C39B—H39G | 106.4 | O4—C41A—H41D | 109.5 |
C2—O1C—C36C | 119.6 (10) | O4—C41A—H41E | 109.5 |
O1C—C36C—C37C | 107.4 (13) | H41D—C41A—H41E | 109.5 |
O1C—C36C—H36G | 110.2 | O4—C41A—H41F | 109.5 |
C37C—C36C—H36G | 110.2 | H41D—C41A—H41F | 109.5 |
O1C—C36C—H36H | 110.2 | H41E—C41A—H41F | 109.5 |
C37C—C36C—H36H | 110.2 | O5—C42—H42A | 109.5 |
H36G—C36C—H36H | 108.5 | O5—C42—H42B | 109.5 |
C38C—C37C—C36C | 119.3 (15) | H42A—C42—H42B | 109.5 |
C38C—C37C—H37E | 107.5 | O5—C42—H42C | 109.5 |
C36C—C37C—H37E | 107.5 | H42A—C42—H42C | 109.5 |
C38C—C37C—H37F | 107.5 | H42B—C42—H42C | 109.5 |
C36C—C37C—H37F | 107.5 | O6—C43—H43A | 109.5 |
H37E—C37C—H37F | 107.0 | O6—C43—H43B | 109.5 |
C37C—C38C—C39C | 121.1 (15) | H43A—C43—H43B | 109.5 |
C37C—C38C—H38E | 107.1 | O6—C43—H43C | 109.5 |
C39C—C38C—H38E | 107.1 | H43A—C43—H43C | 109.5 |
C37C—C38C—H38F | 107.1 | H43B—C43—H43C | 109.5 |
C39C—C38C—H38F | 107.1 | O7—C44—H44A | 109.5 |
H38E—C38C—H38F | 106.8 | O7—C44—H44B | 109.5 |
C38C—C39C—Br1C | 118.4 (14) | H44A—C44—H44B | 109.5 |
C38C—C39C—H39H | 107.7 | O7—C44—H44C | 109.5 |
Br1C—C39C—H39H | 107.7 | H44A—C44—H44C | 109.5 |
C38C—C39C—H39I | 107.7 | H44B—C44—H44C | 109.5 |
Br1C—C39C—H39I | 107.7 | O8—C45—H45A | 109.5 |
H39H—C39C—H39I | 107.1 | O8—C45—H45B | 109.5 |
C5—O2—H2 | 110 (3) | H45A—C45—H45B | 109.5 |
C9—O3—C40 | 117.9 (3) | O8—C45—H45C | 109.5 |
C41A—O4—C12 | 118.7 (13) | H45A—C45—H45C | 109.5 |
C12—O4—C41 | 116.1 (2) | H45B—C45—H45C | 109.5 |
C16—O5—C42 | 118.4 (3) | O9—C46—H46A | 109.5 |
C19—O6—C43 | 118.5 (2) | O9—C46—H46B | 109.5 |
C23—O7—C44 | 117.8 (3) | H46A—C46—H46B | 109.5 |
C26—O8—C45 | 118.5 (2) | O9—C46—H46C | 109.5 |
C30—O9—C46 | 118.4 (2) | H46A—C46—H46C | 109.5 |
C33—O10—C47 | 118.4 (2) | H46B—C46—H46C | 109.5 |
C6—C1—C2 | 117.8 (2) | O10—C47—H47A | 109.5 |
C6—C1—C35 | 120.7 (2) | O10—C47—H47B | 109.5 |
C2—C1—C35 | 121.4 (2) | H47A—C47—H47B | 109.5 |
C2—C3—C4 | 121.2 (2) | O10—C47—H47C | 109.5 |
C2—C3—H3 | 119.4 | H47A—C47—H47C | 109.5 |
C4—C3—H3 | 119.4 | H47B—C47—H47C | 109.5 |
C5—C4—C3 | 117.7 (2) | N1—C48—C49 | 174.1 (15) |
C5—C4—C7 | 121.5 (2) | C48—C49—C50 | 112.6 (7) |
C3—C4—C7 | 120.8 (2) | C48—C49—H49A | 109.1 |
O2—C5—C4 | 118.1 (2) | C50—C49—H49A | 109.1 |
O2—C5—C6 | 121.2 (2) | C48—C49—H49B | 109.1 |
C4—C5—C6 | 120.7 (2) | C50—C49—H49B | 109.1 |
C1—C6—C5 | 121.8 (2) | H49A—C49—H49B | 107.8 |
C1—C6—H6 | 119.1 | C49—C50—C51 | 106.9 (6) |
C5—C6—H6 | 119.1 | C49—C50—H50A | 110.3 |
C4—C7—C8 | 112.4 (2) | C51—C50—H50A | 110.3 |
C4—C7—H7A | 109.1 | C49—C50—H50B | 110.3 |
C8—C7—H7A | 109.1 | C51—C50—H50B | 110.3 |
C4—C7—H7B | 109.1 | H50A—C50—H50B | 108.6 |
C8—C7—H7B | 109.1 | C52—C51—C50 | 108.3 (6) |
H7A—C7—H7B | 107.8 | C52—C51—H51A | 110.0 |
C13—C8—C9 | 117.4 (2) | C50—C51—H51A | 110.0 |
C13—C8—C7 | 121.0 (2) | C52—C51—H51B | 110.0 |
C9—C8—C7 | 121.6 (2) | C50—C51—H51B | 110.0 |
O3—C9—C10 | 123.8 (2) | H51A—C51—H51B | 108.4 |
O3—C9—C8 | 115.4 (2) | C53—C52—C51 | 111.5 (7) |
C10—C9—C8 | 120.8 (2) | C53—C52—H52A | 109.3 |
C9—C10—C11 | 121.0 (3) | C51—C52—H52A | 109.3 |
C9—C10—H10 | 119.5 | C53—C52—H52B | 109.3 |
C11—C10—H10 | 119.5 | C51—C52—H52B | 109.3 |
C12—C11—C10 | 118.0 (2) | H52A—C52—H52B | 108.0 |
C12—C11—C14 | 121.4 (2) | N2—C53—C52 | 174.5 (14) |
C10—C11—C14 | 120.5 (3) | N1B—C48B—C49B | 168 (3) |
C13—C12—C11 | 120.6 (2) | C50B—C49B—C48B | 112.7 (12) |
C13—C12—O4 | 120.2 (3) | C50B—C49B—H49C | 109.0 |
C11—C12—O4 | 119.1 (2) | C48B—C49B—H49C | 109.0 |
C12—C13—C8 | 122.0 (3) | C50B—C49B—H49D | 109.0 |
C12—C13—H13 | 119.0 | C48B—C49B—H49D | 109.0 |
C8—C13—H13 | 119.0 | H49C—C49B—H49D | 107.8 |
C11—C14—C15 | 113.0 (2) | C49B—C50B—C51B | 107.2 (9) |
C11—C14—H14A | 109.0 | C49B—C50B—H50C | 110.3 |
C15—C14—H14A | 109.0 | C51B—C50B—H50C | 110.3 |
C11—C14—H14B | 109.0 | C49B—C50B—H50D | 110.3 |
C15—C14—H14B | 109.0 | C51B—C50B—H50D | 110.3 |
H14A—C14—H14B | 107.8 | H50C—C50B—H50D | 108.5 |
C20—C15—C16 | 118.5 (2) | C52B—C51B—C50B | 108.5 (10) |
C20—C15—C14 | 120.2 (3) | C52B—C51B—H51C | 110.0 |
C16—C15—C14 | 121.2 (3) | C50B—C51B—H51C | 110.0 |
O5—C16—C15 | 116.2 (2) | C52B—C51B—H51D | 110.0 |
O5—C16—C17 | 124.1 (3) | C50B—C51B—H51D | 110.0 |
C15—C16—C17 | 119.6 (3) | H51C—C51B—H51D | 108.4 |
C18—C17—C16 | 121.5 (3) | C51B—C52B—C53B | 111.0 (10) |
C18—C17—H17 | 119.3 | C51B—C52B—H52C | 109.4 |
C16—C17—H17 | 119.3 | C53B—C52B—H52C | 109.4 |
C17—C18—C19 | 118.6 (3) | C51B—C52B—H52D | 109.4 |
C17—C18—C21 | 120.2 (3) | C53B—C52B—H52D | 109.4 |
C19—C18—C21 | 121.1 (3) | H52C—C52B—H52D | 108.0 |
O6—C19—C20 | 123.6 (3) | N2B—C53B—C52B | 171 (2) |
C2—O1A—C36A—C37A | 173.6 (4) | C14—C15—C16—C17 | −177.5 (2) |
O1A—C36A—C37A—C38A | 77.7 (5) | O5—C16—C17—C18 | −178.4 (3) |
C36A—C37A—C38A—C39A | 178.6 (3) | C15—C16—C17—C18 | 1.6 (4) |
C37A—C38A—C39A—Br1A | −179.2 (3) | C16—C17—C18—C19 | −2.0 (4) |
C36A—O1A—C2—C1 | −156.6 (4) | C16—C17—C18—C21 | 176.4 (3) |
C36A—O1A—C2—C3 | 21.6 (7) | C43—O6—C19—C20 | −0.5 (4) |
C1—C2—O1B—C36B | 118 (3) | C43—O6—C19—C18 | 179.7 (3) |
C3—C2—O1B—C36B | −62 (4) | C17—C18—C19—O6 | −179.3 (2) |
C2—O1B—C36B—C37B | −172 (3) | C21—C18—C19—O6 | 2.3 (4) |
O1B—C36B—C37B—C38B | 157 (4) | C17—C18—C19—C20 | 0.9 (4) |
C36B—C37B—C38B—C39B | 170 (4) | C21—C18—C19—C20 | −177.5 (2) |
C37B—C38B—C39B—Br1B | 18 (7) | C16—C15—C20—C19 | −1.2 (4) |
C1—C2—O1C—C36C | 159 (2) | C14—C15—C20—C19 | 176.4 (2) |
C3—C2—O1C—C36C | −7 (4) | O6—C19—C20—C15 | −179.1 (2) |
C2—O1C—C36C—C37C | 177 (3) | C18—C19—C20—C15 | 0.7 (4) |
O1C—C36C—C37C—C38C | 144 (3) | C17—C18—C21—C22 | −95.5 (3) |
C36C—C37C—C38C—C39C | 169 (2) | C19—C18—C21—C22 | 82.9 (4) |
C37C—C38C—C39C—Br1C | 48 (3) | C18—C21—C22—C27 | −92.7 (3) |
O1B—C2—C1—C6 | −178 (2) | C18—C21—C22—C23 | 85.5 (3) |
O1A—C2—C1—C6 | 179.6 (4) | C44—O7—C23—C24 | 2.5 (4) |
O1C—C2—C1—C6 | −164.5 (19) | C44—O7—C23—C22 | −178.1 (3) |
C3—C2—C1—C6 | 1.4 (4) | C27—C22—C23—O7 | 179.7 (2) |
O1B—C2—C1—C35 | 5 (2) | C21—C22—C23—O7 | 1.4 (4) |
O1A—C2—C1—C35 | 2.4 (5) | C27—C22—C23—C24 | −1.0 (4) |
O1C—C2—C1—C35 | 18.3 (19) | C21—C22—C23—C24 | −179.2 (2) |
C3—C2—C1—C35 | −175.8 (2) | O7—C23—C24—C25 | −178.1 (2) |
O1B—C2—C3—C4 | 180 (2) | C22—C23—C24—C25 | 2.6 (4) |
O1A—C2—C3—C4 | −178.0 (4) | C23—C24—C25—C26 | −1.6 (4) |
O1C—C2—C3—C4 | 165.9 (19) | C23—C24—C25—C28 | 177.4 (2) |
C1—C2—C3—C4 | 0.1 (4) | C45—O8—C26—C25 | −179.1 (2) |
C2—C3—C4—C5 | −1.0 (4) | C45—O8—C26—C27 | 0.1 (4) |
C2—C3—C4—C7 | 177.9 (2) | C24—C25—C26—O8 | 178.4 (2) |
C3—C4—C5—O2 | −179.6 (2) | C28—C25—C26—O8 | −0.7 (3) |
C7—C4—C5—O2 | 1.6 (4) | C24—C25—C26—C27 | −0.9 (4) |
C3—C4—C5—C6 | 0.4 (4) | C28—C25—C26—C27 | −179.9 (2) |
C7—C4—C5—C6 | −178.5 (2) | C23—C22—C27—C26 | −1.6 (4) |
C2—C1—C6—C5 | −2.0 (4) | C21—C22—C27—C26 | 176.6 (2) |
C35—C1—C6—C5 | 175.2 (2) | O8—C26—C27—C22 | −176.7 (2) |
O2—C5—C6—C1 | −178.9 (2) | C25—C26—C27—C22 | 2.5 (4) |
C4—C5—C6—C1 | 1.1 (4) | C24—C25—C28—C29 | −86.0 (3) |
C5—C4—C7—C8 | 90.5 (3) | C26—C25—C28—C29 | 93.1 (3) |
C3—C4—C7—C8 | −88.3 (3) | C25—C28—C29—C34 | −96.5 (3) |
C4—C7—C8—C13 | −88.3 (3) | C25—C28—C29—C30 | 83.0 (3) |
C4—C7—C8—C9 | 89.8 (3) | C46—O9—C30—C29 | 179.1 (3) |
C40—O3—C9—C10 | −1.1 (4) | C46—O9—C30—C31 | −0.8 (4) |
C40—O3—C9—C8 | 178.9 (3) | C34—C29—C30—O9 | −179.4 (2) |
C13—C8—C9—O3 | −179.4 (2) | C28—C29—C30—O9 | 1.1 (3) |
C7—C8—C9—O3 | 2.4 (3) | C34—C29—C30—C31 | 0.6 (3) |
C13—C8—C9—C10 | 0.6 (3) | C28—C29—C30—C31 | −178.9 (2) |
C7—C8—C9—C10 | −177.6 (2) | O9—C30—C31—C32 | 179.5 (2) |
O3—C9—C10—C11 | 179.9 (2) | C29—C30—C31—C32 | −0.5 (4) |
C8—C9—C10—C11 | −0.2 (4) | C30—C31—C32—C33 | −0.3 (3) |
C9—C10—C11—C12 | −0.3 (4) | C30—C31—C32—C35 | 178.4 (2) |
C9—C10—C11—C14 | 178.4 (2) | C47—O10—C33—C32 | 176.2 (3) |
C10—C11—C12—C13 | 0.3 (3) | C47—O10—C33—C34 | −4.6 (4) |
C14—C11—C12—C13 | −178.4 (2) | C31—C32—C33—O10 | −179.8 (2) |
C10—C11—C12—O4 | 177.9 (2) | C35—C32—C33—O10 | 1.5 (3) |
C14—C11—C12—O4 | −0.8 (3) | C31—C32—C33—C34 | 1.0 (4) |
C41A—O4—C12—C13 | −2 (2) | C35—C32—C33—C34 | −177.7 (2) |
C41—O4—C12—C13 | −72.5 (4) | O10—C33—C34—C29 | 180.0 (2) |
C41A—O4—C12—C11 | −180 (2) | C32—C33—C34—C29 | −0.9 (4) |
C41—O4—C12—C11 | 109.8 (3) | C30—C29—C34—C33 | 0.1 (4) |
C11—C12—C13—C8 | 0.2 (4) | C28—C29—C34—C33 | 179.6 (2) |
O4—C12—C13—C8 | −177.4 (2) | C6—C1—C35—C32 | −85.2 (3) |
C9—C8—C13—C12 | −0.7 (3) | C2—C1—C35—C32 | 91.9 (3) |
C7—C8—C13—C12 | 177.6 (2) | C33—C32—C35—C1 | 94.0 (3) |
C12—C11—C14—C15 | 84.9 (3) | C31—C32—C35—C1 | −84.6 (3) |
C10—C11—C14—C15 | −93.7 (3) | C48—C49—C50—C51 | −178.9 (10) |
C11—C14—C15—C20 | −81.1 (3) | C49—C50—C51—C52 | 179.2 (8) |
C11—C14—C15—C16 | 96.4 (3) | C50—C51—C52—C53 | 173.2 (9) |
C42—O5—C16—C15 | 177.3 (3) | N1B—C48B—C49B—C50B | 88 (16) |
C42—O5—C16—C17 | −2.6 (4) | C48B—C49B—C50B—C51B | 177.6 (17) |
C20—C15—C16—O5 | −179.9 (2) | C49B—C50B—C51B—C52B | −173.5 (14) |
C14—C15—C16—O5 | 2.6 (4) | C50B—C51B—C52B—C53B | −170.6 (16) |
C20—C15—C16—C17 | 0.0 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C37A—H37A···O6i | 0.99 | 2.60 | 3.587 (5) | 172 |
O2—H2···N2ii | 0.89 (4) | 1.98 (4) | 2.866 (10) | 178 (4) |
O2—H2···N2Bii | 0.89 (4) | 2.11 (4) | 2.980 (14) | 168 (4) |
C20—H20···O4 | 0.95 | 2.51 | 3.171 (3) | 127 |
C27—H27···O6 | 0.95 | 2.66 | 3.186 (3) | 116 |
C40—H40B···N1 | 0.98 | 2.67 | 3.535 (16) | 148 |
Symmetry codes: (i) −x+3/2, y−1/2, −z+3/2; (ii) −x+1, −y+1, −z+2. |
π1–π4 are the centroids of the phenyl rings C1–C6, C8–C13, C15–C20 and C22–C27 respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C49—H49A···π3 | 0.99 | 2.883 | 3.840 | 162.87 |
C49—H49B···O9 | 0.99 | 3.288 | 4.190 (8) | 152.4 |
C50—H50A···π1 | 0.99 | 3.025 | 3.812 | 137.28 |
C50—H50B···π2 | 0.99 | 2.738 | 3.726 | 176.55 |
C51—H51A···π4 | 0.99 | 3.176 | 3.822 | 124.29 |
C51—H51B···O6 | 0.99 | 3.247 | 4.207 (9) | 163.9 |
C52—H52A···O2 | 0.99 | 3.215 | 3.593 (9) | 104.5 |
C52—H52B···π1 | 0.99 | 3.108 | 3.957 | 144.64 |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···N2i | 0.89 (4) | 1.98 (4) | 2.866 (10) | 178 (4) |
C6—H6···N2i | 0.95 | 2.73 | 3.46 (1) | 134 |
C7—H7B···Br1Aii | 0.99 | 2.950 | 3.906 (3) | 162 |
C37A—H37A···O6iii | 0.99 | 2.60 | 3.587 (5) | 172 |
C43—H43A···N1iv | 0.98 | 2.77 | 3.59 (1) | 141 |
Symmetry codes: (i) 1 - x, 1 - y, 2 - z; (ii) 1 - x, -y, 2 - z ; (iii) 3/2 - x, -1/2 + y, 3/2 - z ; (iv) 3/2 - x, 1/2 + y, 3/2 - z. |
Funding information
The support received from Kuwait University Research Administration, made available through Research Grant No. SC08/19 and the Facilities of the RSPU (grant Nos. GS03/08 and GS01/03) are gratefully acknowledged.
References
Al-Azemi, T. F. & Vinodh, M. (2020). Polym. Chem. 11, 3305–3312. CAS Google Scholar
Al-Azemi, T. F. & Vinodh, M. (2021). RSC Adv. 11, 2995–3002. CAS PubMed Google Scholar
Al-Azemi, T. F. & Vinodh, M. (2022). RSC Adv. 12, 1797–1806. Web of Science CAS PubMed Google Scholar
Bojtár, M., Simon, A., Bombicz, P. & Bitter, I. (2017). Org. Lett. 19, 4528–4531. PubMed Google Scholar
Ding, J., Chen, J., Mao, W., Huang, J. & Ma, D. (2017). Org. Biomol. Chem. 15, 7894–7897. CSD CrossRef CAS PubMed Google Scholar
Fang, Y., Deng, Y. & Dehaen, W. (2020). Coord. Chem. Rev. 415, 213313. Web of Science CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Guo, F., Sun, Y., Xi, B. & Diao, G. (2018). Supramol. Chem. 30, 81–92. CrossRef CAS Google Scholar
Guo, L., Du, J., Wang, Y., Shi, K. & Ma, E. (2020). J. Incl Phenom. Macrocycl. Chem. 97, 1–17. CrossRef CAS Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Huo, G.-F., Han, Y., Sun, J. & Yan, C.-G. (2016). J. Incl. Phenom. Macrocycl. Chem. 86, 231–240. Google Scholar
Hu, W.-B., Xie, C.-D., Hu, W.-J., Zhao, X.-L., Liu, Y. A., Huo, J.-C., Li, J. S., Jiang, B. & Wen, K. (2015). J. Org. Chem. 80, 7994–8000. CSD CrossRef CAS PubMed Google Scholar
Ji, J., Li, Y., Xiao, C., Cheng, G., Luo, K., Gong, Q., Zhou, D., Chruma, J. J., Wu, W. & Yang, C. (2020). Chem. Commun. 56, 161–164. CSD CrossRef CAS Google Scholar
Kim, S., Park, I.-H., Lee, E., Jung, J. H. & Lee, S. S. (2022). Inorg. Chem. 61, 7069–7074. CSD CrossRef CAS PubMed Google Scholar
Lee, E., Park, I.-H., Ju, H., Kim, S., Jung, J. H., Habata, Y. & Lee, S. S. (2019a). Angew. Chem. Int. Ed. 58, 11296–11300. CSD CrossRef CAS Google Scholar
Lee, E., Ryu, H., Ju, H., Kim, S., Lee, J.-E., Jung, J. H., Kuwahara, S., Ikeda, M., Habata, Y. & Lee, S. S. (2019b). Chem. Eur. J. 25, 949–953. CSD CrossRef CAS PubMed Google Scholar
Li, Q., Zhu, H. & Huang, F. (2020). Trends Chem. 2, 850–864. CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Ogoshi, T., Yamagishi, T. & Nakamoto, Y. (2016). Chem. Rev. 116, 7937–8002. Web of Science CrossRef CAS PubMed Google Scholar
Rigaku (2016). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2017). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Strutt, N. L., Schneebeli, S. T. & Stoddart, J. F. (2013). Supramol. Chem. 25, 596–608. CSD CrossRef CAS Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer 17. University of Western Australia. Google Scholar
Vinodh, M., Alipour, F. H. & Al-Azemi, T. F. (2023). ACS Omega, 8, 1466–1475. Web of Science CSD CrossRef CAS PubMed Google Scholar
Wang, K., Tian, X., Jordan, J. H., Velmurugan, K., Wang, L. & Hu, X.-Y. (2022a). Chin. Chem. Lett. 33, 2022, 89–96. Google Scholar
Wang, Z., Liu, Y. A., Yang, H., Hu, W.-B. & Wen, K. (2022b). Org. Lett. 24, 1822–1826. CSD CrossRef CAS PubMed Google Scholar
Yang, W., Zhang, W., Chen, J. & Zhou, J. (2024). Chin. Chem. Lett. 35, 108740. CrossRef Google Scholar
Yang, Y.-F., Hu, W.-B., Shi, L., Li, S.-G., Zhao, X.-L., Liu, Y. A., Li, J.-S., Jiang, B. & Wen, K. (2018). Org. Biomol. Chem. 16, 2028–2032. CSD CrossRef CAS PubMed Google Scholar
Zhang, T., Wang, K., Huang, X., Jiao, J. & Hu, X.-Y. (2023). Chem. Eur. J. 29, e202203738. CSD CrossRef PubMed Google Scholar
Zhu, H., Li, Q., Khalil-Cruz, L. E., Khashab, N. M., Yu, G. & Huang, F. (2021). Sci. China Chem. 64, 688-700. CrossRef CAS Google Scholar
Zyryanov, G. V., Kopchuk, D. S., Kovalev, I. S., Santra, S., Majee, A. & Ranu, B. C. (2023). Int. J. Mol. Sci. 24, 5167. CrossRef PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.