research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and supra­molecular features of a host–guest inclusion complex based on A1/A2-hetero-difunctionalized pillar[5]arene

crossmark logo

aDepartment of Chemistry, Kuwait University, PO Box 5969, Safat 13060, Kuwait
*Correspondence e-mail: t.alazemi@ku.edu.kw

Edited by V. Jancik, Universidad Nacional Autónoma de México, México (Received 27 May 2024; accepted 20 September 2024; online 24 September 2024)

A host–guest supra­molecular inclusion complex was obtained from the co-crystallization of A1/A2-bromo­but­oxy-hy­droxy difunctionalized pillar[5]arene (PilButBrOH) with adipo­nitrile (ADN), C47H53.18Br0.82O10·C6H8N2. The adipo­nitrile guest is stabilized within the electron-rich cavity of the pillar[5]arene host via multiple C—H⋯O and C—H⋯π inter­actions. Both functional groups on the macrocyclic rim are engaged in supra­molecular inter­actions with an adjacent inclusion complex via hydrogen-bonding (O—H⋯N or C—H⋯Br) inter­actions, resulting in the formation of a supra­molecular dimer in the crystal structure.

1. Chemical context

Pillar[n]arenes are highly studied scaffolds among the macrocyclic compounds because of their ease of formation, rigid shape, capacious cavities, and well-defined conformations (Ogoshi et al., 2016[Ogoshi, T., Yamagishi, T. & Nakamoto, Y. (2016). Chem. Rev. 116, 7937-8002.]). The ease of facile functionalization at the macrocyclic rims along with their adaptable capacity to create inclusion complexes with target guests (charged/neutral) via non-bonding inter­actions make pillararene systems inter­esting functional materials in supra­molecular chemistry (Guo et al., 2018[Guo, F., Sun, Y., Xi, B. & Diao, G. (2018). Supramol. Chem. 30, 81-92.]; Al-Azemi & Vinodh, 2020[Al-Azemi, T. F. & Vinodh, M. (2020). Polym. Chem. 11, 3305-3312.]; Vinodh et al., 2023[Vinodh, M., Alipour, F. H. & Al-Azemi, T. F. (2023). ACS Omega, 8, 1466-1475.]; Yang et al., 2024[Yang, W., Zhang, W., Chen, J. & Zhou, J. (2024). Chin. Chem. Lett. 35, 108740.]). Such tunable functionalilization and binding properties enables the pillararene family to find promising applications over multiple fields including drug delivery, nanomaterials, sensors, transmembrance channels, and catal­ysis (Guo et al., 2020[Guo, L., Du, J., Wang, Y., Shi, K. & Ma, E. (2020). J. Incl Phenom. Macrocycl. Chem. 97, 1-17.]; Li et al., 2020[Li, Q., Zhu, H. & Huang, F. (2020). Trends Chem. 2, 850-864.]; Zhu et al., 2021[Zhu, H., Li, Q., Khalil-Cruz, L. E., Khashab, N. M., Yu, G. & Huang, F. (2021). Sci. China Chem. 64, 688-700.]; Wang et al., 2022a[Wang, K., Tian, X., Jordan, J. H., Velmurugan, K., Wang, L. & Hu, X.-Y. (2022a). Chin. Chem. Lett. 33, 2022, 89-96.]; Zyryanov et al., 2023[Zyryanov, G. V., Kopchuk, D. S., Kovalev, I. S., Santra, S., Majee, A. & Ranu, B. C. (2023). Int. J. Mol. Sci. 24, 5167.]). Selective manipulation of supra­molecular materials based on the pillararene framework could be achieved by carefully tuning these macrocycles with suitable functional groups. The design and synthesis of a numerous variety of mono-/di-/per-functionalized pillararenes and their supra­molecular inter­actions have been reported (Ogoshi et al., 2016[Ogoshi, T., Yamagishi, T. & Nakamoto, Y. (2016). Chem. Rev. 116, 7937-8002.]; Fang et al., 2020[Fang, Y., Deng, Y. & Dehaen, W. (2020). Coord. Chem. Rev. 415, 213313.]). However, the incorporation of different kinds of functional groups on the same pillararene macrocycle has rarely been encountered even if such heterofunctional macrocycles are expected to be inter­esting supra­molecular systems (Al-Azemi & Vinodh, 2021[Al-Azemi, T. F. & Vinodh, M. (2021). RSC Adv. 11, 2995-3002.], 2022[Al-Azemi, T. F. & Vinodh, M. (2022). RSC Adv. 12, 1797-1806.]). Previously, we reported the synthesis of macrocyclic systems comprising A1/A2 bromo­alk­oxy-hy­droxy pillar[5]arenes accompanied by their supra­molecular self assembly in solution (Al-Azemi & Vinodh, 2021[Al-Azemi, T. F. & Vinodh, M. (2021). RSC Adv. 11, 2995-3002.]). In this communication, we report the X-ray single crystal data of an inclusion complex comprising an A1/A2 bromo­but­oxy-hy­droxy difunctionalized pillar[5]arene host and an adipo­nitrile guest. The structural details of this pillar[5]arene system along with the supra­molecular inter­actions of this inclusion complex in its crystal network are addressed and discussed.

[Scheme 1]

2. Structural commentary

The bromo­but­oxy-hy­droxy difunctionalized pillar[5]arene (PilButBrOH) crystallizes in the monoclinic crystal system, space group P21/n. In the crystal structure, one mol­ecule of adipo­nitrile (ADN) is encapsulated within the cavity of the pillar[5]arene, resulting in the formation of a host–guest supra­molecular inclusion complex (PilButBrOH·ADN). The structure of the pillar[5]arene is a penta­gonal-shaped macrocycle having n-bromo­but­oxy substitution, which is projected outward from the rim as depicted in Fig. 1[link]. The hy­droxy group is oriented opposite to the n-bromo­but­oxy moiety and both these functional groups serve as active sites for supra­molecular inter­actions. The encapsulated guest adipo­nitrile mol­ecule engaged in multiple non-bonding inter­actions with its macrocyclic host via C—H⋯O or C—H⋯π inter­actions as shown in Fig. 2[link] and Table 1[link].

Table 1
Non-bonding inter­actions (Å, °) between the pillar[5]arene host and adipo­nitrile guest

π1–π4 are the centroids of the phenyl rings C1–C6, C8–C13, C15–C20 and C22–C27 respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C49—H49Aπ3 0.99 2.88 3.840 (9) 163
C49—H49B⋯O9 0.99 3.29 4.190 (8) 152
C50—H50Aπ1 0.99 3.02 3.812 (9) 137
C50—H50Bπ2 0.99 2.74 3.726 (9) 177
C51—H51Aπ4 0.99 3.18 3.822 (9) 124
C51—H51B⋯O6 0.99 3.25 4.207 (9) 164
C52—H52A⋯O2 0.99 3.21 3.593 (9) 105
C52—H52Bπ1 0.99 3.11 3.957 (9) 145
[Figure 1]
Figure 1
Crystal structure (displacement ellipsoid representation; 30% probability) of PilButBrOH·ADN. Only the major components of the disordered moieties are shown. Hydrogen atoms except the OH hydrogen are omitted for clarity.
[Figure 2]
Figure 2
Inter­molecular inter­actions between the pillar[5]arene host and adipo­nitrile guest. π1–π4 are the centroids of the C1–C6, C8–C13, C15–C20 and C22–C27 phenyl rings, respectively.

3. Supra­molecular features

Efficient supra­molecular inter­actions are present in the crystal network of PilButBrOH·ADN. Both the hy­droxy and bromo moieties of this difunctionalized pillar[5]arene are engaged in supra­molecular inter­actions with its neighboring counterparts, as demonstrated in Fig. 3[link]. The OH functional group of PilButBrOH (pillar[5]arene A) is found to be inter­acting with a nitro­gen atom of the entrapped adipo­nitrile mol­ecule of the adjacent macrocycle (pillar[5]arene B). The OH functional group of this pillar[5]arene B, in turn, inter­acts with the nitro­gen atom of the adipo­nitrile mol­ecule that is encapsulated within the pillar[5]arene (A). As a result, a 1:1 pillar[5]arene (A)-pillar[5]arene (B) supra­molecular dimer is formed through hydroxyl-mediated inter­action in the crystal structure. The 4-bromo­but­oxy functional group in pillar[5]arene (A), on the other hand, inter­acts with the periphery of another PilButBrOH mol­ecule (pillar[5]arene C) from a different asymmetric unit by a Br⋯H—C inter­action. As in the case of the hy­droxy group inter­actions, the 4-bromo­but­oxy moiety of this pillar[5]arene (C) inter­acts with the periphery of pillar[5]arene (A) through a second Br⋯H—C inter­action. These two complementary Br⋯H—C inter­actions enable the parent pillar[5]arene (A) to behave as a 1:1 pillar[5]arene (A)–pillar[5]arene (C) supra­molecular dimer. Qu­anti­tative details of the hy­droxy- and bromo­but­oxy-based supra­molecular inter­actions observed in the PilButBrOH·ADN systems are given in Table 2[link]. In addition to the hy­droxy-mediated supra­molecular inter­actions, two complementary N⋯H—C inter­actions are also observed between pillar[5]arene A and pillar[5]arene B, involving the same nitro­gen atoms of the adipo­nitrile guests as demonstrated in Fig. 4[link]. On the whole, the terminal nitro­gen atoms of the adipo­nitrile guest are bonded to two neighboring pillar[5]arene mol­ecules from two different asymmetric units through one N⋯O—H and two N⋯H—C inter­actions and thus contribute significantly to the supra­molecular inter­actions of this crystal network. In addition to the N⋯O—H and N⋯H—C mentioned above, a second N⋯H—C inter­action is observed between the adipo­nitrile guest in one pillar[5]arene and a meth­oxy moiety of an adjacent pillar[5]arene mol­ecule from a different asymmetric unit, as illustrated in Fig. 4[link]. Finally, there is an inter­molecular C—H⋯O bond between a methyl moiety of the pillar[5]arene and an oxygen atom of a meth­oxy-oxygen of a neighbouring pillar[5]arene, which is also depicted in Fig. 4[link]. The qu­anti­tative details of all these inter­molecular supra­molecular inter­actions are given in Table 2[link]. As a result of all these supra­molecular inter­actions, each given pillar[5]arene is bonded to four adjacent pillar[5]arene mol­ecules in its crystal network, which are clearly shown in Fig. 4[link].

Table 2
Non-bonding inter­actions(Å, °) among adjacent pillar[5]arenes in PilButBrOH·ADN systems

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N2i 0.89 (4) 1.98 (4) 2.866 (10) 178 (4)
C6—H6⋯N2i 0.95 2.73 3.46 (1) 134
C7—H7B⋯Br1Aii 0.99 2.950 3.906 (3) 162
C37A—H37A⋯O6iii 0.99 2.60 3.587 (5) 172
C43—H43A⋯N1iv 0.98 2.77 3.59 (1) 141
Symmetry codes: (i) 1 − x, 1 − y, 2 − z; (ii) 1 − x, −y, 2 − z; (iii) [{3\over 2}] − x, −[{1\over 2}] + y, [{3\over 2}] − z; (iv) [{3\over 2}] − x, [{1\over 2}] + y, [{3\over 2}] − z.
[Figure 3]
Figure 3
Pillar[5]arene–pillar[5]arene supra­molecular systems resulting from the hy­droxy as well as bromo­but­oxy-mediated dimeric inter­actions in PilButBrOH·ADN; Symmetry codes: (i) 1 − x, 1 − y, 2 − z; (ii) 1 − x, −y, 2 − z.
[Figure 4]
Figure 4
Inter­molecular inter­actions experienced by a given pillar[5]arene mol­ecule involving its neighbouring counterparts; Symmetry code: (i) 1 − x, 1 − y, 2 − z; (ii) 1 − x, −y, 2 − z; (iii) [{3\over 2}] − x, −[{1\over 2}] + y, [{3\over 2}] − z; (iv) [{3\over 2}] − x, [{1\over 2}] + y, [{3\over 2}] − z.

4. Hirshfeld surface analysis

A Hirshfeld surface analysis was performed using CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer 17. University of Western Australia.]). The Hirshfeld surface (HS) mapped with the dnorm function for PilButBrOH·ADN is shown in Fig. 5[link]. The strong N⋯H—O supra­molecular inter­actions between the hy­droxy fraction of a given pillar[5]arene mol­ecule and an adipo­nitrile guest belonging to its adjacent pillar[5]arene counterpart appear as intense red spots in the HS diagram. Inter­molecular C—H⋯Br inter­actions are shown in this figure as white regions. From the 2D fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]), the major inter­molecular inter­actions in the PilButBrOH·ADN system are H⋯H (60.6%), C⋯H/H⋯C (16.1%), Br⋯H/H⋯Br (8.0%), O⋯H/H⋯O (7.0%) and, N⋯H/H⋯N (6.8%).

[Figure 5]
Figure 5
Hirshfeld surfaces (mapped with dnorm) of PilButBrOH·ADN. The adjacent pillar[5]arene counterparts are also shown to illustrate the O—H⋯N, C—H⋯N and C—H⋯Br inter­actions.

5. Database survey

A search in the Cambridge Structural Database (version 5.45, last update June 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed that no A1/A2-difunctionalized pillar[5]arene substituted with a hy­droxy-bromo­but­oxy combination has been reported. The database search showed that the crystal structure of a mono ortho-fluoro­phenyl substituted A1/A2-di­hydroxy­pillar[5]arenes has been reported (CASFEL; Wang et al., 2022b[Wang, Z., Liu, Y. A., Yang, H., Hu, W.-B. & Wen, K. (2022b). Org. Lett. 24, 1822-1826.]). While one of hydroxyl groups of the parent pillar[5]arene in this crystal is found to be inter­acting with fluoro­phenyl moiety of an adjacent pillar[5]arene, the other is bonded to the solvent aceto­nitrile. The fluorine atom in this pillar[5]arene also inter­acts with the aceto­nitrile solvent. Similarly, a di­bromo-substituted A1/A2-dihy­droxy pillar[5]arene has also been reported (LIMHEW; Strutt et al., 2013[Strutt, N. L., Schneebeli, S. T. & Stoddart, J. F. (2013). Supramol. Chem. 25, 596-608.]). As in the case of PilButBrOH·ADN, both the hy­droxy as well as the bromine moieties in this pillar[5]arene are engaged in efficient supra­molecular inter­actions with its neighboring pillar[5]arene counterparts. Furthermore, mono ortho-allyl-substituted mono­hydroxy­pillar[5]arene has been reported in the literature (VECBAJ; Bojtár et al., 2017[Bojtár, M., Simon, A., Bombicz, P. & Bitter, I. (2017). Org. Lett. 19, 4528-4531.]). While the hy­droxy fraction in this pillar[5]arene inter­acts with an adjacent pillar[5]arene via a C—H⋯O hydrogen bond, the allyl fraction inter­acts with another pillar[5]arene through a C—H⋯π bond. A non-symmetric pillar[5]arene bearing bromo­but­oxy and proparg­yloxy substitution has been reported as well (VEFQEF; Ding et al., 2017[Ding, J., Chen, J., Mao, W., Huang, J. & Ma, D. (2017). Org. Biomol. Chem. 15, 7894-7897.]). In this crystal, the bromo­but­oxy group of the parent pillar[5]arene is bonded to another bromo­but­oxy moiety of a second pillar[5]arene by complementary Br⋯Br inter­actions and the proparg­yloxy group inter­acts with the proparg­yloxy group of a third pillar[5]arene by a C—H⋯π bond.

Many reports on pillar[5]arenes encapsulated with adipo­nitrile or other α,ω-di­cyano­alkanes guests were found in the database in which the supra­molecular inter­actions of the guest species are dependent on the structural details of the host pillar[5]arenes as well as the alkyl chain length of the di­cyano­alkanes. A series of pillar[5]arene-adipo­nitrile host–guest inclusion complexes has been reported in which the pillar[5]arenes are n-alk­yloxy (n-but­oxy, n-pent­yloxy, n-hex­yloxy and n-hept­yloxy) derivatives (CUDYUY, CUDZIN, CUDZAF and CUDZEJ; Ji et al., 2020[Ji, J., Li, Y., Xiao, C., Cheng, G., Luo, K., Gong, Q., Zhou, D., Chruma, J. J., Wu, W. & Yang, C. (2020). Chem. Commun. 56, 161-164.]). The adipo­nitrile guest in all these inclusion complexes is located well inside the macrocyclic cavity and does not participate in any supra­molecular inter­actions except for the corresponding host pillar[5]arenes. The crystal structures of host–guest inclusion complexes comprising pillar[5]arene-adipo­nitrile systems in which one of the pillar[5]arene meso-positions is embedded with aggregation-induced emission luminogens have appeared in the literature (IFIQEX and IFIQIB; Zhang et al., 2023[Zhang, T., Wang, K., Huang, X., Jiao, J. & Hu, X.-Y. (2023). Chem. Eur. J. 29, e202203738.]). In the IFIQIB crystal where (4-bromo­phen­yl)methyl­idene is the emission luminogen embedded to the pillar[5]arene, each end of the adipo­nitrile guest is bonded to an eth­oxy fraction of a different pillar[5]arene mol­ecule and thus forms a supra­molecular polymer network in the crystal. At the same time, in the IFIQEX crystal where 2,7-di­bromo-9H-fluoren-9-yl­idene is the embedded luminogen, the adipo­nitrile guest does not participate in any supra­molecular inter­actions, except for the corresponding host pillar[5]arene. Furthermore, the crystal structure of a bis­(pyrazin-2-yl­oxy)hexane functionalized pillar[5]arene host entrapped with adipo­nitrile guest is reported. In this crystal, the adipo­nitrile is also engaged in supra­molecular polymer formation by inter­acting with both ends of its pillar[5]arene neighbors (RESHEF; Yang et al., 2018[Yang, Y.-F., Hu, W.-B., Shi, L., Li, S.-G., Zhao, X.-L., Liu, Y. A., Li, J.-S., Jiang, B. & Wen, K. (2018). Org. Biomol. Chem. 16, 2028-2032.]). Host–guest inclusion complexes of pillar[5]-bis-thia­crown with various α,ω-di­cyano­alkanes guests including adipo­nitrile have also been reported (CILROH, CILRUN, CILSAU, CILSEY and CILSIC; Lee et al., 2019b[Lee, E., Ryu, H., Ju, H., Kim, S., Lee, J.-E., Jung, J. H., Kuwahara, S., Ikeda, M., Habata, Y. & Lee, S. S. (2019b). Chem. Eur. J. 25, 949-953.]). It is observed that when the length of the alkyl chain of the di­cyano­alkane increases, they show a higher tendency to be involved in non-bonding inter­actions with other pillar[5]arenes. The crystal structure of a novel tricylic host mol­ecule consisting of two pillar[5]arene units and a crown ether ring, which selectively binds an adipo­nitrile guest mol­ecule in one pillar[5]arene cavity, has also been reported (SULJIU; Hu et al., 2015[Hu, W.-B., Xie, C.-D., Hu, W.-J., Zhao, X.-L., Liu, Y. A., Huo, J.-C., Li, J. S., Jiang, B. & Wen, K. (2015). J. Org. Chem. 80, 7994-8000.]). This entrapped adipo­nitrile is engaged in supra­molecular inter­actions with an adjacent pillar[5]arene through one of its nitrile ends. The crystal structure of an A1/A2-thio­pyridyl pillar[5]arene with an encapsulated 1,8-di­cyano­octane guest is reported where one end of the guest species is inter­acted with an adjacent pillar[5]arene. Furthermore, the combination of this host–guest system with silver(I) ion afforded a diperiodic poly-pseudo-rotaxane (DOQZAN and DOQZOB; Lee et al., 2019a[Lee, E., Park, I.-H., Ju, H., Kim, S., Jung, J. H., Habata, Y. & Lee, S. S. (2019a). Angew. Chem. Int. Ed. 58, 11296-11300.]). The 1,8-di­cyano­octane guest in this poly-pseudo-rotaxane also participates in supra­molecular inter­actions with the thio­pyridyl moiety of a neighboring pillar[5]arene as well as with the tri­fluoro acetate anion present in the crystal. The asymmetric unit of this crystal contains another 1,8-di­cyano­octane mol­ecule that is not encapsulated by any pillar[5]arene macrocycle. Both terminals of this di­nitrile mol­ecule are involved in CN⋯Ag bonds with the AgI ion of the complex to complete the formation of the crystal network. A novel A1/A2-thio­pyridyl pillar[5]arene host and 1,8-di­cyano­octane guest yielded a monoperiodic poly-pseudo-rotaxane with HgCl2 and its crystal structure has also been published (TECZAG; Kim et al., 2022[Kim, S., Park, I.-H., Lee, E., Jung, J. H. & Lee, S. S. (2022). Inorg. Chem. 61, 7069-7074.]). The 1,8-di­cyano­octane guest does not really contribute to the supra­molecular inter­actions in this crystal network except for a single CN⋯H—C inter­action with an adjacent pillar[5]arene.

6. Synthesis and crystallization

The synthesis and characterization of PilButBrOH has been described earlier (Al-Azemi & Vinodh, 2021[Al-Azemi, T. F. & Vinodh, M. (2021). RSC Adv. 11, 2995-3002.]) and is as follows. The first step is the synthesis of A1/A2-bromo­but­oxy-benz­yloxy difunctionalized pillar[5]arene by the co-condensation method (Al-Azemi & Vinodh, 2021[Al-Azemi, T. F. & Vinodh, M. (2021). RSC Adv. 11, 2995-3002.]). The benz­yloxy functional group was converted to the hy­droxy derivatives by catalytic hydrogenation (PilButBrOH). NMR data of PilButBrOH: 1H NMR (600 MHz, CDCl3) δ: 1.60 (m, 4H), 3.20 (m, 2H), 3.59 (m, 2H), 3.64 (s, 4H), 3.73 (m, 14H), 3.75 (m, 6H), 3.79 (m, 10H) 6.68 (m, 4H), 6.81 (s, 2H), 6.83 (s, 2H), 6.85 ppm (s, 2H). 13C NMR (150 MHz, CDCl3) δ: 28.1, 28.5, 28.8, 29.2, 29.6, 29.6, 29.9, 30.3, 31.1, 33.5, 55.6, 55.9, 56.0, 56.1, 56.2, 56.5, 56.6, 68.0, 113.3, 113.8, 113.9, 114.2, 114.4, 114.5, 114.8, 119.1, 123.6, 125.3, 127.1, 128.0, 128.0, 128.3, 128.4, 128.5, 128.8, 129.5, 129.6, 130.0, 133.6, 146.7, 147.7, 148.8, 150.3, 150.9, 150.9, 151.0, 151.0, 151.1, 151.2, 151.2, 152.0 ppm.

Colorless blocks of PilButBrOH·ADN crystals suitable for single crystal analysis were grown by dissolving PilButBrOH (25 mg) in chloro­form:adipo­nitrile solvent mixture (90:10 v/v, 1 mL) and subjected to slow solvent evaporation. NMR data of PilButBrOH·ADN (1:1 molar equivalent): 1H NMR (600 MHz, CDCl3) δ: 1.67 (m, 4H), 1.90 (m, 4H), 2.16 (m, 4H), 3.40 (m, 2H), 3.59 (s, 2H), 3.66 (m, 2H), 3.70 (s, 4H), 3.81 (m, 28H), 6.71 (s, 2H), 6.75 (s, 2H), 6.89 (s, 2H), 6.93 ppm (s, 4H). 13C NMR (150 MHz, CDCl3) δ: 16.7, 24.4, 27.9, 29.4, 29.4, 29.5, 31.4, 33.8, 55.7, 55.8, 55.8, 56.0, 62.2, 113.4, 113.6, 113.9, 118.9, 123.6, 128.2, 128.7, 129.7, 113.0, 146.9, 150.6, 150.6, 151.1, 188.6 ppm.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. During the refinement, we noticed that the catalytic reductive de­benzyl­ation used to prepare the PilButBrOH caused an undesired side reaction, and in ∼18.5% of the bromo­but­oxy spacers, the bromine was replaced by a hydrogen atom, leading to a simple but­oxy side chain. This required a refining disorder in disorder because the side chain is disordered over three positions (79.74:6.53:13.73%), where the main position further splits between 18.46% of n-BuO and 61.28% of 4-BrBuO fractions. This led to a 2.4% lower R1 value and a significant drop in the residuals. The three parts of the bromo­but­oxy chain were placed into PART 1– PART 3, and each part was assigned a different free variable (FV). Therefore, PART 1 was assigned FV2, PART2 FV3, and PART 3 used FV4. Thereafter, the H2Br substituents of C39A were placed in PART 1 and assigned FV 6, while three hydrogen atoms assigned to the same C39A atom corresponding to the de-brominated n-BuO chain were placed into PART 4 and assigned FV7. SUMP 1 0.00001 1 2 1 3 1 4 was used to constrain the occupancy of the three side chains to 1, while SUMP 0 0.00001 − 1 2 1 6 1 7 was used to ensure that the sum of the FV6 and FV7 was equal to FV2. BIND 1 4 was used to resolve the connectivity around C39A. FV 5 was used to refine the proportion of the two positions (62.5:37.5%) of the disordered enclosed adipo­nitrile mol­ecule and FV8 for a similar refinement of a disordered O–CH3 methyl group (92.36:7.64% proportion). Additionally, SIMU, RIGU and EADP were used to restrain/constrain the thermal displacement parameters of the disordered atoms, and SAME, SADI and DFIX were used to adjust the geometry of the disordered fragments. After this refinement, there was still residual electron density around the 4-BrBuO side chain, but any further refinement was unsuccessful, and as the highest peak is 0.4 e Å−3, it was deemed unnecessary. For the sake of clarity, only the positions with the largest occupancy for all three disordered groups were used in the above discussions: 4-BrBuO (O1A, C36A, C37A, C38A, C39A, H39A, H39B, Br1A); adipo­nitrile (N1, C48, C49, C50, C51, C52, C53, N2) and OMe (C41).

Table 3
Experimental details

Crystal data
Chemical formula C47H53.18Br0.82O10·C6H8N2
Mr 951.38
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 11.9686 (12), 21.180 (2), 20.107 (2)
β (°) 92.659 (7)
V3) 5091.5 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.72
Crystal size (mm) 0.20 × 0.20 × 0.18
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Huo, G.-F., Han, Y., Sun, J. & Yan, C.-G. (2016). J. Incl. Phenom. Macrocycl. Chem. 86, 231-240.])
Tmin, Tmax 0.403, 0.853
No. of measured, independent and observed [I > 2σ(I)] reflections 46597, 8895, 5350
Rint 0.053
(sin θ/λ)max−1) 0.594
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.170, 1.02
No. of reflections 8895
No. of parameters 797
No. of restraints 1090
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.39, −0.23
Computer programs: CrystalClear (Rigaku, 2016[Rigaku (2016). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]), CrystalStructure (Rigaku, 2017[Rigaku (2017). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]), SHELXL2019/2 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

All carbon-bound hydrogen atoms were positioned geometrically with C—H distances for methyl, methyl­ene, aromatic H atoms being 0.96, 0.97 and 0.93 Å, respectively, and the thermal factors of hydrogen atoms were refined with Uiso(H) = 1.2Ueq(C), except for hydrogen atoms from methyl groups, where Uiso(H) = 1.5Ueq(C) was used. The acidic proton H2 from the OH group was located from the residual electron-density map and refined with Uiso(H2) = 1.5Ueq(O2). No distance restraints were necessary in this case, as the O—H bond length refined to 0.89 (4) Å.

Supporting information


Computing details top

A1/A2-Bromobutoxy–hydroxy difunctionalized pillar[5]arene– hexanedinitrile (1/1) top
Crystal data top
C47H53.18Br0.82O10·C6H8N2F(000) = 2007
Mr = 951.38Dx = 1.241 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
a = 11.9686 (12) ÅCell parameters from 22410 reflections
b = 21.180 (2) Åθ = 3.0–25.0°
c = 20.107 (2) ŵ = 0.72 mm1
β = 92.659 (7)°T = 150 K
V = 5091.5 (9) Å3Block, colorless
Z = 40.20 × 0.20 × 0.18 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5350 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.053
ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1314
Tmin = 0.403, Tmax = 0.853k = 2525
46597 measured reflectionsl = 2323
8895 independent reflections
Refinement top
Refinement on F21090 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.170 w = 1/[σ2(Fo2) + (0.0926P)2 + 0.6834P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
8895 reflectionsΔρmax = 0.39 e Å3
797 parametersΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The single-crystal data were collected on Rigaku Rapid II diffractometer using MoKα radiation at 150 K. The data were processed by ′CrystalClear′ software package (Rigaku, 2016). The structure was solved by direct methods using the ′CrystalStructure′ crystallographic software package (Rigaku, 2017) and the refinement was performed using SHELXL2019/2 (Sheldrick 2015).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O1A0.6290 (3)0.16658 (14)0.9994 (3)0.0801 (12)0.7974 (18)
C36A0.6399 (4)0.12395 (19)0.9457 (2)0.0924 (11)0.7974 (18)
H36A0.6504990.1476360.9039990.111*0.7974 (18)
H36B0.5713590.0979910.9396110.111*0.7974 (18)
C37A0.7409 (3)0.08159 (17)0.9615 (2)0.0946 (11)0.7974 (18)
H37A0.7649110.0623280.9196510.113*0.7974 (18)
H37B0.8033420.1079340.9798150.113*0.7974 (18)
C38A0.7186 (4)0.03050 (17)1.0098 (2)0.0943 (11)0.7974 (18)
H38A0.6550680.0046020.9920450.113*0.7974 (18)
H38B0.6965360.0496421.0521260.113*0.7974 (18)
C39A0.8194 (4)0.0120 (2)1.0235 (3)0.1039 (12)0.7974 (18)
H39C0.8004160.0448231.0555290.156*0.185 (2)
H39D0.8405850.0318880.9819490.156*0.185 (2)
H39E0.8820600.0131601.0420420.156*0.185 (2)
H39A0.8828160.0132821.0423050.125*0.613 (2)
H39B0.8422150.0312970.9814180.125*0.613 (2)
Br1A0.78238 (16)0.07848 (6)1.08639 (10)0.1313 (6)0.613 (2)
C20.5502 (2)0.21390 (12)0.99377 (14)0.0638 (6)
O1B0.624 (2)0.1640 (10)0.9986 (19)0.088 (2)0.0653 (18)
C36B0.579 (3)0.1058 (15)1.019 (3)0.0906 (19)0.0653 (18)
H36C0.5247730.0893750.9848590.109*0.0653 (18)
H36D0.5387630.1118891.0610260.109*0.0653 (18)
C37B0.674 (3)0.0589 (15)1.031 (2)0.0951 (18)0.0653 (18)
H37C0.6939530.0401680.9882830.114*0.0653 (18)
H37D0.7409980.0814631.0501360.114*0.0653 (18)
C38B0.643 (3)0.0064 (16)1.079 (2)0.101 (2)0.0653 (18)
H38C0.5695030.0110581.0642220.121*0.0653 (18)
H38D0.6372710.0240941.1239310.121*0.0653 (18)
C39B0.730 (3)0.0466 (16)1.081 (3)0.103 (2)0.0653 (18)
H39F0.6950060.0822831.0559120.124*0.0653 (18)
H39G0.7374030.0603071.1280920.124*0.0653 (18)
Br1B0.8751 (12)0.0392 (6)1.0518 (8)0.157 (4)0.0653 (18)
O1C0.610 (2)0.1593 (6)1.0088 (14)0.089 (2)0.137 (2)
C36C0.5682 (19)0.1004 (7)0.9850 (14)0.0909 (18)0.137 (2)
H36G0.5574410.1013030.9359270.109*0.137 (2)
H36H0.4953520.0909961.0042640.109*0.137 (2)
C37C0.6552 (18)0.0497 (8)1.0064 (14)0.0963 (18)0.137 (2)
H37E0.7058320.0441460.9693000.116*0.137 (2)
H37F0.7008550.0668591.0445560.116*0.137 (2)
C38C0.6152 (16)0.0155 (8)1.0262 (14)0.102 (2)0.137 (2)
H38E0.5577490.0287630.9920220.123*0.137 (2)
H38F0.5767590.0106031.0684000.123*0.137 (2)
C39C0.6982 (17)0.0711 (9)1.0359 (14)0.104 (2)0.137 (2)
H39H0.7197060.0849750.9912290.125*0.137 (2)
H39I0.6575680.1065761.0557780.125*0.137 (2)
Br1C0.8224 (7)0.0586 (4)1.0850 (4)0.123 (2)0.137 (2)
O20.32430 (17)0.36174 (11)0.97909 (12)0.0890 (7)
H20.345 (3)0.392 (2)1.007 (2)0.133*
O30.36303 (18)0.18197 (9)0.79308 (11)0.0850 (6)
O40.31980 (16)0.43675 (9)0.73885 (12)0.0880 (6)
O50.58873 (18)0.29024 (11)0.59519 (12)0.0942 (7)
O60.68225 (18)0.52704 (10)0.69892 (12)0.0929 (7)
O70.96315 (19)0.34123 (13)0.70008 (11)0.1027 (7)
O80.92576 (17)0.51595 (9)0.90155 (10)0.0831 (6)
O90.99031 (15)0.27027 (9)0.92914 (10)0.0770 (5)
O100.71311 (16)0.40323 (10)1.09101 (11)0.0843 (6)
C10.5692 (2)0.26687 (12)1.03394 (12)0.0578 (6)
C30.4574 (2)0.21092 (12)0.94922 (13)0.0642 (7)
H30.4460140.1743780.9223570.077*
C40.38090 (19)0.26075 (12)0.94341 (12)0.0581 (6)
C50.3994 (2)0.31285 (13)0.98418 (14)0.0633 (7)
C60.4921 (2)0.31522 (13)1.02912 (13)0.0632 (7)
H60.5021770.3511191.0570850.076*
C70.2827 (2)0.25796 (14)0.89323 (13)0.0657 (7)
H7A0.2198180.2826280.9102940.079*
H7B0.2576970.2135940.8881130.079*
C80.31140 (18)0.28380 (12)0.82541 (13)0.0581 (6)
C90.3536 (2)0.24494 (12)0.77650 (14)0.0623 (7)
C100.3833 (2)0.26966 (13)0.71589 (14)0.0650 (7)
H100.4121210.2423920.6833120.078*
C110.37159 (19)0.33375 (13)0.70209 (13)0.0597 (7)
C120.32887 (19)0.37222 (12)0.75059 (14)0.0620 (7)
C130.29948 (19)0.34732 (12)0.81074 (14)0.0627 (7)
H130.2701590.3746570.8430890.075*
C140.4071 (2)0.36041 (14)0.63637 (13)0.0712 (7)
H14A0.3553210.3948690.6223660.085*
H14B0.4009950.3268890.6020800.085*
C150.5260 (2)0.38577 (13)0.63998 (13)0.0644 (7)
C160.6152 (2)0.34916 (14)0.62035 (13)0.0705 (7)
C170.7242 (2)0.37320 (16)0.62685 (13)0.0755 (8)
H170.7845610.3484270.6123070.091*
C180.7458 (2)0.43200 (15)0.65388 (13)0.0708 (8)
C190.6564 (2)0.46855 (14)0.67296 (14)0.0701 (7)
C200.5483 (2)0.44537 (13)0.66553 (14)0.0679 (7)
H200.4878260.4710590.6783070.082*
C210.8663 (2)0.45534 (18)0.66408 (14)0.0849 (9)
H21A0.9140900.4338020.6322290.102*
H21B0.8691310.5012780.6552200.102*
C220.9104 (2)0.44229 (16)0.73460 (14)0.0718 (8)
C230.9576 (2)0.38387 (16)0.75118 (14)0.0745 (8)
C240.9968 (2)0.37175 (15)0.81623 (14)0.0700 (7)
H241.0316250.3324140.8265180.084*
C250.9860 (2)0.41602 (13)0.86613 (13)0.0615 (7)
C260.9373 (2)0.47422 (13)0.85017 (14)0.0651 (7)
C270.9021 (2)0.48698 (15)0.78402 (14)0.0719 (8)
H270.8717910.5273040.7730170.086*
C281.0249 (2)0.40075 (13)0.93719 (13)0.0616 (7)
H28A1.0455150.4404150.9607410.074*
H28B1.0924610.3738460.9367050.074*
C290.93527 (19)0.36686 (12)0.97484 (12)0.0558 (6)
C300.91911 (19)0.30210 (12)0.96954 (12)0.0573 (6)
C310.8354 (2)0.27243 (12)1.00360 (12)0.0580 (6)
H310.8251880.2281280.9991340.070*
C320.76635 (19)0.30670 (12)1.04419 (12)0.0563 (6)
C330.7833 (2)0.37116 (13)1.05013 (13)0.0610 (6)
C340.8661 (2)0.40060 (13)1.01550 (13)0.0611 (6)
H340.8758200.4449631.0196920.073*
C350.6736 (2)0.27279 (13)1.07921 (13)0.0639 (7)
H35A0.6996910.2301841.0929650.077*
H35B0.6557250.2964971.1197900.077*
C400.4037 (4)0.13995 (15)0.7448 (2)0.1170 (13)
H40A0.4102230.0974240.7638090.175*
H40B0.4773440.1542330.7315870.175*
H40C0.3516940.1391820.7057240.175*
C410.2117 (3)0.46022 (18)0.7290 (2)0.1021 (14)0.924 (6)
H41A0.1709660.4349650.6949510.153*0.924 (6)
H41B0.2149070.5042540.7142000.153*0.924 (6)
H41C0.1729730.4579760.7708060.153*0.924 (6)
C41A0.278 (4)0.4748 (12)0.7877 (15)0.1021 (14)0.076 (6)
H41D0.2204950.4516790.8109340.153*0.076 (6)
H41E0.2447990.5128320.7671470.153*0.076 (6)
H41F0.3386050.4868760.8194960.153*0.076 (6)
C420.6756 (3)0.25247 (19)0.5720 (2)0.1175 (13)
H42A0.7283800.2422430.6091630.176*
H42B0.7146380.2754920.5377820.176*
H42C0.6441140.2133690.5529920.176*
C430.5938 (4)0.56629 (17)0.7188 (3)0.1271 (15)
H43A0.6245960.6060400.7366330.191*
H43B0.5526930.5448180.7533060.191*
H43C0.5429380.5751350.6803660.191*
C441.0073 (3)0.2809 (2)0.7151 (2)0.1240 (15)
H44A0.9998010.2540010.6755110.186*
H44B0.9661730.2619870.7511580.186*
H44C1.0864750.2847860.7291590.186*
C450.8753 (3)0.57512 (15)0.88739 (18)0.0958 (10)
H45A0.8011950.5685780.8657180.144*
H45B0.9220670.5991970.8576990.144*
H45C0.8677600.5985950.9289420.144*
C460.9785 (3)0.20465 (15)0.9228 (2)0.0969 (10)
H46A0.9027340.1946910.9054150.145*
H46B0.9915130.1847810.9665090.145*
H46C1.0330930.1886200.8921130.145*
C470.7317 (3)0.46807 (16)1.1017 (2)0.1099 (12)
H47A0.7209970.4907781.0594220.165*
H47B0.8083000.4746161.1197130.165*
H47C0.6787050.4839981.1334280.165*
N10.6884 (13)0.1826 (4)0.7681 (6)0.153 (4)0.625 (8)
C480.7035 (17)0.2360 (4)0.7776 (7)0.126 (2)0.625 (8)
C490.7166 (6)0.3028 (3)0.7960 (5)0.120 (2)0.625 (8)
H49A0.7133960.3287810.7550320.144*0.625 (8)
H49B0.7910250.3090490.8185790.144*0.625 (8)
C500.6293 (7)0.3247 (3)0.8404 (5)0.105 (2)0.625 (8)
H50A0.6330320.3004130.8825390.127*0.625 (8)
H50B0.5540410.3189570.8186740.127*0.625 (8)
C510.6521 (7)0.3963 (3)0.8546 (5)0.106 (2)0.625 (8)
H51A0.7270900.4017720.8767200.127*0.625 (8)
H51B0.6496740.4202600.8122910.127*0.625 (8)
C520.5652 (7)0.4198 (3)0.8981 (5)0.124 (2)0.625 (8)
H52A0.4915400.4184260.8736610.148*0.625 (8)
H52B0.5616030.3919660.9375020.148*0.625 (8)
C530.5886 (14)0.4848 (4)0.9202 (6)0.120 (2)0.625 (8)
N20.610 (2)0.5372 (5)0.9327 (8)0.135 (4)0.625 (8)
N1B0.710 (2)0.1922 (8)0.7416 (8)0.141 (5)0.375 (8)
C48B0.702 (3)0.2278 (8)0.7850 (11)0.126 (3)0.375 (8)
C49B0.7096 (12)0.2804 (6)0.8328 (8)0.124 (2)0.375 (8)
H49C0.6905370.2646870.8772510.149*0.375 (8)
H49D0.7876090.2960100.8362140.149*0.375 (8)
C50B0.6352 (14)0.3327 (6)0.8139 (7)0.109 (3)0.375 (8)
H50C0.5568330.3178130.8093410.131*0.375 (8)
H50D0.6560740.3508490.7708840.131*0.375 (8)
C51B0.6481 (14)0.3837 (6)0.8706 (8)0.110 (3)0.375 (8)
H51C0.6360130.3640280.9143620.132*0.375 (8)
H51D0.7243700.4018020.8717210.132*0.375 (8)
C52B0.5655 (11)0.4332 (5)0.8572 (8)0.119 (2)0.375 (8)
H52C0.4896170.4161650.8631360.142*0.375 (8)
H52D0.5694230.4474050.8104280.142*0.375 (8)
C53B0.586 (2)0.4876 (7)0.9023 (10)0.122 (3)0.375 (8)
N2B0.595 (4)0.5254 (10)0.9442 (11)0.125 (5)0.375 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0864 (19)0.0704 (15)0.0815 (19)0.0161 (14)0.0167 (17)0.0070 (14)
C36A0.109 (2)0.076 (2)0.091 (2)0.0240 (19)0.014 (2)0.0088 (19)
C37A0.106 (2)0.082 (2)0.095 (2)0.0166 (19)0.008 (2)0.0168 (19)
C38A0.109 (2)0.075 (2)0.096 (2)0.0220 (19)0.026 (2)0.0154 (19)
C39A0.123 (3)0.082 (2)0.104 (3)0.025 (2)0.024 (2)0.011 (2)
Br1A0.1659 (13)0.0687 (6)0.1577 (10)0.0128 (6)0.0089 (9)0.0205 (5)
C20.0599 (14)0.0644 (15)0.0668 (16)0.0060 (12)0.0001 (13)0.0072 (13)
O1B0.097 (4)0.076 (4)0.088 (4)0.018 (4)0.013 (4)0.007 (4)
C36B0.102 (3)0.077 (3)0.091 (3)0.017 (3)0.015 (3)0.009 (3)
C37B0.109 (3)0.079 (3)0.095 (3)0.020 (3)0.019 (3)0.009 (3)
C38B0.116 (4)0.083 (4)0.100 (4)0.019 (4)0.021 (4)0.009 (4)
C39B0.120 (4)0.083 (4)0.104 (4)0.024 (4)0.024 (4)0.008 (4)
Br1B0.170 (7)0.137 (6)0.160 (7)0.052 (5)0.043 (6)0.011 (6)
O1C0.099 (4)0.078 (3)0.089 (4)0.020 (3)0.014 (4)0.004 (3)
C36C0.102 (3)0.079 (3)0.091 (3)0.017 (3)0.014 (3)0.006 (3)
C37C0.110 (3)0.080 (3)0.096 (3)0.020 (3)0.019 (3)0.009 (3)
C38C0.117 (4)0.086 (3)0.101 (4)0.019 (3)0.020 (4)0.011 (3)
C39C0.123 (4)0.085 (4)0.103 (4)0.017 (4)0.023 (4)0.009 (4)
Br1C0.148 (5)0.113 (5)0.102 (3)0.022 (3)0.053 (3)0.013 (3)
O20.0690 (12)0.0927 (15)0.1039 (17)0.0229 (11)0.0103 (11)0.0164 (12)
O30.1092 (15)0.0611 (12)0.0851 (14)0.0004 (10)0.0072 (12)0.0008 (10)
O40.0700 (12)0.0691 (13)0.1262 (19)0.0058 (10)0.0201 (12)0.0198 (12)
O50.0907 (15)0.0946 (15)0.0968 (16)0.0027 (12)0.0002 (12)0.0255 (13)
O60.0884 (14)0.0832 (15)0.1061 (17)0.0238 (12)0.0066 (12)0.0036 (12)
O70.0955 (16)0.141 (2)0.0710 (14)0.0204 (15)0.0009 (12)0.0235 (14)
O80.1018 (15)0.0726 (12)0.0727 (13)0.0003 (11)0.0176 (11)0.0014 (10)
O90.0733 (12)0.0696 (12)0.0897 (14)0.0030 (9)0.0211 (10)0.0075 (10)
O100.0774 (12)0.0824 (14)0.0948 (15)0.0006 (10)0.0237 (11)0.0218 (11)
C10.0551 (14)0.0694 (16)0.0494 (14)0.0076 (12)0.0076 (11)0.0051 (12)
C30.0643 (15)0.0651 (16)0.0629 (16)0.0047 (13)0.0007 (13)0.0001 (13)
C40.0454 (13)0.0715 (16)0.0581 (15)0.0034 (12)0.0077 (11)0.0081 (13)
C50.0508 (14)0.0729 (17)0.0665 (17)0.0039 (13)0.0069 (12)0.0012 (14)
C60.0573 (15)0.0718 (17)0.0610 (16)0.0002 (13)0.0069 (12)0.0058 (13)
C70.0496 (14)0.0774 (17)0.0704 (18)0.0031 (12)0.0053 (12)0.0044 (14)
C80.0400 (12)0.0714 (17)0.0624 (16)0.0043 (11)0.0034 (11)0.0002 (14)
C90.0616 (15)0.0580 (16)0.0663 (17)0.0066 (12)0.0073 (13)0.0001 (13)
C100.0618 (15)0.0700 (17)0.0624 (17)0.0061 (13)0.0054 (13)0.0094 (14)
C110.0485 (13)0.0697 (17)0.0601 (16)0.0111 (12)0.0063 (12)0.0016 (13)
C120.0450 (13)0.0616 (16)0.0791 (19)0.0024 (11)0.0008 (13)0.0053 (14)
C130.0472 (13)0.0686 (17)0.0724 (18)0.0005 (12)0.0038 (12)0.0025 (14)
C140.0646 (16)0.0861 (19)0.0617 (17)0.0132 (14)0.0078 (13)0.0032 (15)
C150.0644 (16)0.0801 (18)0.0483 (15)0.0102 (14)0.0015 (12)0.0078 (13)
C160.0712 (18)0.086 (2)0.0543 (16)0.0078 (15)0.0018 (13)0.0027 (14)
C170.0666 (17)0.110 (2)0.0503 (16)0.0020 (17)0.0033 (13)0.0023 (16)
C180.0655 (17)0.098 (2)0.0485 (15)0.0183 (16)0.0021 (13)0.0108 (15)
C190.0722 (18)0.0805 (19)0.0568 (16)0.0163 (15)0.0040 (14)0.0104 (14)
C200.0636 (16)0.0759 (18)0.0640 (17)0.0056 (14)0.0000 (13)0.0058 (14)
C210.0647 (17)0.130 (3)0.0598 (17)0.0223 (17)0.0010 (13)0.0135 (18)
C220.0491 (14)0.108 (2)0.0584 (17)0.0166 (15)0.0036 (12)0.0102 (17)
C230.0547 (15)0.111 (2)0.0580 (18)0.0107 (16)0.0094 (13)0.0128 (17)
C240.0519 (14)0.095 (2)0.0634 (17)0.0009 (14)0.0040 (13)0.0011 (16)
C250.0464 (13)0.0799 (18)0.0583 (16)0.0140 (13)0.0032 (11)0.0018 (14)
C260.0556 (14)0.0728 (18)0.0663 (18)0.0140 (13)0.0019 (13)0.0073 (15)
C270.0619 (16)0.0845 (19)0.0682 (19)0.0200 (14)0.0092 (14)0.0146 (16)
C280.0508 (13)0.0718 (16)0.0614 (16)0.0066 (12)0.0047 (12)0.0032 (13)
C290.0482 (13)0.0664 (16)0.0521 (14)0.0036 (11)0.0063 (11)0.0032 (12)
C300.0499 (13)0.0699 (16)0.0520 (14)0.0049 (12)0.0030 (11)0.0019 (12)
C310.0593 (14)0.0590 (14)0.0551 (15)0.0004 (12)0.0049 (12)0.0047 (12)
C320.0506 (13)0.0736 (17)0.0443 (13)0.0004 (12)0.0025 (11)0.0030 (12)
C330.0542 (14)0.0698 (17)0.0587 (16)0.0036 (13)0.0011 (12)0.0059 (13)
C340.0557 (14)0.0658 (15)0.0615 (16)0.0020 (13)0.0012 (13)0.0059 (13)
C350.0570 (14)0.0820 (18)0.0525 (15)0.0044 (13)0.0008 (12)0.0070 (13)
C400.166 (4)0.063 (2)0.123 (3)0.001 (2)0.020 (3)0.016 (2)
C410.083 (2)0.091 (3)0.133 (4)0.030 (2)0.026 (2)0.026 (2)
C41A0.083 (2)0.091 (3)0.133 (4)0.030 (2)0.026 (2)0.026 (2)
C420.119 (3)0.110 (3)0.122 (3)0.028 (2)0.009 (2)0.035 (2)
C430.119 (3)0.080 (2)0.181 (4)0.003 (2)0.007 (3)0.018 (3)
C440.112 (3)0.166 (4)0.094 (3)0.038 (3)0.002 (2)0.055 (3)
C450.111 (3)0.079 (2)0.095 (2)0.0090 (18)0.018 (2)0.0075 (18)
C460.087 (2)0.082 (2)0.124 (3)0.0067 (17)0.025 (2)0.022 (2)
C470.114 (3)0.084 (2)0.134 (3)0.005 (2)0.028 (2)0.031 (2)
N10.168 (7)0.123 (5)0.169 (8)0.028 (5)0.016 (7)0.022 (6)
C480.122 (4)0.120 (4)0.134 (5)0.014 (4)0.001 (4)0.015 (4)
C490.121 (4)0.122 (4)0.119 (4)0.009 (3)0.024 (3)0.001 (3)
C500.099 (3)0.106 (3)0.112 (4)0.009 (3)0.013 (3)0.008 (3)
C510.099 (3)0.109 (4)0.111 (4)0.009 (3)0.011 (3)0.012 (3)
C520.126 (4)0.110 (3)0.137 (5)0.015 (3)0.029 (4)0.012 (4)
C530.120 (4)0.107 (4)0.133 (6)0.010 (4)0.011 (5)0.026 (4)
N20.128 (8)0.106 (5)0.171 (7)0.005 (5)0.017 (6)0.030 (6)
N1B0.155 (9)0.135 (8)0.135 (9)0.023 (7)0.017 (8)0.022 (6)
C48B0.126 (5)0.120 (5)0.133 (5)0.008 (5)0.001 (5)0.015 (5)
C49B0.122 (4)0.125 (5)0.126 (5)0.004 (4)0.003 (5)0.006 (4)
C50B0.103 (4)0.108 (4)0.116 (5)0.005 (4)0.008 (5)0.009 (4)
C51B0.102 (4)0.108 (4)0.119 (5)0.009 (4)0.015 (4)0.012 (4)
C52B0.120 (4)0.115 (4)0.121 (5)0.004 (4)0.003 (5)0.015 (4)
C53B0.120 (5)0.109 (5)0.137 (6)0.009 (5)0.008 (6)0.029 (4)
N2B0.128 (10)0.106 (8)0.142 (8)0.011 (8)0.004 (8)0.028 (6)
Geometric parameters (Å, º) top
O1A—C21.377 (3)C16—C171.400 (4)
O1A—C36A1.419 (5)C17—C181.378 (4)
C36A—C37A1.527 (4)C17—H170.9500
C36A—H36A0.9900C18—C191.389 (4)
C36A—H36B0.9900C18—C211.529 (4)
C37A—C38A1.486 (4)C19—C201.386 (4)
C37A—H37A0.9900C20—H200.9500
C37A—H37B0.9900C21—C221.516 (4)
C38A—C39A1.521 (4)C21—H21A0.9900
C38A—H38A0.9900C21—H21B0.9900
C38A—H38B0.9900C22—C271.379 (4)
C39A—Br1A1.956 (5)C22—C231.394 (4)
C39A—H39C0.9800C23—C241.393 (4)
C39A—H39D0.9800C24—C251.384 (4)
C39A—H39E0.9800C24—H240.9500
C39A—H39A0.9900C25—C261.394 (4)
C39A—H39B0.9900C25—C281.517 (4)
C2—O1B1.377 (6)C26—C271.403 (4)
C2—O1C1.383 (7)C27—H270.9500
C2—C11.395 (4)C28—C291.521 (3)
C2—C31.395 (3)C28—H28A0.9900
O1B—C36B1.42 (2)C28—H28B0.9900
C36B—C37B1.526 (6)C29—C341.388 (3)
C36B—H36C0.9900C29—C301.389 (3)
C36B—H36D0.9900C30—C311.390 (3)
C37B—C38B1.520 (6)C31—C321.393 (3)
C37B—H37C0.9900C31—H310.9500
C37B—H37D0.9900C32—C331.384 (4)
C38B—C39B1.524 (6)C32—C351.522 (3)
C38B—H38C0.9900C33—C341.386 (4)
C38B—H38D0.9900C34—H340.9500
C39B—Br1B1.868 (18)C35—H35A0.9900
C39B—H39F0.9900C35—H35B0.9900
C39B—H39G0.9900C40—H40A0.9800
O1C—C36C1.418 (17)C40—H40B0.9800
C36C—C37C1.544 (9)C40—H40C0.9800
C36C—H36G0.9900C41—H41A0.9800
C36C—H36H0.9900C41—H41B0.9800
C37C—C38C1.520 (9)C41—H41C0.9800
C37C—H37E0.9900C41A—H41D0.9800
C37C—H37F0.9900C41A—H41E0.9800
C38C—C39C1.546 (9)C41A—H41F0.9800
C38C—H38E0.9900C42—H42A0.9800
C38C—H38F0.9900C42—H42B0.9800
C39C—Br1C1.766 (16)C42—H42C0.9800
C39C—H39H0.9900C43—H43A0.9800
C39C—H39I0.9900C43—H43B0.9800
O2—C51.372 (3)C43—H43C0.9800
O2—H20.89 (4)C44—H44A0.9800
O3—C91.378 (3)C44—H44B0.9800
O3—C401.419 (4)C44—H44C0.9800
O4—C41A1.382 (10)C45—H45A0.9800
O4—C121.390 (3)C45—H45B0.9800
O4—C411.392 (4)C45—H45C0.9800
O5—C161.378 (3)C46—H46A0.9800
O5—C421.408 (4)C46—H46B0.9800
O6—C191.374 (3)C46—H46C0.9800
O6—C431.419 (4)C47—H47A0.9800
O7—C231.372 (3)C47—H47B0.9800
O7—C441.410 (5)C47—H47C0.9800
O8—C261.372 (3)N1—C481.160 (6)
O8—C451.414 (3)C48—C491.469 (6)
O9—C301.380 (3)C49—C501.481 (6)
O9—C461.402 (3)C49—H49A0.9900
O10—C331.381 (3)C49—H49B0.9900
O10—C471.406 (4)C50—C511.564 (6)
C1—C61.379 (3)C50—H50A0.9900
C1—C351.517 (3)C50—H50B0.9900
C3—C41.399 (3)C51—C521.476 (6)
C3—H30.9500C51—H51A0.9900
C4—C51.386 (4)C51—H51B0.9900
C4—C71.515 (3)C52—C531.469 (5)
C5—C61.399 (4)C52—H52A0.9900
C6—H60.9500C52—H52B0.9900
C7—C81.523 (4)C53—N21.165 (6)
C7—H7A0.9900N1B—C48B1.161 (7)
C7—H7B0.9900C48B—C49B1.472 (6)
C8—C131.383 (3)C49B—C50B1.460 (9)
C8—C91.395 (4)C49B—H49C0.9900
C9—C101.388 (4)C49B—H49D0.9900
C10—C111.391 (4)C50B—C51B1.572 (10)
C10—H100.9500C50B—H50C0.9900
C11—C121.387 (4)C50B—H50D0.9900
C11—C141.516 (4)C51B—C52B1.458 (10)
C12—C131.380 (4)C51B—H51C0.9900
C13—H130.9500C51B—H51D0.9900
C14—C151.520 (4)C52B—C53B1.478 (6)
C14—H14A0.9900C52B—H52C0.9900
C14—H14B0.9900C52B—H52D0.9900
C15—C201.384 (4)C53B—N2B1.165 (7)
C15—C161.391 (4)
C2—O1A—C36A119.1 (3)O6—C19—C18116.4 (2)
O1A—C36A—C37A108.3 (3)C20—C19—C18120.0 (3)
O1A—C36A—H36A110.0C15—C20—C19121.7 (3)
C37A—C36A—H36A110.0C15—C20—H20119.1
O1A—C36A—H36B110.0C19—C20—H20119.1
C37A—C36A—H36B110.0C22—C21—C18110.6 (2)
H36A—C36A—H36B108.4C22—C21—H21A109.5
C38A—C37A—C36A113.5 (4)C18—C21—H21A109.5
C38A—C37A—H37A108.9C22—C21—H21B109.5
C36A—C37A—H37A108.9C18—C21—H21B109.5
C38A—C37A—H37B108.9H21A—C21—H21B108.1
C36A—C37A—H37B108.9C27—C22—C23118.6 (3)
H37A—C37A—H37B107.7C27—C22—C21121.0 (3)
C37A—C38A—C39A112.7 (4)C23—C22—C21120.4 (3)
C37A—C38A—H38A109.1O7—C23—C24123.8 (3)
C39A—C38A—H38A109.1O7—C23—C22116.0 (3)
C37A—C38A—H38B109.1C24—C23—C22120.2 (3)
C39A—C38A—H38B109.1C25—C24—C23121.2 (3)
H38A—C38A—H38B107.8C25—C24—H24119.4
C38A—C39A—Br1A110.0 (3)C23—C24—H24119.4
C38A—C39A—H39C109.5C24—C25—C26119.0 (2)
Br1A—C39A—H39C0.9C24—C25—C28120.2 (2)
C38A—C39A—H39D109.5C26—C25—C28120.8 (2)
Br1A—C39A—H39D108.6O8—C26—C25116.9 (2)
H39C—C39A—H39D109.5O8—C26—C27123.6 (3)
C38A—C39A—H39E109.5C25—C26—C27119.5 (3)
Br1A—C39A—H39E109.8C22—C27—C26121.5 (3)
H39C—C39A—H39E109.5C22—C27—H27119.3
H39D—C39A—H39E109.5C26—C27—H27119.3
C38A—C39A—H39A109.7C25—C28—C29112.13 (19)
Br1A—C39A—H39A109.7C25—C28—H28A109.2
H39C—C39A—H39A109.3C29—C28—H28A109.2
H39D—C39A—H39A109.4C25—C28—H28B109.2
H39E—C39A—H39A0.2C29—C28—H28B109.2
C38A—C39A—H39B109.7H28A—C28—H28B107.9
Br1A—C39A—H39B109.7C34—C29—C30118.0 (2)
H39C—C39A—H39B110.6C34—C29—C28120.2 (2)
H39D—C39A—H39B1.4C30—C29—C28121.8 (2)
H39E—C39A—H39B108.2O9—C30—C29116.1 (2)
H39A—C39A—H39B108.2O9—C30—C31123.2 (2)
O1B—C2—C1119.4 (5)C29—C30—C31120.7 (2)
O1A—C2—C1116.4 (2)C30—C31—C32121.0 (2)
O1C—C2—C1118.5 (5)C30—C31—H31119.5
O1B—C2—C3119.9 (5)C32—C31—H31119.5
O1A—C2—C3122.8 (3)C33—C32—C31118.4 (2)
O1C—C2—C3119.2 (5)C33—C32—C35122.2 (2)
C1—C2—C3120.8 (2)C31—C32—C35119.4 (2)
C2—O1B—C36B116 (3)O10—C33—C32116.5 (2)
O1B—C36B—C37B108.6 (17)O10—C33—C34123.2 (2)
O1B—C36B—H36C110.0C32—C33—C34120.4 (2)
C37B—C36B—H36C110.0C33—C34—C29121.6 (2)
O1B—C36B—H36D110.0C33—C34—H34119.2
C37B—C36B—H36D110.0C29—C34—H34119.2
H36C—C36B—H36D108.3C1—C35—C32111.1 (2)
C38B—C37B—C36B111.8 (8)C1—C35—H35A109.4
C38B—C37B—H37C109.3C32—C35—H35A109.4
C36B—C37B—H37C109.3C1—C35—H35B109.4
C38B—C37B—H37D109.3C32—C35—H35B109.4
C36B—C37B—H37D109.3H35A—C35—H35B108.0
H37C—C37B—H37D107.9O3—C40—H40A109.5
C37B—C38B—C39B111.9 (8)O3—C40—H40B109.5
C37B—C38B—H38C109.2H40A—C40—H40B109.5
C39B—C38B—H38C109.2O3—C40—H40C109.5
C37B—C38B—H38D109.2H40A—C40—H40C109.5
C39B—C38B—H38D109.2H40B—C40—H40C109.5
H38C—C38B—H38D107.9O4—C41—H41A109.5
C38B—C39B—Br1B124.6 (15)O4—C41—H41B109.5
C38B—C39B—H39F106.2H41A—C41—H41B109.5
Br1B—C39B—H39F106.2O4—C41—H41C109.5
C38B—C39B—H39G106.2H41A—C41—H41C109.5
Br1B—C39B—H39G106.2H41B—C41—H41C109.5
H39F—C39B—H39G106.4O4—C41A—H41D109.5
C2—O1C—C36C119.6 (10)O4—C41A—H41E109.5
O1C—C36C—C37C107.4 (13)H41D—C41A—H41E109.5
O1C—C36C—H36G110.2O4—C41A—H41F109.5
C37C—C36C—H36G110.2H41D—C41A—H41F109.5
O1C—C36C—H36H110.2H41E—C41A—H41F109.5
C37C—C36C—H36H110.2O5—C42—H42A109.5
H36G—C36C—H36H108.5O5—C42—H42B109.5
C38C—C37C—C36C119.3 (15)H42A—C42—H42B109.5
C38C—C37C—H37E107.5O5—C42—H42C109.5
C36C—C37C—H37E107.5H42A—C42—H42C109.5
C38C—C37C—H37F107.5H42B—C42—H42C109.5
C36C—C37C—H37F107.5O6—C43—H43A109.5
H37E—C37C—H37F107.0O6—C43—H43B109.5
C37C—C38C—C39C121.1 (15)H43A—C43—H43B109.5
C37C—C38C—H38E107.1O6—C43—H43C109.5
C39C—C38C—H38E107.1H43A—C43—H43C109.5
C37C—C38C—H38F107.1H43B—C43—H43C109.5
C39C—C38C—H38F107.1O7—C44—H44A109.5
H38E—C38C—H38F106.8O7—C44—H44B109.5
C38C—C39C—Br1C118.4 (14)H44A—C44—H44B109.5
C38C—C39C—H39H107.7O7—C44—H44C109.5
Br1C—C39C—H39H107.7H44A—C44—H44C109.5
C38C—C39C—H39I107.7H44B—C44—H44C109.5
Br1C—C39C—H39I107.7O8—C45—H45A109.5
H39H—C39C—H39I107.1O8—C45—H45B109.5
C5—O2—H2110 (3)H45A—C45—H45B109.5
C9—O3—C40117.9 (3)O8—C45—H45C109.5
C41A—O4—C12118.7 (13)H45A—C45—H45C109.5
C12—O4—C41116.1 (2)H45B—C45—H45C109.5
C16—O5—C42118.4 (3)O9—C46—H46A109.5
C19—O6—C43118.5 (2)O9—C46—H46B109.5
C23—O7—C44117.8 (3)H46A—C46—H46B109.5
C26—O8—C45118.5 (2)O9—C46—H46C109.5
C30—O9—C46118.4 (2)H46A—C46—H46C109.5
C33—O10—C47118.4 (2)H46B—C46—H46C109.5
C6—C1—C2117.8 (2)O10—C47—H47A109.5
C6—C1—C35120.7 (2)O10—C47—H47B109.5
C2—C1—C35121.4 (2)H47A—C47—H47B109.5
C2—C3—C4121.2 (2)O10—C47—H47C109.5
C2—C3—H3119.4H47A—C47—H47C109.5
C4—C3—H3119.4H47B—C47—H47C109.5
C5—C4—C3117.7 (2)N1—C48—C49174.1 (15)
C5—C4—C7121.5 (2)C48—C49—C50112.6 (7)
C3—C4—C7120.8 (2)C48—C49—H49A109.1
O2—C5—C4118.1 (2)C50—C49—H49A109.1
O2—C5—C6121.2 (2)C48—C49—H49B109.1
C4—C5—C6120.7 (2)C50—C49—H49B109.1
C1—C6—C5121.8 (2)H49A—C49—H49B107.8
C1—C6—H6119.1C49—C50—C51106.9 (6)
C5—C6—H6119.1C49—C50—H50A110.3
C4—C7—C8112.4 (2)C51—C50—H50A110.3
C4—C7—H7A109.1C49—C50—H50B110.3
C8—C7—H7A109.1C51—C50—H50B110.3
C4—C7—H7B109.1H50A—C50—H50B108.6
C8—C7—H7B109.1C52—C51—C50108.3 (6)
H7A—C7—H7B107.8C52—C51—H51A110.0
C13—C8—C9117.4 (2)C50—C51—H51A110.0
C13—C8—C7121.0 (2)C52—C51—H51B110.0
C9—C8—C7121.6 (2)C50—C51—H51B110.0
O3—C9—C10123.8 (2)H51A—C51—H51B108.4
O3—C9—C8115.4 (2)C53—C52—C51111.5 (7)
C10—C9—C8120.8 (2)C53—C52—H52A109.3
C9—C10—C11121.0 (3)C51—C52—H52A109.3
C9—C10—H10119.5C53—C52—H52B109.3
C11—C10—H10119.5C51—C52—H52B109.3
C12—C11—C10118.0 (2)H52A—C52—H52B108.0
C12—C11—C14121.4 (2)N2—C53—C52174.5 (14)
C10—C11—C14120.5 (3)N1B—C48B—C49B168 (3)
C13—C12—C11120.6 (2)C50B—C49B—C48B112.7 (12)
C13—C12—O4120.2 (3)C50B—C49B—H49C109.0
C11—C12—O4119.1 (2)C48B—C49B—H49C109.0
C12—C13—C8122.0 (3)C50B—C49B—H49D109.0
C12—C13—H13119.0C48B—C49B—H49D109.0
C8—C13—H13119.0H49C—C49B—H49D107.8
C11—C14—C15113.0 (2)C49B—C50B—C51B107.2 (9)
C11—C14—H14A109.0C49B—C50B—H50C110.3
C15—C14—H14A109.0C51B—C50B—H50C110.3
C11—C14—H14B109.0C49B—C50B—H50D110.3
C15—C14—H14B109.0C51B—C50B—H50D110.3
H14A—C14—H14B107.8H50C—C50B—H50D108.5
C20—C15—C16118.5 (2)C52B—C51B—C50B108.5 (10)
C20—C15—C14120.2 (3)C52B—C51B—H51C110.0
C16—C15—C14121.2 (3)C50B—C51B—H51C110.0
O5—C16—C15116.2 (2)C52B—C51B—H51D110.0
O5—C16—C17124.1 (3)C50B—C51B—H51D110.0
C15—C16—C17119.6 (3)H51C—C51B—H51D108.4
C18—C17—C16121.5 (3)C51B—C52B—C53B111.0 (10)
C18—C17—H17119.3C51B—C52B—H52C109.4
C16—C17—H17119.3C53B—C52B—H52C109.4
C17—C18—C19118.6 (3)C51B—C52B—H52D109.4
C17—C18—C21120.2 (3)C53B—C52B—H52D109.4
C19—C18—C21121.1 (3)H52C—C52B—H52D108.0
O6—C19—C20123.6 (3)N2B—C53B—C52B171 (2)
C2—O1A—C36A—C37A173.6 (4)C14—C15—C16—C17177.5 (2)
O1A—C36A—C37A—C38A77.7 (5)O5—C16—C17—C18178.4 (3)
C36A—C37A—C38A—C39A178.6 (3)C15—C16—C17—C181.6 (4)
C37A—C38A—C39A—Br1A179.2 (3)C16—C17—C18—C192.0 (4)
C36A—O1A—C2—C1156.6 (4)C16—C17—C18—C21176.4 (3)
C36A—O1A—C2—C321.6 (7)C43—O6—C19—C200.5 (4)
C1—C2—O1B—C36B118 (3)C43—O6—C19—C18179.7 (3)
C3—C2—O1B—C36B62 (4)C17—C18—C19—O6179.3 (2)
C2—O1B—C36B—C37B172 (3)C21—C18—C19—O62.3 (4)
O1B—C36B—C37B—C38B157 (4)C17—C18—C19—C200.9 (4)
C36B—C37B—C38B—C39B170 (4)C21—C18—C19—C20177.5 (2)
C37B—C38B—C39B—Br1B18 (7)C16—C15—C20—C191.2 (4)
C1—C2—O1C—C36C159 (2)C14—C15—C20—C19176.4 (2)
C3—C2—O1C—C36C7 (4)O6—C19—C20—C15179.1 (2)
C2—O1C—C36C—C37C177 (3)C18—C19—C20—C150.7 (4)
O1C—C36C—C37C—C38C144 (3)C17—C18—C21—C2295.5 (3)
C36C—C37C—C38C—C39C169 (2)C19—C18—C21—C2282.9 (4)
C37C—C38C—C39C—Br1C48 (3)C18—C21—C22—C2792.7 (3)
O1B—C2—C1—C6178 (2)C18—C21—C22—C2385.5 (3)
O1A—C2—C1—C6179.6 (4)C44—O7—C23—C242.5 (4)
O1C—C2—C1—C6164.5 (19)C44—O7—C23—C22178.1 (3)
C3—C2—C1—C61.4 (4)C27—C22—C23—O7179.7 (2)
O1B—C2—C1—C355 (2)C21—C22—C23—O71.4 (4)
O1A—C2—C1—C352.4 (5)C27—C22—C23—C241.0 (4)
O1C—C2—C1—C3518.3 (19)C21—C22—C23—C24179.2 (2)
C3—C2—C1—C35175.8 (2)O7—C23—C24—C25178.1 (2)
O1B—C2—C3—C4180 (2)C22—C23—C24—C252.6 (4)
O1A—C2—C3—C4178.0 (4)C23—C24—C25—C261.6 (4)
O1C—C2—C3—C4165.9 (19)C23—C24—C25—C28177.4 (2)
C1—C2—C3—C40.1 (4)C45—O8—C26—C25179.1 (2)
C2—C3—C4—C51.0 (4)C45—O8—C26—C270.1 (4)
C2—C3—C4—C7177.9 (2)C24—C25—C26—O8178.4 (2)
C3—C4—C5—O2179.6 (2)C28—C25—C26—O80.7 (3)
C7—C4—C5—O21.6 (4)C24—C25—C26—C270.9 (4)
C3—C4—C5—C60.4 (4)C28—C25—C26—C27179.9 (2)
C7—C4—C5—C6178.5 (2)C23—C22—C27—C261.6 (4)
C2—C1—C6—C52.0 (4)C21—C22—C27—C26176.6 (2)
C35—C1—C6—C5175.2 (2)O8—C26—C27—C22176.7 (2)
O2—C5—C6—C1178.9 (2)C25—C26—C27—C222.5 (4)
C4—C5—C6—C11.1 (4)C24—C25—C28—C2986.0 (3)
C5—C4—C7—C890.5 (3)C26—C25—C28—C2993.1 (3)
C3—C4—C7—C888.3 (3)C25—C28—C29—C3496.5 (3)
C4—C7—C8—C1388.3 (3)C25—C28—C29—C3083.0 (3)
C4—C7—C8—C989.8 (3)C46—O9—C30—C29179.1 (3)
C40—O3—C9—C101.1 (4)C46—O9—C30—C310.8 (4)
C40—O3—C9—C8178.9 (3)C34—C29—C30—O9179.4 (2)
C13—C8—C9—O3179.4 (2)C28—C29—C30—O91.1 (3)
C7—C8—C9—O32.4 (3)C34—C29—C30—C310.6 (3)
C13—C8—C9—C100.6 (3)C28—C29—C30—C31178.9 (2)
C7—C8—C9—C10177.6 (2)O9—C30—C31—C32179.5 (2)
O3—C9—C10—C11179.9 (2)C29—C30—C31—C320.5 (4)
C8—C9—C10—C110.2 (4)C30—C31—C32—C330.3 (3)
C9—C10—C11—C120.3 (4)C30—C31—C32—C35178.4 (2)
C9—C10—C11—C14178.4 (2)C47—O10—C33—C32176.2 (3)
C10—C11—C12—C130.3 (3)C47—O10—C33—C344.6 (4)
C14—C11—C12—C13178.4 (2)C31—C32—C33—O10179.8 (2)
C10—C11—C12—O4177.9 (2)C35—C32—C33—O101.5 (3)
C14—C11—C12—O40.8 (3)C31—C32—C33—C341.0 (4)
C41A—O4—C12—C132 (2)C35—C32—C33—C34177.7 (2)
C41—O4—C12—C1372.5 (4)O10—C33—C34—C29180.0 (2)
C41A—O4—C12—C11180 (2)C32—C33—C34—C290.9 (4)
C41—O4—C12—C11109.8 (3)C30—C29—C34—C330.1 (4)
C11—C12—C13—C80.2 (4)C28—C29—C34—C33179.6 (2)
O4—C12—C13—C8177.4 (2)C6—C1—C35—C3285.2 (3)
C9—C8—C13—C120.7 (3)C2—C1—C35—C3291.9 (3)
C7—C8—C13—C12177.6 (2)C33—C32—C35—C194.0 (3)
C12—C11—C14—C1584.9 (3)C31—C32—C35—C184.6 (3)
C10—C11—C14—C1593.7 (3)C48—C49—C50—C51178.9 (10)
C11—C14—C15—C2081.1 (3)C49—C50—C51—C52179.2 (8)
C11—C14—C15—C1696.4 (3)C50—C51—C52—C53173.2 (9)
C42—O5—C16—C15177.3 (3)N1B—C48B—C49B—C50B88 (16)
C42—O5—C16—C172.6 (4)C48B—C49B—C50B—C51B177.6 (17)
C20—C15—C16—O5179.9 (2)C49B—C50B—C51B—C52B173.5 (14)
C14—C15—C16—O52.6 (4)C50B—C51B—C52B—C53B170.6 (16)
C20—C15—C16—C170.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C37A—H37A···O6i0.992.603.587 (5)172
O2—H2···N2ii0.89 (4)1.98 (4)2.866 (10)178 (4)
O2—H2···N2Bii0.89 (4)2.11 (4)2.980 (14)168 (4)
C20—H20···O40.952.513.171 (3)127
C27—H27···O60.952.663.186 (3)116
C40—H40B···N10.982.673.535 (16)148
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+1, y+1, z+2.
Non-bonding interactions (Å, °) between the pillar[5]arene host and adiponitrile guest top
π1–π4 are the centroids of the phenyl rings C1–C6, C8–C13, C15–C20 and C22–C27 respectively.
D—H···AD—HH···AD···AD—H···A
C49—H49A···π30.992.8833.840162.87
C49—H49B···O90.993.2884.190 (8)152.4
C50—H50A···π10.993.0253.812137.28
C50—H50B···π20.992.7383.726176.55
C51—H51A···π40.993.1763.822124.29
C51—H51B···O60.993.2474.207 (9)163.9
C52—H52A···O20.993.2153.593 (9)104.5
C52—H52B···π10.993.1083.957144.64
Non-bonding interactions(Å, °) among adjacent pillar[5]arenes in PilButBrOH·ADN systems top
D—H···AD—HH···AD···AD—H···A
O2—H2···N2i0.89 (4)1.98 (4)2.866 (10)178 (4)
C6—H6···N2i0.952.733.46 (1)134
C7—H7B···Br1Aii0.992.9503.906 (3)162
C37A—H37A···O6iii0.992.603.587 (5)172
C43—H43A···N1iv0.982.773.59 (1)141
Symmetry codes: (i) 1 - x, 1 - y, 2 - z; (ii) 1 - x, -y, 2 - z ; (iii) 3/2 - x, -1/2 + y, 3/2 - z ; (iv) 3/2 - x, 1/2 + y, 3/2 - z.
 

Funding information

The support received from Kuwait University Research Administration, made available through Research Grant No. SC08/19 and the Facilities of the RSPU (grant Nos. GS03/08 and GS01/03) are gratefully acknowledged.

References

First citationAl-Azemi, T. F. & Vinodh, M. (2020). Polym. Chem. 11, 3305–3312.  CAS Google Scholar
First citationAl-Azemi, T. F. & Vinodh, M. (2021). RSC Adv. 11, 2995–3002.  CAS PubMed Google Scholar
First citationAl-Azemi, T. F. & Vinodh, M. (2022). RSC Adv. 12, 1797–1806.  Web of Science CAS PubMed Google Scholar
First citationBojtár, M., Simon, A., Bombicz, P. & Bitter, I. (2017). Org. Lett. 19, 4528–4531.  PubMed Google Scholar
First citationDing, J., Chen, J., Mao, W., Huang, J. & Ma, D. (2017). Org. Biomol. Chem. 15, 7894–7897.  CSD CrossRef CAS PubMed Google Scholar
First citationFang, Y., Deng, Y. & Dehaen, W. (2020). Coord. Chem. Rev. 415, 213313.  Web of Science CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuo, F., Sun, Y., Xi, B. & Diao, G. (2018). Supramol. Chem. 30, 81–92.  CrossRef CAS Google Scholar
First citationGuo, L., Du, J., Wang, Y., Shi, K. & Ma, E. (2020). J. Incl Phenom. Macrocycl. Chem. 97, 1–17.  CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Huo, G.-F., Han, Y., Sun, J. & Yan, C.-G. (2016). J. Incl. Phenom. Macrocycl. Chem. 86, 231–240.  Google Scholar
First citationHu, W.-B., Xie, C.-D., Hu, W.-J., Zhao, X.-L., Liu, Y. A., Huo, J.-C., Li, J. S., Jiang, B. & Wen, K. (2015). J. Org. Chem. 80, 7994–8000.  CSD CrossRef CAS PubMed Google Scholar
First citationJi, J., Li, Y., Xiao, C., Cheng, G., Luo, K., Gong, Q., Zhou, D., Chruma, J. J., Wu, W. & Yang, C. (2020). Chem. Commun. 56, 161–164.  CSD CrossRef CAS Google Scholar
First citationKim, S., Park, I.-H., Lee, E., Jung, J. H. & Lee, S. S. (2022). Inorg. Chem. 61, 7069–7074.  CSD CrossRef CAS PubMed Google Scholar
First citationLee, E., Park, I.-H., Ju, H., Kim, S., Jung, J. H., Habata, Y. & Lee, S. S. (2019a). Angew. Chem. Int. Ed. 58, 11296–11300.  CSD CrossRef CAS Google Scholar
First citationLee, E., Ryu, H., Ju, H., Kim, S., Lee, J.-E., Jung, J. H., Kuwahara, S., Ikeda, M., Habata, Y. & Lee, S. S. (2019b). Chem. Eur. J. 25, 949–953.  CSD CrossRef CAS PubMed Google Scholar
First citationLi, Q., Zhu, H. & Huang, F. (2020). Trends Chem. 2, 850–864.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationOgoshi, T., Yamagishi, T. & Nakamoto, Y. (2016). Chem. Rev. 116, 7937–8002.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRigaku (2016). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2017). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStrutt, N. L., Schneebeli, S. T. & Stoddart, J. F. (2013). Supramol. Chem. 25, 596–608.  CSD CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer 17. University of Western Australia.  Google Scholar
First citationVinodh, M., Alipour, F. H. & Al-Azemi, T. F. (2023). ACS Omega, 8, 1466–1475.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWang, K., Tian, X., Jordan, J. H., Velmurugan, K., Wang, L. & Hu, X.-Y. (2022a). Chin. Chem. Lett. 33, 2022, 89–96.  Google Scholar
First citationWang, Z., Liu, Y. A., Yang, H., Hu, W.-B. & Wen, K. (2022b). Org. Lett. 24, 1822–1826.  CSD CrossRef CAS PubMed Google Scholar
First citationYang, W., Zhang, W., Chen, J. & Zhou, J. (2024). Chin. Chem. Lett. 35, 108740.  CrossRef Google Scholar
First citationYang, Y.-F., Hu, W.-B., Shi, L., Li, S.-G., Zhao, X.-L., Liu, Y. A., Li, J.-S., Jiang, B. & Wen, K. (2018). Org. Biomol. Chem. 16, 2028–2032.  CSD CrossRef CAS PubMed Google Scholar
First citationZhang, T., Wang, K., Huang, X., Jiao, J. & Hu, X.-Y. (2023). Chem. Eur. J. 29, e202203738.  CSD CrossRef PubMed Google Scholar
First citationZhu, H., Li, Q., Khalil-Cruz, L. E., Khashab, N. M., Yu, G. & Huang, F. (2021). Sci. China Chem. 64, 688-700.  CrossRef CAS Google Scholar
First citationZyryanov, G. V., Kopchuk, D. S., Kovalev, I. S., Santra, S., Majee, A. & Ranu, B. C. (2023). Int. J. Mol. Sci. 24, 5167.  CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds