research communications
Coupling between 2-pyridylselenyl chloride and phenylselenocyanate: synthesis,
and non-covalent interactionsaDepartment of Chemistry, College of Natural and Computational Science, University of Gondar, Gondar 196, Ethiopia, bPeople's Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation, cKurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 31, 119071, Moscow, Russian Federation, dInstitute of Chemistry, Saint Petersburg State University, Universitetskaya, Nab., 7/9, 199034 Saint Petersburg, Russian Federation, eR.E. Alekseev Nizhny Novgorod State Technical University, Minin St., 24, Nizhny, Novgorod, Russian Federation, and fUniversity of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, 100000, Vietnam
*Correspondence e-mail: wodajo.ayalew@uog.edu.et
This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.
A new pyridine-fused selenodiazolium salt, 3-(phenylselanyl)[1,2,4]selenadiazolo[4,5-a]pyridin-4-ylium chloride dichloromethane 0.352-solvate, C12H9N2Se2+·Cl−·0.352CH2Cl2, was obtained from the reaction between 2-pyridylselenenyl chloride and phenylselenocyanate. Single-crystal structural analysis revealed the presence of C—H⋯N, C—H⋯Cl−, C—H⋯Se hydrogen bonds as well as chalcogen–chalcogen (Se⋯Se) and chalcogen–halogen (Se⋯Cl−) interactions. Non-covalent interactions were explored by DFT calculations followed by topological analysis of the electron density distribution (QTAIM analysis). The structure consists of pairs of selenodiazolium moieties arranged in a head-to-tail fashion surrounding disordered dichloromethane molecules. The assemblies are connected by C—H⋯Cl− and C—H⋯N hydrogen bonds, forming layers, which stack along the c-axis direction connected by bifurcated Se⋯Cl−⋯H—C interactions.
CCDC reference: 2382988
1. Chemical context
Recently, a novel cycloaddition reaction between et al., 2021). What makes this finding particularly notable is that the reaction takes place under mild conditions, displaying a high degree of (Grudova et al., 2022; Artemjev et al., 2023). As a result, pyridinium-fused selenodiazolium salts are formed with excellent yields.
and 2-pyridylselenyl reagents was described (KhrustalevAs part of our ongoing project to investigate the reactivity of bifunctional 2-pyridylselenyl reagents (Grudova et al., 2022; Artemjev et al., 2022, 2023; Sapronov et al., 2023) we have recently expanded our research to explore the chemistry of addition to the C≡N triple bond involving a different category of nitrile substrates known as cyanamides or push–pull Push–pull structures are characterized by high polarization and consist of an electron-withdrawing substituent or electronegative atom on one side of the multiple bond and an electron-donating group on the opposite side (Le Questel et al., 2000; Gushchin et al., 2009; Kritchenkov et al., 2011).
Here we show that 2-pyridylselenyl chloride reacts efficiently with phenylselenocyanate furnishing a cationic pyridinium-fused 1,2,4-selenodiazole in high yield. This finding is another illustration of the remarkable propensity of bifunctional 2-pyridylselenyl reagents to engage in dipolar cycloaddition with the CN triple bond, displaying a high degree of 2Cl2 according to the scheme.
The title compound was synthesized in high yield in CH2. Structural commentary
Crystals suitable for X-ray analysis were obtained directly from the reaction mixture. The compound crystallized as colorless blocks in P21/c. The (Fig. 1) contains one cation, one Cl− anion and a disordered CH2Cl2 molecule. The 1,2,4-selenodiazole fragment is almost planar (r.m.s.d. = 0.017 Å) and makes an angle of 81.64 (16)° with the phenylselenyl ring. The Se1—N2 and Se1—C1 bond lengths are 1.863 (4) and 1.877 (4) Å, respectively, and the Se1⋯Cl1 distance is 2.9325 (17). These bond distances are similar to those reported in previous work on 1,2,4-selenodiazoles (Grudova et al., 2022; Artemjev et al., 2022, 2023; Sapronov et al., 2022, 2023). The Se2—C6 and Se2—C7 bond lengths are typical for Se—Car bonds [1.926 (5) Å and 1.946 (5) Å, respectively]. The C7—Se2—C6—N1 and C6—Se2—C7—C12 torsion angles are 93.4 (5) and 76.9 (4)°, respectively.
3. Supramolecular features
The crystal packing is shown in Fig. 2, viewed down the b axis. In the crystal, pairs of selenodiazolium moieties are arranged in a head-to-tail fashion surrounding disordered dichloromethane molecules. C—H⋯Cl− and C—H⋯N hydrogen bonds (Table 1) connect these units to form layers parallel to the ac plane. In addition, π–π stacking interactions between the phenyl rings of two neighboring molecules occur. The layers are interconnected via bifurcated Se⋯Cl−⋯H—C interactions and stack along the c-axis.
|
To further understand the nature of the interactions and to quantify the strength of the bifurcated chalcogen–halogen–hydrogen contacts, Se⋯Cl−⋯H—C, and the interactions involving the Se atom (Se⋯Se and Se⋯Cl−) in the DFT calculations followed by a topological analysis of the electron-density distribution (QTAIM analysis) were carried out at the ωB97XD/6-311++G** level of theory for the model structure (see Computational details and Table S1 in the supporting information). The results of the QTAIM analysis are summarized in Table S1. The contour line diagrams of the Laplacian of the electron density distribution Ñ2r(r), bond paths, and selected zero-flux surfaces, visualization of electron localization function (ELF) and reduced density gradient (RDG) analyses for bifurcated Se⋯Cl−⋯H—C, Se⋯Se and Se⋯Cl− interactions in the are shown in Figs. 3 and 4, respectively.
The QTAIM analysis of the model structure demonstrates the presence of bond critical points (3, −1) for short contacts Se⋯Cl−, C–H⋯Cl− and Se⋯Se in the (Table S1 and Figs. 3 and 4) (Bondi et al., 1966). The low magnitude of the electron density, the positive values of the Laplacian of the electron density and zero or very close to zero values of the energy density in these bond critical points (3, −1) and estimated strength for appropriate short contacts are typical for weak purely non-covalent [–G(r)/V(r) > 1; Espinosa et al., 2002] interactions. The Laplacian of the electron density is typically decomposed into the sum of contributions along the three principal axes of maximal variation. The three eigenvalues of the Hessian matrix (λ1, λ2 and λ3) and the sign of λ2 can be utilized to distinguish bonding (attractive, λ2 < 0) weak interactions from non-bonding ones (repulsive, λ2 > 0) (Johnson et al., 2010; Contreras-García et al., 2011). Thus, the discussed short contacts Se⋯Cl−, C–H⋯Cl− and Se⋯Se in the structure are attractive.
4. Database survey
A search in the Cambridge Structural Database (CSD, Version 5.43, update of Sep. 2022; Groom et al., 2016) showed only 16 hits for 1,2,4-selenodiazolium salts, which differ not only in the type of nitrile fragment (Me: EWEPUU, Khrustalev et al., 2021; Ph: NAQDES, Buslov et al., 2021; BrC6H4: EWEQEF, Khrustalev et al., 2021), but also in the anion (CF3COO–: YEJXEU; AuCl4–: YEJXUK; and ReO4−: YEJYAR, Artemjev et al., 2022).
5. Synthesis and crystallization
General remarks. All manipulations were carried out in air. All the reagents used in this study were obtained from commercial sources (Aldrich, TCI-Europe, Strem, ABCR). Commercially available solvents were purified by conventional methods and distilled right before they were used. NMR spectra were recorded on a Bruker Advance Neo (1H: 700 MHz); chemical shifts (δ) are given in ppm, coupling constants (J) in Hz. 2-Pyridylselenyl chloride was synthesized by our method (Artemjev et al., 2022; Artemjev et al., 2023).
A solution of phenylselenocyanate (0.16 mmol, 20 µL) in CH2Cl2 (1 mL) was added to a suspension of 2-pyridylselenyl chloride (0.13 mmol, 25.3 mg) in CH2Cl2 (2 mL) and the mixture was kept at room temperature for 6 h without stirring. The formed colorless precipitate was centrifuged, washed with CH2Cl2 (1 mL), Et2O (3 × 1 mL) and dried under vacuum. Yield 34.5 mg (70%). 1H NMR (700 MHz, D2O) δ 9.53 (d, J = 6.8 Hz, 1H, H5), 8.82 (d, J = 8.6 Hz, 1H, H8), 8.42 (t, J = 7.9 Hz, 1H, H7), 8.05 (t, J = 7.0 Hz, 1H, H6), 7.82 (d, J = 7.6 Hz, 2H, H2′), 7.55 (t, J = 7.5 Hz, 1H, H4′), 7.49 (t, J = 7.7 Hz, 2H, H3′). 13C NMR (176 MHz, D2O) δ 168.1 (C3), 148.8 (C9), 139.9 (C5), 137.4 (C8), 135.7 (C2′), 130.5 (C4′), 130.3 (C3′), 126.0 (C7), 123.8 (C1′), 123.2 (C6). Crystals suitable for X-ray analysis were obtained directly from the reaction mixture.
The single-point calculations based on the experimental X-ray structure were carried out at the DFT level of theory using the dispersion-corrected hybrid functional ωB97XD (Chai et al., 2008) with the Gaussian-09 (Frisch et al., 2010) program package. The 6-311++G** basis sets were used for all atoms. The topological analysis of the electron density distribution was performed using the Multiwfn program (version 3.7; Lu et al., 2012). The Cartesian atomic coordinates for the model structure are presented in Table S1 of the supporting information.
6. Refinement
Crystal data, data collection and structure . H atoms were included in calculated positions (C—H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The dichloromethane molecule is disordered around a center of symmetry and refined to a total occupancy of 70%. Residual electron density of 1.5 e Å−3 remained at the center of symmetry. Attempts to rationalize it did not produce a plausible model nor an improved refinement.
details are summarized in Table 2Supporting information
CCDC reference: 2382988
https://doi.org/10.1107/S2056989024008831/jw2003sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024008831/jw2003Isup2.hkl
QTAIM analysis. DOI: https://doi.org/10.1107/S2056989024008831/jw2003sup4.docx
C12H9N2Se2+·Cl−·0.352CH2Cl2 | F(000) = 779 |
Mr = 404.50 | Dx = 1.902 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 11.087 (3) Å | Cell parameters from 3887 reflections |
b = 11.758 (5) Å | θ = 2.6–28.0° |
c = 11.991 (3) Å | µ = 5.54 mm−1 |
β = 115.337 (6)° | T = 100 K |
V = 1412.8 (8) Å3 | Block, colourless |
Z = 4 | 0.20 × 0.10 × 0.08 mm |
Bruker D8 Venture diffractometer | 2649 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.038 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 28.0°, θmin = 2.0° |
Tmin = 0.466, Tmax = 0.746 | h = −12→14 |
7927 measured reflections | k = −12→15 |
3394 independent reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: mixed |
wR(F2) = 0.088 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0153P)2 + 6.8557P] where P = (Fo2 + 2Fc2)/3 |
3394 reflections | (Δ/σ)max < 0.001 |
182 parameters | Δρmax = 1.50 e Å−3 |
20 restraints | Δρmin = −0.91 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Se1 | 0.10761 (5) | 0.56698 (4) | 0.17359 (4) | 0.01592 (12) | |
Se2 | 0.24558 (5) | 0.87121 (4) | 0.42629 (4) | 0.01426 (12) | |
N1 | 0.1762 (4) | 0.6289 (3) | 0.4071 (4) | 0.0132 (8) | |
N2 | 0.1584 (4) | 0.7155 (3) | 0.2272 (4) | 0.0162 (8) | |
C1 | 0.1373 (4) | 0.5329 (4) | 0.3362 (4) | 0.0121 (9) | |
C2 | 0.1221 (5) | 0.4305 (4) | 0.3880 (4) | 0.0150 (9) | |
H2 | 0.095583 | 0.363323 | 0.339559 | 0.018* | |
C3 | 0.1465 (5) | 0.4290 (4) | 0.5109 (5) | 0.0188 (10) | |
H3 | 0.138254 | 0.359887 | 0.548151 | 0.023* | |
C4 | 0.1833 (5) | 0.5294 (4) | 0.5812 (4) | 0.0183 (10) | |
H4 | 0.197564 | 0.528274 | 0.665125 | 0.022* | |
C5 | 0.1988 (5) | 0.6283 (4) | 0.5295 (4) | 0.0143 (9) | |
H5 | 0.224770 | 0.695960 | 0.577185 | 0.017* | |
C6 | 0.1880 (5) | 0.7279 (4) | 0.3425 (4) | 0.0134 (9) | |
C7 | 0.4343 (5) | 0.8524 (4) | 0.4672 (5) | 0.0162 (10) | |
C8 | 0.5220 (5) | 0.8288 (4) | 0.5882 (5) | 0.0259 (12) | |
H8 | 0.488948 | 0.818120 | 0.648615 | 0.031* | |
C9 | 0.6579 (6) | 0.8207 (5) | 0.6214 (5) | 0.0319 (13) | |
H9 | 0.717735 | 0.804495 | 0.704425 | 0.038* | |
C10 | 0.7062 (5) | 0.8362 (4) | 0.5339 (6) | 0.0281 (13) | |
H10 | 0.799414 | 0.831392 | 0.556943 | 0.034* | |
C11 | 0.6195 (5) | 0.8587 (5) | 0.4130 (5) | 0.0276 (12) | |
H11 | 0.653058 | 0.868078 | 0.352710 | 0.033* | |
C12 | 0.4828 (5) | 0.8677 (5) | 0.3788 (5) | 0.0238 (11) | |
H12 | 0.423253 | 0.884189 | 0.295774 | 0.029* | |
Cl1 | 0.05719 (12) | 0.32474 (9) | 0.11352 (11) | 0.0163 (2) | |
Cl2 | 0.5173 (17) | 0.4244 (7) | 0.6117 (12) | 0.055 (2) | 0.352 (3) |
Cl3 | 0.4753 (18) | 0.5382 (9) | 0.3886 (13) | 0.077 (3) | 0.352 (3) |
C13 | 0.5222 (19) | 0.5578 (8) | 0.5473 (13) | 0.058 (4) | 0.352 (3) |
H13A | 0.613356 | 0.590037 | 0.587480 | 0.069* | 0.352 (3) |
H13B | 0.459970 | 0.611151 | 0.559777 | 0.069* | 0.352 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Se1 | 0.0243 (3) | 0.0133 (2) | 0.0105 (2) | −0.0043 (2) | 0.0078 (2) | −0.00122 (19) |
Se2 | 0.0161 (2) | 0.0113 (2) | 0.0162 (2) | −0.00220 (19) | 0.0076 (2) | −0.00216 (19) |
N1 | 0.016 (2) | 0.0113 (17) | 0.014 (2) | −0.0002 (16) | 0.0076 (17) | −0.0001 (16) |
N2 | 0.023 (2) | 0.0122 (18) | 0.013 (2) | −0.0050 (17) | 0.0073 (18) | 0.0000 (16) |
C1 | 0.013 (2) | 0.012 (2) | 0.012 (2) | −0.0013 (18) | 0.0052 (19) | 0.0001 (17) |
C2 | 0.017 (2) | 0.012 (2) | 0.016 (2) | −0.0004 (19) | 0.008 (2) | −0.0013 (19) |
C3 | 0.018 (2) | 0.018 (2) | 0.021 (3) | 0.000 (2) | 0.009 (2) | 0.005 (2) |
C4 | 0.024 (3) | 0.021 (2) | 0.010 (2) | −0.002 (2) | 0.008 (2) | −0.0019 (19) |
C5 | 0.021 (2) | 0.013 (2) | 0.009 (2) | 0.005 (2) | 0.0062 (19) | −0.0008 (18) |
C6 | 0.014 (2) | 0.013 (2) | 0.015 (2) | 0.0005 (18) | 0.007 (2) | 0.0008 (18) |
C7 | 0.015 (2) | 0.009 (2) | 0.022 (3) | −0.0017 (18) | 0.005 (2) | −0.0016 (19) |
C8 | 0.024 (3) | 0.027 (3) | 0.023 (3) | −0.003 (2) | 0.008 (2) | −0.002 (2) |
C9 | 0.019 (3) | 0.032 (3) | 0.029 (3) | 0.001 (2) | −0.005 (2) | 0.001 (3) |
C10 | 0.014 (3) | 0.016 (2) | 0.049 (4) | 0.000 (2) | 0.008 (3) | −0.007 (2) |
C11 | 0.025 (3) | 0.028 (3) | 0.034 (3) | −0.001 (2) | 0.016 (3) | −0.003 (2) |
C12 | 0.017 (3) | 0.029 (3) | 0.023 (3) | 0.000 (2) | 0.006 (2) | −0.002 (2) |
Cl1 | 0.0179 (6) | 0.0140 (5) | 0.0172 (6) | −0.0004 (5) | 0.0078 (5) | −0.0028 (4) |
Cl2 | 0.043 (3) | 0.040 (5) | 0.088 (4) | −0.012 (4) | 0.033 (3) | −0.019 (4) |
Cl3 | 0.047 (4) | 0.070 (7) | 0.113 (5) | −0.004 (6) | 0.035 (4) | −0.004 (6) |
C13 | 0.036 (6) | 0.049 (7) | 0.096 (7) | −0.013 (7) | 0.036 (6) | 0.005 (7) |
Se1—N2 | 1.863 (4) | C7—C8 | 1.385 (7) |
Se1—C1 | 1.877 (4) | C7—C12 | 1.390 (7) |
Se2—C6 | 1.926 (5) | C8—C9 | 1.388 (7) |
Se2—C7 | 1.946 (5) | C8—H8 | 0.9500 |
N1—C1 | 1.367 (6) | C9—C10 | 1.379 (8) |
N1—C5 | 1.380 (6) | C9—H9 | 0.9500 |
N1—C6 | 1.435 (6) | C10—C11 | 1.380 (8) |
N2—C6 | 1.285 (6) | C10—H10 | 0.9500 |
C1—C2 | 1.396 (6) | C11—C12 | 1.395 (7) |
C2—C3 | 1.380 (6) | C11—H11 | 0.9500 |
C2—H2 | 0.9500 | C12—H12 | 0.9500 |
C3—C4 | 1.405 (7) | Cl2—C13 | 1.7596 (12) |
C3—H3 | 0.9500 | Cl3—C13 | 1.7597 (11) |
C4—C5 | 1.362 (6) | C13—H13A | 0.9900 |
C4—H4 | 0.9500 | C13—H13B | 0.9900 |
C5—H5 | 0.9500 | ||
N2—Se1—C1 | 87.06 (18) | C8—C7—C12 | 119.8 (5) |
C6—Se2—C7 | 96.45 (18) | C8—C7—Se2 | 118.9 (4) |
C1—N1—C5 | 121.5 (4) | C12—C7—Se2 | 121.2 (4) |
C1—N1—C6 | 114.4 (4) | C7—C8—C9 | 120.2 (5) |
C5—N1—C6 | 124.2 (4) | C7—C8—H8 | 119.9 |
C6—N2—Se1 | 112.2 (3) | C9—C8—H8 | 119.9 |
N1—C1—C2 | 120.1 (4) | C10—C9—C8 | 120.0 (5) |
N1—C1—Se1 | 109.7 (3) | C10—C9—H9 | 120.0 |
C2—C1—Se1 | 130.2 (3) | C8—C9—H9 | 120.0 |
C3—C2—C1 | 118.7 (4) | C9—C10—C11 | 120.1 (5) |
C3—C2—H2 | 120.6 | C9—C10—H10 | 119.9 |
C1—C2—H2 | 120.6 | C11—C10—H10 | 119.9 |
C2—C3—C4 | 120.2 (4) | C10—C11—C12 | 120.3 (5) |
C2—C3—H3 | 119.9 | C10—C11—H11 | 119.9 |
C4—C3—H3 | 119.9 | C12—C11—H11 | 119.9 |
C5—C4—C3 | 120.3 (4) | C7—C12—C11 | 119.5 (5) |
C5—C4—H4 | 119.8 | C7—C12—H12 | 120.2 |
C3—C4—H4 | 119.8 | C11—C12—H12 | 120.2 |
C4—C5—N1 | 119.2 (4) | Cl2—C13—Cl3 | 107.9 (5) |
C4—C5—H5 | 120.4 | Cl2—C13—H13A | 110.1 |
N1—C5—H5 | 120.4 | Cl3—C13—H13A | 110.1 |
N2—C6—N1 | 116.6 (4) | Cl2—C13—H13B | 110.1 |
N2—C6—Se2 | 122.4 (3) | Cl3—C13—H13B | 110.1 |
N1—C6—Se2 | 121.0 (3) | H13A—C13—H13B | 108.4 |
C1—Se1—N2—C6 | −0.4 (4) | Se1—N2—C6—N1 | −0.5 (5) |
C5—N1—C1—C2 | −1.3 (7) | Se1—N2—C6—Se2 | 179.5 (2) |
C6—N1—C1—C2 | 179.9 (4) | C1—N1—C6—N2 | 1.5 (6) |
C5—N1—C1—Se1 | 177.1 (3) | C5—N1—C6—N2 | −177.3 (4) |
C6—N1—C1—Se1 | −1.6 (5) | C1—N1—C6—Se2 | −178.6 (3) |
N2—Se1—C1—N1 | 1.1 (3) | C5—N1—C6—Se2 | 2.7 (6) |
N2—Se1—C1—C2 | 179.4 (5) | C12—C7—C8—C9 | 0.1 (8) |
N1—C1—C2—C3 | 0.4 (7) | Se2—C7—C8—C9 | −176.7 (4) |
Se1—C1—C2—C3 | −177.7 (4) | C7—C8—C9—C10 | 0.0 (8) |
C1—C2—C3—C4 | 1.1 (7) | C8—C9—C10—C11 | −0.6 (8) |
C2—C3—C4—C5 | −1.7 (7) | C9—C10—C11—C12 | 1.0 (8) |
C3—C4—C5—N1 | 0.8 (7) | C8—C7—C12—C11 | 0.3 (8) |
C1—N1—C5—C4 | 0.7 (7) | Se2—C7—C12—C11 | 177.0 (4) |
C6—N1—C5—C4 | 179.4 (4) | C10—C11—C12—C7 | −0.8 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···Cl1 | 0.95 | 2.60 | 3.297 (5) | 131 |
C3—H3···Cl1i | 0.95 | 2.60 | 3.526 (5) | 167 |
C5—H5···Se2 | 0.95 | 2.82 | 3.242 (5) | 108 |
C5—H5···N2ii | 0.95 | 2.45 | 3.179 (6) | 134 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, −y+3/2, z+1/2. |
Funding information
This work was performed under the support of the Russian Science Foundation (award No. 22–73–10007).
References
Artemjev, A. A., Kubasov, A. S., Zaytsev, V. P., Borisov, A. V., Kritchenkov, A. S., Nenajdenko, V. G., Gomila, R. M., Frontera, A. & Tskhovrebov, A. G. (2023). Cryst. Growth Des. 23, 2018–2023. Google Scholar
Artemjev, A. A., Novikov, A. P., Burkin, G. M., Sapronov, A. A., Kubasov, A. S., Nenajdenko, V. G., Khrustalev, V. N., Borisov, A. V., Kirichuk, A. A., Kritchenkov, A. S., Gomila, R. M., Frontera, A. & Tskhovrebov, A. G. (2022). Int. J. Mol. Sci. 23, 63721–6372. Google Scholar
Bondi, A. (1966). J. Phys. Chem. 70, 3006–3007. CrossRef CAS Web of Science Google Scholar
Bruker (2019). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Buslov, I. V., Novikov, A. S., Khrustalev, V. N., Grudova, M. V., Kubasov, A. S., Matsulevich, Z. V., Borisov, A. V., Lukiyanova, J. M., Grishina, M. M., Kirichuk, A. A., Serebryanskaya, T. V., Kritchenkov, A. S. & Tskhovrebov, A. G. (2021). Symmetry, 13, 2350. Google Scholar
Chai, J.-D. & Head-Gordon, M. (2008). Phys. Chem. Chem. Phys. 10, 6615–6620. Web of Science CrossRef PubMed CAS Google Scholar
Contreras-García, J., Johnson, E. R., Keinan, S., Chaudret, R., Piquemal, J.-P., Beratan, D. N. & Yang, W. (2011). J. Chem. Theory Comput. 7, 625–632. Web of Science PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Espinosa, E., Alkorta, I., Elguero, J. & Molins, E. (2002). J. Chem. Phys. 117, 5529–5542. Web of Science CrossRef CAS Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Had, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2010). Gaussian 09, Revision B. 01. Gaussian Inc. Wallingford, CT, USA. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Grudova, M. V., Kubasov, A. S., Khrustalev, V. N., Novikov, A. S., Kritchenkov, A. S., Nenajdenko, V. G., Borisov, A. V. & Tskhovrebov, A. G. (2022). Molecules, 27, 10291–1029. Google Scholar
Gushchin, P. V., Kuznetsov, M. L., Haukka, M., Wang, M.-J., Gribanov, A. V. & Kukushkin, V. Y. (2009). Inorg. Chem. 48, 2583–2592. PubMed Google Scholar
Johnson, E. R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A. J. & Yang, W. (2010). J. Am. Chem. Soc. 132, 6498–6506. Web of Science CrossRef CAS PubMed Google Scholar
Khrustalev, V. N., Grishina, M. M., Matsulevich, Z. V., Lukiyanova, J. M., Borisova, G. N., Osmanov, V. K., Novikov, A. S., Kirichuk, A. A., Borisov, A. V., Solari, E. & Tskhovrebov, A. G. (2021). Dalton Trans. 50, 10689–10691. Web of Science CSD CrossRef CAS PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Kritchenkov, A. S., Bokach, N. A., Haukka, M. & Kukushkin, V. Y. (2011). Dalton Trans. 40, 4175–4182. Web of Science CSD CrossRef CAS PubMed Google Scholar
Le Questel, J.-Y., Berthelot, M. & Laurence, C. (2000). J. Phys. Org. Chem. 13, 347–358. Web of Science CrossRef CAS Google Scholar
Lu, T. & Chen, F. (2012). J. Comput. Chem. 33, 580–592. Web of Science CrossRef PubMed Google Scholar
Sapronov, A. A., Artemjev, A. A., Burkin, G. M., Khrustalev, V. N., Kubasov, A. S., Nenajdenko, V. G., Gomila, R. M., Frontera, A., Kritchenkov, A. S. & Tskhovrebov, A. G. (2022). Int. J. Mol. Sci. 23, 14973. PubMed Google Scholar
Sapronov, A. A., Kubasov, A. S., Khrustalev, V. N., Artemjev, A. A., Burkin, G. M., Dukhnovsky, E. A., Chizhov, A. O., Kritchenkov, A. S., Gomila, R. M., Frontera, A. & Tskhovrebov, A. G. (2023). Symmetry 15, 212. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.