research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Coupling between 2-pyridyl­selenyl chloride and phenyl­seleno­cyanate: synthesis, crystal structure and non-covalent inter­actions

crossmark logo

aDepartment of Chemistry, College of Natural and Computational Science, University of Gondar, Gondar 196, Ethiopia, bPeople's Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation, cKurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 31, 119071, Moscow, Russian Federation, dInstitute of Chemistry, Saint Petersburg State University, Universitetskaya, Nab., 7/9, 199034 Saint Petersburg, Russian Federation, eR.E. Alekseev Nizhny Novgorod State Technical University, Minin St., 24, Nizhny, Novgorod, Russian Federation, and fUniversity of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, 100000, Vietnam
*Correspondence e-mail: wodajo.ayalew@uog.edu.et

Edited by J. M. Delgado, Universidad de Los Andes, Venezuela (Received 14 November 2023; accepted 10 September 2024; online 17 September 2024)

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

A new pyridine-fused seleno­diazo­lium salt, 3-(phenyl­selan­yl)[1,2,4]selena­diazolo[4,5-a]pyridin-4-ylium chloride di­chloro­methane 0.352-solvate, C12H9N2Se2+·Cl·0.352CH2Cl2, was obtained from the reaction between 2-pyridyl­selenenyl chloride and phenyl­seleno­cyanate. Single-crystal structural analysis revealed the presence of C—H⋯N, C—H⋯Cl, C—H⋯Se hydrogen bonds as well as chalcogen–chalcogen (Se⋯Se) and chalcogen–halogen (Se⋯Cl) inter­actions. Non-covalent inter­actions were explored by DFT calculations followed by topological analysis of the electron density distribution (QTAIM analysis). The structure consists of pairs of seleno­diazo­lium moieties arranged in a head-to-tail fashion surrounding disordered di­chloro­methane mol­ecules. The assemblies are connected by C—H⋯Cl and C—H⋯N hydrogen bonds, forming layers, which stack along the c-axis direction connected by bifurcated Se⋯Cl⋯H—C inter­actions.

1. Chemical context

Recently, a novel cyclo­addition reaction between nitriles and 2-pyridyl­selenyl reagents was described (Khrustalev et al., 2021[Khrustalev, V. N., Grishina, M. M., Matsulevich, Z. V., Lukiyanova, J. M., Borisova, G. N., Osmanov, V. K., Novikov, A. S., Kirichuk, A. A., Borisov, A. V., Solari, E. & Tskhovrebov, A. G. (2021). Dalton Trans. 50, 10689-10691.]). What makes this finding particularly notable is that the reaction takes place under mild conditions, displaying a high degree of chemoselectivity (Grudova et al., 2022[Grudova, M. V., Kubasov, A. S., Khrustalev, V. N., Novikov, A. S., Kritchenkov, A. S., Nenajdenko, V. G., Borisov, A. V. & Tskhovrebov, A. G. (2022). Molecules, 27, 10291-1029.]; Artemjev et al., 2023[Artemjev, A. A., Kubasov, A. S., Zaytsev, V. P., Borisov, A. V., Kritchenkov, A. S., Nenajdenko, V. G., Gomila, R. M., Frontera, A. & Tskhovrebov, A. G. (2023). Cryst. Growth Des. 23, 2018-2023.]). As a result, pyridinium-fused seleno­diazo­lium salts are formed with excellent yields.

As part of our ongoing project to investigate the reactivity of bifunctional 2-pyridyl­selenyl reagents (Grudova et al., 2022[Grudova, M. V., Kubasov, A. S., Khrustalev, V. N., Novikov, A. S., Kritchenkov, A. S., Nenajdenko, V. G., Borisov, A. V. & Tskhovrebov, A. G. (2022). Molecules, 27, 10291-1029.]; Artemjev et al., 2022[Artemjev, A. A., Novikov, A. P., Burkin, G. M., Sapronov, A. A., Kubasov, A. S., Nenajdenko, V. G., Khrustalev, V. N., Borisov, A. V., Kirichuk, A. A., Kritchenkov, A. S., Gomila, R. M., Frontera, A. & Tskhovrebov, A. G. (2022). Int. J. Mol. Sci. 23, 63721-6372.], 2023[Artemjev, A. A., Kubasov, A. S., Zaytsev, V. P., Borisov, A. V., Kritchenkov, A. S., Nenajdenko, V. G., Gomila, R. M., Frontera, A. & Tskhovrebov, A. G. (2023). Cryst. Growth Des. 23, 2018-2023.]; Sapronov et al., 2023[Sapronov, A. A., Kubasov, A. S., Khrustalev, V. N., Artemjev, A. A., Burkin, G. M., Dukhnovsky, E. A., Chizhov, A. O., Kritchenkov, A. S., Gomila, R. M., Frontera, A. & Tskhovrebov, A. G. (2023). Symmetry 15, 212.]) we have recently expanded our research to explore the chemistry of addition to the C≡N triple bond involving a different category of nitrile substrates known as cyanamides or push–pull nitriles. Push–pull structures are characterized by high polarization and consist of an electron-withdrawing substituent or electronegative atom on one side of the multiple bond and an electron-donating group on the opposite side (Le Questel et al., 2000[Le Questel, J.-Y., Berthelot, M. & Laurence, C. (2000). J. Phys. Org. Chem. 13, 347-358.]; Gushchin et al., 2009[Gushchin, P. V., Kuznetsov, M. L., Haukka, M., Wang, M.-J., Gribanov, A. V. & Kukushkin, V. Y. (2009). Inorg. Chem. 48, 2583-2592.]; Kritchenkov et al., 2011[Kritchenkov, A. S., Bokach, N. A., Haukka, M. & Kukushkin, V. Y. (2011). Dalton Trans. 40, 4175-4182.]).

Here we show that 2-pyridyl­selenyl chloride reacts efficiently with phenyl­seleno­cyanate furnishing a cationic pyridinium-fused 1,2,4-seleno­diazole in high yield. This finding is another illustration of the remarkable propensity of bifunctional 2-pyridyl­selenyl reagents to engage in dipolar cyclo­addition with the CN triple bond, displaying a high degree of chemoselectivity. The title compound was synthesized in high yield in CH2Cl2 according to the scheme.

[Scheme 1]

2. Structural commentary

Crystals suitable for X-ray analysis were obtained directly from the reaction mixture. The compound crystallized as colorless blocks in space group P21/c. The asymmetric unit (Fig. 1[link]) contains one cation, one Cl anion and a disordered CH2Cl2 mol­ecule. The 1,2,4-seleno­diazole fragment is almost planar (r.m.s.d. = 0.017 Å) and makes an angle of 81.64 (16)° with the phenyl­selenyl ring. The Se1—N2 and Se1—C1 bond lengths are 1.863 (4) and 1.877 (4) Å, respectively, and the Se1⋯Cl1 distance is 2.9325 (17). These bond distances are similar to those reported in previous work on 1,2,4-seleno­diazo­les (Grudova et al., 2022[Grudova, M. V., Kubasov, A. S., Khrustalev, V. N., Novikov, A. S., Kritchenkov, A. S., Nenajdenko, V. G., Borisov, A. V. & Tskhovrebov, A. G. (2022). Molecules, 27, 10291-1029.]; Artemjev et al., 2022[Artemjev, A. A., Novikov, A. P., Burkin, G. M., Sapronov, A. A., Kubasov, A. S., Nenajdenko, V. G., Khrustalev, V. N., Borisov, A. V., Kirichuk, A. A., Kritchenkov, A. S., Gomila, R. M., Frontera, A. & Tskhovrebov, A. G. (2022). Int. J. Mol. Sci. 23, 63721-6372.], 2023[Artemjev, A. A., Kubasov, A. S., Zaytsev, V. P., Borisov, A. V., Kritchenkov, A. S., Nenajdenko, V. G., Gomila, R. M., Frontera, A. & Tskhovrebov, A. G. (2023). Cryst. Growth Des. 23, 2018-2023.]; Sapronov et al., 2022[Sapronov, A. A., Artemjev, A. A., Burkin, G. M., Khrustalev, V. N., Kubasov, A. S., Nenajdenko, V. G., Gomila, R. M., Frontera, A., Kritchenkov, A. S. & Tskhovrebov, A. G. (2022). Int. J. Mol. Sci. 23, 14973.], 2023[Sapronov, A. A., Kubasov, A. S., Khrustalev, V. N., Artemjev, A. A., Burkin, G. M., Dukhnovsky, E. A., Chizhov, A. O., Kritchenkov, A. S., Gomila, R. M., Frontera, A. & Tskhovrebov, A. G. (2023). Symmetry 15, 212.]). The Se2—C6 and Se2—C7 bond lengths are typical for Se—Car bonds [1.926 (5) Å and 1.946 (5) Å, respectively]. The C7—Se2—C6—N1 and C6—Se2—C7—C12 torsion angles are 93.4 (5) and 76.9 (4)°, respectively.

[Figure 1]
Figure 1
Mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

The crystal packing is shown in Fig. 2[link], viewed down the b axis. In the crystal, pairs of seleno­diazo­lium moieties are arranged in a head-to-tail fashion surrounding disordered di­chloro­methane mol­ecules. C—H⋯Cl and C—H⋯N hydrogen bonds (Table 1[link]) connect these units to form layers parallel to the ac plane. In addition, ππ stacking inter­actions between the phenyl rings of two neighboring mol­ecules occur. The layers are inter­connected via bifurcated Se⋯Cl⋯H—C inter­actions and stack along the c-axis.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cl1 0.95 2.60 3.297 (5) 131
C3—H3⋯Cl1i 0.95 2.60 3.526 (5) 167
C5—H5⋯Se2 0.95 2.82 3.242 (5) 108
C5—H5⋯N2ii 0.95 2.45 3.179 (6) 134
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
View along the b axis of the crystal packing of the title compound.

To further understand the nature of the inter­actions and to qu­antify the strength of the bifurcated chalcogen–halogen–hydrogen contacts, Se⋯Cl⋯H—C, and the inter­actions involving the Se atom (Se⋯Se and Se⋯Cl) in the crystal structure, DFT calculations followed by a topological analysis of the electron-density distribution (QTAIM analysis) were carried out at the ωB97XD/6-311++G** level of theory for the model structure (see Computational details and Table S1 in the supporting information). The results of the QTAIM analysis are summarized in Table S1. The contour line diagrams of the Laplacian of the electron density distribution Ñ2r(r), bond paths, and selected zero-flux surfaces, visualization of electron localization function (ELF) and reduced density gradient (RDG) analyses for bifurcated Se⋯Cl⋯H—C, Se⋯Se and Se⋯Cl inter­actions in the crystal structure are shown in Figs. 3[link] and 4[link], respectively.

[Figure 3]
Figure 3
Contour line diagram of the Laplacian of the electron-density distribution Ñ2r(r), bond paths, and selected zero-flux surfaces (left panel), visualization of the electron localization function (ELF, center panel) and reduced density gradient (RDG, right panel) analyses for bifurcated chalcogen-hydrogen bonding Se⋯Cl⋯H—C (contacts Se1⋯Cl1 2.9325 (17) Å and C2—H2⋯Cl 2.60 Å) in the crystal structure. Bond critical points (3, −1) are shown in blue, nuclear critical points (3, −3) in pale brown, ring critical points (3, +1) in orange, bond paths are shown as pale brown lines, length units in Å, and the color scale for the ELF and RDG maps is presented in a.u.
[Figure 4]
Figure 4
Contour line diagram of the Laplacian of the electron-density distribution Ñ2r(r), bond paths, and selected zero-flux surfaces (left panel), visualization of the electron localization function (ELF, center panel) and reduced density gradient (RDG, right panel) analyses for chalcogen bonding Se2⋯Se1i [3.9426 (18) Å; symmetry code: (i) x, [{3\over 2}] − y, [{1\over 2}] + z], Se2⋯Cl1–ii [3.229 (2) Å; symmetry code: (ii) −x, [{1\over 2}] + y, [{1\over 2}] − z] and Se1⋯Cl1–iii [3.3805 (19) Å; symmetry code: (iii) −x, 1 − y, −z] in the crystal structure. Bond critical points (3, −1) are shown in blue, nuclear critical points (3, −3) in pale brown, ring critical points (3, +1) in orange, bond paths are shown as pale brown lines, length units in Å, and the color scale for the ELF and RDG maps is presented in a.u.

The QTAIM analysis of the model structure demonstrates the presence of bond critical points (3, −1) for short contacts Se⋯Cl, C–H⋯Cl and Se⋯Se in the crystal structure (Table S1 and Figs. 3[link] and 4[link]) (Bondi et al., 1966[Bondi, A. (1966). J. Phys. Chem. 70, 3006-3007.]). The low magnitude of the electron density, the positive values of the Laplacian of the electron density and zero or very close to zero values of the energy density in these bond critical points (3, −1) and estimated strength for appropriate short contacts are typical for weak purely non-covalent [–G(r)/V(r) > 1; Espinosa et al., 2002[Espinosa, E., Alkorta, I., Elguero, J. & Molins, E. (2002). J. Chem. Phys. 117, 5529-5542.]] inter­actions. The Laplacian of the electron density is typically decomposed into the sum of contributions along the three principal axes of maximal variation. The three eigenvalues of the Hessian matrix (λ1, λ2 and λ3) and the sign of λ2 can be utilized to distinguish bonding (attractive, λ2 < 0) weak inter­actions from non-bonding ones (repulsive, λ2 > 0) (Johnson et al., 2010[Johnson, E. R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A. J. & Yang, W. (2010). J. Am. Chem. Soc. 132, 6498-6506.]; Contreras-García et al., 2011[Contreras-García, J., Johnson, E. R., Keinan, S., Chaudret, R., Piquemal, J.-P., Beratan, D. N. & Yang, W. (2011). J. Chem. Theory Comput. 7, 625-632.]). Thus, the discussed short contacts Se⋯Cl, C–H⋯Cl and Se⋯Se in the structure are attractive.

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.43, update of Sep. 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) showed only 16 hits for 1,2,4-seleno­diazo­lium salts, which differ not only in the type of nitrile fragment (Me: EWEPUU, Khrustalev et al., 2021[Khrustalev, V. N., Grishina, M. M., Matsulevich, Z. V., Lukiyanova, J. M., Borisova, G. N., Osmanov, V. K., Novikov, A. S., Kirichuk, A. A., Borisov, A. V., Solari, E. & Tskhovrebov, A. G. (2021). Dalton Trans. 50, 10689-10691.]; Ph: NAQDES, Buslov et al., 2021[Buslov, I. V., Novikov, A. S., Khrustalev, V. N., Grudova, M. V., Kubasov, A. S., Matsulevich, Z. V., Borisov, A. V., Lukiyanova, J. M., Grishina, M. M., Kirichuk, A. A., Serebryanskaya, T. V., Kritchenkov, A. S. & Tskhovrebov, A. G. (2021). Symmetry, 13, 2350.]; BrC6H4: EWEQEF, Khrustalev et al., 2021[Khrustalev, V. N., Grishina, M. M., Matsulevich, Z. V., Lukiyanova, J. M., Borisova, G. N., Osmanov, V. K., Novikov, A. S., Kirichuk, A. A., Borisov, A. V., Solari, E. & Tskhovrebov, A. G. (2021). Dalton Trans. 50, 10689-10691.]), but also in the anion (CF3COO–: YEJXEU; AuCl4–: YEJXUK; and ReO4: YEJYAR, Artemjev et al., 2022[Artemjev, A. A., Novikov, A. P., Burkin, G. M., Sapronov, A. A., Kubasov, A. S., Nenajdenko, V. G., Khrustalev, V. N., Borisov, A. V., Kirichuk, A. A., Kritchenkov, A. S., Gomila, R. M., Frontera, A. & Tskhovrebov, A. G. (2022). Int. J. Mol. Sci. 23, 63721-6372.]).

5. Synthesis and crystallization

General remarks. All manipulations were carried out in air. All the reagents used in this study were obtained from commercial sources (Aldrich, TCI-Europe, Strem, ABCR). Commercially available solvents were purified by conventional methods and distilled right before they were used. NMR spectra were recorded on a Bruker Advance Neo (1H: 700 MHz); chemical shifts (δ) are given in ppm, coupling constants (J) in Hz. 2-Pyridyl­selenyl chloride was synthesized by our method (Artemjev et al., 2022[Artemjev, A. A., Novikov, A. P., Burkin, G. M., Sapronov, A. A., Kubasov, A. S., Nenajdenko, V. G., Khrustalev, V. N., Borisov, A. V., Kirichuk, A. A., Kritchenkov, A. S., Gomila, R. M., Frontera, A. & Tskhovrebov, A. G. (2022). Int. J. Mol. Sci. 23, 63721-6372.]; Artemjev et al., 2023[Artemjev, A. A., Kubasov, A. S., Zaytsev, V. P., Borisov, A. V., Kritchenkov, A. S., Nenajdenko, V. G., Gomila, R. M., Frontera, A. & Tskhovrebov, A. G. (2023). Cryst. Growth Des. 23, 2018-2023.]).

A solution of phenyl­seleno­cyanate (0.16 mmol, 20 µL) in CH2Cl2 (1 mL) was added to a suspension of 2-pyridyl­selenyl chloride (0.13 mmol, 25.3 mg) in CH2Cl2 (2 mL) and the mixture was kept at room temperature for 6 h without stirring. The formed colorless precipitate was centrifuged, washed with CH2Cl2 (1 mL), Et2O (3 × 1 mL) and dried under vacuum. Yield 34.5 mg (70%). 1H NMR (700 MHz, D2O) δ 9.53 (d, J = 6.8 Hz, 1H, H5), 8.82 (d, J = 8.6 Hz, 1H, H8), 8.42 (t, J = 7.9 Hz, 1H, H7), 8.05 (t, J = 7.0 Hz, 1H, H6), 7.82 (d, J = 7.6 Hz, 2H, H2′), 7.55 (t, J = 7.5 Hz, 1H, H4′), 7.49 (t, J = 7.7 Hz, 2H, H3′). 13C NMR (176 MHz, D2O) δ 168.1 (C3), 148.8 (C9), 139.9 (C5), 137.4 (C8), 135.7 (C2′), 130.5 (C4′), 130.3 (C3′), 126.0 (C7), 123.8 (C1′), 123.2 (C6). Crystals suitable for X-ray analysis were obtained directly from the reaction mixture.

The single-point calculations based on the experimental X-ray structure were carried out at the DFT level of theory using the dispersion-corrected hybrid functional ωB97XD (Chai et al., 2008[Chai, J.-D. & Head-Gordon, M. (2008). Phys. Chem. Chem. Phys. 10, 6615-6620.]) with the Gaussian-09 (Frisch et al., 2010[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Had, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2010). Gaussian 09, Revision B. 01. Gaussian Inc. Wallingford, CT, USA.]) program package. The 6-311++G** basis sets were used for all atoms. The topological analysis of the electron density distribution was performed using the Multiwfn program (version 3.7; Lu et al., 2012[Lu, T. & Chen, F. (2012). J. Comput. Chem. 33, 580-592.]). The Cartesian atomic coordinates for the model structure are presented in Table S1 of the supporting information.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were included in calculated positions (C—H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The di­chloro­methane mol­ecule is disordered around a center of symmetry and refined to a total occupancy of 70%. Residual electron density of 1.5 e Å−3 remained at the center of symmetry. Attempts to rationalize it did not produce a plausible model nor an improved refinement.

Table 2
Experimental details

Crystal data
Chemical formula C12H9N2Se2+·Cl·0.352CH2Cl2
Mr 404.50
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 11.087 (3), 11.758 (5), 11.991 (3)
β (°) 115.337 (6)
V3) 1412.8 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 5.54
Crystal size (mm) 0.20 × 0.10 × 0.08
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.466, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 7927, 3394, 2649
Rint 0.038
(sin θ/λ)max−1) 0.661
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.088, 1.06
No. of reflections 3394
No. of parameters 182
No. of restraints 20
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.50, −0.92
Computer programs: APEX2 and SAINT (Bruker, 2019[Bruker (2019). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

3-(Phenylselanyl)[1,2,4]selenadiazolo[4,5-a]pyridin-4-ylium chloride dichloromethane top
Crystal data top
C12H9N2Se2+·Cl·0.352CH2Cl2F(000) = 779
Mr = 404.50Dx = 1.902 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.087 (3) ÅCell parameters from 3887 reflections
b = 11.758 (5) Åθ = 2.6–28.0°
c = 11.991 (3) ŵ = 5.54 mm1
β = 115.337 (6)°T = 100 K
V = 1412.8 (8) Å3Block, colourless
Z = 40.20 × 0.10 × 0.08 mm
Data collection top
Bruker D8 Venture
diffractometer
2649 reflections with I > 2σ(I)
φ and ω scansRint = 0.038
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 28.0°, θmin = 2.0°
Tmin = 0.466, Tmax = 0.746h = 1214
7927 measured reflectionsk = 1215
3394 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: mixed
wR(F2) = 0.088H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0153P)2 + 6.8557P]
where P = (Fo2 + 2Fc2)/3
3394 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 1.50 e Å3
20 restraintsΔρmin = 0.91 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Se10.10761 (5)0.56698 (4)0.17359 (4)0.01592 (12)
Se20.24558 (5)0.87121 (4)0.42629 (4)0.01426 (12)
N10.1762 (4)0.6289 (3)0.4071 (4)0.0132 (8)
N20.1584 (4)0.7155 (3)0.2272 (4)0.0162 (8)
C10.1373 (4)0.5329 (4)0.3362 (4)0.0121 (9)
C20.1221 (5)0.4305 (4)0.3880 (4)0.0150 (9)
H20.0955830.3633230.3395590.018*
C30.1465 (5)0.4290 (4)0.5109 (5)0.0188 (10)
H30.1382540.3598870.5481510.023*
C40.1833 (5)0.5294 (4)0.5812 (4)0.0183 (10)
H40.1975640.5282740.6651250.022*
C50.1988 (5)0.6283 (4)0.5295 (4)0.0143 (9)
H50.2247700.6959600.5771850.017*
C60.1880 (5)0.7279 (4)0.3425 (4)0.0134 (9)
C70.4343 (5)0.8524 (4)0.4672 (5)0.0162 (10)
C80.5220 (5)0.8288 (4)0.5882 (5)0.0259 (12)
H80.4889480.8181200.6486150.031*
C90.6579 (6)0.8207 (5)0.6214 (5)0.0319 (13)
H90.7177350.8044950.7044250.038*
C100.7062 (5)0.8362 (4)0.5339 (6)0.0281 (13)
H100.7994140.8313920.5569430.034*
C110.6195 (5)0.8587 (5)0.4130 (5)0.0276 (12)
H110.6530580.8680780.3527100.033*
C120.4828 (5)0.8677 (5)0.3788 (5)0.0238 (11)
H120.4232530.8841890.2957740.029*
Cl10.05719 (12)0.32474 (9)0.11352 (11)0.0163 (2)
Cl20.5173 (17)0.4244 (7)0.6117 (12)0.055 (2)0.352 (3)
Cl30.4753 (18)0.5382 (9)0.3886 (13)0.077 (3)0.352 (3)
C130.5222 (19)0.5578 (8)0.5473 (13)0.058 (4)0.352 (3)
H13A0.6133560.5900370.5874800.069*0.352 (3)
H13B0.4599700.6111510.5597770.069*0.352 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.0243 (3)0.0133 (2)0.0105 (2)0.0043 (2)0.0078 (2)0.00122 (19)
Se20.0161 (2)0.0113 (2)0.0162 (2)0.00220 (19)0.0076 (2)0.00216 (19)
N10.016 (2)0.0113 (17)0.014 (2)0.0002 (16)0.0076 (17)0.0001 (16)
N20.023 (2)0.0122 (18)0.013 (2)0.0050 (17)0.0073 (18)0.0000 (16)
C10.013 (2)0.012 (2)0.012 (2)0.0013 (18)0.0052 (19)0.0001 (17)
C20.017 (2)0.012 (2)0.016 (2)0.0004 (19)0.008 (2)0.0013 (19)
C30.018 (2)0.018 (2)0.021 (3)0.000 (2)0.009 (2)0.005 (2)
C40.024 (3)0.021 (2)0.010 (2)0.002 (2)0.008 (2)0.0019 (19)
C50.021 (2)0.013 (2)0.009 (2)0.005 (2)0.0062 (19)0.0008 (18)
C60.014 (2)0.013 (2)0.015 (2)0.0005 (18)0.007 (2)0.0008 (18)
C70.015 (2)0.009 (2)0.022 (3)0.0017 (18)0.005 (2)0.0016 (19)
C80.024 (3)0.027 (3)0.023 (3)0.003 (2)0.008 (2)0.002 (2)
C90.019 (3)0.032 (3)0.029 (3)0.001 (2)0.005 (2)0.001 (3)
C100.014 (3)0.016 (2)0.049 (4)0.000 (2)0.008 (3)0.007 (2)
C110.025 (3)0.028 (3)0.034 (3)0.001 (2)0.016 (3)0.003 (2)
C120.017 (3)0.029 (3)0.023 (3)0.000 (2)0.006 (2)0.002 (2)
Cl10.0179 (6)0.0140 (5)0.0172 (6)0.0004 (5)0.0078 (5)0.0028 (4)
Cl20.043 (3)0.040 (5)0.088 (4)0.012 (4)0.033 (3)0.019 (4)
Cl30.047 (4)0.070 (7)0.113 (5)0.004 (6)0.035 (4)0.004 (6)
C130.036 (6)0.049 (7)0.096 (7)0.013 (7)0.036 (6)0.005 (7)
Geometric parameters (Å, º) top
Se1—N21.863 (4)C7—C81.385 (7)
Se1—C11.877 (4)C7—C121.390 (7)
Se2—C61.926 (5)C8—C91.388 (7)
Se2—C71.946 (5)C8—H80.9500
N1—C11.367 (6)C9—C101.379 (8)
N1—C51.380 (6)C9—H90.9500
N1—C61.435 (6)C10—C111.380 (8)
N2—C61.285 (6)C10—H100.9500
C1—C21.396 (6)C11—C121.395 (7)
C2—C31.380 (6)C11—H110.9500
C2—H20.9500C12—H120.9500
C3—C41.405 (7)Cl2—C131.7596 (12)
C3—H30.9500Cl3—C131.7597 (11)
C4—C51.362 (6)C13—H13A0.9900
C4—H40.9500C13—H13B0.9900
C5—H50.9500
N2—Se1—C187.06 (18)C8—C7—C12119.8 (5)
C6—Se2—C796.45 (18)C8—C7—Se2118.9 (4)
C1—N1—C5121.5 (4)C12—C7—Se2121.2 (4)
C1—N1—C6114.4 (4)C7—C8—C9120.2 (5)
C5—N1—C6124.2 (4)C7—C8—H8119.9
C6—N2—Se1112.2 (3)C9—C8—H8119.9
N1—C1—C2120.1 (4)C10—C9—C8120.0 (5)
N1—C1—Se1109.7 (3)C10—C9—H9120.0
C2—C1—Se1130.2 (3)C8—C9—H9120.0
C3—C2—C1118.7 (4)C9—C10—C11120.1 (5)
C3—C2—H2120.6C9—C10—H10119.9
C1—C2—H2120.6C11—C10—H10119.9
C2—C3—C4120.2 (4)C10—C11—C12120.3 (5)
C2—C3—H3119.9C10—C11—H11119.9
C4—C3—H3119.9C12—C11—H11119.9
C5—C4—C3120.3 (4)C7—C12—C11119.5 (5)
C5—C4—H4119.8C7—C12—H12120.2
C3—C4—H4119.8C11—C12—H12120.2
C4—C5—N1119.2 (4)Cl2—C13—Cl3107.9 (5)
C4—C5—H5120.4Cl2—C13—H13A110.1
N1—C5—H5120.4Cl3—C13—H13A110.1
N2—C6—N1116.6 (4)Cl2—C13—H13B110.1
N2—C6—Se2122.4 (3)Cl3—C13—H13B110.1
N1—C6—Se2121.0 (3)H13A—C13—H13B108.4
C1—Se1—N2—C60.4 (4)Se1—N2—C6—N10.5 (5)
C5—N1—C1—C21.3 (7)Se1—N2—C6—Se2179.5 (2)
C6—N1—C1—C2179.9 (4)C1—N1—C6—N21.5 (6)
C5—N1—C1—Se1177.1 (3)C5—N1—C6—N2177.3 (4)
C6—N1—C1—Se11.6 (5)C1—N1—C6—Se2178.6 (3)
N2—Se1—C1—N11.1 (3)C5—N1—C6—Se22.7 (6)
N2—Se1—C1—C2179.4 (5)C12—C7—C8—C90.1 (8)
N1—C1—C2—C30.4 (7)Se2—C7—C8—C9176.7 (4)
Se1—C1—C2—C3177.7 (4)C7—C8—C9—C100.0 (8)
C1—C2—C3—C41.1 (7)C8—C9—C10—C110.6 (8)
C2—C3—C4—C51.7 (7)C9—C10—C11—C121.0 (8)
C3—C4—C5—N10.8 (7)C8—C7—C12—C110.3 (8)
C1—N1—C5—C40.7 (7)Se2—C7—C12—C11177.0 (4)
C6—N1—C5—C4179.4 (4)C10—C11—C12—C70.8 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl10.952.603.297 (5)131
C3—H3···Cl1i0.952.603.526 (5)167
C5—H5···Se20.952.823.242 (5)108
C5—H5···N2ii0.952.453.179 (6)134
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+3/2, z+1/2.
 

Funding information

This work was performed under the support of the Russian Science Foundation (award No. 22–73–10007).

References

First citationArtemjev, A. A., Kubasov, A. S., Zaytsev, V. P., Borisov, A. V., Kritchenkov, A. S., Nenajdenko, V. G., Gomila, R. M., Frontera, A. & Tskhovrebov, A. G. (2023). Cryst. Growth Des. 23, 2018–2023.  Google Scholar
First citationArtemjev, A. A., Novikov, A. P., Burkin, G. M., Sapronov, A. A., Kubasov, A. S., Nenajdenko, V. G., Khrustalev, V. N., Borisov, A. V., Kirichuk, A. A., Kritchenkov, A. S., Gomila, R. M., Frontera, A. & Tskhovrebov, A. G. (2022). Int. J. Mol. Sci. 23, 63721–6372.  Google Scholar
First citationBondi, A. (1966). J. Phys. Chem. 70, 3006–3007.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2019). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuslov, I. V., Novikov, A. S., Khrustalev, V. N., Grudova, M. V., Kubasov, A. S., Matsulevich, Z. V., Borisov, A. V., Lukiyanova, J. M., Grishina, M. M., Kirichuk, A. A., Serebryanskaya, T. V., Kritchenkov, A. S. & Tskhovrebov, A. G. (2021). Symmetry, 13, 2350.  Google Scholar
First citationChai, J.-D. & Head-Gordon, M. (2008). Phys. Chem. Chem. Phys. 10, 6615–6620.  Web of Science CrossRef PubMed CAS Google Scholar
First citationContreras-García, J., Johnson, E. R., Keinan, S., Chaudret, R., Piquemal, J.-P., Beratan, D. N. & Yang, W. (2011). J. Chem. Theory Comput. 7, 625–632.  Web of Science PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEspinosa, E., Alkorta, I., Elguero, J. & Molins, E. (2002). J. Chem. Phys. 117, 5529–5542.  Web of Science CrossRef CAS Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Had, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2010). Gaussian 09, Revision B. 01. Gaussian Inc. Wallingford, CT, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGrudova, M. V., Kubasov, A. S., Khrustalev, V. N., Novikov, A. S., Kritchenkov, A. S., Nenajdenko, V. G., Borisov, A. V. & Tskhovrebov, A. G. (2022). Molecules, 27, 10291–1029.  Google Scholar
First citationGushchin, P. V., Kuznetsov, M. L., Haukka, M., Wang, M.-J., Gribanov, A. V. & Kukushkin, V. Y. (2009). Inorg. Chem. 48, 2583–2592.  PubMed Google Scholar
First citationJohnson, E. R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A. J. & Yang, W. (2010). J. Am. Chem. Soc. 132, 6498–6506.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKhrustalev, V. N., Grishina, M. M., Matsulevich, Z. V., Lukiyanova, J. M., Borisova, G. N., Osmanov, V. K., Novikov, A. S., Kirichuk, A. A., Borisov, A. V., Solari, E. & Tskhovrebov, A. G. (2021). Dalton Trans. 50, 10689–10691.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKritchenkov, A. S., Bokach, N. A., Haukka, M. & Kukushkin, V. Y. (2011). Dalton Trans. 40, 4175–4182.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLe Questel, J.-Y., Berthelot, M. & Laurence, C. (2000). J. Phys. Org. Chem. 13, 347–358.  Web of Science CrossRef CAS Google Scholar
First citationLu, T. & Chen, F. (2012). J. Comput. Chem. 33, 580–592.  Web of Science CrossRef PubMed Google Scholar
First citationSapronov, A. A., Artemjev, A. A., Burkin, G. M., Khrustalev, V. N., Kubasov, A. S., Nenajdenko, V. G., Gomila, R. M., Frontera, A., Kritchenkov, A. S. & Tskhovrebov, A. G. (2022). Int. J. Mol. Sci. 23, 14973.  PubMed Google Scholar
First citationSapronov, A. A., Kubasov, A. S., Khrustalev, V. N., Artemjev, A. A., Burkin, G. M., Dukhnovsky, E. A., Chizhov, A. O., Kritchenkov, A. S., Gomila, R. M., Frontera, A. & Tskhovrebov, A. G. (2023). Symmetry 15, 212.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds