research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of the (η2:η2-cyclo­octa-1,5-diene)(η6-toluene)­iridium(I) cation and μ-chlorido-iridium(III) complexes of 2-(phosphinito)- and 2-(phosphinometh­yl)anthra­quinone ligands

crossmark logo

aDepartment of Chemistry, State University of New York at New Paltz, New Paltz, NY 12561, USA, and bDepartment of Chemistry, 120 Trustee Road, University of Rochester, Rochester, NY 14627, USA
*Correspondence e-mail: marnellm@newpaltz.edu

Edited by J. Reibenspies, Texas A & M University, USA (Received 6 June 2024; accepted 11 September 2024; online 30 September 2024)

When reacted in dry, degassed toluene, [Ir(COD)Cl]2 (COD = cyclo­octa-1,5-diene) and 2 equivalents of 2-(di-tert-butyl­phosphinito)anthra­quinone (tBuPOAQH) were found to form a unique tri-iridium compound consisting of one monoanionic dinuclear tri-μ-chlorido complex bearing one bidentate tBuPOAQ ligand per iridium, which was charge-balanced by an outer sphere [Ir(toluene)(COD)]+ ion, the structure of which has not previously been reported. This product, which is a toluene solvate, namely, (η2:η2-cyclo­octa-1,5-diene)(η6-toluene)­iridium(I) tri-μ-chlorido-bis­({3-[(di-tert-butyl­phosphan­yl)­oxy]-9,10-dioxoanthracen-2-yl}hydridoiridium(III)) toluene monosolvate, [Ir(C7H8)(C8H12)][Ir2H2(C22H24O3P)2Cl3]·C7H8 or [Ir(toluene)(COD)][Ir(κ-P,C-tBuPOAQ)(H)]2(μ-Cl)3]·toluene, formed as small orange platelets at room temperature, crystallizing in the triclinic space group P[\overline{1}]. The cation and anion are linked via weak C—H⋯O inter­actions. The stronger inter­molecular attractions are likely the offset parallel ππ inter­actions, which occur between the toluene ligands of pairs of inverted cations and between pairs of inverted anthra­quinone moieties, the latter of which are capped by toluene solvate mol­ecules, making for π-stacks of four mol­ecules each. The related ligand, 2-(di-tert-butyl­phosphinometh­yl)-anthra­quinone (tBuPCAQH), did not form crystals suitable for X-ray diffraction under analogous reaction conditions. However, when the reaction was conducted in chloro­form, yellow needles readily formed following addition of 1 atm of carbon monoxide. Diffraction studies revealed a neutral, dinuclear, di-μ-chlorido complex, di-μ-chlorido-bis­(carbon­yl{3-[(di-tert-butyl­phosphan­yl)­oxy]-9,10-dioxoanthracen-2-yl}hydridoiridium(I)), [Ir2H2(C23H26O2P)2Cl2(CO)2] or [Ir(κ-P,C-tBuPCAQ)(H)(CO)(μ-Cl)]2, Ir2C48H54Cl2O6P2, again crystallizing in space group P[\overline{1}]. Offset parallel ππ inter­actions between anthra­quinone groups of adjacent mol­ecules link the mol­ecules in one dimension.

1. Chemical context

Tridentate, meridional ligands known as ‘pincers’ have become ubiquitous in organometallic chemistry, particularly in complexes of platinum group metals (Albrecht & van Koten, 2001[Albrecht, M. & van Koten, G. (2001). Angew. Chem. Int. Ed. 40, 3750-3781.]), though many systems incorporating first-row transition metals now exist (Morales-Morales, 2018[Morales-Morales, D. (2018). Editor. Pincer Compounds: Chemistry and Applications. Cambridge, Massachusetts: Elsevier.]; Alig et al., 2019[Alig, L., Fritz, M. & Schneider, S. (2019). Chem. Rev. 119, 2681-2751.]). Complexes of iridium have held a central role in the development of pincer chemistry since the first known reports of organometallic pincer complexes (Moulton & Shaw, 1976[Moulton, C. J. & Shaw, B. L. (1976). J. Chem. Soc. Dalton Trans., pp. 1020-1024.]), and are probably most notable for advances in homogeneous C—H activation chemistry and alkane de­hydrogenation (Choi et al., 2011[Choi, J., MacArthur, A. H. R., Brookhart, M. & Goldman, A. S. (2011). Chem. Rev. 111, 1761-1779.]). Pincer ligands have found widespread use due to their tunability, their ability to enforce reactive conformations, and the enhanced stability of these systems (van der Boom et al., 2003[Boom, M. E. van der & Milstein, D. (2003). Chem. Rev. 103, 1759-1792.]; Roddick, 2013[Roddick, D. M. (2013). In Topics in Organometallic Chemistry: Organometallic Pincer Chemistry, Vol 40, edited by G. van Koten & D. Milstein, pp. 49-88. Berlin, Heidelberg: Springer.]). The enhanced stability of pincer complexes largely stems from their tridentate binding mode; however, ligands intended as pincer-type do not always bind in a tridentate fashion. Sometimes bidentate, or even metal bridging, binding modes are encountered. Pincers bearing two phosphinite groups, known as POCOP ligands, have been particularly well studied (Morales-Morales, 2008[Morales-Morales, D. (2008). Mini-Rev. Org. Chem. 5, 141-152.]). Previously, we reported a modification of this common framework bearing one phosphinite and one ketone group, 3-(di-tert-butyl­phosphinito)aceto­phenone, or tBuPOCOH (Wilklow-Marnell & Brennessel, 2019[Wilklow-Marnell, M. & Brennessel, W. W. (2019). Polyhedron, 160, 83-91.]). When refluxed in toluene for 24 h with 0.5 molar equivalents of [Ir(COD)Cl]2 (COD = cyclo­octa-1,5-diene), the desired pincer-ligated iridium species was obtained in good yield (Fig. 1[link]). However, when metalation of the related ligand, 2-(di-tert-butyl­phosphinito)anthra­quinone (tBuPOAQH), was conducted under identical conditions, a mixture of unidentified products was obtained which resisted efforts to separate cleanly (Fig. 1[link]).

[Scheme 1]
[Figure 1]
Figure 1
Successful metalation of tBuPOCOH using [Ir(COD)Cl]2 and attempted metalation of tBuPOAQH.

Before any heating, and almost immediately upon mixing, a significant color change from orange to dark reddish brown was noted when tBuPOAQH was reacted with [Ir(COD)Cl]2 in toluene at room temperature, indicating that some degree of ligation of tBuPOAQH had occurred. In light of the failure of forming a pincer complex when refluxed in toluene, the reaction was again attempted but allowed to remain at room temperature. The 31P NMR spectrum indicated mainly a single product had formed with a resonance at 161 ppm in toluene and some free tBuPOAQH remaining. Over a period of several days, a fine orange crystalline material separated from the solution, which was determined by single crystal structure determination to be the unique complex [Ir(η6-toluene)(η2:η2-COD)] [(tBuPOAQIrH)2(μ-Cl)3]·toluene (1) as shown in Fig. 2[link]. The formation and isolation of [Ir(toluene)(COD)]+ and other [Ir(arene)(COD)]+ complexes have been previously demonstrated (Sievert & Muetterties, 1981[Sievert, A. C. & Muetterties, E. L. (1981). Inorg. Chem. 20, 489-501.]; Kanchiku et al., 2007[Kanchiku, S., Suematsu, H., Matsumoto, K., Uchida, T. & Katsuki, T. (2007). Angew. Chem. Int. Ed. 46, 3889-3891.]); however, a structure containing the [Ir(toluene)(COD)]+ cation has not yet been reported to date.

[Figure 2]
Figure 2
Anisotropic displacement ellipsoid plot of 1 drawn at the 50% probability level with all H atoms omitted except for hydrido ligands. The minor component of disorder is not shown.

It was considered that under reflux conditions trace moisture may have led to hydrolysis of the ligand P—O bond, and the carbon analog, 2-(di-tert-butyl­phosphinometh­yl)anthra­quinone (tBuPCAQH), was synthesized in hopes it might resist this. However, metalation of tBuPCAQH with [Ir(COD)Cl]2 in refluxing toluene again failed to produce an isolable pincer-ligated product. When allowed to react and remain at room temperature, a solid material did eventually separate from solution; however, only polycrystalline material or crystals too small for diffraction were obtained.

When formed in toluene or chloro­form, isolated and removed of volatiles under vacuum, then redissolved in chloro­form (or deutero­chloro­form) and exposed to an atmosphere of carbon monoxide, a change of color to pale yellow was noted. Crystals formed over a 16 h period. Single crystal X-ray diffraction revealed this product to be the charge neutral di-iridium complex, [Ir(κ-P,C-PCAQ)H(CO)(μ-Cl)]2 (2), with the intended pincer ligand again binding instead in a bidentate manner (Fig. 3[link]). In this report, we provide the syntheses of both tBuPOAQH and tBuPCAQH ligands, the isolation of complexes 1 and 2, and compare their structures to related iridium complexes.

[Figure 3]
Figure 3
Anisotropic displacement ellipsoid plot of 2 drawn at the 50% probability level with all H atoms omitted except for hydrido ligands. The symmetry-equivalent portion of the mol­ecule was generated by the inversion operation 1 − x, 1 − y, 1 − z.

2. Structural commentary

Single-crystal X-ray diffraction analysis determined the structure of 1 to be a tri-iridium species with two iridium-containing complex ions as a toluene solvate (Fig. 2[link]). The asymmetric unit contains one monocationic iridium complex, one monoanionic di-iridium complex, and one toluene solvent mol­ecule of crystallization, all in general positions in space group P[\overline{1}]. The anionic complex (1an) consists of two iridi­um(III) centers, each ligated by one bidentate tBuPOAQ ligand via P and C atoms, one hydrido ligand (resulting from C—H activation of tBuPOAQH), and three bridging chlorido ligands. The geometry at each iridium center is distorted octa­hedral (Stiefel & Brown, 1972[Stiefel, E. I. & Brown, G. F. (1972). Inorg. Chem. 11, 434-436.]). The cationic complex (1cat) consists of an iridium(I) center bound η6 to a toluene ligand and bound in a bis-η2 manner to unconjugated diene COD, giving a geometry akin to a ‘planar’ two-legged piano stool complex (Ward et al., 1997[Ward, T. M., Schafer, O., Daul, C. & Hofmann, P. (1997). Organometallics, 16, 3207-3215.]), wherein the two legs are the midpoints of the double bonds of the COD ligand.

The majority, if not all, six-coordinate IrIII complexes adopt octa­hedral geometries. In fact, as a mol­ecular complex, there has yet to be a report of a trigonal–prismatic hexa­coordinate iridium species to our knowledge (Yellowlees & Macnamara, 2003[Yellowlees, L. J. & Macnamara, K. G. (2003). In Comprehensive Coordination Chemistry II, Vol. 6, edited by J. A. McCleverty & T. J. Meyer, pp. 147-246. Oxford: Elsevier.]; Cremades et al., 2010[Cremades, E., Echeverría, J. & Alvarez, S. (2010). Chem. A Eur. J. 16, 10380-10396.]). The slight distortion from an octa­hedral arrangement seen in 1an likely results from the steric bulk and restricted bite angle of the tBuPOAQ ligand, as well as the limited separation of the three bridging chlorides which, as an IrCl3 unit, act as a tridentate ligand for the other iridium in the complex. Octa­hedral complexes are known to distort by undergoing trigonal twisting into a metaprismatic geometry somewhere between octa­hedral and trigonal prismatic forms when chelating ligands with rigid LL distances are present (Cremades et al., 2010[Cremades, E., Echeverría, J. & Alvarez, S. (2010). Chem. A Eur. J. 16, 10380-10396.]; Alvarez, 2015[Alvarez, S. (2015). Chem. Rev. 115, 13447-13483.]). This occurs because most five-membered chelate rings display bite angles of < 90° (Aguilà et al., 2009[Aguilà, D., Escribano, E., Speed, S., Talancón, D., Yermán, L. & Alvarez, S. (2009). Dalton Trans. pp. 6610-6625.]), which better suit the ideal bond angle between ligands in a trigonal–prismatic geometry of 81.8°, as opposed to 90° for octa­hedral. However, the bite angle alone can only rarely induce a true trigonal–prismatic geometry.

In the case of the 1an, the Ir—Cl bond lengths are not uniform, but the bonds trans to the hydrido ligands are much longer by comparison [2.5819 (11) Å versus 2.4782 (11) and 2.4818 (11) Å for Ir1; 2.5476 (11) versus 2.4963 (11) and 2.4780 (12) Å for Ir2; Table 1[link]], fitting with the strong trans-influence of a hydrido ligand. The Cl—Ir—Cl bond angles have a range of 78.35 (4)–82.68 (4)°, and average to 80.38 (7)° at Ir1 and 80.64 (7)° at Ir2, quite close to the ideal angles of a trigonal–prismatic geometry [81.8°]. Ostensibly, the steric influence of tert-butyl groups from the tBuPOAQ ligand on this are evident as the P—Ir—Cl bond angles for the two chlorides cis to P are rather large at 107.33 (4) and 101.24 (4)° for Ir1 and 106.79 (4) and 103.93 (4)° for Ir2, while the remaining bond angles at the metal centers do not deviate far from the ideal value of 90° for an octa­hedral complex. However, for related Ir—(μ-Cl)3—Ir containing species with a range of ligand electronics/sterics, average Cl—Ir—Cl bond angles of roughly 79 to 82° are reported, indicating that the contraction of these angles is likely due mainly to the constraints of the IrCl3 fragment, as opposed to steric bulk of tBuPOAQ or an electronic preference for a metaprismatic geometry (Allevi et al., 1998[Allevi, M., Capitani, D., Ettorre, A. & Mura, P. (1998). Inorg. Chim. Acta, 282, 17-24.]; Zhang et al., 2004[Zhang, X., Emge, T. J. & Goldman, A. S. (2004). Inorg. Chim. Acta, 357, 3014-3018.]; Maekawa et al., 2004b[Maekawa, M., Suenaga, Y., Kuroda-Sowa, T. & Munakata, M. (2004b). Anal. Sci. X, 20, X11-X12.]; Dahlenburg et al., 2008[Dahlenburg, L., Heinemann, F. W., Kramer, D. & Menzel, R. (2008). Acta Cryst. C64, m144-m146.]). The P—Ir—C angles of 1an are appreciably constricted, averaging at 82.16 (19)°, due to being part of the five-membered chelate ring formed with tBuPOAQ. Related tBuPOCOIr and symmetric RPOCOPIr complexes for which structures have been determined display similar P—Ir—C bond angles, between approximately 78.8 to 81.9°, with larger angles associated with the less bulky mono-phosphinite POCO ligand, which can presumably approach closer to the metal. The Ir—P bond lengths of the reported structures (2.26 to 2.36 Å) are comparable to those of 1an (avg. 2.19 (16) Å; Wilklow-Marnell et al., 2019[Wilklow-Marnell, M. & Brennessel, W. W. (2019). Polyhedron, 160, 83-91.]; Göttker-Schnetmann et al., 2004[Göttker-Schnetmann, I., White, P. & Brookhart, M. (2004). J. Am. Chem. Soc. 126, 1804-1811.]; Goldberg et al., 2015[Goldberg, J. M., Wong, G. W., Brastow, K. E., Kaminsky, W., Goldberg, K. I. & Heinekey, D. M. (2015). Organometallics, 34, 753-762.]; Shafiei-Haghighi et al., 2018[Shafiei-Haghighi, S., Singer, L. M., Tamang, S. R. & Findlater, M. (2018). Polyhedron, 143, 126-131.]). With all anthra­quinone C—O bond lengths of 1an averaging 1.225 (13) Å, and average C—C distances of 1.397 (17) and 1.392 (10) Å for the proximal and distal aryl rings, respectively, bond lengths within the anthra­quinone moiety of 1an are in close agreement with those of free anthra­quinone and representative 2,3-disubstituted anthra­quinones 2,3-di­chloro­anthra­quinone and 2-bromo-3-methyl­anthra­quinone, indicating little electronic disturbance of the tBuPOAQ aromatic system as would be expected for IrIII metal centers (Ketker et al., 1981[Ketker, S. N., Kelley, M., Fink, M. & Ivey, R. C. (1981). J. Mol. Struct. 77, 127-138.]; Lenstra & van Loock, 1984[Lenstra, A. T. H. & van Loock, J. F. J. (1984). Bull. Soc. Chim. 93, 1053-1055.]; Il'in et al., 1975[Il'in, S. G., Chetkina, L. A. & Golder, G. A. (1975). Kristallografiya, 20, 1051.]; Pascal et al., 2017[Pascal, R. A., Dudnikov, A., Love, L. A., Geng, X., Dougherty, K. J., Mague, J. T., Kraml, C. M. & Byrne, N. (2017). Eur. J. Org. Chem. pp. 4194-4200.]).

Table 1
Selected geometric parameters (Å, °) for 1[link]

Ir1—H1A 1.5498 Ir3—C50 2.326 (6)
Ir1—Cl1 2.4782 (11) Ir3—C51 2.250 (6)
Ir1—Cl2 2.4818 (11) Ir3—C52 2.150 (6)
Ir1—Cl3 2.5819 (11) Ir3—C53 2.139 (5)
Ir1—P1 2.1819 (11) Ir3—C56 2.129 (6)
Ir1—C2 2.001 (5) Ir3—C57 2.142 (7)
Ir2—H2A 1.5502 C45—C46 1.491 (10)
Ir2—Cl1 2.5476 (11) C46—C47 1.393 (9)
Ir2—Cl2 2.4963 (11) C46—C51 1.433 (9)
Ir2—Cl3 2.4780 (12) C47—C48 1.426 (9)
Ir2—P2 2.1899 (12) C48—C49 1.416 (9)
Ir2—C24 2.008 (5) C49—C50 1.387 (10)
Ir3—C46 2.413 (7) C50—C51 1.421 (9)
Ir3—C47 2.361 (7) C52—C53 1.420 (9)
Ir3—C48 2.243 (6) C56—C57 1.429 (10)
Ir3—C49 2.317 (6)    
       
Cl1—Ir1—H1A 94.5 Cl2—Ir2—Cl1 79.18 (4)
Cl1—Ir1—Cl2 80.80 (4) Cl3—Ir2—H2A 91.9
Cl1—Ir1—Cl3 81.98 (4) Cl3—Ir2—Cl1 82.68 (4)
Cl2—Ir1—H1A 82.5 Cl3—Ir2—Cl2 80.07 (4)
Cl2—Ir1—Cl3 78.35 (4) P2—Ir2—H2A 88.6
Cl3—Ir1—H1A 160.9 P2—Ir2—Cl1 106.79 (4)
P1—Ir1—H1A 91.8 P2—Ir2—Cl2 173.06 (4)
P1—Ir1—Cl1 101.24 (4) P2—Ir2—Cl3 103.93 (4)
P1—Ir1—Cl2 174.13 (4) C24—Ir2—H2A 85.3
P1—Ir1—Cl3 107.33 (4) C24—Ir2—Cl1 98.54 (13)
C2—Ir1—H1A 82.5 C24—Ir2—Cl2 93.93 (14)
C2—Ir1—Cl1 175.33 (14) C24—Ir2—Cl3 173.57 (14)
C2—Ir1—Cl2 95.21 (13) C24—Ir2—P2 81.82 (14)
C2—Ir1—Cl3 99.66 (14) Ir1—Cl1—Ir2 83.38 (3)
C2—Ir1—P1 82.49 (13) Ir1—Cl2—Ir2 84.37 (4)
Cl1—Ir2—H2A 164.5 Ir2—Cl3—Ir1 82.67 (4)
Cl2—Ir2—H2A 85.6    

Though long known in the literature (Muetterties et al., 1979[Muetterties, E. L., Bleeke, J. R. & Sievert, A. C. (1979). J. Organomet. Chem. 178, 197-216.], 1981[Sievert, A. C. & Muetterties, E. L. (1981). Inorg. Chem. 20, 489-501.]), the structure of the [Ir(toluene)(COD)]+ cation (1cat) has yet to have been determined by diffraction studies, despite twenty other reported structures to date that contain an [Ir(η6-arene)(COD)]+ unit (see Database survey). The η6-toluene ligand is not quite planar (r.m.s. deviation of 0.066 Å). It is somewhat puckered toward iridium, with a fold along the C48⋯C51 vector: the angle between the C46–C48/C51 and C48—C51 planes is 11.2 (6)°. The Ir—C bond distances vary accordingly (Table 1[link]).

The ring C C bond lengths of the toluene ligand and those of the coordinated ethyl­ene units of the COD ligand are indicative of significant backbonding from a low-valent IrI center into the ligand π* orbitals and are consistent with bond lengths seen in other structures with [Ir(η6-arene)(COD)]+ or [Rh(η6-toluene)(COD)]+ cations (see Database survey). The average ring C—C bond length of free toluene is 1.38 Å [Cambridge Structural Database (CSD), version 5.45, November 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]], while that of the ligand in 1cat is elongated at 1.413 (19) Å. Likewise the average of the metal-coordinating C=C bonds of the COD ligand in 1cat is 1.425 (13) Å, as compared to that of free COD (1.333 Å; Byrn et al., 1990[Byrn, M. P., Curtis, C. J., Khan, S. I., Sawin, P. A., Tsurumi, R. & Strouse, C. E. (1990). J. Am. Chem. Soc. 112, 1865-1874.]).

As determined by single-crystal X-ray diffraction, 2 was also found to contain a diiridium species (Fig, 3), but is neutral and is bridged by two chlorido ligands as opposed to three as in 1. If 2 goes through an inter­mediate similar to 1 following ligation of tBuPCAQH to iridium, then ostensibly, the third chloride has been displaced by coordination of one carbon monoxide (CO) ligand per iridium. Without the constraints of a third bridging chlorido ligand, the geometry at iridium adopts a somewhat more idealized octa­hedral geometry, though still distorted by the steric demands of the tBuPCAQ ligand and remaining four-membered ring of the Ir2(μ-Cl)2 unit (Table 2[link]). As expected, the C2—Ir—P1 bond angle is contracted due to being part of a metallacycle to 81.83 (10)°, very similar to the average angle of 82.3° seen in the related structure of [Ir(η2:η2-COD)]2 {η6-[κ4-C6H2(CH2P(tBu2)2]Ir2H2Cl3}2 (Zhang et al., 2004[Zhang, X., Emge, T. J. & Goldman, A. S. (2004). Inorg. Chim. Acta, 357, 3014-3018.]). In both structures, the fused-ring parts are not quite planar, with angles between the proximal and distal rings of 12.0 (4) and 7.9 (3)° in 1, and 14.23 (15)° in 2.

Table 2
Selected geometric parameters (Å, °) for 2[link]

Ir1—H1A 1.5529 Ir1—P1 2.2650 (8)
Ir1—Cl1i 2.5353 (8) Ir1—C2 2.093 (3)
Ir1—Cl1 2.4537 (7) Ir1—C24 1.932 (4)
       
Cl1—Ir1—H1A 88.0 C2—Ir1—P1 81.83 (10)
Cl1i—Ir1—H1A 165.1 C24—Ir1—H1A 94.2
Cl1—Ir1—Cl1i 82.39 (3) C24—Ir1—Cl1i 96.98 (12)
P1—Ir1—H1A 88.7 C24—Ir1—Cl1 89.22 (11)
P1—Ir1—Cl1 173.11 (3) C24—Ir1—P1 97.06 (11)
P1—Ir1—Cl1i 99.58 (3) C24—Ir1—C2 177.89 (14)
C2—Ir1—H1A 84.0 Ir1—Cl1—Ir1i 97.61 (3)
C2—Ir1—Cl1 91.80 (9)    
Symmetry code: (i) [-x+1, -y+1, -z+1].

3. Supra­molecular features

Mol­ecules of 1an are inter­locked via offset parallel ππ inter­actions of inverted anthra­quinone groups from adjacent anions along [100] (Fig. 4[link]). The uncoordinated toluene mol­ecules cap each anthra­quinone pairing to form a four-layer stack in the [[\overline{1}]11] direction (Fig. 5[link]). The centroid–centroid distances are 3.847 (6) Å between the toluene and anthra­quinone moieties and 3.823 (5) Å between the closest inverted anthra­quinone rings. The respective shift distances are 0.874 (12) and 1.467 (11) Å, with angles between planes of 12.8 (3) and 6.1 (3)°. [The centroid–centroid distance to the neighboring ring of the inverted anthra­quinone of 4.626 (6) Å, with its corresponding shift of 2.805 (11) Å, makes it unlikely for there to be any significant attractive force.] Inverted pairs of 1cat fill the pockets created by the superstructure of the anions (Fig. 6[link]), having an offset parallel orientation at a centroid–centroid distance of 4.165 (7) Å, with a shift distance of 2.003 (13) Å and angle between planes of 0° (due to symmetry). These long distances may suggest that the arrangement is a consequence of efficient packing, rather than a true attractive force. Several weak non-traditional (C—H⋯O and C—H⋯Cl) hydrogen bonds are also present (Table 3[link]).

Table 3
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cl2 0.95 2.72 3.348 (5) 124
C20—H20A⋯Cl3 0.98 2.67 3.555 (5) 151
C22—H22C⋯Cl3 0.98 2.74 3.613 (6) 149
C23—H23⋯Cl2 0.95 2.70 3.316 (5) 123
C38—H38A⋯Cl1 0.98 2.71 3.589 (6) 149
C39—H39C⋯Cl1 0.98 2.66 3.559 (7) 152
C7—H7⋯O5i 0.95 2.44 3.262 (8) 145
C16—H16A⋯O5ii 0.98 2.40 3.306 (6) 154
C45—H45A⋯O1i 0.98 2.51 3.468 (11) 167
C45—H45C⋯O2iii 0.98 2.34 3.197 (11) 145
C48—H48⋯O4i 1.00 2.50 3.125 (8) 120
C49—H49⋯O4i 1.00 2.52 3.142 (9) 120
C52—H52⋯O4i 1.00 2.36 3.303 (8) 157
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [x-1, y, z]; (iii) [x+1, y, z].
[Figure 4]
Figure 4
Packing plot of 1. The inter­locked pattern (via ππ inter­actions) continues infinitely to the left and right.
[Figure 5]
Figure 5
The recurring stacking of four π systems in 1. The toluene–anthra­quinone centroid–centroid distances are 3.85 Å. The anthra­quinone–anthra­quinone centroid–centroid distances are 3.82 Å (double dashed line) and 4.63 Å (single dashed line). Symmetry equivalent generated by −x, 1 − y, 1 − z.
[Figure 6]
Figure 6
Offset parallel π-π- inter­actions of 1cat with a centroid–centroid distance of 4.17 Å. Symmetry equivalent generated by 1 − x, 1 − y, 1 − z.

In 2, mol­ecules are linked in one dimension along [10[\overline{1}]] by offset parallel ππ inter­actions (Fig. 7[link]), with centroid–centroid distances of 3.840 (2) and 3.966 (3) Å, with respective shift distances of 1.404 (6) and 1.696 (7) Å and angles between planes of 6.18 (15) and 0° (the latter exact due to symmetry). As in 1, inter­molecular non-traditional hydrogen bonds exist (Table 4[link]).

Table 4
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯O1ii 0.99 2.52 3.477 (5) 163
C15—H15B⋯O2iii 0.99 2.63 3.548 (4) 154
C23—H23A⋯Cl1i 0.98 2.84 3.312 (4) 111
C23—H23B⋯Cl1ii 0.98 2.86 3.757 (4) 152
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [x+1, y, z]; (iii) [-x+1, -y+1, -z+2].
[Figure 7]
Figure 7
Packing plot of 2. The mol­ecules are linked along [10[\overline{1}]] with centroid–centroid distances of 3.84 Å (double dashed line) and 3.97 Å (single dashed line).

4. Database survey

To date there are ten structures containing two iridium centers bridged by three chlorido ligands: CSD refcodes GALQIT, GAMQIU (Allevi et al., 1998[Allevi, M., Capitani, D., Ettorre, A. & Mura, P. (1998). Inorg. Chim. Acta, 282, 17-24.]); MOYLIV (Mura, 2000[Mura, P. (2000). J. Coord. Chem. 51, 253-260.]); DACCEQ, DACCIU (Zhang et al., 2004[Zhang, X., Emge, T. J. & Goldman, A. S. (2004). Inorg. Chim. Acta, 357, 3014-3018.]); MASNEA (Yellowlees et al., 2005[Yellowlees, L., Elliot, M., Parsons, S. & Messenger, D. (2005). Private communication (refcode: MASNEA). CCDC, Cambridge, England.]); UCEVEE (Viciano et al., 2006[Viciano, M., Poyatos, M., Sanaú, M., Peris, E., Rossin, A., Ujaque, G. & Lledós, A. (2006). Organometallics, 25, 1120-1134.]); YIMVIA (Dahlenburg et al., 2007[Dahlenburg, L., Menzel, R. & Heinemann, F. W. (2007). Eur. J. Inorg. Chem. pp. 4364-4374.]); KIWTUG (Dahlenburg et al., 2008[Dahlenburg, L., Heinemann, F. W., Kramer, D. & Menzel, R. (2008). Acta Cryst. C64, m144-m146.]); PIKVAK (Tatarin et al., 2023[Tatarin, S. V., Smirnov, D. E., Taydakov, I. V., Metlin, M. T., Emets, V. V. & Bezzubov, S. I. (2023). Dalton Trans. 52, 6435-6450.]).

Structures containing an [Ir(η6-arene)(η2:η2-COD)]+ cationic unit are: CSD refcodes XIXTED (Ishii et al., 2002[Ishii, Y., Onaka, K., Hirakawa, H. & Shiramizu, K. (2002). Chem. Commun. pp. 1150-1151.]); HUWRAS (Maekawa et al., 2003[Maekawa, M., Hashimoto, N., Sugimoto, K., Kuroda-Sowa, T., Suenaga, Y. & Munakata, M. (2003). Inorg. Chim. Acta, 344, 143-157.]); IMERAT, IMEREX, IRERIB, IMEROH, IMERUN (Muldoon & Brown, 2003[Muldoon, J. & Brown, S. N. (2003). Organometallics, 22, 4480-4489.]); QUKLAJ, QUKLOX (Dorta et al., 2004[Dorta, R., Broggini, D., Kissner, R. & Togni, A. (2004). Chem. Eur. J. 10, 4546-4555.]); ARACIF (Maekawa et al., 2004a[Maekawa, M., Suenaga, Y., Kuroda-Sowa, T. & Munakata, M. (2004a). Inorg. Chim. Acta, 357, 331-338.]); DACCEQ (Zhang et al., 2004[Zhang, X., Emge, T. J. & Goldman, A. S. (2004). Inorg. Chim. Acta, 357, 3014-3018.]); QOMXIA (Tejel et al., 2008[Tejel, C., Ciriano, M.., Passarelli, V., López, J.. & de Bruin, B. (2008). Chem. Eur. J. 14, 10985-10998.]); XOWHOI (Melcher et al., 2015[Melcher, M., von Wachenfeldt, H., Sundin, A. & Strand, D. (2015). Chem. Eur. J. 21, 531-535.]); KAPZOT, KAPZUZ (Drover et al., 2017[Drover, M. W., Bowes, E. G., Love, J. A. & Schafer, L. L. (2017). Organometallics, 36, 331-341.]); BUNXEQ (Bandera et al., 2020[Bandera, D. Baldridge, K. K., Linden, A. L., Spingler, B. & Siegel, J. S. (2020). CSD Communication (refcode BUNXEQ). CCDC, Cambridge, England.]); PUFGAB (Fisher et al., 2020[Fisher, S. P., McArthur, S. G., Tej, V., Lee, S. E., Chan, A. L., Banda, I., Gregory, A., Berkley, K., Tsay, C., Rheingold, A. L., Guisado-Barrios, G. & Lavallo, V. (2020). J. Am. Chem. Soc. 142, 251-256.]); VUQBUH (Linden & Dorta, 2020[Linden, A. L. & Dorta, R. (2020). CSD Communication (refcode VUQBUH). CCDC, Cambridge, England.]).

Structures containing the rhodium analog of 1cat, [Rh(η6-toluene)(η2:η2-COD)]+, are: GERKUN (Sievers et al., 2022[Sievers, R., Sellin, M., Rupf, S. M., Parche, J. & Malischewski, M. (2022). Angew. Chem. Int. Ed. 61, e202211147.]); NIDHER, NIDJOD (Sumitani et al., 2023[Sumitani, R., Kuwahara, D. & Mochida, T. (2023). Inorg. Chem. 62, 2169-2180.]).

5. Synthesis and crystallization

All procedures were conducted under argon in a Vacuum Atmospheres Genesis glove box or via modified Schlenk techniques. All NMR spectra were collected on a JEOL JNM-ECZS 400 MHz spectrometer. All 31P NMR spectra were referenced to external H3PO4. 1H NMR spectra were referenced to residual deuterated solvent signal. All aromatic, alkane, or ether solvents were dried over sodium/benzo­phenone, distilled from the resultant purple solution prior to use, and stored over 3 Å mol­ecular sieves. CDCl3 and CHCl3 were dried/stored with 3 Å mol­ecular sieves activated by heating at 523 K under vacuum until a constant pressure of approx. 10 mTorr was reached. Methanol was dried by stirring with an excess of CaH2 until gas evolution through an outlet bubbler was observed to cease. It was stored over the Ca(OH)2 and Ca(OMe)2 formed, and distilled from this mixture as needed. Similarly, yellow tri­ethyl­amine obtained commercially was reacted with CaH2 and vacuum transferred into a Schlenk ampoule for storage as a colorless liquid. All other reagents were used as received from commercial sources without further purification.

2-(Di-tert-butyl­phosphinito)anthra­quinone (tBuPOAQH): To a 250 mL Erlenmeyer flask, 35 mg of NaH (1.46 mmol, 1.1 eq) and 75 mL of tetra­hydro­furan (THF) were added followed by 0.40 mL (2.11 mmol, 1.6 eq) of di-tert-butyl­chloro­phosphine and a stir bar. Then, while stirring, a solution of 300 mg (1.34 mmol) of 2-hy­droxy­anthra­quinone in 100 mL of THF was added dropwise over a period of approximately 15 minutes providing a slightly cloudy purple mixture. Slow addition of quinone and relatively dilute reaction conditions were found to be important to minimize the formation of this unknown purple byproduct. After stirring for 72 h, the reaction mixture was filtered through a Celite pad on a fine glass frit and washed with THF (2 × 5 mL). The maroon red filtrate was concentrated in vacuo until a brownish purple paste was obtained. The residue was stirred with toluene and refiltered to remove some reddish solids, then concentrated to dryness, and the process repeated twice more with hexane. Ultimately, a viscous green oil was obtained in 83% yield that provided NMR spectra consistent with the proposed product, tBuPOAQH, and of sufficient purity for further synthetic manipulations. 31P{1H} NMR (CDCl3): δ 158.898 (s). 1H NMR (CDCl3): δ 8.33–8.22 (m, 3H), 8.00 (t, J = 2.2 Hz, 1H), 7.81–7.72 (m, virtual pentet of doublets, 2H), 7.6–7.53 (dt, J = 2.5, 8.8 Hz, 1H), 1.196 (s, 9H), 1.165 (s, 9H). 13C NMR (CDCl3): δ 183.25, 182.32, 165.15, 165.06, 135.61, 134.18, 133.76, 129.98, 127.47, 127.23, 123.91, 123.79, 116.21, 116.10, 36.16, 35.90, 27.43, 27.28.

2-(Di-tert-butyl­phosphinometh­yl)anthra­quinone (tBuPCA­QH): To a 50 mL round-bottom ampoule with a stir bar, 500 mg of 2-bromo­methyl-anthra­quinone (1.66 mmol) were added, followed by 291 mg of di-tert-butyl­phosphine (1.99 mmol, 1.2 eq). The vessel was then sealed, removed from the glove box, and connected to a Schlenk line. Approximately 30 mL of methanol were then added by vacuum transfer. The mixture was warmed to room temperature, and the sealed vessel then heated, with stirring, at 353 K for 72 h (note: a shorter reaction time may be possible, as all solid bromo­methyl-anthra­quinone dissolves within the first 12 h of reaction, indicative of solubilization through formation of the phospho­nium bromide salt). After heating and cooling, 1.4 mL of tri­ethyl­amine (10.0 mmol, 6 eq) were added by vacuum transfer. Upon thawing and stirring, copious formation of light solids (tri­ethyl­ammonium bromide) was observed, and the resultant mixture removed of volatiles in vacuo. In the glove box, the dry residue was extracted with THF and filtered through a fine frit until the NH4Br solids were a free-flowing powder without stickiness. The clear yellow filtrate was concentrated to apparent dryness, but still retained excess phosphine. The solids were stirred in minimal toluene, filtered, washed with hexane, and dried in vacuo to provide 385 mg of a lustrous yellow solid. An additional 78 mg were obtained from the filtrate stored in a freezer overnight, making the total yield 75.8%. 31P{1H} NMR (CDCl3): δ 39.61 (s). 1H NMR (CDCl3): δ 8.33–8.26 (m, 2H), 8.23–8.17 (m, 2H), 7.85–7.80 (dvt, 1H), 7.80–7.74 (m, 2H), 2.99 (d, J = 3.2, 2H), 1.17 (s, 9H), 1.14 (s, 9H). 13C NMR (CDCl3): δ 183.47, 183.11, 150.08, 149.96, 135.57, 134.12, 133.99, 133.72, 133.68, 133.41, 131.20, 128.02, 127.94, 127.52, 127.24, 127.22, 32.39, 32.17, 29.90, 29.77, 29.48, 29.23.

[Ir(COD)(toluene)][(tBuPOAQIrH)2(μ-Cl)3] (1): To a J-Young NMR tube, 15.5 mg of tBuPOAQH (42.07 µmol) were added followed by 14.1 mg of [Ir(COD)Cl]2 (21.0 µmol dimer, 1 eq of Ir). 1 mL of toluene was then added, and the sealed tube was mixed. The solution rapidly adopted a dark red–brown color. 31P-NMR spectroscopy in toluene revealed several products with chemical shifts at 181.5, 160.9, and 160.2 ppm. At 30 minutes after initial mixing, the singlet at 160.9 ppm was the major product, but this peak was observed to decrease with concomitant formation of small orange crystals from the solution. After 3–4 days the crystals were recovered by deca­nting the solvent and submitted for X-ray crystallographic analysis revealing the structure to be that of 1.

[Ir(κ-P,C-PCAQ)H(CO)Cl]2 (2): To a J-Young NMR tube, 12.0 mg of tBuPCAQH (32.8 µmol) were added followed by 11.0 mg of [Ir(COD)Cl]2 (16.4 µmol dimer, 1 eq of Ir). Then, 0.75 mL of CHCl3 were added and the sealed tube mixed, providing an orange solution. 31P-NMR spectroscopy showed a species with a chemical shift of 53.0 ppm as the major product, and spectra were effectively the same after 24 h. All volatiles were then removed by vacuum, using a warm water bath once CHCl3 was evaporated to drive off residual excess COD. Following this, fresh CHCl3 (or CDCl3) was added by vacuum transfer and the sample then exposed to 1 atm of carbon monoxide, which caused the solution to turn pale yellow. Over a period of 1–2 days, 2 separated as yellow needles, which were isolated and submitted for X-ray diffraction studies.

6. Refinement

In 1, the cation was modeled as disordered over two positions [0.894 (4):0.106 (4)]. Analogous bond lengths and angles between the two positions were restrained to be similar. Anisotropic displacement parameters for proximal atoms were restrained to be similar, and in the case of the minor component of disorder, restrained toward the expected motion relative to bond direction. The toluene solvent mol­ecule of crystallization showed signs of minor disorder. The anisotropic displacement parameters along the bonding direction between two of the atoms (C63 and C64) were restrained to be similar.

The hydrido ligands' positions were based on peaks found in the difference-Fourier map. Once located, they were given riding models that preserved their angles relative to the other ligands, but with their Ir—H distances fixed at approximately 1.55 Å (based on an average obtained from the CSD for six-coordinate Ir complexes; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). Their isotropic displacement parameters were refined relative to those of the Ir atoms: Uiso(H) = 2.0Ueq(Ir). Independent spectroscopic experiments confirm the presence of these ligands.

All other H atoms were placed geometrically and treated as riding atoms. Aromatic/sp2, C—H = 0.95 Å and methyl­ene, C—H = 0.99 Å, with Uiso(H) = 1.2Ueq(C). Methyl, C—H = 0.98 Å, with Uiso(H) = 1.5Ueq(C).

In 2, reflection contributions from highly disordered solvent were fixed and added to the calculated structure factors using the SQUEEZE routine of program PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]), which determined there to be 184 electrons in 492 Å3 treated this way per unit cell. Because the exact identity and amount of solvent were unknown, no solvent was included in the atom list or mol­ecular formula. Thus all calculated qu­anti­ties that derive from the mol­ecular formula [e.g., F(000), density, mol­ecular weight, etc.] are known to be inaccurate.

For 1 the maximum residual peak of 1.52 e Å−3 and the deepest hole of −1.72 e Å−3 are found 1.15 and 0.77 Å from atoms Ir1 and Ir2, respectively.

For 2 the maximum residual peak of 0.99 e Å−3 and the deepest hole of −1.03 e Å−3 are found 0.95 and 0.77 Å from atom Ir1.

Additional experimental and refinement details can be found in Table 5[link].

Table 5
Experimental details

  1 2
Crystal data
Chemical formula [Ir(C7H8)(C8H12)]·[Ir2H2(C22H24O3P)2Cl3]·C7H8 [Ir2H2(C23H26O2P)2Cl2(CO)2]
Mr 1712.17 1244.15
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 100 173
a, b, c (Å) 13.15698 (17), 13.58360 (18), 17.5470 (3) 8.8215 (3), 12.1331 (4), 14.4895 (3)
α, β, γ (°) 88.5722 (12), 87.0030 (12), 79.7149 (11) 81.5747 (19), 84.576 (2), 76.465 (3)
V3) 3080.99 (8) 1488.57 (7)
Z 2 1
Radiation type Cu Kα Cu Kα
μ (mm−1) 14.38 10.16
Crystal size (mm) 0.10 × 0.05 × 0.01 0.19 × 0.04 × 0.03
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.643, 1.000 0.459, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 51464, 12864, 11114 20510, 6137, 5626
Rint 0.056 0.046
(sin θ/λ)max−1) 0.635 0.634
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.092, 1.04 0.027, 0.067, 1.06
No. of reflections 12864 6137
No. of parameters 881 277
No. of restraints 395 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.52, −1.72 0.99, −1.03
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

(η2:η2-Cycloocta-1,5-diene)(η6-toluene)iridium(I) tri-µ-chlorido-bis({3-[(di-tert-butylphosphanyl)oxy]-9,10-dioxoanthracen-2-yl}hydridoiridium(III)) toluene monosolvate, (1) top
Crystal data top
[Ir(C7H8)(C8H12)]·[Ir2H2(C22H24O3P)2Cl3]·C7H8Z = 2
Mr = 1712.17F(000) = 1668
Triclinic, P1Dx = 1.846 Mg m3
a = 13.15698 (17) ÅCu Kα radiation, λ = 1.54184 Å
b = 13.58360 (18) ÅCell parameters from 23439 reflections
c = 17.5470 (3) Åθ = 2.6–77.6°
α = 88.5722 (12)°µ = 14.38 mm1
β = 87.0030 (12)°T = 100 K
γ = 79.7149 (11)°Plate, orange
V = 3080.99 (8) Å30.10 × 0.05 × 0.01 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
12864 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source11114 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.056
Detector resolution: 10.0000 pixels mm-1θmax = 78.2°, θmin = 2.5°
ω scansh = 1614
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
k = 1617
Tmin = 0.643, Tmax = 1.000l = 2221
51464 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: mixed
wR(F2) = 0.092H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0514P)2 + 3.1792P]
where P = (Fo2 + 2Fc2)/3
12864 reflections(Δ/σ)max = 0.002
881 parametersΔρmax = 1.52 e Å3
395 restraintsΔρmin = 1.72 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The [Ir(toluene)(COD)]+ cation is modeled as disordered over two positions (0.894 (4):0.106 (4)). Analogous bond lengths and angles between the two positions of the disordered cation were restrained to be similar. Anisotropic displacement parameters for proximal atoms were restrained to be similar, and in the case of the minor component of disorder, restrained toward the expected motion relative to bond direction.

The hydrido ligands' positions were based on a peaks found in the difference Fourier map. Once located, they were given riding models that preserved their angles relative to the other ligands, but with their Ir–H distances fixed at approximately 1.55 Å (based on an average obtained from the Cambridge Structural Database for six-coordinate Ir complexes; Groom et al., 2016). Independent spectroscopic experiments confirm the presence of these ligands.

The toluene solvent molecule of crystallization showed signs of minor disorder. The anisotropic displacement parameters along the bonding direction between two of the atoms (C63 and C64) were restrained to be similar.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ir10.25577 (2)0.75554 (2)0.22505 (2)0.02091 (6)
H1A0.2005260.8202990.2916460.042*
Ir20.51415 (2)0.71861 (2)0.21257 (2)0.02152 (6)
H2A0.5753510.6182050.2426310.043*
Cl10.37608 (8)0.87185 (8)0.18895 (7)0.0265 (2)
Cl20.38742 (8)0.70260 (8)0.32111 (7)0.0242 (2)
Cl30.39277 (8)0.63198 (9)0.14812 (7)0.0269 (2)
P10.12927 (8)0.80830 (9)0.15027 (7)0.0218 (2)
P20.63977 (9)0.72368 (9)0.12642 (7)0.0238 (2)
O10.2189 (3)0.4434 (4)0.4379 (3)0.0477 (11)
O20.1358 (3)0.4740 (3)0.2948 (3)0.0399 (9)
O30.0327 (2)0.7541 (3)0.1832 (2)0.0254 (7)
O40.5391 (3)0.8854 (3)0.4990 (2)0.0318 (8)
O50.9140 (3)0.9115 (3)0.3714 (2)0.0345 (8)
O60.7382 (2)0.7444 (3)0.1751 (2)0.0259 (7)
C10.1828 (4)0.5875 (4)0.3189 (3)0.0290 (11)
H10.2484520.5768640.3408710.035*
C20.1620 (3)0.6622 (4)0.2630 (3)0.0219 (9)
C30.0611 (3)0.6751 (4)0.2347 (3)0.0232 (9)
C40.0100 (4)0.6159 (4)0.2553 (3)0.0269 (10)
H40.0751020.6259600.2325660.032*
C50.1155 (4)0.3549 (5)0.4283 (4)0.0384 (13)
H50.1780190.3588760.4027260.046*
C60.0994 (5)0.2969 (5)0.4940 (4)0.0432 (15)
H60.1517990.2620420.5136490.052*
C70.0083 (5)0.2890 (5)0.5315 (4)0.0432 (15)
H70.0019190.2486650.5763990.052*
C80.0686 (5)0.3409 (5)0.5029 (4)0.0407 (14)
H80.1310920.3360870.5286130.049*
C90.1358 (4)0.4560 (4)0.4080 (3)0.0338 (12)
C100.0594 (4)0.4743 (4)0.3314 (3)0.0309 (11)
C110.1113 (4)0.5278 (4)0.3439 (3)0.0287 (10)
C120.0148 (4)0.5402 (4)0.3106 (3)0.0269 (10)
C130.0392 (4)0.4075 (4)0.3996 (4)0.0352 (12)
C140.0540 (4)0.3994 (4)0.4368 (3)0.0333 (12)
C150.0663 (4)0.9437 (4)0.1536 (3)0.0276 (10)
C160.0692 (4)0.9819 (4)0.2344 (3)0.0343 (12)
H16A0.0356450.9401290.2704580.051*
H16B0.0325071.0512960.2370850.051*
H16C0.1411940.9788830.2473950.051*
C170.0479 (4)0.9603 (4)0.1335 (3)0.0328 (12)
H17A0.0527310.9405030.0806260.049*
H17B0.0783911.0312060.1390470.049*
H17C0.0854410.9198150.1678790.049*
C180.1285 (4)1.0042 (4)0.0998 (3)0.0319 (11)
H18A0.2008200.9923440.1139810.048*
H18B0.0995401.0755780.1040140.048*
H18C0.1249790.9831760.0471340.048*
C190.1460 (4)0.7634 (4)0.0488 (3)0.0286 (10)
C200.1557 (4)0.6497 (4)0.0560 (3)0.0322 (11)
H20A0.2116910.6230560.0895620.048*
H20B0.1709720.6200250.0054420.048*
H20C0.0904940.6330720.0776320.048*
C210.0535 (4)0.8025 (5)0.0007 (3)0.0351 (12)
H21A0.0101460.7906460.0281970.053*
H21B0.0617240.7674380.0479460.053*
H21C0.0494380.8744080.0088990.053*
C220.2444 (4)0.7907 (5)0.0101 (3)0.0354 (12)
H22A0.2361250.8635010.0038440.053*
H22B0.2567290.7594820.0401320.053*
H22C0.3032630.7664040.0416290.053*
C230.5809 (3)0.8226 (4)0.3475 (3)0.0250 (10)
H230.5131720.8230920.3692940.030*
C240.6063 (3)0.7829 (4)0.2759 (3)0.0240 (9)
C250.7091 (3)0.7841 (4)0.2466 (3)0.0235 (9)
C260.7803 (4)0.8233 (4)0.2854 (3)0.0280 (10)
H260.8478880.8231620.2634140.034*
C270.8549 (4)1.0097 (4)0.5097 (3)0.0327 (12)
H270.9206061.0153870.4867710.039*
C280.8241 (4)1.0534 (5)0.5787 (4)0.0359 (12)
H280.8684441.0895250.6030550.043*
C290.7280 (4)1.0450 (4)0.6135 (3)0.0344 (12)
H290.7069711.0747170.6615200.041*
C300.6634 (4)0.9929 (4)0.5769 (3)0.0321 (11)
H300.5980290.9870610.6004450.039*
C310.6206 (4)0.8984 (4)0.4674 (3)0.0258 (10)
C320.8253 (3)0.9098 (4)0.3981 (3)0.0253 (10)
C330.6517 (3)0.8620 (4)0.3890 (3)0.0241 (9)
C340.7521 (3)0.8630 (4)0.3574 (3)0.0256 (10)
C350.7904 (4)0.9568 (4)0.4730 (3)0.0257 (10)
C360.6928 (4)0.9491 (4)0.5066 (3)0.0252 (10)
C370.6257 (4)0.8327 (4)0.0585 (3)0.0316 (11)
C380.6159 (4)0.9265 (4)0.1071 (4)0.0368 (13)
H38A0.5589590.9274090.1455500.055*
H38B0.6018140.9863080.0742420.055*
H38C0.6805500.9257450.1325440.055*
C390.5265 (4)0.8376 (5)0.0140 (4)0.0386 (13)
H39A0.5324720.7774420.0168110.058*
H39B0.5175890.8969870.0195270.058*
H39C0.4665970.8414490.0501020.058*
C400.7175 (4)0.8323 (5)0.0005 (4)0.0411 (14)
H40A0.7814910.8266420.0277650.062*
H40B0.7070220.8947280.0295830.062*
H40C0.7225070.7753700.0335130.062*
C410.7012 (4)0.6053 (4)0.0773 (3)0.0281 (10)
C420.6353 (4)0.5881 (5)0.0106 (3)0.0368 (12)
H42A0.5633000.5909120.0292170.055*
H42B0.6618550.5222330.0112670.055*
H42C0.6387040.6401030.0287030.055*
C430.8139 (4)0.6072 (4)0.0506 (3)0.0337 (12)
H43A0.8153900.6557800.0084770.051*
H43B0.8468100.5405530.0330820.051*
H43C0.8513670.6263590.0930250.051*
C440.7018 (4)0.5187 (4)0.1344 (3)0.0337 (11)
H44A0.7398100.5306030.1788100.051*
H44B0.7354400.4562450.1102080.051*
H44C0.6305080.5137370.1507110.051*
Ir30.59560 (5)0.30166 (4)0.35208 (4)0.02601 (17)0.893 (4)
C450.6547 (7)0.5413 (6)0.3954 (6)0.040 (2)0.893 (4)
H45A0.7000410.5378090.4382910.061*0.893 (4)
H45B0.6117170.6079900.3927600.061*0.893 (4)
H45C0.6968510.5285690.3477380.061*0.893 (4)
C460.5870 (5)0.4645 (5)0.4065 (4)0.0337 (14)0.893 (4)
C470.5991 (5)0.3923 (5)0.4647 (4)0.0349 (15)0.893 (4)
H470.6638320.3816050.4935430.042*0.893 (4)
C480.5321 (5)0.3206 (5)0.4730 (4)0.0317 (13)0.893 (4)
H480.5466830.2639860.5106420.038*0.893 (4)
C490.4443 (5)0.3302 (6)0.4282 (4)0.0389 (16)0.893 (4)
H490.3990300.2782600.4324500.047*0.893 (4)
C500.4326 (5)0.4003 (5)0.3690 (4)0.0370 (16)0.893 (4)
H500.3794300.3974870.3307810.044*0.893 (4)
C510.5093 (5)0.4604 (5)0.3530 (4)0.0331 (14)0.893 (4)
H510.5073610.5021600.3051460.040*0.893 (4)
C520.6116 (5)0.1415 (4)0.3482 (4)0.0313 (13)0.893 (4)
H520.5731600.1125740.3913170.038*0.893 (4)
C530.7058 (5)0.1678 (4)0.3695 (4)0.0336 (13)0.893 (4)
H530.7221460.1525160.4239690.040*0.893 (4)
C540.8000 (5)0.1546 (7)0.3136 (6)0.0523 (19)0.893 (4)
H54A0.8633280.1457560.3429240.063*0.893 (4)
H54B0.8019650.0927860.2843810.063*0.893 (4)
C550.8008 (6)0.2410 (7)0.2584 (5)0.0466 (19)0.893 (4)
H55A0.8211450.2142460.2067600.056*0.893 (4)
H55B0.8538340.2793390.2729340.056*0.893 (4)
C560.6976 (5)0.3117 (5)0.2550 (4)0.0361 (15)0.893 (4)
H560.7039510.3818720.2399020.043*0.893 (4)
C570.6055 (6)0.2822 (5)0.2310 (4)0.0377 (15)0.893 (4)
H570.5592880.3345650.2016360.045*0.893 (4)
C580.6050 (9)0.1761 (8)0.2083 (5)0.058 (3)0.893 (4)
H58A0.5481040.1765890.1734370.070*0.893 (4)
H58B0.6706770.1511130.1792110.070*0.893 (4)
C590.5926 (8)0.1038 (5)0.2724 (5)0.050 (2)0.893 (4)
H59A0.5215430.0889770.2735400.060*0.893 (4)
H59B0.6412960.0404190.2627020.060*0.893 (4)
C600.0170 (5)0.3969 (6)0.1369 (5)0.0545 (17)
H60A0.0111930.4697990.1382470.082*
H60B0.0451560.3775960.1616530.082*
H60C0.0240550.3752110.0837350.082*
C610.1093 (5)0.3487 (5)0.1778 (4)0.0501 (16)
C620.2009 (6)0.3886 (7)0.1694 (4)0.0536 (17)
H620.2030410.4471090.1389110.064*
C630.2866 (6)0.3430 (8)0.2052 (5)0.070 (2)
H630.3488740.3689420.1980270.083*
C640.2849 (8)0.2590 (8)0.2521 (8)0.092 (4)
H640.3460500.2267560.2751380.111*
C650.1908 (9)0.2218 (8)0.2653 (9)0.103 (4)
H650.1866540.1666470.2989100.123*
C660.1065 (7)0.2689 (6)0.2275 (7)0.077 (3)
H660.0430530.2452120.2358970.092*
Ir3A0.6214 (7)0.2903 (5)0.3322 (5)0.069 (2)0.107 (4)
C52A0.637 (3)0.1291 (16)0.338 (2)0.0316 (16)0.107 (4)
H52A0.5972610.1054780.3826800.038*0.107 (4)
C56A0.722 (3)0.292 (3)0.2370 (19)0.039 (5)0.107 (4)
H56A0.7299850.3609290.2184270.047*0.107 (4)
C45A0.666 (6)0.537 (4)0.373 (4)0.038 (13)0.107 (4)
H45D0.6280110.5982760.3961240.056*0.107 (4)
H45E0.6798950.5499470.3180440.056*0.107 (4)
H45F0.7321900.5169210.3971710.056*0.107 (4)
C54A0.826 (3)0.142 (5)0.304 (4)0.052 (2)0.107 (4)
H54C0.8869080.1443990.3340670.063*0.107 (4)
H54D0.8346730.0737730.2824910.063*0.107 (4)
C46A0.605 (3)0.456 (2)0.382 (2)0.034 (6)0.107 (4)
C58A0.625 (8)0.153 (4)0.197 (3)0.057 (7)0.107 (4)
H58C0.5674710.1524340.1634110.068*0.107 (4)
H58D0.6900780.1247560.1682370.068*0.107 (4)
C47A0.617 (3)0.387 (3)0.4436 (17)0.035 (6)0.107 (4)
H47A0.6798900.3806490.4739730.042*0.107 (4)
C53A0.729 (3)0.158 (2)0.358 (2)0.0339 (16)0.107 (4)
H53A0.7435160.1483770.4128910.041*0.107 (4)
C48A0.552 (3)0.316 (3)0.4535 (16)0.035 (5)0.107 (4)
H48A0.5669970.2615890.4929580.042*0.107 (4)
C55A0.823 (3)0.217 (5)0.239 (3)0.053 (9)0.107 (4)
H55C0.8341070.1806310.1906620.063*0.107 (4)
H55D0.8805980.2538570.2437060.063*0.107 (4)
C49A0.464 (2)0.320 (3)0.408 (2)0.035 (5)0.107 (4)
H49A0.4200950.2669780.4141510.042*0.107 (4)
C57A0.629 (3)0.261 (3)0.2140 (14)0.041 (5)0.107 (4)
H57A0.5833040.3111680.1828910.049*0.107 (4)
C50A0.453 (2)0.387 (3)0.348 (2)0.032 (5)0.107 (4)
H50A0.4014190.3798860.3095950.038*0.107 (4)
C59A0.612 (7)0.087 (3)0.265 (3)0.050 (2)0.107 (4)
H59C0.5398930.0756880.2690410.060*0.107 (4)
H59D0.6577960.0215400.2571140.060*0.107 (4)
C51A0.530 (3)0.4465 (19)0.327 (2)0.035 (5)0.107 (4)
H51A0.5263170.4862480.2785570.042*0.107 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.01439 (9)0.02208 (10)0.02629 (11)0.00396 (7)0.00011 (7)0.00233 (7)
Ir20.01490 (9)0.02194 (10)0.02730 (11)0.00311 (7)0.00044 (7)0.00366 (8)
Cl10.0178 (5)0.0255 (5)0.0361 (6)0.0045 (4)0.0007 (4)0.0045 (4)
Cl20.0165 (4)0.0266 (5)0.0297 (6)0.0050 (4)0.0009 (4)0.0031 (4)
Cl30.0198 (5)0.0274 (5)0.0328 (6)0.0032 (4)0.0001 (4)0.0010 (4)
P10.0158 (5)0.0248 (5)0.0247 (6)0.0039 (4)0.0001 (4)0.0046 (4)
P20.0174 (5)0.0250 (6)0.0278 (6)0.0026 (4)0.0028 (4)0.0051 (5)
O10.030 (2)0.061 (3)0.054 (3)0.0140 (19)0.0111 (18)0.026 (2)
O20.0314 (19)0.045 (2)0.048 (2)0.0200 (17)0.0083 (17)0.0150 (19)
O30.0159 (14)0.0263 (17)0.0347 (19)0.0059 (12)0.0037 (13)0.0085 (14)
O40.0244 (17)0.040 (2)0.034 (2)0.0137 (15)0.0033 (14)0.0011 (16)
O50.0185 (16)0.048 (2)0.038 (2)0.0112 (15)0.0021 (14)0.0040 (18)
O60.0166 (14)0.0289 (17)0.0303 (18)0.0004 (13)0.0030 (13)0.0016 (14)
C10.019 (2)0.033 (3)0.037 (3)0.0092 (19)0.0048 (19)0.007 (2)
C20.0170 (19)0.026 (2)0.023 (2)0.0043 (17)0.0005 (16)0.0011 (18)
C30.020 (2)0.025 (2)0.024 (2)0.0030 (17)0.0017 (17)0.0030 (18)
C40.022 (2)0.030 (2)0.030 (3)0.0043 (19)0.0065 (18)0.002 (2)
C50.033 (3)0.039 (3)0.045 (3)0.011 (2)0.001 (2)0.011 (3)
C60.035 (3)0.036 (3)0.057 (4)0.007 (2)0.005 (3)0.020 (3)
C70.038 (3)0.040 (3)0.048 (4)0.005 (2)0.003 (3)0.020 (3)
C80.032 (3)0.037 (3)0.051 (4)0.004 (2)0.002 (2)0.015 (3)
C90.026 (2)0.038 (3)0.037 (3)0.006 (2)0.005 (2)0.012 (2)
C100.021 (2)0.035 (3)0.038 (3)0.011 (2)0.003 (2)0.010 (2)
C110.020 (2)0.034 (3)0.032 (3)0.0069 (19)0.0017 (19)0.007 (2)
C120.020 (2)0.030 (2)0.032 (3)0.0066 (18)0.0026 (18)0.005 (2)
C130.032 (3)0.031 (3)0.044 (3)0.012 (2)0.000 (2)0.011 (2)
C140.026 (2)0.039 (3)0.034 (3)0.004 (2)0.000 (2)0.013 (2)
C150.023 (2)0.026 (2)0.033 (3)0.0049 (18)0.0003 (19)0.006 (2)
C160.032 (3)0.031 (3)0.038 (3)0.000 (2)0.002 (2)0.006 (2)
C170.020 (2)0.032 (3)0.043 (3)0.0016 (19)0.002 (2)0.012 (2)
C180.025 (2)0.027 (2)0.045 (3)0.0060 (19)0.001 (2)0.009 (2)
C190.027 (2)0.032 (3)0.026 (2)0.0041 (19)0.0031 (19)0.000 (2)
C200.030 (2)0.030 (3)0.036 (3)0.004 (2)0.007 (2)0.003 (2)
C210.032 (3)0.041 (3)0.032 (3)0.007 (2)0.007 (2)0.002 (2)
C220.033 (3)0.044 (3)0.029 (3)0.006 (2)0.002 (2)0.006 (2)
C230.016 (2)0.023 (2)0.035 (3)0.0021 (17)0.0035 (18)0.0057 (19)
C240.016 (2)0.025 (2)0.029 (2)0.0017 (17)0.0019 (17)0.0041 (19)
C250.016 (2)0.024 (2)0.031 (2)0.0036 (17)0.0003 (17)0.0052 (19)
C260.018 (2)0.030 (2)0.035 (3)0.0036 (18)0.0027 (18)0.008 (2)
C270.022 (2)0.034 (3)0.044 (3)0.008 (2)0.011 (2)0.012 (2)
C280.028 (3)0.040 (3)0.042 (3)0.012 (2)0.012 (2)0.001 (2)
C290.025 (2)0.039 (3)0.039 (3)0.003 (2)0.004 (2)0.005 (2)
C300.021 (2)0.036 (3)0.040 (3)0.006 (2)0.002 (2)0.001 (2)
C310.019 (2)0.026 (2)0.031 (3)0.0036 (18)0.0001 (18)0.005 (2)
C320.015 (2)0.028 (2)0.033 (3)0.0055 (17)0.0037 (17)0.011 (2)
C330.0147 (19)0.022 (2)0.036 (3)0.0048 (16)0.0007 (18)0.0024 (19)
C340.017 (2)0.026 (2)0.033 (3)0.0026 (17)0.0002 (18)0.008 (2)
C350.021 (2)0.027 (2)0.031 (3)0.0062 (18)0.0071 (18)0.007 (2)
C360.020 (2)0.021 (2)0.033 (3)0.0011 (17)0.0022 (18)0.0070 (19)
C370.024 (2)0.032 (3)0.038 (3)0.004 (2)0.001 (2)0.012 (2)
C380.026 (2)0.028 (3)0.055 (4)0.006 (2)0.000 (2)0.013 (2)
C390.031 (3)0.042 (3)0.041 (3)0.004 (2)0.000 (2)0.015 (3)
C400.029 (3)0.039 (3)0.051 (4)0.000 (2)0.008 (2)0.015 (3)
C410.022 (2)0.028 (2)0.033 (3)0.0023 (19)0.0013 (19)0.001 (2)
C420.032 (3)0.042 (3)0.035 (3)0.005 (2)0.001 (2)0.001 (2)
C430.022 (2)0.040 (3)0.037 (3)0.000 (2)0.009 (2)0.003 (2)
C440.033 (3)0.029 (3)0.036 (3)0.001 (2)0.004 (2)0.001 (2)
Ir30.0214 (2)0.02444 (16)0.0315 (3)0.00303 (13)0.00204 (15)0.00769 (15)
C450.045 (4)0.036 (4)0.038 (6)0.002 (3)0.001 (4)0.001 (3)
C460.032 (3)0.034 (3)0.032 (4)0.000 (2)0.004 (3)0.000 (3)
C470.034 (3)0.039 (3)0.029 (3)0.002 (3)0.001 (3)0.005 (3)
C480.036 (3)0.032 (3)0.025 (3)0.003 (2)0.010 (2)0.005 (2)
C490.023 (3)0.045 (4)0.046 (4)0.003 (3)0.010 (3)0.001 (3)
C500.024 (3)0.033 (3)0.049 (4)0.008 (2)0.001 (3)0.004 (3)
C510.027 (3)0.024 (3)0.043 (4)0.008 (2)0.002 (3)0.002 (3)
C520.031 (3)0.018 (2)0.043 (3)0.002 (2)0.007 (2)0.003 (2)
C530.027 (3)0.021 (2)0.049 (4)0.006 (2)0.003 (2)0.011 (2)
C540.027 (4)0.042 (4)0.084 (5)0.004 (3)0.009 (3)0.014 (4)
C550.037 (4)0.059 (5)0.042 (4)0.007 (3)0.012 (3)0.001 (4)
C560.033 (3)0.032 (3)0.041 (4)0.006 (3)0.013 (3)0.012 (3)
C570.051 (4)0.040 (4)0.021 (3)0.002 (3)0.002 (3)0.000 (3)
C580.078 (7)0.068 (6)0.041 (4)0.046 (6)0.001 (4)0.008 (4)
C590.064 (6)0.031 (4)0.053 (4)0.001 (4)0.011 (4)0.007 (3)
C600.045 (4)0.055 (4)0.062 (5)0.004 (3)0.000 (3)0.016 (3)
C610.046 (3)0.047 (4)0.057 (4)0.008 (3)0.004 (3)0.020 (3)
C620.052 (4)0.070 (5)0.040 (4)0.015 (3)0.004 (3)0.006 (3)
C630.040 (4)0.102 (7)0.068 (5)0.012 (4)0.006 (3)0.019 (5)
C640.060 (5)0.074 (6)0.140 (10)0.014 (5)0.051 (6)0.018 (6)
C650.093 (7)0.055 (5)0.164 (13)0.006 (5)0.067 (8)0.005 (6)
C660.053 (4)0.045 (4)0.140 (9)0.020 (3)0.030 (5)0.007 (5)
Ir3A0.076 (3)0.0363 (19)0.081 (3)0.012 (2)0.045 (4)0.030 (2)
C52A0.031 (4)0.018 (3)0.043 (4)0.001 (3)0.007 (3)0.003 (3)
C56A0.046 (10)0.032 (11)0.034 (11)0.001 (7)0.014 (7)0.003 (7)
C45A0.05 (2)0.044 (17)0.02 (3)0.015 (17)0.006 (19)0.006 (17)
C54A0.028 (4)0.042 (4)0.084 (6)0.003 (3)0.009 (4)0.014 (4)
C46A0.033 (13)0.027 (8)0.038 (12)0.001 (8)0.006 (10)0.006 (8)
C58A0.081 (19)0.045 (10)0.046 (9)0.011 (12)0.009 (11)0.006 (8)
C47A0.031 (13)0.039 (9)0.033 (10)0.006 (9)0.004 (9)0.004 (8)
C53A0.028 (3)0.021 (3)0.049 (4)0.005 (3)0.003 (3)0.010 (3)
C48A0.026 (11)0.037 (10)0.038 (10)0.000 (8)0.005 (8)0.001 (7)
C55A0.048 (11)0.053 (16)0.049 (16)0.007 (11)0.013 (10)0.002 (12)
C49A0.023 (10)0.038 (11)0.042 (12)0.000 (7)0.007 (8)0.001 (10)
C57A0.052 (12)0.038 (9)0.029 (9)0.001 (9)0.008 (8)0.000 (7)
C50A0.037 (10)0.023 (10)0.033 (12)0.001 (7)0.003 (8)0.013 (10)
C59A0.064 (6)0.031 (4)0.053 (4)0.001 (4)0.011 (4)0.006 (3)
C51A0.033 (11)0.017 (9)0.051 (12)0.008 (7)0.005 (9)0.003 (8)
Geometric parameters (Å, º) top
Ir1—H1A1.5498C43—H43B0.9800
Ir1—Cl12.4782 (11)C43—H43C0.9800
Ir1—Cl22.4818 (11)C44—H44A0.9800
Ir1—Cl32.5819 (11)C44—H44B0.9800
Ir1—P12.1819 (11)C44—H44C0.9800
Ir1—C22.001 (5)Ir3—C462.413 (7)
Ir2—H2A1.5502Ir3—C472.361 (7)
Ir2—Cl12.5476 (11)Ir3—C482.243 (6)
Ir2—Cl22.4963 (11)Ir3—C492.317 (6)
Ir2—Cl32.4780 (12)Ir3—C502.326 (6)
Ir2—P22.1899 (12)Ir3—C512.250 (6)
Ir2—C242.008 (5)Ir3—C522.150 (6)
P1—O31.651 (3)Ir3—C532.139 (5)
P1—C151.879 (5)Ir3—C562.129 (6)
P1—C191.885 (5)Ir3—C572.142 (7)
P2—O61.656 (4)C45—H45A0.9800
P2—C371.867 (5)C45—H45B0.9800
P2—C411.874 (5)C45—H45C0.9800
O1—C91.221 (7)C45—C461.491 (10)
O2—C101.221 (7)C46—C471.393 (9)
O3—C31.398 (6)C46—C511.433 (9)
O4—C311.219 (6)C47—H471.0000
O5—C321.238 (6)C47—C481.426 (9)
O6—C251.385 (6)C48—H481.0000
C1—H10.9500C48—C491.416 (9)
C1—C21.395 (7)C49—H491.0000
C1—C111.395 (7)C49—C501.387 (10)
C2—C31.421 (6)C50—H501.0000
C3—C41.368 (7)C50—C511.421 (9)
C4—H40.9500C51—H511.0000
C4—C121.404 (7)C52—H521.0000
C5—H50.9500C52—C531.420 (9)
C5—C61.383 (8)C52—C591.485 (10)
C5—C131.398 (8)C53—H531.0000
C6—H60.9500C53—C541.527 (10)
C6—C71.384 (9)C54—H54A0.9900
C7—H70.9500C54—H54B0.9900
C7—C81.399 (9)C54—C551.504 (10)
C8—H80.9500C55—H55A0.9900
C8—C141.392 (8)C55—H55B0.9900
C9—C111.480 (7)C55—C561.520 (10)
C9—C141.492 (8)C56—H561.0000
C10—C121.464 (7)C56—C571.429 (10)
C10—C131.490 (7)C57—H571.0000
C11—C121.408 (7)C57—C581.507 (11)
C13—C141.404 (8)C58—H58A0.9900
C15—C161.527 (8)C58—H58B0.9900
C15—C171.537 (7)C58—C591.497 (11)
C15—C181.535 (7)C59—H59A0.9900
C16—H16A0.9800C59—H59B0.9900
C16—H16B0.9800C60—H60A0.9800
C16—H16C0.9800C60—H60B0.9800
C17—H17A0.9800C60—H60C0.9800
C17—H17B0.9800C60—C611.484 (11)
C17—H17C0.9800C61—C621.408 (11)
C18—H18A0.9800C61—C661.378 (13)
C18—H18B0.9800C62—H620.9500
C18—H18C0.9800C62—C631.362 (12)
C19—C201.530 (8)C63—H630.9500
C19—C211.526 (7)C63—C641.392 (16)
C19—C221.530 (7)C64—H640.9500
C20—H20A0.9800C64—C651.424 (17)
C20—H20B0.9800C65—H650.9500
C20—H20C0.9800C65—C661.372 (13)
C21—H21A0.9800C66—H660.9500
C21—H21B0.9800Ir3A—C52A2.16 (2)
C21—H21C0.9800Ir3A—C56A2.08 (2)
C22—H22A0.9800Ir3A—C46A2.41 (2)
C22—H22B0.9800Ir3A—C47A2.38 (2)
C22—H22C0.9800Ir3A—C53A2.13 (2)
C23—H230.9500Ir3A—C48A2.28 (2)
C23—C241.381 (8)Ir3A—C49A2.38 (2)
C23—C331.397 (7)Ir3A—C57A2.12 (2)
C24—C251.425 (6)Ir3A—C50A2.37 (2)
C25—C261.374 (7)Ir3A—C51A2.25 (2)
C26—H260.9500C52A—H52A1.0000
C26—C341.393 (8)C52A—C53A1.41 (3)
C27—H270.9500C52A—C59A1.48 (2)
C27—C281.372 (9)C56A—H56A1.0000
C27—C351.396 (7)C56A—C55A1.53 (2)
C28—H280.9500C56A—C57A1.44 (3)
C28—C291.397 (8)C45A—H45D0.9800
C29—H290.9500C45A—H45E0.9800
C29—C301.389 (8)C45A—H45F0.9800
C30—H300.9500C45A—C46A1.48 (4)
C30—C361.389 (8)C54A—H54C0.9900
C31—C331.486 (7)C54A—H54D0.9900
C31—C361.475 (7)C54A—C53A1.53 (2)
C32—C341.468 (7)C54A—C55A1.50 (2)
C32—C351.489 (8)C46A—C47A1.41 (3)
C33—C341.408 (6)C46A—C51A1.44 (3)
C35—C361.406 (7)C58A—H58C0.9900
C37—C381.534 (9)C58A—H58D0.9900
C37—C391.545 (8)C58A—C57A1.50 (2)
C37—C401.537 (8)C58A—C59A1.50 (2)
C38—H38A0.9800C47A—H47A1.0000
C38—H38B0.9800C47A—C48A1.41 (3)
C38—H38C0.9800C53A—H53A1.0000
C39—H39A0.9800C48A—H48A1.0000
C39—H39B0.9800C48A—C49A1.42 (3)
C39—H39C0.9800C55A—H55C0.9900
C40—H40A0.9800C55A—H55D0.9900
C40—H40B0.9800C49A—H49A1.0000
C40—H40C0.9800C49A—C50A1.38 (3)
C41—C421.540 (8)C57A—H57A1.0000
C41—C431.536 (7)C50A—H50A1.0000
C41—C441.524 (7)C50A—C51A1.43 (3)
C42—H42A0.9800C59A—H59C0.9900
C42—H42B0.9800C59A—H59D0.9900
C42—H42C0.9800C51A—H51A1.0000
C43—H43A0.9800
Cl1—Ir1—H1A94.5C56—Ir3—C5199.1 (2)
Cl1—Ir1—Cl280.80 (4)C56—Ir3—C5294.3 (2)
Cl1—Ir1—Cl381.98 (4)C56—Ir3—C5380.5 (2)
Cl2—Ir1—H1A82.5C56—Ir3—C5739.1 (3)
Cl2—Ir1—Cl378.35 (4)C57—Ir3—C46121.2 (3)
Cl3—Ir1—H1A160.9C57—Ir3—C47154.4 (3)
P1—Ir1—H1A91.8C57—Ir3—C48161.6 (3)
P1—Ir1—Cl1101.24 (4)C57—Ir3—C49125.7 (3)
P1—Ir1—Cl2174.13 (4)C57—Ir3—C50101.2 (3)
P1—Ir1—Cl3107.33 (4)C57—Ir3—C5197.6 (3)
C2—Ir1—H1A82.5C57—Ir3—C5280.3 (3)
C2—Ir1—Cl1175.33 (14)H45A—C45—H45B109.5
C2—Ir1—Cl295.21 (13)H45A—C45—H45C109.5
C2—Ir1—Cl399.66 (14)H45B—C45—H45C109.5
C2—Ir1—P182.49 (13)C46—C45—H45A109.5
Cl1—Ir2—H2A164.5C46—C45—H45B109.5
Cl2—Ir2—H2A85.6C46—C45—H45C109.5
Cl2—Ir2—Cl179.18 (4)C45—C46—Ir3132.1 (5)
Cl3—Ir2—H2A91.9C47—C46—Ir371.0 (4)
Cl3—Ir2—Cl182.68 (4)C47—C46—C45123.0 (6)
Cl3—Ir2—Cl280.07 (4)C47—C46—C51117.8 (6)
P2—Ir2—H2A88.6C51—C46—Ir366.0 (4)
P2—Ir2—Cl1106.79 (4)C51—C46—C45119.2 (6)
P2—Ir2—Cl2173.06 (4)Ir3—C47—H47119.0
P2—Ir2—Cl3103.93 (4)C46—C47—Ir375.1 (4)
C24—Ir2—H2A85.3C46—C47—H47119.0
C24—Ir2—Cl198.54 (13)C46—C47—C48120.7 (6)
C24—Ir2—Cl293.93 (14)C48—C47—Ir367.5 (4)
C24—Ir2—Cl3173.57 (14)C48—C47—H47119.0
C24—Ir2—P281.82 (14)Ir3—C48—H48120.1
Ir1—Cl1—Ir283.38 (3)C47—C48—Ir376.5 (4)
Ir1—Cl2—Ir284.37 (4)C47—C48—H48120.1
Ir2—Cl3—Ir182.67 (4)C49—C48—Ir374.8 (4)
O3—P1—Ir1105.38 (12)C49—C48—C47119.8 (6)
O3—P1—C15100.8 (2)C49—C48—H48120.1
O3—P1—C19101.1 (2)Ir3—C49—H49119.7
C15—P1—Ir1118.60 (17)C48—C49—Ir369.1 (3)
C15—P1—C19110.6 (2)C48—C49—H49119.7
C19—P1—Ir1117.04 (16)C50—C49—Ir373.0 (4)
O6—P2—Ir2104.83 (13)C50—C49—C48119.4 (6)
O6—P2—C37100.7 (2)C50—C49—H49119.7
O6—P2—C4199.9 (2)Ir3—C50—H50119.3
C37—P2—Ir2117.47 (17)C49—C50—Ir372.3 (3)
C37—P2—C41111.1 (3)C49—C50—H50119.3
C41—P2—Ir2118.91 (17)C49—C50—C51119.9 (6)
C3—O3—P1114.4 (3)C51—C50—Ir369.0 (3)
C25—O6—P2113.7 (3)C51—C50—H50119.3
C2—C1—H1118.6Ir3—C51—H51119.9
C11—C1—H1118.6C46—C51—Ir378.4 (3)
C11—C1—C2122.7 (4)C46—C51—H51119.9
C1—C2—Ir1126.5 (3)C50—C51—Ir374.9 (3)
C1—C2—C3115.0 (4)C50—C51—C46120.2 (6)
C3—C2—Ir1118.4 (3)C50—C51—H51119.9
O3—C3—C2117.6 (4)Ir3—C52—H52113.3
C4—C3—O3118.1 (4)C53—C52—Ir370.3 (3)
C4—C3—C2124.3 (4)C53—C52—H52113.3
C3—C4—H4120.6C53—C52—C59125.6 (6)
C3—C4—C12118.9 (4)C59—C52—Ir3113.9 (4)
C12—C4—H4120.6C59—C52—H52113.3
C6—C5—H5120.1Ir3—C53—H53114.6
C6—C5—C13119.7 (6)C52—C53—Ir371.1 (3)
C13—C5—H5120.1C52—C53—H53114.6
C5—C6—H6119.5C52—C53—C54120.3 (7)
C5—C6—C7121.1 (6)C54—C53—Ir3114.7 (4)
C7—C6—H6119.5C54—C53—H53114.6
C6—C7—H7120.2C53—C54—H54A108.8
C6—C7—C8119.5 (5)C53—C54—H54B108.8
C8—C7—H7120.2H54A—C54—H54B107.7
C7—C8—H8119.9C55—C54—C53113.7 (6)
C14—C8—C7120.2 (6)C55—C54—H54A108.8
C14—C8—H8119.9C55—C54—H54B108.8
O1—C9—C11122.2 (5)C54—C55—H55A108.7
O1—C9—C14120.0 (5)C54—C55—H55B108.7
C11—C9—C14117.7 (4)C54—C55—C56114.1 (6)
O2—C10—C12121.7 (5)H55A—C55—H55B107.6
O2—C10—C13120.6 (5)C56—C55—H55A108.7
C12—C10—C13117.7 (5)C56—C55—H55B108.7
C1—C11—C9119.5 (4)Ir3—C56—H56113.7
C1—C11—C12119.7 (5)C55—C56—Ir3114.0 (4)
C12—C11—C9120.7 (5)C55—C56—H56113.7
C4—C12—C10119.4 (4)C57—C56—Ir370.9 (4)
C4—C12—C11119.3 (5)C57—C56—C55123.5 (7)
C11—C12—C10121.3 (4)C57—C56—H56113.8
C5—C13—C10119.5 (5)Ir3—C57—H57115.0
C5—C13—C14119.8 (5)C56—C57—Ir370.0 (4)
C14—C13—C10120.7 (5)C56—C57—H57115.0
C8—C14—C9119.5 (5)C56—C57—C58121.0 (7)
C8—C14—C13119.6 (5)C58—C57—Ir3113.2 (5)
C13—C14—C9120.8 (5)C58—C57—H57115.0
C16—C15—P1109.2 (3)C57—C58—H58A108.3
C16—C15—C17107.0 (4)C57—C58—H58B108.3
C16—C15—C18108.0 (5)H58A—C58—H58B107.4
C17—C15—P1112.6 (4)C59—C58—C57115.9 (7)
C18—C15—P1108.7 (3)C59—C58—H58A108.3
C18—C15—C17111.2 (4)C59—C58—H58B108.3
C15—C16—H16A109.5C52—C59—C58113.3 (6)
C15—C16—H16B109.5C52—C59—H59A108.9
C15—C16—H16C109.5C52—C59—H59B108.9
H16A—C16—H16B109.5C58—C59—H59A108.9
H16A—C16—H16C109.5C58—C59—H59B108.9
H16B—C16—H16C109.5H59A—C59—H59B107.7
C15—C17—H17A109.5H60A—C60—H60B109.5
C15—C17—H17B109.5H60A—C60—H60C109.5
C15—C17—H17C109.5H60B—C60—H60C109.5
H17A—C17—H17B109.5C61—C60—H60A109.5
H17A—C17—H17C109.5C61—C60—H60B109.5
H17B—C17—H17C109.5C61—C60—H60C109.5
C15—C18—H18A109.5C62—C61—C60119.4 (7)
C15—C18—H18B109.5C66—C61—C60121.9 (7)
C15—C18—H18C109.5C66—C61—C62118.6 (7)
H18A—C18—H18B109.5C61—C62—H62120.2
H18A—C18—H18C109.5C63—C62—C61119.6 (8)
H18B—C18—H18C109.5C63—C62—H62120.2
C20—C19—P1104.6 (4)C62—C63—H63119.3
C20—C19—C22110.2 (4)C62—C63—C64121.5 (8)
C21—C19—P1113.7 (4)C64—C63—H63119.3
C21—C19—C20107.8 (5)C63—C64—H64120.2
C21—C19—C22109.9 (4)C63—C64—C65119.5 (8)
C22—C19—P1110.5 (4)C65—C64—H64120.2
C19—C20—H20A109.5C64—C65—H65121.3
C19—C20—H20B109.5C66—C65—C64117.3 (11)
C19—C20—H20C109.5C66—C65—H65121.3
H20A—C20—H20B109.5C61—C66—H66118.4
H20A—C20—H20C109.5C65—C66—C61123.3 (9)
H20B—C20—H20C109.5C65—C66—H66118.4
C19—C21—H21A109.5C52A—Ir3A—C46A156.3 (12)
C19—C21—H21B109.5C52A—Ir3A—C47A122.0 (12)
C19—C21—H21C109.5C52A—Ir3A—C48A95.4 (11)
H21A—C21—H21B109.5C52A—Ir3A—C49A94.5 (11)
H21A—C21—H21C109.5C52A—Ir3A—C50A117.9 (12)
H21B—C21—H21C109.5C52A—Ir3A—C51A153.3 (13)
C19—C22—H22A109.5C56A—Ir3A—C52A95.0 (10)
C19—C22—H22B109.5C56A—Ir3A—C46A103.5 (12)
C19—C22—H22C109.5C56A—Ir3A—C47A126.1 (13)
H22A—C22—H22B109.5C56A—Ir3A—C53A81.7 (9)
H22A—C22—H22C109.5C56A—Ir3A—C48A160.4 (15)
H22B—C22—H22C109.5C56A—Ir3A—C49A158.8 (13)
C24—C23—H23119.0C56A—Ir3A—C57A40.2 (10)
C24—C23—C33122.1 (4)C56A—Ir3A—C50A126.0 (12)
C33—C23—H23119.0C56A—Ir3A—C51A100.9 (11)
C23—C24—Ir2126.0 (3)C47A—Ir3A—C46A34.3 (8)
C23—C24—C25116.2 (5)C53A—Ir3A—C52A38.3 (9)
C25—C24—Ir2117.8 (4)C53A—Ir3A—C46A129.8 (13)
O6—C25—C24118.1 (4)C53A—Ir3A—C47A103.3 (12)
C26—C25—O6118.6 (4)C53A—Ir3A—C48A96.5 (11)
C26—C25—C24123.3 (5)C53A—Ir3A—C49A116.8 (12)
C25—C26—H26120.5C53A—Ir3A—C50A149.6 (13)
C25—C26—C34119.1 (4)C53A—Ir3A—C51A165.5 (14)
C34—C26—H26120.5C48A—Ir3A—C46A62.7 (9)
C28—C27—H27119.7C48A—Ir3A—C47A35.1 (8)
C28—C27—C35120.6 (5)C48A—Ir3A—C49A35.5 (8)
C35—C27—H27119.7C48A—Ir3A—C50A62.0 (9)
C27—C28—H28119.8C49A—Ir3A—C46A73.3 (9)
C27—C28—C29120.4 (5)C49A—Ir3A—C47A62.4 (9)
C29—C28—H28119.8C57A—Ir3A—C52A80.7 (9)
C28—C29—H29120.4C57A—Ir3A—C46A123.0 (12)
C30—C29—C28119.2 (6)C57A—Ir3A—C47A157.1 (12)
C30—C29—H29120.4C57A—Ir3A—C53A93.2 (10)
C29—C30—H30119.4C57A—Ir3A—C48A158.8 (14)
C29—C30—C36121.2 (5)C57A—Ir3A—C49A123.6 (13)
C36—C30—H30119.4C57A—Ir3A—C50A101.2 (12)
O4—C31—C33121.4 (5)C57A—Ir3A—C51A97.9 (11)
O4—C31—C36120.9 (5)C50A—Ir3A—C46A61.9 (9)
C36—C31—C33117.6 (4)C50A—Ir3A—C47A72.2 (9)
O5—C32—C34121.6 (5)C50A—Ir3A—C49A33.7 (8)
O5—C32—C35120.0 (5)C51A—Ir3A—C46A35.7 (8)
C34—C32—C35118.4 (4)C51A—Ir3A—C47A63.6 (9)
C23—C33—C31119.0 (4)C51A—Ir3A—C48A76.2 (9)
C23—C33—C34119.9 (5)C51A—Ir3A—C49A63.9 (9)
C34—C33—C31121.1 (5)C51A—Ir3A—C50A35.8 (8)
C26—C34—C32119.9 (4)Ir3A—C52A—H52A112.5
C26—C34—C33119.5 (5)C53A—C52A—Ir3A69.7 (11)
C33—C34—C32120.6 (5)C53A—C52A—H52A112.5
C27—C35—C32119.7 (5)C53A—C52A—C59A129 (3)
C27—C35—C36119.7 (5)C59A—C52A—Ir3A112.4 (18)
C36—C35—C32120.6 (4)C59A—C52A—H52A112.5
C30—C36—C31120.0 (4)Ir3A—C56A—H56A114.6
C30—C36—C35118.9 (5)C55A—C56A—Ir3A115.1 (16)
C35—C36—C31121.1 (5)C55A—C56A—H56A114.6
C38—C37—P2106.4 (4)C57A—C56A—Ir3A71.3 (11)
C38—C37—C39109.4 (4)C57A—C56A—H56A114.6
C38—C37—C40107.9 (5)C57A—C56A—C55A120 (3)
C39—C37—P2109.9 (4)H45D—C45A—H45E109.5
C40—C37—P2114.7 (4)H45D—C45A—H45F109.5
C40—C37—C39108.4 (5)H45E—C45A—H45F109.5
C37—C38—H38A109.5C46A—C45A—H45D109.5
C37—C38—H38B109.5C46A—C45A—H45E109.5
C37—C38—H38C109.5C46A—C45A—H45F109.5
H38A—C38—H38B109.5H54C—C54A—H54D107.7
H38A—C38—H38C109.5C53A—C54A—H54C108.8
H38B—C38—H38C109.5C53A—C54A—H54D108.8
C37—C39—H39A109.5C55A—C54A—H54C108.8
C37—C39—H39B109.5C55A—C54A—H54D108.8
C37—C39—H39C109.5C55A—C54A—C53A113.8 (19)
H39A—C39—H39B109.5C45A—C46A—Ir3A134 (3)
H39A—C39—H39C109.5C47A—C46A—Ir3A71.6 (11)
H39B—C39—H39C109.5C47A—C46A—C45A122 (3)
C37—C40—H40A109.5C47A—C46A—C51A118.0 (19)
C37—C40—H40B109.5C51A—C46A—Ir3A66.0 (11)
C37—C40—H40C109.5C51A—C46A—C45A120 (3)
H40A—C40—H40B109.5H58C—C58A—H58D107.4
H40A—C40—H40C109.5C57A—C58A—H58C108.3
H40B—C40—H40C109.5C57A—C58A—H58D108.3
C42—C41—P2109.0 (3)C59A—C58A—H58C108.3
C43—C41—P2111.9 (4)C59A—C58A—H58D108.3
C43—C41—C42111.7 (5)C59A—C58A—C57A116 (2)
C44—C41—P2108.2 (4)Ir3A—C47A—H47A119.3
C44—C41—C42108.3 (5)C46A—C47A—Ir3A74.1 (12)
C44—C41—C43107.6 (4)C46A—C47A—H47A119.3
C41—C42—H42A109.5C48A—C47A—Ir3A68.8 (11)
C41—C42—H42B109.5C48A—C47A—C46A120 (2)
C41—C42—H42C109.5C48A—C47A—H47A119.3
H42A—C42—H42B109.5Ir3A—C53A—H53A114.2
H42A—C42—H42C109.5C52A—C53A—Ir3A72.0 (11)
H42B—C42—H42C109.5C52A—C53A—C54A122 (3)
C41—C43—H43A109.5C52A—C53A—H53A114.2
C41—C43—H43B109.5C54A—C53A—Ir3A113.9 (15)
C41—C43—H43C109.5C54A—C53A—H53A114.2
H43A—C43—H43B109.5Ir3A—C48A—H48A119.5
H43A—C43—H43C109.5C47A—C48A—Ir3A76.1 (13)
H43B—C43—H43C109.5C47A—C48A—H48A119.5
C41—C44—H44A109.5C47A—C48A—C49A121 (2)
C41—C44—H44B109.5C49A—C48A—Ir3A75.9 (12)
C41—C44—H44C109.5C49A—C48A—H48A119.5
H44A—C44—H44B109.5C56A—C55A—H55C108.7
H44A—C44—H44C109.5C56A—C55A—H55D108.7
H44B—C44—H44C109.5C54A—C55A—C56A114.4 (19)
C47—Ir3—C4633.9 (2)C54A—C55A—H55C108.7
C48—Ir3—C4663.4 (2)C54A—C55A—H55D108.7
C48—Ir3—C4736.0 (2)H55C—C55A—H55D107.6
C48—Ir3—C4936.1 (2)Ir3A—C49A—H49A120.6
C48—Ir3—C5063.9 (2)C48A—C49A—Ir3A68.7 (11)
C48—Ir3—C5176.8 (2)C48A—C49A—H49A120.6
C49—Ir3—C4674.0 (3)C50A—C49A—Ir3A73.0 (12)
C49—Ir3—C4763.4 (2)C50A—C49A—C48A118 (2)
C49—Ir3—C5034.8 (2)C50A—C49A—H49A120.6
C50—Ir3—C4662.9 (2)Ir3A—C57A—H57A114.7
C50—Ir3—C4773.8 (2)C56A—C57A—Ir3A68.4 (11)
C51—Ir3—C4635.6 (2)C56A—C57A—C58A123 (4)
C51—Ir3—C4763.3 (2)C56A—C57A—H57A114.7
C51—Ir3—C4964.3 (2)C58A—C57A—Ir3A113.3 (16)
C51—Ir3—C5036.1 (2)C58A—C57A—H57A114.7
C52—Ir3—C46158.2 (2)Ir3A—C50A—H50A118.0
C52—Ir3—C47124.3 (2)C49A—C50A—Ir3A73.3 (12)
C52—Ir3—C4897.6 (2)C49A—C50A—H50A118.0
C52—Ir3—C4997.1 (3)C49A—C50A—C51A121.7 (19)
C52—Ir3—C50120.1 (2)C51A—C50A—Ir3A67.3 (11)
C52—Ir3—C51155.6 (2)C51A—C50A—H50A118.0
C53—Ir3—C46128.9 (2)C52A—C59A—C58A113 (2)
C53—Ir3—C47103.7 (2)C52A—C59A—H59C108.9
C53—Ir3—C4897.7 (2)C52A—C59A—H59D108.9
C53—Ir3—C49119.3 (3)C58A—C59A—H59C108.9
C53—Ir3—C50152.8 (3)C58A—C59A—H59D108.9
C53—Ir3—C51164.3 (3)H59C—C59A—H59D107.7
C53—Ir3—C5238.7 (2)Ir3A—C51A—H51A120.6
C53—Ir3—C5791.9 (3)C46A—C51A—Ir3A78.3 (12)
C56—Ir3—C46100.8 (3)C46A—C51A—H51A120.6
C56—Ir3—C47123.2 (3)C50A—C51A—Ir3A76.9 (12)
C56—Ir3—C48158.3 (3)C50A—C51A—C46A118 (2)
C56—Ir3—C49158.5 (3)C50A—C51A—H51A120.6
C56—Ir3—C50124.1 (3)
Ir1—P1—O3—C314.1 (4)C29—C30—C36—C351.0 (8)
Ir1—P1—C15—C1631.9 (4)C31—C33—C34—C26176.5 (4)
Ir1—P1—C15—C17150.6 (3)C31—C33—C34—C326.4 (7)
Ir1—P1—C15—C1885.7 (4)C32—C35—C36—C30179.2 (4)
Ir1—P1—C19—C2061.8 (4)C32—C35—C36—C312.8 (7)
Ir1—P1—C19—C21179.1 (3)C33—C23—C24—Ir2177.0 (4)
Ir1—P1—C19—C2256.8 (4)C33—C23—C24—C250.2 (7)
Ir1—C2—C3—O31.4 (6)C33—C31—C36—C30173.9 (4)
Ir1—C2—C3—C4179.3 (4)C33—C31—C36—C354.1 (6)
Ir2—P2—O6—C2519.8 (3)C34—C32—C35—C27174.3 (4)
Ir2—P2—C37—C3859.7 (4)C34—C32—C35—C365.3 (7)
Ir2—P2—C37—C3958.7 (5)C35—C27—C28—C290.4 (8)
Ir2—P2—C37—C40179.0 (4)C35—C32—C34—C26176.5 (4)
Ir2—P2—C41—C4283.5 (4)C35—C32—C34—C330.6 (7)
Ir2—P2—C41—C43152.4 (3)C36—C31—C33—C23173.8 (4)
Ir2—P2—C41—C4434.1 (4)C36—C31—C33—C348.8 (7)
Ir2—C24—C25—O62.4 (6)C37—P2—O6—C25102.6 (3)
Ir2—C24—C25—C26178.1 (4)C37—P2—C41—C4257.6 (4)
P1—O3—C3—C211.0 (6)C37—P2—C41—C4366.4 (4)
P1—O3—C3—C4169.7 (4)C37—P2—C41—C44175.3 (4)
P2—O6—C25—C2412.8 (5)C41—P2—O6—C25143.4 (3)
P2—O6—C25—C26166.8 (4)C41—P2—C37—C38158.5 (3)
O1—C9—C11—C13.5 (9)C41—P2—C37—C3983.1 (4)
O1—C9—C11—C12179.8 (6)C41—P2—C37—C4039.3 (5)
O1—C9—C14—C87.0 (10)Ir3—C46—C47—C4851.7 (6)
O1—C9—C14—C13175.4 (6)Ir3—C46—C51—C5064.7 (5)
O2—C10—C12—C410.3 (9)Ir3—C47—C48—C4963.4 (5)
O2—C10—C12—C11168.4 (6)Ir3—C48—C49—C5054.8 (6)
O2—C10—C13—C59.2 (9)Ir3—C49—C50—C5151.8 (6)
O2—C10—C13—C14172.9 (6)Ir3—C50—C51—C4666.5 (5)
O3—P1—C15—C1682.4 (4)Ir3—C52—C53—C54108.1 (5)
O3—P1—C15—C1736.3 (4)Ir3—C52—C59—C5821.4 (9)
O3—P1—C15—C18160.0 (4)Ir3—C53—C54—C552.8 (10)
O3—P1—C19—C2052.0 (4)Ir3—C56—C57—C58105.6 (6)
O3—P1—C19—C2165.3 (4)Ir3—C57—C58—C592.9 (11)
O3—P1—C19—C22170.6 (3)C45—C46—C47—Ir3128.4 (7)
O3—C3—C4—C12176.0 (5)C45—C46—C47—C48179.9 (7)
O4—C31—C33—C237.5 (7)C45—C46—C51—Ir3126.3 (6)
O4—C31—C33—C34170.0 (5)C45—C46—C51—C50169.1 (7)
O4—C31—C36—C307.4 (7)C46—C47—C48—Ir355.2 (6)
O4—C31—C36—C35174.7 (5)C46—C47—C48—C498.2 (10)
O5—C32—C34—C262.9 (7)C47—C46—C51—Ir350.4 (6)
O5—C32—C34—C33179.9 (5)C47—C46—C51—C5014.2 (9)
O5—C32—C35—C275.2 (7)C47—C48—C49—Ir364.3 (5)
O5—C32—C35—C36175.3 (4)C47—C48—C49—C509.5 (10)
O6—P2—C37—C3853.4 (4)C48—C49—C50—Ir353.0 (6)
O6—P2—C37—C39171.8 (4)C48—C49—C50—C511.1 (10)
O6—P2—C37—C4065.9 (5)C49—C50—C51—Ir353.3 (6)
O6—P2—C41—C42163.3 (4)C49—C50—C51—C4613.2 (10)
O6—P2—C41—C4339.3 (4)C51—C46—C47—Ir348.1 (5)
O6—P2—C41—C4479.1 (4)C51—C46—C47—C483.6 (10)
O6—C25—C26—C34179.7 (4)C52—C53—C54—C5584.4 (9)
C1—C2—C3—O3174.9 (5)C53—C52—C59—C5860.7 (10)
C1—C2—C3—C44.4 (8)C53—C54—C55—C5614.4 (12)
C1—C11—C12—C43.2 (8)C54—C55—C56—Ir319.7 (10)
C1—C11—C12—C10175.6 (5)C54—C55—C56—C5762.6 (10)
C2—C1—C11—C9174.9 (5)C55—C56—C57—Ir3106.7 (6)
C2—C1—C11—C121.9 (9)C55—C56—C57—C581.1 (10)
C2—C3—C4—C123.3 (8)C56—C57—C58—C5982.7 (10)
C3—C4—C12—C10178.1 (5)C57—C58—C59—C5215.9 (12)
C3—C4—C12—C110.7 (8)C59—C52—C53—Ir3105.8 (6)
C5—C6—C7—C80.4 (11)C59—C52—C53—C542.4 (9)
C5—C13—C14—C81.5 (10)C60—C61—C62—C63178.2 (7)
C5—C13—C14—C9179.1 (6)C60—C61—C66—C65179.0 (10)
C6—C5—C13—C10176.5 (6)C61—C62—C63—C642.0 (14)
C6—C5—C13—C141.4 (10)C62—C61—C66—C654.6 (16)
C6—C7—C8—C140.5 (10)C62—C63—C64—C652.2 (17)
C7—C8—C14—C9178.6 (6)C63—C64—C65—C663.0 (19)
C7—C8—C14—C131.0 (10)C64—C65—C66—C610.4 (19)
C9—C11—C12—C4173.6 (5)C66—C61—C62—C635.3 (12)
C9—C11—C12—C107.7 (9)Ir3A—C52A—C53A—C54A108 (2)
C10—C13—C14—C8176.4 (6)Ir3A—C52A—C59A—C58A24 (7)
C10—C13—C14—C91.2 (9)Ir3A—C56A—C55A—C54A10 (7)
C11—C1—C2—Ir1177.7 (4)Ir3A—C56A—C57A—C58A105 (2)
C11—C1—C2—C31.8 (8)Ir3A—C46A—C47A—C48A53 (2)
C11—C9—C14—C8171.8 (6)Ir3A—C46A—C51A—C50A67.9 (18)
C11—C9—C14—C135.7 (9)Ir3A—C47A—C48A—C49A63.7 (19)
C12—C10—C13—C5170.3 (6)Ir3A—C48A—C49A—C50A56 (2)
C12—C10—C13—C147.6 (9)Ir3A—C49A—C50A—C51A49 (2)
C13—C5—C6—C70.9 (11)Ir3A—C50A—C51A—C46A68.7 (18)
C13—C10—C12—C4169.1 (5)C45A—C46A—C47A—Ir3A131 (4)
C13—C10—C12—C1112.1 (8)C45A—C46A—C47A—C48A176 (4)
C14—C9—C11—C1175.4 (5)C45A—C46A—C51A—Ir3A129 (4)
C14—C9—C11—C121.3 (9)C45A—C46A—C51A—C50A163 (4)
C15—P1—O3—C3138.0 (4)C46A—C47A—C48A—Ir3A55 (2)
C15—P1—C19—C20158.1 (3)C46A—C47A—C48A—C49A8 (4)
C15—P1—C19—C2140.8 (5)C47A—C46A—C51A—Ir3A51 (2)
C15—P1—C19—C2283.3 (4)C47A—C46A—C51A—C50A17 (3)
C19—P1—O3—C3108.2 (4)C47A—C48A—C49A—Ir3A64 (2)
C19—P1—C15—C16171.3 (3)C47A—C48A—C49A—C50A8 (3)
C19—P1—C15—C1770.0 (4)C53A—C52A—C59A—C58A58 (8)
C19—P1—C15—C1853.7 (4)C53A—C54A—C55A—C56A3 (9)
C23—C24—C25—O6179.5 (4)C48A—C49A—C50A—Ir3A54 (2)
C23—C24—C25—C260.9 (7)C48A—C49A—C50A—C51A5 (4)
C23—C33—C34—C261.0 (7)C55A—C56A—C57A—Ir3A109 (2)
C23—C33—C34—C32176.1 (4)C55A—C56A—C57A—C58A4 (3)
C24—C23—C33—C31176.8 (4)C55A—C54A—C53A—Ir3A5 (8)
C24—C23—C33—C340.8 (7)C55A—C54A—C53A—C52A78 (7)
C24—C25—C26—C340.7 (7)C49A—C50A—C51A—Ir3A51 (2)
C25—C26—C34—C32176.9 (4)C49A—C50A—C51A—C46A17 (3)
C25—C26—C34—C330.3 (7)C57A—C56A—C55A—C54A72 (7)
C27—C28—C29—C300.7 (8)C57A—C58A—C59A—C52A17 (10)
C27—C35—C36—C301.2 (7)C59A—C52A—C53A—Ir3A103 (3)
C27—C35—C36—C31176.8 (4)C59A—C52A—C53A—C54A5 (4)
C28—C27—C35—C32179.9 (5)C59A—C58A—C57A—Ir3A3 (8)
C28—C27—C35—C360.5 (7)C59A—C58A—C57A—C56A81 (7)
C28—C29—C30—C360.1 (8)C51A—C46A—C47A—Ir3A49 (2)
C29—C30—C36—C31177.0 (5)C51A—C46A—C47A—C48A4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl20.952.723.348 (5)124
C20—H20A···Cl30.982.673.555 (5)151
C22—H22C···Cl30.982.743.613 (6)149
C23—H23···Cl20.952.703.316 (5)123
C38—H38A···Cl10.982.713.589 (6)149
C39—H39C···Cl10.982.663.559 (7)152
C7—H7···O5i0.952.443.262 (8)145
C16—H16A···O5ii0.982.403.306 (6)154
C45—H45A···O1i0.982.513.468 (11)167
C45—H45C···O2iii0.982.343.197 (11)145
C48—H48···O4i1.002.503.125 (8)120
C49—H49···O4i1.002.523.142 (9)120
C52—H52···O4i1.002.363.303 (8)157
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+1, y, z.
Di-µ-chlorido-bis(carbonyl{3-[(di-tert-butylphosphanyl)oxy]-9,10-dioxoanthracen-2-yl}hydridoiridium(I)) (2) top
Crystal data top
[Ir2H2(C23H26O2P)2Cl2(CO)2]Z = 1
Mr = 1244.15F(000) = 608
Triclinic, P1Dx = 1.388 Mg m3
a = 8.8215 (3) ÅCu Kα radiation, λ = 1.54184 Å
b = 12.1331 (4) ÅCell parameters from 13538 reflections
c = 14.4895 (3) Åθ = 3.1–77.0°
α = 81.5747 (19)°µ = 10.16 mm1
β = 84.576 (2)°T = 173 K
γ = 76.465 (3)°Needle, light yellow
V = 1488.57 (7) Å30.19 × 0.04 × 0.03 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
6137 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source5626 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.046
Detector resolution: 10.0000 pixels mm-1θmax = 77.7°, θmin = 3.1°
ω scansh = 1011
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
k = 1515
Tmin = 0.459, Tmax = 1.000l = 1811
20510 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: mixed
wR(F2) = 0.067H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0333P)2 + 0.1077P]
where P = (Fo2 + 2Fc2)/3
6137 reflections(Δ/σ)max = 0.003
277 parametersΔρmax = 0.99 e Å3
0 restraintsΔρmin = 1.03 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Reflection contributions from highly disordered solvent were fixed and added to the calculated structure factors using the SQUEEZE routine of program Platon (Spek, 2015), which determined there to be 184 electrons in 492 Å3 treated this way per unit cell. Because the exact identity and amount of solvent were unknown, no solvent was included in the atom list or molecular formula. Thus all calculated quantities that derive from the molecular formula (e.g., F(000), density, molecular weight, etc.) are known to be inaccurate.

The hydrido ligand's position was based on a peak found in the difference Fourier map. Once located, it was given a riding model that preserved its angle relative to the other ligands, but with its Ir–H distance fixed at approximately 1.55 Å (based on an average obtained from the Cambridge Structural Database for six-coordinate Ir complexes; Groom et al., 2016). Independent spectroscopic experiments confirm the presence of this ligand.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.48460 (2)0.63470 (2)0.55302 (2)0.02185 (6)
H1A0.3368440.7277710.5747950.044*
Cl10.32114 (8)0.55180 (7)0.46723 (5)0.02494 (15)
P10.61658 (10)0.70682 (7)0.64763 (5)0.02345 (16)
O10.0183 (3)0.4082 (3)0.73070 (17)0.0457 (8)
O20.3803 (3)0.3658 (3)1.01700 (16)0.0363 (6)
O30.5734 (4)0.7724 (3)0.37031 (18)0.0497 (8)
C10.2859 (4)0.5016 (3)0.6961 (2)0.0260 (7)
H10.2237180.5053720.6451390.031*
C20.4178 (4)0.5481 (3)0.6806 (2)0.0237 (6)
C30.5103 (4)0.5376 (3)0.7576 (2)0.0223 (6)
C40.4697 (4)0.4833 (3)0.8446 (2)0.0233 (6)
H40.5341340.4763280.8949910.028*
C50.0756 (5)0.3309 (4)1.0592 (2)0.0374 (9)
H50.1401470.3213871.1099780.045*
C60.0738 (5)0.3123 (4)1.0755 (2)0.0419 (10)
H60.1115930.2901841.1373680.050*
C70.1693 (5)0.3257 (4)1.0014 (3)0.0390 (9)
H70.2726840.3142871.0127530.047*
C80.1126 (5)0.3559 (4)0.9114 (2)0.0339 (8)
H80.1767180.3634640.8606380.041*
C90.0940 (4)0.4107 (3)0.7965 (2)0.0302 (7)
C100.2921 (4)0.3870 (3)0.9533 (2)0.0269 (7)
C110.2420 (4)0.4497 (3)0.7835 (2)0.0243 (6)
C120.3369 (4)0.4393 (3)0.8589 (2)0.0237 (6)
C130.1323 (4)0.3635 (3)0.9687 (2)0.0279 (7)
C140.0372 (4)0.3751 (3)0.8943 (2)0.0287 (7)
C150.6506 (4)0.5901 (3)0.7446 (2)0.0249 (6)
H15A0.7459790.5321120.7299810.030*
H15B0.6647200.6199630.8024970.030*
C160.4960 (5)0.8365 (3)0.6999 (2)0.0319 (7)
C170.3595 (5)0.7995 (3)0.7610 (3)0.0350 (8)
H17A0.3001800.7657090.7232840.052*
H17B0.2908200.8663130.7851900.052*
H17C0.4005910.7429660.8133150.052*
C180.5891 (6)0.8839 (4)0.7628 (3)0.0435 (10)
H18A0.6365230.8224250.8101200.065*
H18B0.5189120.9448360.7936130.065*
H18C0.6712830.9146440.7246940.065*
C190.4265 (6)0.9315 (4)0.6231 (3)0.0423 (9)
H19A0.5112150.9573890.5837100.063*
H19B0.3604300.9958290.6519680.063*
H19C0.3634240.9017640.5846770.063*
C200.8163 (4)0.7304 (3)0.6026 (2)0.0316 (7)
C210.9217 (5)0.7243 (4)0.6829 (3)0.0400 (9)
H21A0.8774030.7872230.7197560.060*
H21B1.0264730.7307130.6569900.060*
H21C0.9283300.6512120.7231080.060*
C220.8028 (6)0.8456 (4)0.5398 (3)0.0430 (9)
H22A0.7299950.8509080.4914370.064*
H22B0.9057550.8512520.5102100.064*
H22C0.7640300.9081120.5778050.064*
C230.8956 (4)0.6342 (4)0.5443 (2)0.0355 (8)
H23A0.9018530.5600580.5829090.053*
H23B1.0011150.6431410.5223770.053*
H23C0.8344140.6380180.4904030.053*
C240.5430 (4)0.7199 (4)0.4371 (2)0.0332 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.02111 (8)0.02909 (9)0.01463 (7)0.00636 (5)0.00080 (5)0.00046 (5)
Cl10.0202 (3)0.0360 (4)0.0183 (3)0.0056 (3)0.0005 (2)0.0042 (3)
P10.0244 (4)0.0288 (4)0.0181 (3)0.0098 (3)0.0011 (3)0.0016 (3)
O10.0365 (15)0.084 (2)0.0244 (12)0.0330 (15)0.0053 (10)0.0024 (12)
O20.0339 (14)0.0569 (18)0.0209 (11)0.0203 (12)0.0055 (9)0.0050 (10)
O30.068 (2)0.055 (2)0.0246 (12)0.0256 (16)0.0018 (12)0.0141 (12)
C10.0242 (16)0.0332 (18)0.0192 (13)0.0057 (13)0.0004 (11)0.0011 (12)
C20.0226 (15)0.0298 (17)0.0164 (13)0.0041 (13)0.0027 (11)0.0016 (11)
C30.0211 (15)0.0235 (16)0.0215 (13)0.0042 (12)0.0024 (11)0.0037 (11)
C40.0224 (15)0.0279 (17)0.0199 (13)0.0063 (13)0.0011 (11)0.0029 (11)
C50.037 (2)0.055 (3)0.0223 (15)0.0201 (18)0.0020 (14)0.0003 (15)
C60.040 (2)0.065 (3)0.0235 (16)0.024 (2)0.0077 (14)0.0008 (16)
C70.0305 (19)0.051 (3)0.0374 (19)0.0184 (18)0.0051 (15)0.0023 (16)
C80.0321 (19)0.040 (2)0.0308 (17)0.0137 (16)0.0004 (14)0.0022 (14)
C90.0271 (17)0.039 (2)0.0238 (15)0.0105 (15)0.0013 (12)0.0019 (13)
C100.0286 (17)0.0316 (18)0.0205 (14)0.0095 (14)0.0021 (12)0.0014 (12)
C110.0226 (15)0.0313 (18)0.0192 (13)0.0078 (13)0.0013 (11)0.0031 (12)
C120.0239 (16)0.0275 (17)0.0183 (13)0.0056 (13)0.0011 (11)0.0006 (11)
C130.0274 (17)0.0336 (19)0.0241 (15)0.0119 (14)0.0049 (12)0.0038 (13)
C140.0311 (18)0.0330 (19)0.0227 (14)0.0112 (15)0.0023 (12)0.0021 (12)
C150.0244 (16)0.0325 (18)0.0179 (13)0.0083 (13)0.0024 (11)0.0004 (12)
C160.038 (2)0.0333 (19)0.0239 (15)0.0103 (16)0.0035 (13)0.0029 (13)
C170.036 (2)0.032 (2)0.0333 (17)0.0040 (16)0.0083 (14)0.0061 (14)
C180.054 (3)0.043 (2)0.0380 (19)0.015 (2)0.0017 (17)0.0161 (17)
C190.053 (3)0.032 (2)0.0361 (19)0.0038 (18)0.0034 (17)0.0041 (15)
C200.0313 (18)0.042 (2)0.0249 (15)0.0185 (16)0.0027 (13)0.0007 (13)
C210.037 (2)0.057 (3)0.0325 (18)0.0242 (19)0.0022 (15)0.0054 (16)
C220.049 (2)0.044 (2)0.0389 (19)0.026 (2)0.0031 (17)0.0045 (16)
C230.0230 (17)0.055 (2)0.0289 (16)0.0120 (16)0.0046 (13)0.0062 (15)
C240.0305 (18)0.041 (2)0.0276 (16)0.0075 (16)0.0024 (13)0.0043 (15)
Geometric parameters (Å, º) top
Ir1—H1A1.5529C10—C121.480 (4)
Ir1—Cl1i2.5353 (8)C10—C131.493 (5)
Ir1—Cl12.4537 (7)C11—C121.411 (4)
Ir1—P12.2650 (8)C13—C141.398 (5)
Ir1—C22.093 (3)C15—H15A0.9900
Ir1—C241.932 (4)C15—H15B0.9900
P1—C151.835 (3)C16—C171.539 (5)
P1—C161.896 (4)C16—C181.533 (6)
P1—C201.891 (4)C16—C191.538 (5)
O1—C91.222 (4)C17—H17A0.9800
O2—C101.223 (4)C17—H17B0.9800
O3—C241.125 (5)C17—H17C0.9800
C1—H10.9500C18—H18A0.9800
C1—C21.394 (5)C18—H18B0.9800
C1—C111.393 (4)C18—H18C0.9800
C2—C31.417 (4)C19—H19A0.9800
C3—C41.390 (4)C19—H19B0.9800
C3—C151.504 (5)C19—H19C0.9800
C4—H40.9500C20—C211.541 (5)
C4—C121.384 (5)C20—C221.538 (6)
C5—H50.9500C20—C231.536 (5)
C5—C61.382 (6)C21—H21A0.9800
C5—C131.394 (5)C21—H21B0.9800
C6—H60.9500C21—H21C0.9800
C6—C71.394 (6)C22—H22A0.9800
C7—H70.9500C22—H22B0.9800
C7—C81.381 (5)C22—H22C0.9800
C8—H80.9500C23—H23A0.9800
C8—C141.389 (5)C23—H23B0.9800
C9—C111.477 (5)C23—H23C0.9800
C9—C141.495 (5)
Cl1—Ir1—H1A88.0C14—C13—C10121.4 (3)
Cl1i—Ir1—H1A165.1C8—C14—C9119.4 (3)
Cl1—Ir1—Cl1i82.39 (3)C8—C14—C13119.9 (3)
P1—Ir1—H1A88.7C13—C14—C9120.6 (3)
P1—Ir1—Cl1173.11 (3)P1—C15—H15A110.2
P1—Ir1—Cl1i99.58 (3)P1—C15—H15B110.2
C2—Ir1—H1A84.0C3—C15—P1107.5 (2)
C2—Ir1—Cl1i84.99 (9)C3—C15—H15A110.2
C2—Ir1—Cl191.80 (9)C3—C15—H15B110.2
C2—Ir1—P181.83 (10)H15A—C15—H15B108.5
C24—Ir1—H1A94.2C17—C16—P1107.8 (3)
C24—Ir1—Cl1i96.98 (12)C18—C16—P1112.7 (3)
C24—Ir1—Cl189.22 (11)C18—C16—C17107.5 (3)
C24—Ir1—P197.06 (11)C18—C16—C19109.7 (4)
C24—Ir1—C2177.89 (14)C19—C16—P1111.1 (2)
Ir1—Cl1—Ir1i97.61 (3)C19—C16—C17107.9 (3)
C15—P1—Ir1101.12 (11)C16—C17—H17A109.5
C15—P1—C16106.24 (15)C16—C17—H17B109.5
C15—P1—C20105.84 (16)C16—C17—H17C109.5
C16—P1—Ir1113.99 (12)H17A—C17—H17B109.5
C20—P1—Ir1117.45 (11)H17A—C17—H17C109.5
C20—P1—C16110.74 (17)H17B—C17—H17C109.5
C2—C1—H1118.8C16—C18—H18A109.5
C11—C1—H1118.8C16—C18—H18B109.5
C11—C1—C2122.4 (3)C16—C18—H18C109.5
C1—C2—Ir1124.6 (2)H18A—C18—H18B109.5
C1—C2—C3117.2 (3)H18A—C18—H18C109.5
C3—C2—Ir1118.3 (2)H18B—C18—H18C109.5
C2—C3—C15118.8 (3)C16—C19—H19A109.5
C4—C3—C2120.9 (3)C16—C19—H19B109.5
C4—C3—C15120.3 (3)C16—C19—H19C109.5
C3—C4—H4119.5H19A—C19—H19B109.5
C12—C4—C3121.1 (3)H19A—C19—H19C109.5
C12—C4—H4119.5H19B—C19—H19C109.5
C6—C5—H5119.8C21—C20—P1111.8 (2)
C6—C5—C13120.4 (3)C22—C20—P1110.9 (3)
C13—C5—H5119.8C22—C20—C21110.0 (3)
C5—C6—H6119.9C23—C20—P1108.2 (3)
C5—C6—C7120.3 (3)C23—C20—C21107.2 (3)
C7—C6—H6119.9C23—C20—C22108.6 (3)
C6—C7—H7120.2C20—C21—H21A109.5
C8—C7—C6119.6 (4)C20—C21—H21B109.5
C8—C7—H7120.2C20—C21—H21C109.5
C7—C8—H8119.7H21A—C21—H21B109.5
C7—C8—C14120.6 (3)H21A—C21—H21C109.5
C14—C8—H8119.7H21B—C21—H21C109.5
O1—C9—C11122.2 (3)C20—C22—H22A109.5
O1—C9—C14120.3 (3)C20—C22—H22B109.5
C11—C9—C14117.4 (3)C20—C22—H22C109.5
O2—C10—C12121.8 (3)H22A—C22—H22B109.5
O2—C10—C13120.9 (3)H22A—C22—H22C109.5
C12—C10—C13117.2 (3)H22B—C22—H22C109.5
C1—C11—C9119.3 (3)C20—C23—H23A109.5
C1—C11—C12119.3 (3)C20—C23—H23B109.5
C12—C11—C9121.3 (3)C20—C23—H23C109.5
C4—C12—C10120.0 (3)H23A—C23—H23B109.5
C4—C12—C11119.1 (3)H23A—C23—H23C109.5
C11—C12—C10120.8 (3)H23B—C23—H23C109.5
C5—C13—C10119.4 (3)O3—C24—Ir1177.8 (4)
C5—C13—C14119.2 (3)
Ir1—P1—C15—C335.1 (2)C6—C7—C8—C141.4 (7)
Ir1—P1—C16—C1762.1 (3)C7—C8—C14—C9178.3 (4)
Ir1—P1—C16—C18179.4 (2)C7—C8—C14—C130.3 (6)
Ir1—P1—C16—C1955.9 (3)C9—C11—C12—C4176.1 (3)
Ir1—P1—C20—C21153.4 (2)C9—C11—C12—C101.0 (5)
Ir1—P1—C20—C2283.5 (3)C10—C13—C14—C8178.1 (4)
Ir1—P1—C20—C2335.6 (3)C10—C13—C14—C90.5 (5)
Ir1—C2—C3—C4178.5 (2)C11—C1—C2—Ir1176.7 (3)
Ir1—C2—C3—C150.7 (4)C11—C1—C2—C31.9 (5)
O1—C9—C11—C110.0 (6)C11—C9—C14—C8169.5 (3)
O1—C9—C11—C12172.4 (4)C11—C9—C14—C139.1 (5)
O1—C9—C14—C89.8 (6)C12—C10—C13—C5170.2 (4)
O1—C9—C14—C13171.6 (4)C12—C10—C13—C148.8 (5)
O2—C10—C12—C410.9 (5)C13—C5—C6—C70.1 (7)
O2—C10—C12—C11171.9 (3)C13—C10—C12—C4167.5 (3)
O2—C10—C13—C58.2 (6)C13—C10—C12—C119.6 (5)
O2—C10—C13—C14172.7 (4)C14—C9—C11—C1169.2 (3)
C1—C2—C3—C40.2 (5)C14—C9—C11—C128.3 (5)
C1—C2—C3—C15178.0 (3)C15—P1—C16—C1748.4 (3)
C1—C11—C12—C41.5 (5)C15—P1—C16—C1870.1 (3)
C1—C11—C12—C10178.6 (3)C15—P1—C16—C19166.3 (3)
C2—C1—C11—C9175.0 (3)C15—P1—C20—C2141.5 (3)
C2—C1—C11—C122.6 (5)C15—P1—C20—C22164.6 (3)
C2—C3—C4—C120.9 (5)C15—P1—C20—C2376.4 (3)
C2—C3—C15—P124.8 (4)C15—C3—C4—C12176.9 (3)
C3—C4—C12—C10177.0 (3)C16—P1—C15—C384.2 (2)
C3—C4—C12—C110.2 (5)C16—P1—C20—C2173.2 (3)
C4—C3—C15—P1153.1 (3)C16—P1—C20—C2249.9 (3)
C5—C6—C7—C81.2 (7)C16—P1—C20—C23168.9 (2)
C5—C13—C14—C80.9 (6)C20—P1—C15—C3158.1 (2)
C5—C13—C14—C9179.6 (4)C20—P1—C16—C17162.8 (2)
C6—C5—C13—C10177.9 (4)C20—P1—C16—C1844.4 (3)
C6—C5—C13—C141.2 (6)C20—P1—C16—C1979.2 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O1ii0.992.523.477 (5)163
C15—H15B···O2iii0.992.633.548 (4)154
C23—H23A···Cl1i0.982.843.312 (4)111
C23—H23B···Cl1ii0.982.863.757 (4)152
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z+2.
 

Acknowledgements

The authors thank the X-ray Crystallographic Facility at the University of Rochester for structural analyses.

Funding information

The authors thank the office of Research, Scholarship, and Creative Activities (RSCA) at SUNY New Paltz for funding in the form of Academic Year Undergraduate Research Experience (AYURE) grants

References

First citationAguilà, D., Escribano, E., Speed, S., Talancón, D., Yermán, L. & Alvarez, S. (2009). Dalton Trans. pp. 6610–6625.  Google Scholar
First citationAlbrecht, M. & van Koten, G. (2001). Angew. Chem. Int. Ed. 40, 3750–3781.  Web of Science CrossRef CAS Google Scholar
First citationAlig, L., Fritz, M. & Schneider, S. (2019). Chem. Rev. 119, 2681–2751.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAllevi, M., Capitani, D., Ettorre, A. & Mura, P. (1998). Inorg. Chim. Acta, 282, 17–24.  Web of Science CSD CrossRef CAS Google Scholar
First citationAlvarez, S. (2015). Chem. Rev. 115, 13447–13483.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBandera, D. Baldridge, K. K., Linden, A. L., Spingler, B. & Siegel, J. S. (2020). CSD Communication (refcode BUNXEQ). CCDC, Cambridge, England.  Google Scholar
First citationBoom, M. E. van der & Milstein, D. (2003). Chem. Rev. 103, 1759–1792.  Web of Science CrossRef PubMed Google Scholar
First citationByrn, M. P., Curtis, C. J., Khan, S. I., Sawin, P. A., Tsurumi, R. & Strouse, C. E. (1990). J. Am. Chem. Soc. 112, 1865–1874.  CSD CrossRef CAS Web of Science Google Scholar
First citationChoi, J., MacArthur, A. H. R., Brookhart, M. & Goldman, A. S. (2011). Chem. Rev. 111, 1761–1779.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCremades, E., Echeverría, J. & Alvarez, S. (2010). Chem. A Eur. J. 16, 10380–10396.  CrossRef CAS Google Scholar
First citationDahlenburg, L., Heinemann, F. W., Kramer, D. & Menzel, R. (2008). Acta Cryst. C64, m144–m146.  CrossRef IUCr Journals Google Scholar
First citationDahlenburg, L., Menzel, R. & Heinemann, F. W. (2007). Eur. J. Inorg. Chem. pp. 4364–4374.  Web of Science CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDorta, R., Broggini, D., Kissner, R. & Togni, A. (2004). Chem. Eur. J. 10, 4546–4555.  CrossRef PubMed CAS Google Scholar
First citationDrover, M. W., Bowes, E. G., Love, J. A. & Schafer, L. L. (2017). Organometallics, 36, 331–341.  CrossRef CAS Google Scholar
First citationFisher, S. P., McArthur, S. G., Tej, V., Lee, S. E., Chan, A. L., Banda, I., Gregory, A., Berkley, K., Tsay, C., Rheingold, A. L., Guisado-Barrios, G. & Lavallo, V. (2020). J. Am. Chem. Soc. 142, 251–256.  CrossRef CAS PubMed Google Scholar
First citationGoldberg, J. M., Wong, G. W., Brastow, K. E., Kaminsky, W., Goldberg, K. I. & Heinekey, D. M. (2015). Organometallics, 34, 753–762.  Web of Science CSD CrossRef CAS Google Scholar
First citationGöttker-Schnetmann, I., White, P. & Brookhart, M. (2004). J. Am. Chem. Soc. 126, 1804–1811.  Web of Science PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIl'in, S. G., Chetkina, L. A. & Golder, G. A. (1975). Kristallografiya, 20, 1051.  Google Scholar
First citationIshii, Y., Onaka, K., Hirakawa, H. & Shiramizu, K. (2002). Chem. Commun. pp. 1150–1151.  CrossRef Google Scholar
First citationKanchiku, S., Suematsu, H., Matsumoto, K., Uchida, T. & Katsuki, T. (2007). Angew. Chem. Int. Ed. 46, 3889–3891.  CrossRef CAS Google Scholar
First citationKetker, S. N., Kelley, M., Fink, M. & Ivey, R. C. (1981). J. Mol. Struct. 77, 127–138.  CrossRef Google Scholar
First citationLenstra, A. T. H. & van Loock, J. F. J. (1984). Bull. Soc. Chim. 93, 1053–1055.  CrossRef CAS Google Scholar
First citationLinden, A. L. & Dorta, R. (2020). CSD Communication (refcode VUQBUH). CCDC, Cambridge, England.  Google Scholar
First citationMaekawa, M., Hashimoto, N., Sugimoto, K., Kuroda-Sowa, T., Suenaga, Y. & Munakata, M. (2003). Inorg. Chim. Acta, 344, 143–157.  CrossRef CAS Google Scholar
First citationMaekawa, M., Suenaga, Y., Kuroda-Sowa, T. & Munakata, M. (2004a). Inorg. Chim. Acta, 357, 331–338.  CrossRef CAS Google Scholar
First citationMaekawa, M., Suenaga, Y., Kuroda-Sowa, T. & Munakata, M. (2004b). Anal. Sci. X, 20, X11–X12.  CAS Google Scholar
First citationMelcher, M., von Wachenfeldt, H., Sundin, A. & Strand, D. (2015). Chem. Eur. J. 21, 531–535.  CrossRef CAS PubMed Google Scholar
First citationMorales-Morales, D. (2008). Mini-Rev. Org. Chem. 5, 141–152.  CAS Google Scholar
First citationMorales-Morales, D. (2018). Editor. Pincer Compounds: Chemistry and Applications. Cambridge, Massachusetts: Elsevier.  Google Scholar
First citationMoulton, C. J. & Shaw, B. L. (1976). J. Chem. Soc. Dalton Trans., pp. 1020–1024.  Google Scholar
First citationMuetterties, E. L., Bleeke, J. R. & Sievert, A. C. (1979). J. Organomet. Chem. 178, 197–216.  CrossRef CAS Google Scholar
First citationMuldoon, J. & Brown, S. N. (2003). Organometallics, 22, 4480–4489.  CrossRef CAS Google Scholar
First citationMura, P. (2000). J. Coord. Chem. 51, 253–260.  CrossRef CAS Google Scholar
First citationPascal, R. A., Dudnikov, A., Love, L. A., Geng, X., Dougherty, K. J., Mague, J. T., Kraml, C. M. & Byrne, N. (2017). Eur. J. Org. Chem. pp. 4194–4200.  CrossRef Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRoddick, D. M. (2013). In Topics in Organometallic Chemistry: Organometallic Pincer Chemistry, Vol 40, edited by G. van Koten & D. Milstein, pp. 49–88. Berlin, Heidelberg: Springer.  Google Scholar
First citationShafiei-Haghighi, S., Singer, L. M., Tamang, S. R. & Findlater, M. (2018). Polyhedron, 143, 126–131.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSievers, R., Sellin, M., Rupf, S. M., Parche, J. & Malischewski, M. (2022). Angew. Chem. Int. Ed. 61, e202211147.  CrossRef Google Scholar
First citationSievert, A. C. & Muetterties, E. L. (1981). Inorg. Chem. 20, 489–501.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStiefel, E. I. & Brown, G. F. (1972). Inorg. Chem. 11, 434–436.  CrossRef CAS Web of Science Google Scholar
First citationSumitani, R., Kuwahara, D. & Mochida, T. (2023). Inorg. Chem. 62, 2169–2180.  CrossRef CAS PubMed Google Scholar
First citationTatarin, S. V., Smirnov, D. E., Taydakov, I. V., Metlin, M. T., Emets, V. V. & Bezzubov, S. I. (2023). Dalton Trans. 52, 6435–6450.  CrossRef CAS PubMed Google Scholar
First citationTejel, C., Ciriano, M.., Passarelli, V., López, J.. & de Bruin, B. (2008). Chem. Eur. J. 14, 10985–10998.  CrossRef PubMed CAS Google Scholar
First citationViciano, M., Poyatos, M., Sanaú, M., Peris, E., Rossin, A., Ujaque, G. & Lledós, A. (2006). Organometallics, 25, 1120–1134.  CrossRef CAS Google Scholar
First citationWard, T. M., Schafer, O., Daul, C. & Hofmann, P. (1997). Organometallics, 16, 3207–3215.  CrossRef CAS Google Scholar
First citationWilklow-Marnell, M. & Brennessel, W. W. (2019). Polyhedron, 160, 83–91.  CAS Google Scholar
First citationYellowlees, L., Elliot, M., Parsons, S. & Messenger, D. (2005). Private communication (refcode: MASNEA). CCDC, Cambridge, England.  Google Scholar
First citationYellowlees, L. J. & Macnamara, K. G. (2003). In Comprehensive Coordination Chemistry II, Vol. 6, edited by J. A. McCleverty & T. J. Meyer, pp. 147–246. Oxford: Elsevier.  Google Scholar
First citationZhang, X., Emge, T. J. & Goldman, A. S. (2004). Inorg. Chim. Acta, 357, 3014–3018.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds