research communications
Crystal structures of the (η2:η2-cycloocta-1,5-diene)(η6-toluene)iridium(I) cation and μ-chlorido-iridium(III) complexes of 2-(phosphinito)- and 2-(phosphinomethyl)anthraquinone ligands
aDepartment of Chemistry, State University of New York at New Paltz, New Paltz, NY 12561, USA, and bDepartment of Chemistry, 120 Trustee Road, University of Rochester, Rochester, NY 14627, USA
*Correspondence e-mail: marnellm@newpaltz.edu
When reacted in dry, degassed toluene, [Ir(COD)Cl]2 (COD = cycloocta-1,5-diene) and 2 equivalents of 2-(di-tert-butylphosphinito)anthraquinone (tBuPOAQH) were found to form a unique tri-iridium compound consisting of one monoanionic dinuclear tri-μ-chlorido complex bearing one bidentate tBuPOAQ ligand per iridium, which was charge-balanced by an outer sphere [Ir(toluene)(COD)]+ ion, the structure of which has not previously been reported. This product, which is a toluene solvate, namely, (η2:η2-cycloocta-1,5-diene)(η6-toluene)iridium(I) tri-μ-chlorido-bis({3-[(di-tert-butylphosphanyl)oxy]-9,10-dioxoanthracen-2-yl}hydridoiridium(III)) toluene monosolvate, [Ir(C7H8)(C8H12)][Ir2H2(C22H24O3P)2Cl3]·C7H8 or [Ir(toluene)(COD)][Ir(κ-P,C-tBuPOAQ)(H)]2(μ-Cl)3]·toluene, formed as small orange platelets at room temperature, crystallizing in the triclinic P. The cation and anion are linked via weak C—H⋯O interactions. The stronger intermolecular attractions are likely the offset parallel π–π interactions, which occur between the toluene ligands of pairs of inverted cations and between pairs of inverted anthraquinone moieties, the latter of which are capped by toluene solvate molecules, making for π-stacks of four molecules each. The related ligand, 2-(di-tert-butylphosphinomethyl)-anthraquinone (tBuPCAQH), did not form crystals suitable for X-ray diffraction under analogous reaction conditions. However, when the reaction was conducted in chloroform, yellow needles readily formed following addition of 1 atm of carbon monoxide. Diffraction studies revealed a neutral, dinuclear, di-μ-chlorido complex, di-μ-chlorido-bis(carbonyl{3-[(di-tert-butylphosphanyl)oxy]-9,10-dioxoanthracen-2-yl}hydridoiridium(I)), [Ir2H2(C23H26O2P)2Cl2(CO)2] or [Ir(κ-P,C-tBuPCAQ)(H)(CO)(μ-Cl)]2, Ir2C48H54Cl2O6P2, again crystallizing in P. Offset parallel π–π interactions between anthraquinone groups of adjacent molecules link the molecules in one dimension.
1. Chemical context
Tridentate, meridional ligands known as ‘pincers’ have become ubiquitous in organometallic chemistry, particularly in complexes of platinum group metals (Albrecht & van Koten, 2001), though many systems incorporating first-row transition metals now exist (Morales-Morales, 2018; Alig et al., 2019). Complexes of iridium have held a central role in the development of pincer chemistry since the first known reports of organometallic pincer complexes (Moulton & Shaw, 1976), and are probably most notable for advances in homogeneous C—H activation chemistry and alkane dehydrogenation (Choi et al., 2011). Pincer ligands have found widespread use due to their tunability, their ability to enforce reactive conformations, and the enhanced stability of these systems (van der Boom et al., 2003; Roddick, 2013). The enhanced stability of pincer complexes largely stems from their tridentate binding mode; however, ligands intended as pincer-type do not always bind in a tridentate fashion. Sometimes bidentate, or even metal bridging, binding modes are encountered. Pincers bearing two phosphinite groups, known as POCOP ligands, have been particularly well studied (Morales-Morales, 2008). Previously, we reported a modification of this common framework bearing one phosphinite and one ketone group, 3-(di-tert-butylphosphinito)acetophenone, or tBuPOCOH (Wilklow-Marnell & Brennessel, 2019). When refluxed in toluene for 24 h with 0.5 molar equivalents of [Ir(COD)Cl]2 (COD = cycloocta-1,5-diene), the desired pincer-ligated iridium species was obtained in good yield (Fig. 1). However, when metalation of the related ligand, 2-(di-tert-butylphosphinito)anthraquinone (tBuPOAQH), was conducted under identical conditions, a mixture of unidentified products was obtained which resisted efforts to separate cleanly (Fig. 1).
Before any heating, and almost immediately upon mixing, a significant color change from orange to dark reddish brown was noted when tBuPOAQH was reacted with [Ir(COD)Cl]2 in toluene at room temperature, indicating that some degree of ligation of tBuPOAQH had occurred. In light of the failure of forming a pincer complex when refluxed in toluene, the reaction was again attempted but allowed to remain at room temperature. The 31P NMR spectrum indicated mainly a single product had formed with a resonance at 161 ppm in toluene and some free tBuPOAQH remaining. Over a period of several days, a fine orange crystalline material separated from the solution, which was determined by single determination to be the unique complex [Ir(η6-toluene)(η2:η2-COD)] [(tBuPOAQIrH)2(μ-Cl)3]·toluene (1) as shown in Fig. 2. The formation and isolation of [Ir(toluene)(COD)]+ and other [Ir(arene)(COD)]+ complexes have been previously demonstrated (Sievert & Muetterties, 1981; Kanchiku et al., 2007); however, a structure containing the [Ir(toluene)(COD)]+ cation has not yet been reported to date.
It was considered that under reflux conditions trace moisture may have led to hydrolysis of the ligand P—O bond, and the carbon analog, 2-(di-tert-butylphosphinomethyl)anthraquinone (tBuPCAQH), was synthesized in hopes it might resist this. However, metalation of tBuPCAQH with [Ir(COD)Cl]2 in refluxing toluene again failed to produce an isolable pincer-ligated product. When allowed to react and remain at room temperature, a solid material did eventually separate from solution; however, only polycrystalline material or crystals too small for diffraction were obtained.
When formed in toluene or chloroform, isolated and removed of volatiles under vacuum, then redissolved in chloroform (or deuterochloroform) and exposed to an atmosphere of carbon monoxide, a change of color to pale yellow was noted. Crystals formed over a 16 h period. Single crystal X-ray diffraction revealed this product to be the charge neutral di-iridium complex, [Ir(κ-P,C-PCAQ)H(CO)(μ-Cl)]2 (2), with the intended pincer ligand again binding instead in a bidentate manner (Fig. 3). In this report, we provide the syntheses of both tBuPOAQH and tBuPCAQH ligands, the isolation of complexes 1 and 2, and compare their structures to related iridium complexes.
2. Structural commentary
Single-crystal X-ray 1 to be a tri-iridium species with two iridium-containing complex ions as a toluene solvate (Fig. 2). The contains one monocationic iridium complex, one monoanionic di-iridium complex, and one toluene solvent molecule of crystallization, all in general positions in P. The anionic complex (1an) consists of two iridium(III) centers, each ligated by one bidentate tBuPOAQ ligand via P and C atoms, one hydrido ligand (resulting from C—H activation of tBuPOAQH), and three bridging chlorido ligands. The geometry at each iridium center is distorted octahedral (Stiefel & Brown, 1972). The cationic complex (1cat) consists of an iridium(I) center bound η6 to a toluene ligand and bound in a bis-η2 manner to unconjugated diene COD, giving a geometry akin to a ‘planar’ two-legged piano stool complex (Ward et al., 1997), wherein the two legs are the midpoints of the double bonds of the COD ligand.
determined the structure ofThe majority, if not all, six-coordinate IrIII complexes adopt octahedral geometries. In fact, as a molecular complex, there has yet to be a report of a trigonal–prismatic hexacoordinate iridium species to our knowledge (Yellowlees & Macnamara, 2003; Cremades et al., 2010). The slight distortion from an octahedral arrangement seen in 1an likely results from the steric bulk and restricted bite angle of the tBuPOAQ ligand, as well as the limited separation of the three bridging chlorides which, as an IrCl3 unit, act as a tridentate ligand for the other iridium in the complex. Octahedral complexes are known to distort by undergoing trigonal twisting into a metaprismatic geometry somewhere between octahedral and trigonal prismatic forms when chelating ligands with rigid L—L distances are present (Cremades et al., 2010; Alvarez, 2015). This occurs because most five-membered chelate rings display bite angles of < 90° (Aguilà et al., 2009), which better suit the ideal bond angle between ligands in a trigonal–prismatic geometry of 81.8°, as opposed to 90° for octahedral. However, the bite angle alone can only rarely induce a true trigonal–prismatic geometry.
In the case of the 1an, the Ir—Cl bond lengths are not uniform, but the bonds trans to the hydrido ligands are much longer by comparison [2.5819 (11) Å versus 2.4782 (11) and 2.4818 (11) Å for Ir1; 2.5476 (11) versus 2.4963 (11) and 2.4780 (12) Å for Ir2; Table 1], fitting with the strong trans-influence of a hydrido ligand. The Cl—Ir—Cl bond angles have a range of 78.35 (4)–82.68 (4)°, and average to 80.38 (7)° at Ir1 and 80.64 (7)° at Ir2, quite close to the ideal angles of a trigonal–prismatic geometry [81.8°]. Ostensibly, the steric influence of tert-butyl groups from the tBuPOAQ ligand on this are evident as the P—Ir—Cl bond angles for the two chlorides cis to P are rather large at 107.33 (4) and 101.24 (4)° for Ir1 and 106.79 (4) and 103.93 (4)° for Ir2, while the remaining bond angles at the metal centers do not deviate far from the ideal value of 90° for an octahedral complex. However, for related Ir—(μ-Cl)3—Ir containing species with a range of ligand electronics/sterics, average Cl—Ir—Cl bond angles of roughly 79 to 82° are reported, indicating that the contraction of these angles is likely due mainly to the constraints of the IrCl3 fragment, as opposed to steric bulk of tBuPOAQ or an electronic preference for a metaprismatic geometry (Allevi et al., 1998; Zhang et al., 2004; Maekawa et al., 2004b; Dahlenburg et al., 2008). The P—Ir—C angles of 1an are appreciably constricted, averaging at 82.16 (19)°, due to being part of the five-membered chelate ring formed with tBuPOAQ. Related tBuPOCOIr and symmetric RPOCOPIr complexes for which structures have been determined display similar P—Ir—C bond angles, between approximately 78.8 to 81.9°, with larger angles associated with the less bulky mono-phosphinite POCO ligand, which can presumably approach closer to the metal. The Ir—P bond lengths of the reported structures (2.26 to 2.36 Å) are comparable to those of 1an (avg. 2.19 (16) Å; Wilklow-Marnell et al., 2019; Göttker-Schnetmann et al., 2004; Goldberg et al., 2015; Shafiei-Haghighi et al., 2018). With all anthraquinone C—O bond lengths of 1an averaging 1.225 (13) Å, and average C—C distances of 1.397 (17) and 1.392 (10) Å for the proximal and distal aryl rings, respectively, bond lengths within the anthraquinone moiety of 1an are in close agreement with those of free anthraquinone and representative 2,3-disubstituted anthraquinones 2,3-dichloroanthraquinone and 2-bromo-3-methylanthraquinone, indicating little electronic disturbance of the tBuPOAQ aromatic system as would be expected for IrIII metal centers (Ketker et al., 1981; Lenstra & van Loock, 1984; Il'in et al., 1975; Pascal et al., 2017).
|
Though long known in the literature (Muetterties et al., 1979, 1981), the structure of the [Ir(toluene)(COD)]+ cation (1cat) has yet to have been determined by diffraction studies, despite twenty other reported structures to date that contain an [Ir(η6-arene)(COD)]+ unit (see Database survey). The η6-toluene ligand is not quite planar (r.m.s. deviation of 0.066 Å). It is somewhat puckered toward iridium, with a fold along the C48⋯C51 vector: the angle between the C46–C48/C51 and C48—C51 planes is 11.2 (6)°. The Ir—C bond distances vary accordingly (Table 1).
The ring C C bond lengths of the toluene ligand and those of the coordinated ethylene units of the COD ligand are indicative of significant backbonding from a low-valent IrI center into the ligand π* orbitals and are consistent with bond lengths seen in other structures with [Ir(η6-arene)(COD)]+ or [Rh(η6-toluene)(COD)]+ cations (see Database survey). The average ring C—C bond length of free toluene is 1.38 Å [Cambridge Structural Database (CSD), version 5.45, November 2023; Groom et al., 2016], while that of the ligand in 1cat is elongated at 1.413 (19) Å. Likewise the average of the metal-coordinating C=C bonds of the COD ligand in 1cat is 1.425 (13) Å, as compared to that of free COD (1.333 Å; Byrn et al., 1990).
As determined by single-crystal X-ray diffraction, 2 was also found to contain a diiridium species (Fig, 3), but is neutral and is bridged by two chlorido ligands as opposed to three as in 1. If 2 goes through an intermediate similar to 1 following ligation of tBuPCAQH to iridium, then ostensibly, the third chloride has been displaced by coordination of one carbon monoxide (CO) ligand per iridium. Without the constraints of a third bridging chlorido ligand, the geometry at iridium adopts a somewhat more idealized octahedral geometry, though still distorted by the steric demands of the tBuPCAQ ligand and remaining four-membered ring of the Ir2(μ-Cl)2 unit (Table 2). As expected, the C2—Ir—P1 bond angle is contracted due to being part of a metallacycle to 81.83 (10)°, very similar to the average angle of 82.3° seen in the related structure of [Ir(η2:η2-COD)]2 {η6-[κ4-C6H2(CH2P(tBu2)2]Ir2H2Cl3}2 (Zhang et al., 2004). In both structures, the fused-ring parts are not quite planar, with angles between the proximal and distal rings of 12.0 (4) and 7.9 (3)° in 1, and 14.23 (15)° in 2.
3. Supramolecular features
Molecules of 1an are interlocked via offset parallel π–π interactions of inverted anthraquinone groups from adjacent anions along [100] (Fig. 4). The uncoordinated toluene molecules cap each anthraquinone pairing to form a four-layer stack in the [11] direction (Fig. 5). The centroid–centroid distances are 3.847 (6) Å between the toluene and anthraquinone moieties and 3.823 (5) Å between the closest inverted anthraquinone rings. The respective shift distances are 0.874 (12) and 1.467 (11) Å, with angles between planes of 12.8 (3) and 6.1 (3)°. [The centroid–centroid distance to the neighboring ring of the inverted anthraquinone of 4.626 (6) Å, with its corresponding shift of 2.805 (11) Å, makes it unlikely for there to be any significant attractive force.] Inverted pairs of 1cat fill the pockets created by the of the anions (Fig. 6), having an offset parallel orientation at a centroid–centroid distance of 4.165 (7) Å, with a shift distance of 2.003 (13) Å and angle between planes of 0° (due to symmetry). These long distances may suggest that the arrangement is a consequence of efficient packing, rather than a true attractive force. Several weak non-traditional (C—H⋯O and C—H⋯Cl) hydrogen bonds are also present (Table 3).
|
In 2, molecules are linked in one dimension along [10] by offset parallel π–π interactions (Fig. 7), with centroid–centroid distances of 3.840 (2) and 3.966 (3) Å, with respective shift distances of 1.404 (6) and 1.696 (7) Å and angles between planes of 6.18 (15) and 0° (the latter exact due to symmetry). As in 1, intermolecular non-traditional hydrogen bonds exist (Table 4).
4. Database survey
To date there are ten structures containing two iridium centers bridged by three chlorido ligands: CSD refcodes GALQIT, GAMQIU (Allevi et al., 1998); MOYLIV (Mura, 2000); DACCEQ, DACCIU (Zhang et al., 2004); MASNEA (Yellowlees et al., 2005); UCEVEE (Viciano et al., 2006); YIMVIA (Dahlenburg et al., 2007); KIWTUG (Dahlenburg et al., 2008); PIKVAK (Tatarin et al., 2023).
Structures containing an [Ir(η6-arene)(η2:η2-COD)]+ cationic unit are: CSD refcodes XIXTED (Ishii et al., 2002); HUWRAS (Maekawa et al., 2003); IMERAT, IMEREX, IRERIB, IMEROH, IMERUN (Muldoon & Brown, 2003); QUKLAJ, QUKLOX (Dorta et al., 2004); ARACIF (Maekawa et al., 2004a); DACCEQ (Zhang et al., 2004); QOMXIA (Tejel et al., 2008); XOWHOI (Melcher et al., 2015); KAPZOT, KAPZUZ (Drover et al., 2017); BUNXEQ (Bandera et al., 2020); PUFGAB (Fisher et al., 2020); VUQBUH (Linden & Dorta, 2020).
Structures containing the rhodium analog of 1cat, [Rh(η6-toluene)(η2:η2-COD)]+, are: GERKUN (Sievers et al., 2022); NIDHER, NIDJOD (Sumitani et al., 2023).
5. Synthesis and crystallization
All procedures were conducted under argon in a Vacuum Atmospheres Genesis via modified Schlenk techniques. All NMR spectra were collected on a JEOL JNM-ECZS 400 MHz spectrometer. All 31P NMR spectra were referenced to external H3PO4. 1H NMR spectra were referenced to residual deuterated solvent signal. All aromatic, alkane, or ether solvents were dried over sodium/benzophenone, distilled from the resultant purple solution prior to use, and stored over 3 Å molecular sieves. CDCl3 and CHCl3 were dried/stored with 3 Å molecular sieves activated by heating at 523 K under vacuum until a constant pressure of approx. 10 mTorr was reached. Methanol was dried by stirring with an excess of CaH2 until gas evolution through an outlet bubbler was observed to cease. It was stored over the Ca(OH)2 and Ca(OMe)2 formed, and distilled from this mixture as needed. Similarly, yellow triethylamine obtained commercially was reacted with CaH2 and vacuum transferred into a Schlenk ampoule for storage as a colorless liquid. All other reagents were used as received from commercial sources without further purification.
or2-(Di-tert-butylphosphinito)anthraquinone (tBuPOAQH): To a 250 mL Erlenmeyer flask, 35 mg of NaH (1.46 mmol, 1.1 eq) and 75 mL of tetrahydrofuran (THF) were added followed by 0.40 mL (2.11 mmol, 1.6 eq) of di-tert-butylchlorophosphine and a stir bar. Then, while stirring, a solution of 300 mg (1.34 mmol) of 2-hydroxyanthraquinone in 100 mL of THF was added dropwise over a period of approximately 15 minutes providing a slightly cloudy purple mixture. Slow addition of quinone and relatively dilute reaction conditions were found to be important to minimize the formation of this unknown purple byproduct. After stirring for 72 h, the reaction mixture was filtered through a Celite pad on a fine glass frit and washed with THF (2 × 5 mL). The maroon red filtrate was concentrated in vacuo until a brownish purple paste was obtained. The residue was stirred with toluene and refiltered to remove some reddish solids, then concentrated to dryness, and the process repeated twice more with hexane. Ultimately, a viscous green oil was obtained in 83% yield that provided NMR spectra consistent with the proposed product, tBuPOAQH, and of sufficient purity for further synthetic manipulations. 31P{1H} NMR (CDCl3): δ 158.898 (s). 1H NMR (CDCl3): δ 8.33–8.22 (m, 3H), 8.00 (t, J = 2.2 Hz, 1H), 7.81–7.72 (m, virtual pentet of doublets, 2H), 7.6–7.53 (dt, J = 2.5, 8.8 Hz, 1H), 1.196 (s, 9H), 1.165 (s, 9H). 13C NMR (CDCl3): δ 183.25, 182.32, 165.15, 165.06, 135.61, 134.18, 133.76, 129.98, 127.47, 127.23, 123.91, 123.79, 116.21, 116.10, 36.16, 35.90, 27.43, 27.28.
2-(Di-tert-butylphosphinomethyl)anthraquinone (tBuPCAQH): To a 50 mL round-bottom ampoule with a stir bar, 500 mg of 2-bromomethyl-anthraquinone (1.66 mmol) were added, followed by 291 mg of di-tert-butylphosphine (1.99 mmol, 1.2 eq). The vessel was then sealed, removed from the and connected to a Schlenk line. Approximately 30 mL of methanol were then added by vacuum transfer. The mixture was warmed to room temperature, and the sealed vessel then heated, with stirring, at 353 K for 72 h (note: a shorter reaction time may be possible, as all solid bromomethyl-anthraquinone dissolves within the first 12 h of reaction, indicative of solubilization through formation of the phosphonium bromide salt). After heating and cooling, 1.4 mL of triethylamine (10.0 mmol, 6 eq) were added by vacuum transfer. Upon thawing and stirring, copious formation of light solids (triethylammonium bromide) was observed, and the resultant mixture removed of volatiles in vacuo. In the the dry residue was extracted with THF and filtered through a fine frit until the NH4Br solids were a free-flowing powder without stickiness. The clear yellow filtrate was concentrated to apparent dryness, but still retained excess phosphine. The solids were stirred in minimal toluene, filtered, washed with hexane, and dried in vacuo to provide 385 mg of a lustrous yellow solid. An additional 78 mg were obtained from the filtrate stored in a freezer overnight, making the total yield 75.8%. 31P{1H} NMR (CDCl3): δ 39.61 (s). 1H NMR (CDCl3): δ 8.33–8.26 (m, 2H), 8.23–8.17 (m, 2H), 7.85–7.80 (dvt, 1H), 7.80–7.74 (m, 2H), 2.99 (d, J = 3.2, 2H), 1.17 (s, 9H), 1.14 (s, 9H). 13C NMR (CDCl3): δ 183.47, 183.11, 150.08, 149.96, 135.57, 134.12, 133.99, 133.72, 133.68, 133.41, 131.20, 128.02, 127.94, 127.52, 127.24, 127.22, 32.39, 32.17, 29.90, 29.77, 29.48, 29.23.
[Ir(COD)(toluene)][(tBuPOAQIrH)2(μ-Cl)3] (1): To a J-Young NMR tube, 15.5 mg of tBuPOAQH (42.07 µmol) were added followed by 14.1 mg of [Ir(COD)Cl]2 (21.0 µmol dimer, 1 eq of Ir). 1 mL of toluene was then added, and the sealed tube was mixed. The solution rapidly adopted a dark red–brown color. 31P-NMR spectroscopy in toluene revealed several products with chemical shifts at 181.5, 160.9, and 160.2 ppm. At 30 minutes after initial mixing, the singlet at 160.9 ppm was the major product, but this peak was observed to decrease with concomitant formation of small orange crystals from the solution. After 3–4 days the crystals were recovered by decanting the solvent and submitted for X-ray crystallographic analysis revealing the structure to be that of 1.
[Ir(κ-P,C-PCAQ)H(CO)Cl]2 (2): To a J-Young NMR tube, 12.0 mg of tBuPCAQH (32.8 µmol) were added followed by 11.0 mg of [Ir(COD)Cl]2 (16.4 µmol dimer, 1 eq of Ir). Then, 0.75 mL of CHCl3 were added and the sealed tube mixed, providing an orange solution. 31P-NMR spectroscopy showed a species with a of 53.0 ppm as the major product, and spectra were effectively the same after 24 h. All volatiles were then removed by vacuum, using a warm water bath once CHCl3 was evaporated to drive off residual excess COD. Following this, fresh CHCl3 (or CDCl3) was added by vacuum transfer and the sample then exposed to 1 atm of carbon monoxide, which caused the solution to turn pale yellow. Over a period of 1–2 days, 2 separated as yellow needles, which were isolated and submitted for X-ray diffraction studies.
6. Refinement
In 1, the cation was modeled as disordered over two positions [0.894 (4):0.106 (4)]. Analogous bond lengths and angles between the two positions were restrained to be similar. Anisotropic displacement parameters for proximal atoms were restrained to be similar, and in the case of the minor component of disorder, restrained toward the expected motion relative to bond direction. The toluene solvent molecule of crystallization showed signs of minor disorder. The anisotropic displacement parameters along the bonding direction between two of the atoms (C63 and C64) were restrained to be similar.
The hydrido ligands' positions were based on peaks found in the difference-Fourier map. Once located, they were given riding models that preserved their angles relative to the other ligands, but with their Ir—H distances fixed at approximately 1.55 Å (based on an average obtained from the CSD for six-coordinate Ir complexes; Groom et al., 2016). Their isotropic displacement parameters were refined relative to those of the Ir atoms: Uiso(H) = 2.0Ueq(Ir). Independent spectroscopic experiments confirm the presence of these ligands.
All other H atoms were placed geometrically and treated as riding atoms. Aromatic/sp2, C—H = 0.95 Å and methylene, C—H = 0.99 Å, with Uiso(H) = 1.2Ueq(C). Methyl, C—H = 0.98 Å, with Uiso(H) = 1.5Ueq(C).
In 2, reflection contributions from highly disordered solvent were fixed and added to the calculated structure factors using the SQUEEZE routine of program PLATON (Spek, 2015), which determined there to be 184 electrons in 492 Å3 treated this way per Because the exact identity and amount of solvent were unknown, no solvent was included in the atom list or molecular formula. Thus all calculated quantities that derive from the molecular formula [e.g., F(000), density, molecular weight, etc.] are known to be inaccurate.
For 1 the maximum residual peak of 1.52 e− Å−3 and the deepest hole of −1.72 e− Å−3 are found 1.15 and 0.77 Å from atoms Ir1 and Ir2, respectively.
For 2 the maximum residual peak of 0.99 e− Å−3 and the deepest hole of −1.03 e− Å−3 are found 0.95 and 0.77 Å from atom Ir1.
details can be found in Table 5
|
Supporting information
https://doi.org/10.1107/S2056989024008922/jy2049sup1.cif
contains datablocks 1, 2, global. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2056989024008922/jy20491sup2.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2056989024008922/jy20492sup3.hkl
[Ir(C7H8)(C8H12)]·[Ir2H2(C22H24O3P)2Cl3]·C7H8 | Z = 2 |
Mr = 1712.17 | F(000) = 1668 |
Triclinic, P1 | Dx = 1.846 Mg m−3 |
a = 13.15698 (17) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 13.58360 (18) Å | Cell parameters from 23439 reflections |
c = 17.5470 (3) Å | θ = 2.6–77.6° |
α = 88.5722 (12)° | µ = 14.38 mm−1 |
β = 87.0030 (12)° | T = 100 K |
γ = 79.7149 (11)° | Plate, orange |
V = 3080.99 (8) Å3 | 0.10 × 0.05 × 0.01 mm |
XtaLAB Synergy, Dualflex, HyPix diffractometer | 12864 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 11114 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.056 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 78.2°, θmin = 2.5° |
ω scans | h = −16→14 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2023) | k = −16→17 |
Tmin = 0.643, Tmax = 1.000 | l = −22→21 |
51464 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: mixed |
wR(F2) = 0.092 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0514P)2 + 3.1792P] where P = (Fo2 + 2Fc2)/3 |
12864 reflections | (Δ/σ)max = 0.002 |
881 parameters | Δρmax = 1.52 e Å−3 |
395 restraints | Δρmin = −1.72 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The [Ir(toluene)(COD)]+ cation is modeled as disordered over two positions (0.894 (4):0.106 (4)). Analogous bond lengths and angles between the two positions of the disordered cation were restrained to be similar. Anisotropic displacement parameters for proximal atoms were restrained to be similar, and in the case of the minor component of disorder, restrained toward the expected motion relative to bond direction. The hydrido ligands' positions were based on a peaks found in the difference Fourier map. Once located, they were given riding models that preserved their angles relative to the other ligands, but with their Ir–H distances fixed at approximately 1.55 Å (based on an average obtained from the Cambridge Structural Database for six-coordinate Ir complexes; Groom et al., 2016). Independent spectroscopic experiments confirm the presence of these ligands. The toluene solvent molecule of crystallization showed signs of minor disorder. The anisotropic displacement parameters along the bonding direction between two of the atoms (C63 and C64) were restrained to be similar. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ir1 | 0.25577 (2) | 0.75554 (2) | 0.22505 (2) | 0.02091 (6) | |
H1A | 0.200526 | 0.820299 | 0.291646 | 0.042* | |
Ir2 | 0.51415 (2) | 0.71861 (2) | 0.21257 (2) | 0.02152 (6) | |
H2A | 0.575351 | 0.618205 | 0.242631 | 0.043* | |
Cl1 | 0.37608 (8) | 0.87185 (8) | 0.18895 (7) | 0.0265 (2) | |
Cl2 | 0.38742 (8) | 0.70260 (8) | 0.32111 (7) | 0.0242 (2) | |
Cl3 | 0.39277 (8) | 0.63198 (9) | 0.14812 (7) | 0.0269 (2) | |
P1 | 0.12927 (8) | 0.80830 (9) | 0.15027 (7) | 0.0218 (2) | |
P2 | 0.63977 (9) | 0.72368 (9) | 0.12642 (7) | 0.0238 (2) | |
O1 | 0.2189 (3) | 0.4434 (4) | 0.4379 (3) | 0.0477 (11) | |
O2 | −0.1358 (3) | 0.4740 (3) | 0.2948 (3) | 0.0399 (9) | |
O3 | 0.0327 (2) | 0.7541 (3) | 0.1832 (2) | 0.0254 (7) | |
O4 | 0.5391 (3) | 0.8854 (3) | 0.4990 (2) | 0.0318 (8) | |
O5 | 0.9140 (3) | 0.9115 (3) | 0.3714 (2) | 0.0345 (8) | |
O6 | 0.7382 (2) | 0.7444 (3) | 0.1751 (2) | 0.0259 (7) | |
C1 | 0.1828 (4) | 0.5875 (4) | 0.3189 (3) | 0.0290 (11) | |
H1 | 0.248452 | 0.576864 | 0.340871 | 0.035* | |
C2 | 0.1620 (3) | 0.6622 (4) | 0.2630 (3) | 0.0219 (9) | |
C3 | 0.0611 (3) | 0.6751 (4) | 0.2347 (3) | 0.0232 (9) | |
C4 | −0.0100 (4) | 0.6159 (4) | 0.2553 (3) | 0.0269 (10) | |
H4 | −0.075102 | 0.625960 | 0.232566 | 0.032* | |
C5 | −0.1155 (4) | 0.3549 (5) | 0.4283 (4) | 0.0384 (13) | |
H5 | −0.178019 | 0.358876 | 0.402726 | 0.046* | |
C6 | −0.0994 (5) | 0.2969 (5) | 0.4940 (4) | 0.0432 (15) | |
H6 | −0.151799 | 0.262042 | 0.513649 | 0.052* | |
C7 | −0.0083 (5) | 0.2890 (5) | 0.5315 (4) | 0.0432 (15) | |
H7 | 0.001919 | 0.248665 | 0.576399 | 0.052* | |
C8 | 0.0686 (5) | 0.3409 (5) | 0.5029 (4) | 0.0407 (14) | |
H8 | 0.131092 | 0.336087 | 0.528613 | 0.049* | |
C9 | 0.1358 (4) | 0.4560 (4) | 0.4080 (3) | 0.0338 (12) | |
C10 | −0.0594 (4) | 0.4743 (4) | 0.3314 (3) | 0.0309 (11) | |
C11 | 0.1113 (4) | 0.5278 (4) | 0.3439 (3) | 0.0287 (10) | |
C12 | 0.0148 (4) | 0.5402 (4) | 0.3106 (3) | 0.0269 (10) | |
C13 | −0.0392 (4) | 0.4075 (4) | 0.3996 (4) | 0.0352 (12) | |
C14 | 0.0540 (4) | 0.3994 (4) | 0.4368 (3) | 0.0333 (12) | |
C15 | 0.0663 (4) | 0.9437 (4) | 0.1536 (3) | 0.0276 (10) | |
C16 | 0.0692 (4) | 0.9819 (4) | 0.2344 (3) | 0.0343 (12) | |
H16A | 0.035645 | 0.940129 | 0.270458 | 0.051* | |
H16B | 0.032507 | 1.051296 | 0.237085 | 0.051* | |
H16C | 0.141194 | 0.978883 | 0.247395 | 0.051* | |
C17 | −0.0479 (4) | 0.9603 (4) | 0.1335 (3) | 0.0328 (12) | |
H17A | −0.052731 | 0.940503 | 0.080626 | 0.049* | |
H17B | −0.078391 | 1.031206 | 0.139047 | 0.049* | |
H17C | −0.085441 | 0.919815 | 0.167879 | 0.049* | |
C18 | 0.1285 (4) | 1.0042 (4) | 0.0998 (3) | 0.0319 (11) | |
H18A | 0.200820 | 0.992344 | 0.113981 | 0.048* | |
H18B | 0.099540 | 1.075578 | 0.104014 | 0.048* | |
H18C | 0.124979 | 0.983176 | 0.047134 | 0.048* | |
C19 | 0.1460 (4) | 0.7634 (4) | 0.0488 (3) | 0.0286 (10) | |
C20 | 0.1557 (4) | 0.6497 (4) | 0.0560 (3) | 0.0322 (11) | |
H20A | 0.211691 | 0.623056 | 0.089562 | 0.048* | |
H20B | 0.170972 | 0.620025 | 0.005442 | 0.048* | |
H20C | 0.090494 | 0.633072 | 0.077632 | 0.048* | |
C21 | 0.0535 (4) | 0.8025 (5) | 0.0007 (3) | 0.0351 (12) | |
H21A | −0.010146 | 0.790646 | 0.028197 | 0.053* | |
H21B | 0.061724 | 0.767438 | −0.047946 | 0.053* | |
H21C | 0.049438 | 0.874408 | −0.008899 | 0.053* | |
C22 | 0.2444 (4) | 0.7907 (5) | 0.0101 (3) | 0.0354 (12) | |
H22A | 0.236125 | 0.863501 | 0.003844 | 0.053* | |
H22B | 0.256729 | 0.759482 | −0.040132 | 0.053* | |
H22C | 0.303263 | 0.766404 | 0.041629 | 0.053* | |
C23 | 0.5809 (3) | 0.8226 (4) | 0.3475 (3) | 0.0250 (10) | |
H23 | 0.513172 | 0.823092 | 0.369294 | 0.030* | |
C24 | 0.6063 (3) | 0.7829 (4) | 0.2759 (3) | 0.0240 (9) | |
C25 | 0.7091 (3) | 0.7841 (4) | 0.2466 (3) | 0.0235 (9) | |
C26 | 0.7803 (4) | 0.8233 (4) | 0.2854 (3) | 0.0280 (10) | |
H26 | 0.847888 | 0.823162 | 0.263414 | 0.034* | |
C27 | 0.8549 (4) | 1.0097 (4) | 0.5097 (3) | 0.0327 (12) | |
H27 | 0.920606 | 1.015387 | 0.486771 | 0.039* | |
C28 | 0.8241 (4) | 1.0534 (5) | 0.5787 (4) | 0.0359 (12) | |
H28 | 0.868444 | 1.089525 | 0.603055 | 0.043* | |
C29 | 0.7280 (4) | 1.0450 (4) | 0.6135 (3) | 0.0344 (12) | |
H29 | 0.706971 | 1.074717 | 0.661520 | 0.041* | |
C30 | 0.6634 (4) | 0.9929 (4) | 0.5769 (3) | 0.0321 (11) | |
H30 | 0.598029 | 0.987061 | 0.600445 | 0.039* | |
C31 | 0.6206 (4) | 0.8984 (4) | 0.4674 (3) | 0.0258 (10) | |
C32 | 0.8253 (3) | 0.9098 (4) | 0.3981 (3) | 0.0253 (10) | |
C33 | 0.6517 (3) | 0.8620 (4) | 0.3890 (3) | 0.0241 (9) | |
C34 | 0.7521 (3) | 0.8630 (4) | 0.3574 (3) | 0.0256 (10) | |
C35 | 0.7904 (4) | 0.9568 (4) | 0.4730 (3) | 0.0257 (10) | |
C36 | 0.6928 (4) | 0.9491 (4) | 0.5066 (3) | 0.0252 (10) | |
C37 | 0.6257 (4) | 0.8327 (4) | 0.0585 (3) | 0.0316 (11) | |
C38 | 0.6159 (4) | 0.9265 (4) | 0.1071 (4) | 0.0368 (13) | |
H38A | 0.558959 | 0.927409 | 0.145550 | 0.055* | |
H38B | 0.601814 | 0.986308 | 0.074242 | 0.055* | |
H38C | 0.680550 | 0.925745 | 0.132544 | 0.055* | |
C39 | 0.5265 (4) | 0.8376 (5) | 0.0140 (4) | 0.0386 (13) | |
H39A | 0.532472 | 0.777442 | −0.016811 | 0.058* | |
H39B | 0.517589 | 0.896987 | −0.019527 | 0.058* | |
H39C | 0.466597 | 0.841449 | 0.050102 | 0.058* | |
C40 | 0.7175 (4) | 0.8323 (5) | 0.0005 (4) | 0.0411 (14) | |
H40A | 0.781491 | 0.826642 | 0.027765 | 0.062* | |
H40B | 0.707022 | 0.894728 | −0.029583 | 0.062* | |
H40C | 0.722507 | 0.775370 | −0.033513 | 0.062* | |
C41 | 0.7012 (4) | 0.6053 (4) | 0.0773 (3) | 0.0281 (10) | |
C42 | 0.6353 (4) | 0.5881 (5) | 0.0106 (3) | 0.0368 (12) | |
H42A | 0.563300 | 0.590912 | 0.029217 | 0.055* | |
H42B | 0.661855 | 0.522233 | −0.011267 | 0.055* | |
H42C | 0.638704 | 0.640103 | −0.028703 | 0.055* | |
C43 | 0.8139 (4) | 0.6072 (4) | 0.0506 (3) | 0.0337 (12) | |
H43A | 0.815390 | 0.655780 | 0.008477 | 0.051* | |
H43B | 0.846810 | 0.540553 | 0.033082 | 0.051* | |
H43C | 0.851367 | 0.626359 | 0.093025 | 0.051* | |
C44 | 0.7018 (4) | 0.5187 (4) | 0.1344 (3) | 0.0337 (11) | |
H44A | 0.739810 | 0.530603 | 0.178810 | 0.051* | |
H44B | 0.735440 | 0.456245 | 0.110208 | 0.051* | |
H44C | 0.630508 | 0.513737 | 0.150711 | 0.051* | |
Ir3 | 0.59560 (5) | 0.30166 (4) | 0.35208 (4) | 0.02601 (17) | 0.893 (4) |
C45 | 0.6547 (7) | 0.5413 (6) | 0.3954 (6) | 0.040 (2) | 0.893 (4) |
H45A | 0.700041 | 0.537809 | 0.438291 | 0.061* | 0.893 (4) |
H45B | 0.611717 | 0.607990 | 0.392760 | 0.061* | 0.893 (4) |
H45C | 0.696851 | 0.528569 | 0.347738 | 0.061* | 0.893 (4) |
C46 | 0.5870 (5) | 0.4645 (5) | 0.4065 (4) | 0.0337 (14) | 0.893 (4) |
C47 | 0.5991 (5) | 0.3923 (5) | 0.4647 (4) | 0.0349 (15) | 0.893 (4) |
H47 | 0.663832 | 0.381605 | 0.493543 | 0.042* | 0.893 (4) |
C48 | 0.5321 (5) | 0.3206 (5) | 0.4730 (4) | 0.0317 (13) | 0.893 (4) |
H48 | 0.546683 | 0.263986 | 0.510642 | 0.038* | 0.893 (4) |
C49 | 0.4443 (5) | 0.3302 (6) | 0.4282 (4) | 0.0389 (16) | 0.893 (4) |
H49 | 0.399030 | 0.278260 | 0.432450 | 0.047* | 0.893 (4) |
C50 | 0.4326 (5) | 0.4003 (5) | 0.3690 (4) | 0.0370 (16) | 0.893 (4) |
H50 | 0.379430 | 0.397487 | 0.330781 | 0.044* | 0.893 (4) |
C51 | 0.5093 (5) | 0.4604 (5) | 0.3530 (4) | 0.0331 (14) | 0.893 (4) |
H51 | 0.507361 | 0.502160 | 0.305146 | 0.040* | 0.893 (4) |
C52 | 0.6116 (5) | 0.1415 (4) | 0.3482 (4) | 0.0313 (13) | 0.893 (4) |
H52 | 0.573160 | 0.112574 | 0.391317 | 0.038* | 0.893 (4) |
C53 | 0.7058 (5) | 0.1678 (4) | 0.3695 (4) | 0.0336 (13) | 0.893 (4) |
H53 | 0.722146 | 0.152516 | 0.423969 | 0.040* | 0.893 (4) |
C54 | 0.8000 (5) | 0.1546 (7) | 0.3136 (6) | 0.0523 (19) | 0.893 (4) |
H54A | 0.863328 | 0.145756 | 0.342924 | 0.063* | 0.893 (4) |
H54B | 0.801965 | 0.092786 | 0.284381 | 0.063* | 0.893 (4) |
C55 | 0.8008 (6) | 0.2410 (7) | 0.2584 (5) | 0.0466 (19) | 0.893 (4) |
H55A | 0.821145 | 0.214246 | 0.206760 | 0.056* | 0.893 (4) |
H55B | 0.853834 | 0.279339 | 0.272934 | 0.056* | 0.893 (4) |
C56 | 0.6976 (5) | 0.3117 (5) | 0.2550 (4) | 0.0361 (15) | 0.893 (4) |
H56 | 0.703951 | 0.381872 | 0.239902 | 0.043* | 0.893 (4) |
C57 | 0.6055 (6) | 0.2822 (5) | 0.2310 (4) | 0.0377 (15) | 0.893 (4) |
H57 | 0.559288 | 0.334565 | 0.201636 | 0.045* | 0.893 (4) |
C58 | 0.6050 (9) | 0.1761 (8) | 0.2083 (5) | 0.058 (3) | 0.893 (4) |
H58A | 0.548104 | 0.176589 | 0.173437 | 0.070* | 0.893 (4) |
H58B | 0.670677 | 0.151113 | 0.179211 | 0.070* | 0.893 (4) |
C59 | 0.5926 (8) | 0.1038 (5) | 0.2724 (5) | 0.050 (2) | 0.893 (4) |
H59A | 0.521543 | 0.088977 | 0.273540 | 0.060* | 0.893 (4) |
H59B | 0.641296 | 0.040419 | 0.262702 | 0.060* | 0.893 (4) |
C60 | 0.0170 (5) | 0.3969 (6) | 0.1369 (5) | 0.0545 (17) | |
H60A | 0.011193 | 0.469799 | 0.138247 | 0.082* | |
H60B | −0.045156 | 0.377596 | 0.161653 | 0.082* | |
H60C | 0.024055 | 0.375211 | 0.083735 | 0.082* | |
C61 | 0.1093 (5) | 0.3487 (5) | 0.1778 (4) | 0.0501 (16) | |
C62 | 0.2009 (6) | 0.3886 (7) | 0.1694 (4) | 0.0536 (17) | |
H62 | 0.203041 | 0.447109 | 0.138911 | 0.064* | |
C63 | 0.2866 (6) | 0.3430 (8) | 0.2052 (5) | 0.070 (2) | |
H63 | 0.348874 | 0.368942 | 0.198027 | 0.083* | |
C64 | 0.2849 (8) | 0.2590 (8) | 0.2521 (8) | 0.092 (4) | |
H64 | 0.346050 | 0.226756 | 0.275138 | 0.111* | |
C65 | 0.1908 (9) | 0.2218 (8) | 0.2653 (9) | 0.103 (4) | |
H65 | 0.186654 | 0.166647 | 0.298910 | 0.123* | |
C66 | 0.1065 (7) | 0.2689 (6) | 0.2275 (7) | 0.077 (3) | |
H66 | 0.043053 | 0.245212 | 0.235897 | 0.092* | |
Ir3A | 0.6214 (7) | 0.2903 (5) | 0.3322 (5) | 0.069 (2) | 0.107 (4) |
C52A | 0.637 (3) | 0.1291 (16) | 0.338 (2) | 0.0316 (16) | 0.107 (4) |
H52A | 0.597261 | 0.105478 | 0.382680 | 0.038* | 0.107 (4) |
C56A | 0.722 (3) | 0.292 (3) | 0.2370 (19) | 0.039 (5) | 0.107 (4) |
H56A | 0.729985 | 0.360929 | 0.218427 | 0.047* | 0.107 (4) |
C45A | 0.666 (6) | 0.537 (4) | 0.373 (4) | 0.038 (13) | 0.107 (4) |
H45D | 0.628011 | 0.598276 | 0.396124 | 0.056* | 0.107 (4) |
H45E | 0.679895 | 0.549947 | 0.318044 | 0.056* | 0.107 (4) |
H45F | 0.732190 | 0.516921 | 0.397171 | 0.056* | 0.107 (4) |
C54A | 0.826 (3) | 0.142 (5) | 0.304 (4) | 0.052 (2) | 0.107 (4) |
H54C | 0.886908 | 0.144399 | 0.334067 | 0.063* | 0.107 (4) |
H54D | 0.834673 | 0.073773 | 0.282491 | 0.063* | 0.107 (4) |
C46A | 0.605 (3) | 0.456 (2) | 0.382 (2) | 0.034 (6) | 0.107 (4) |
C58A | 0.625 (8) | 0.153 (4) | 0.197 (3) | 0.057 (7) | 0.107 (4) |
H58C | 0.567471 | 0.152434 | 0.163411 | 0.068* | 0.107 (4) |
H58D | 0.690078 | 0.124756 | 0.168237 | 0.068* | 0.107 (4) |
C47A | 0.617 (3) | 0.387 (3) | 0.4436 (17) | 0.035 (6) | 0.107 (4) |
H47A | 0.679890 | 0.380649 | 0.473973 | 0.042* | 0.107 (4) |
C53A | 0.729 (3) | 0.158 (2) | 0.358 (2) | 0.0339 (16) | 0.107 (4) |
H53A | 0.743516 | 0.148377 | 0.412891 | 0.041* | 0.107 (4) |
C48A | 0.552 (3) | 0.316 (3) | 0.4535 (16) | 0.035 (5) | 0.107 (4) |
H48A | 0.566997 | 0.261589 | 0.492958 | 0.042* | 0.107 (4) |
C55A | 0.823 (3) | 0.217 (5) | 0.239 (3) | 0.053 (9) | 0.107 (4) |
H55C | 0.834107 | 0.180631 | 0.190662 | 0.063* | 0.107 (4) |
H55D | 0.880598 | 0.253857 | 0.243706 | 0.063* | 0.107 (4) |
C49A | 0.464 (2) | 0.320 (3) | 0.408 (2) | 0.035 (5) | 0.107 (4) |
H49A | 0.420095 | 0.266978 | 0.414151 | 0.042* | 0.107 (4) |
C57A | 0.629 (3) | 0.261 (3) | 0.2140 (14) | 0.041 (5) | 0.107 (4) |
H57A | 0.583304 | 0.311168 | 0.182891 | 0.049* | 0.107 (4) |
C50A | 0.453 (2) | 0.387 (3) | 0.348 (2) | 0.032 (5) | 0.107 (4) |
H50A | 0.401419 | 0.379886 | 0.309595 | 0.038* | 0.107 (4) |
C59A | 0.612 (7) | 0.087 (3) | 0.265 (3) | 0.050 (2) | 0.107 (4) |
H59C | 0.539893 | 0.075688 | 0.269041 | 0.060* | 0.107 (4) |
H59D | 0.657796 | 0.021540 | 0.257114 | 0.060* | 0.107 (4) |
C51A | 0.530 (3) | 0.4465 (19) | 0.327 (2) | 0.035 (5) | 0.107 (4) |
H51A | 0.526317 | 0.486248 | 0.278557 | 0.042* | 0.107 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ir1 | 0.01439 (9) | 0.02208 (10) | 0.02629 (11) | −0.00396 (7) | −0.00011 (7) | 0.00233 (7) |
Ir2 | 0.01490 (9) | 0.02194 (10) | 0.02730 (11) | −0.00311 (7) | 0.00044 (7) | 0.00366 (8) |
Cl1 | 0.0178 (5) | 0.0255 (5) | 0.0361 (6) | −0.0045 (4) | 0.0007 (4) | 0.0045 (4) |
Cl2 | 0.0165 (4) | 0.0266 (5) | 0.0297 (6) | −0.0050 (4) | −0.0009 (4) | 0.0031 (4) |
Cl3 | 0.0198 (5) | 0.0274 (5) | 0.0328 (6) | −0.0032 (4) | −0.0001 (4) | −0.0010 (4) |
P1 | 0.0158 (5) | 0.0248 (5) | 0.0247 (6) | −0.0039 (4) | −0.0001 (4) | 0.0046 (4) |
P2 | 0.0174 (5) | 0.0250 (6) | 0.0278 (6) | −0.0026 (4) | 0.0028 (4) | 0.0051 (5) |
O1 | 0.030 (2) | 0.061 (3) | 0.054 (3) | −0.0140 (19) | −0.0111 (18) | 0.026 (2) |
O2 | 0.0314 (19) | 0.045 (2) | 0.048 (2) | −0.0200 (17) | −0.0083 (17) | 0.0150 (19) |
O3 | 0.0159 (14) | 0.0263 (17) | 0.0347 (19) | −0.0059 (12) | −0.0037 (13) | 0.0085 (14) |
O4 | 0.0244 (17) | 0.040 (2) | 0.034 (2) | −0.0137 (15) | 0.0033 (14) | −0.0011 (16) |
O5 | 0.0185 (16) | 0.048 (2) | 0.038 (2) | −0.0112 (15) | −0.0021 (14) | 0.0040 (18) |
O6 | 0.0166 (14) | 0.0289 (17) | 0.0303 (18) | −0.0004 (13) | 0.0030 (13) | 0.0016 (14) |
C1 | 0.019 (2) | 0.033 (3) | 0.037 (3) | −0.0092 (19) | −0.0048 (19) | 0.007 (2) |
C2 | 0.0170 (19) | 0.026 (2) | 0.023 (2) | −0.0043 (17) | −0.0005 (16) | −0.0011 (18) |
C3 | 0.020 (2) | 0.025 (2) | 0.024 (2) | −0.0030 (17) | 0.0017 (17) | 0.0030 (18) |
C4 | 0.022 (2) | 0.030 (2) | 0.030 (3) | −0.0043 (19) | −0.0065 (18) | 0.002 (2) |
C5 | 0.033 (3) | 0.039 (3) | 0.045 (3) | −0.011 (2) | −0.001 (2) | 0.011 (3) |
C6 | 0.035 (3) | 0.036 (3) | 0.057 (4) | −0.007 (2) | 0.005 (3) | 0.020 (3) |
C7 | 0.038 (3) | 0.040 (3) | 0.048 (4) | −0.005 (2) | 0.003 (3) | 0.020 (3) |
C8 | 0.032 (3) | 0.037 (3) | 0.051 (4) | −0.004 (2) | 0.002 (2) | 0.015 (3) |
C9 | 0.026 (2) | 0.038 (3) | 0.037 (3) | −0.006 (2) | −0.005 (2) | 0.012 (2) |
C10 | 0.021 (2) | 0.035 (3) | 0.038 (3) | −0.011 (2) | −0.003 (2) | 0.010 (2) |
C11 | 0.020 (2) | 0.034 (3) | 0.032 (3) | −0.0069 (19) | −0.0017 (19) | 0.007 (2) |
C12 | 0.020 (2) | 0.030 (2) | 0.032 (3) | −0.0066 (18) | −0.0026 (18) | 0.005 (2) |
C13 | 0.032 (3) | 0.031 (3) | 0.044 (3) | −0.012 (2) | 0.000 (2) | 0.011 (2) |
C14 | 0.026 (2) | 0.039 (3) | 0.034 (3) | −0.004 (2) | 0.000 (2) | 0.013 (2) |
C15 | 0.023 (2) | 0.026 (2) | 0.033 (3) | −0.0049 (18) | 0.0003 (19) | 0.006 (2) |
C16 | 0.032 (3) | 0.031 (3) | 0.038 (3) | 0.000 (2) | 0.002 (2) | 0.006 (2) |
C17 | 0.020 (2) | 0.032 (3) | 0.043 (3) | 0.0016 (19) | 0.002 (2) | 0.012 (2) |
C18 | 0.025 (2) | 0.027 (2) | 0.045 (3) | −0.0060 (19) | −0.001 (2) | 0.009 (2) |
C19 | 0.027 (2) | 0.032 (3) | 0.026 (2) | −0.0041 (19) | 0.0031 (19) | 0.000 (2) |
C20 | 0.030 (2) | 0.030 (3) | 0.036 (3) | −0.004 (2) | −0.007 (2) | −0.003 (2) |
C21 | 0.032 (3) | 0.041 (3) | 0.032 (3) | −0.007 (2) | −0.007 (2) | −0.002 (2) |
C22 | 0.033 (3) | 0.044 (3) | 0.029 (3) | −0.006 (2) | 0.002 (2) | 0.006 (2) |
C23 | 0.016 (2) | 0.023 (2) | 0.035 (3) | −0.0021 (17) | 0.0035 (18) | 0.0057 (19) |
C24 | 0.016 (2) | 0.025 (2) | 0.029 (2) | −0.0017 (17) | 0.0019 (17) | 0.0041 (19) |
C25 | 0.016 (2) | 0.024 (2) | 0.031 (2) | −0.0036 (17) | 0.0003 (17) | 0.0052 (19) |
C26 | 0.018 (2) | 0.030 (2) | 0.035 (3) | −0.0036 (18) | 0.0027 (18) | 0.008 (2) |
C27 | 0.022 (2) | 0.034 (3) | 0.044 (3) | −0.008 (2) | −0.011 (2) | 0.012 (2) |
C28 | 0.028 (3) | 0.040 (3) | 0.042 (3) | −0.012 (2) | −0.012 (2) | 0.001 (2) |
C29 | 0.025 (2) | 0.039 (3) | 0.039 (3) | −0.003 (2) | −0.004 (2) | −0.005 (2) |
C30 | 0.021 (2) | 0.036 (3) | 0.040 (3) | −0.006 (2) | −0.002 (2) | −0.001 (2) |
C31 | 0.019 (2) | 0.026 (2) | 0.031 (3) | −0.0036 (18) | −0.0001 (18) | 0.005 (2) |
C32 | 0.015 (2) | 0.028 (2) | 0.033 (3) | −0.0055 (17) | −0.0037 (17) | 0.011 (2) |
C33 | 0.0147 (19) | 0.022 (2) | 0.036 (3) | −0.0048 (16) | 0.0007 (18) | 0.0024 (19) |
C34 | 0.017 (2) | 0.026 (2) | 0.033 (3) | −0.0026 (17) | −0.0002 (18) | 0.008 (2) |
C35 | 0.021 (2) | 0.027 (2) | 0.031 (3) | −0.0062 (18) | −0.0071 (18) | 0.007 (2) |
C36 | 0.020 (2) | 0.021 (2) | 0.033 (3) | −0.0011 (17) | −0.0022 (18) | 0.0070 (19) |
C37 | 0.024 (2) | 0.032 (3) | 0.038 (3) | −0.004 (2) | 0.001 (2) | 0.012 (2) |
C38 | 0.026 (2) | 0.028 (3) | 0.055 (4) | −0.006 (2) | 0.000 (2) | 0.013 (2) |
C39 | 0.031 (3) | 0.042 (3) | 0.041 (3) | −0.004 (2) | 0.000 (2) | 0.015 (3) |
C40 | 0.029 (3) | 0.039 (3) | 0.051 (4) | 0.000 (2) | 0.008 (2) | 0.015 (3) |
C41 | 0.022 (2) | 0.028 (2) | 0.033 (3) | −0.0023 (19) | 0.0013 (19) | 0.001 (2) |
C42 | 0.032 (3) | 0.042 (3) | 0.035 (3) | −0.005 (2) | 0.001 (2) | 0.001 (2) |
C43 | 0.022 (2) | 0.040 (3) | 0.037 (3) | 0.000 (2) | 0.009 (2) | −0.003 (2) |
C44 | 0.033 (3) | 0.029 (3) | 0.036 (3) | −0.001 (2) | 0.004 (2) | 0.001 (2) |
Ir3 | 0.0214 (2) | 0.02444 (16) | 0.0315 (3) | −0.00303 (13) | −0.00204 (15) | 0.00769 (15) |
C45 | 0.045 (4) | 0.036 (4) | 0.038 (6) | −0.002 (3) | −0.001 (4) | −0.001 (3) |
C46 | 0.032 (3) | 0.034 (3) | 0.032 (4) | 0.000 (2) | 0.004 (3) | 0.000 (3) |
C47 | 0.034 (3) | 0.039 (3) | 0.029 (3) | −0.002 (3) | 0.001 (3) | 0.005 (3) |
C48 | 0.036 (3) | 0.032 (3) | 0.025 (3) | −0.003 (2) | 0.010 (2) | 0.005 (2) |
C49 | 0.023 (3) | 0.045 (4) | 0.046 (4) | −0.003 (3) | 0.010 (3) | −0.001 (3) |
C50 | 0.024 (3) | 0.033 (3) | 0.049 (4) | 0.008 (2) | 0.001 (3) | −0.004 (3) |
C51 | 0.027 (3) | 0.024 (3) | 0.043 (4) | 0.008 (2) | 0.002 (3) | 0.002 (3) |
C52 | 0.031 (3) | 0.018 (2) | 0.043 (3) | −0.002 (2) | 0.007 (2) | 0.003 (2) |
C53 | 0.027 (3) | 0.021 (2) | 0.049 (4) | 0.006 (2) | −0.003 (2) | 0.011 (2) |
C54 | 0.027 (4) | 0.042 (4) | 0.084 (5) | −0.004 (3) | 0.009 (3) | 0.014 (4) |
C55 | 0.037 (4) | 0.059 (5) | 0.042 (4) | −0.007 (3) | 0.012 (3) | −0.001 (4) |
C56 | 0.033 (3) | 0.032 (3) | 0.041 (4) | −0.006 (3) | 0.013 (3) | 0.012 (3) |
C57 | 0.051 (4) | 0.040 (4) | 0.021 (3) | −0.002 (3) | −0.002 (3) | 0.000 (3) |
C58 | 0.078 (7) | 0.068 (6) | 0.041 (4) | −0.046 (6) | 0.001 (4) | −0.008 (4) |
C59 | 0.064 (6) | 0.031 (4) | 0.053 (4) | −0.001 (4) | −0.011 (4) | −0.007 (3) |
C60 | 0.045 (4) | 0.055 (4) | 0.062 (5) | −0.004 (3) | 0.000 (3) | −0.016 (3) |
C61 | 0.046 (3) | 0.047 (4) | 0.057 (4) | −0.008 (3) | 0.004 (3) | −0.020 (3) |
C62 | 0.052 (4) | 0.070 (5) | 0.040 (4) | −0.015 (3) | 0.004 (3) | −0.006 (3) |
C63 | 0.040 (4) | 0.102 (7) | 0.068 (5) | −0.012 (4) | −0.006 (3) | −0.019 (5) |
C64 | 0.060 (5) | 0.074 (6) | 0.140 (10) | 0.014 (5) | −0.051 (6) | −0.018 (6) |
C65 | 0.093 (7) | 0.055 (5) | 0.164 (13) | −0.006 (5) | −0.067 (8) | 0.005 (6) |
C66 | 0.053 (4) | 0.045 (4) | 0.140 (9) | −0.020 (3) | −0.030 (5) | 0.007 (5) |
Ir3A | 0.076 (3) | 0.0363 (19) | 0.081 (3) | 0.012 (2) | 0.045 (4) | 0.030 (2) |
C52A | 0.031 (4) | 0.018 (3) | 0.043 (4) | −0.001 (3) | 0.007 (3) | 0.003 (3) |
C56A | 0.046 (10) | 0.032 (11) | 0.034 (11) | −0.001 (7) | 0.014 (7) | 0.003 (7) |
C45A | 0.05 (2) | 0.044 (17) | 0.02 (3) | −0.015 (17) | 0.006 (19) | −0.006 (17) |
C54A | 0.028 (4) | 0.042 (4) | 0.084 (6) | −0.003 (3) | 0.009 (4) | 0.014 (4) |
C46A | 0.033 (13) | 0.027 (8) | 0.038 (12) | 0.001 (8) | 0.006 (10) | −0.006 (8) |
C58A | 0.081 (19) | 0.045 (10) | 0.046 (9) | −0.011 (12) | −0.009 (11) | −0.006 (8) |
C47A | 0.031 (13) | 0.039 (9) | 0.033 (10) | −0.006 (9) | 0.004 (9) | −0.004 (8) |
C53A | 0.028 (3) | 0.021 (3) | 0.049 (4) | 0.005 (3) | −0.003 (3) | 0.010 (3) |
C48A | 0.026 (11) | 0.037 (10) | 0.038 (10) | 0.000 (8) | 0.005 (8) | 0.001 (7) |
C55A | 0.048 (11) | 0.053 (16) | 0.049 (16) | 0.007 (11) | 0.013 (10) | 0.002 (12) |
C49A | 0.023 (10) | 0.038 (11) | 0.042 (12) | 0.000 (7) | 0.007 (8) | −0.001 (10) |
C57A | 0.052 (12) | 0.038 (9) | 0.029 (9) | −0.001 (9) | 0.008 (8) | 0.000 (7) |
C50A | 0.037 (10) | 0.023 (10) | 0.033 (12) | 0.001 (7) | 0.003 (8) | −0.013 (10) |
C59A | 0.064 (6) | 0.031 (4) | 0.053 (4) | −0.001 (4) | −0.011 (4) | −0.006 (3) |
C51A | 0.033 (11) | 0.017 (9) | 0.051 (12) | 0.008 (7) | −0.005 (9) | 0.003 (8) |
Ir1—H1A | 1.5498 | C43—H43B | 0.9800 |
Ir1—Cl1 | 2.4782 (11) | C43—H43C | 0.9800 |
Ir1—Cl2 | 2.4818 (11) | C44—H44A | 0.9800 |
Ir1—Cl3 | 2.5819 (11) | C44—H44B | 0.9800 |
Ir1—P1 | 2.1819 (11) | C44—H44C | 0.9800 |
Ir1—C2 | 2.001 (5) | Ir3—C46 | 2.413 (7) |
Ir2—H2A | 1.5502 | Ir3—C47 | 2.361 (7) |
Ir2—Cl1 | 2.5476 (11) | Ir3—C48 | 2.243 (6) |
Ir2—Cl2 | 2.4963 (11) | Ir3—C49 | 2.317 (6) |
Ir2—Cl3 | 2.4780 (12) | Ir3—C50 | 2.326 (6) |
Ir2—P2 | 2.1899 (12) | Ir3—C51 | 2.250 (6) |
Ir2—C24 | 2.008 (5) | Ir3—C52 | 2.150 (6) |
P1—O3 | 1.651 (3) | Ir3—C53 | 2.139 (5) |
P1—C15 | 1.879 (5) | Ir3—C56 | 2.129 (6) |
P1—C19 | 1.885 (5) | Ir3—C57 | 2.142 (7) |
P2—O6 | 1.656 (4) | C45—H45A | 0.9800 |
P2—C37 | 1.867 (5) | C45—H45B | 0.9800 |
P2—C41 | 1.874 (5) | C45—H45C | 0.9800 |
O1—C9 | 1.221 (7) | C45—C46 | 1.491 (10) |
O2—C10 | 1.221 (7) | C46—C47 | 1.393 (9) |
O3—C3 | 1.398 (6) | C46—C51 | 1.433 (9) |
O4—C31 | 1.219 (6) | C47—H47 | 1.0000 |
O5—C32 | 1.238 (6) | C47—C48 | 1.426 (9) |
O6—C25 | 1.385 (6) | C48—H48 | 1.0000 |
C1—H1 | 0.9500 | C48—C49 | 1.416 (9) |
C1—C2 | 1.395 (7) | C49—H49 | 1.0000 |
C1—C11 | 1.395 (7) | C49—C50 | 1.387 (10) |
C2—C3 | 1.421 (6) | C50—H50 | 1.0000 |
C3—C4 | 1.368 (7) | C50—C51 | 1.421 (9) |
C4—H4 | 0.9500 | C51—H51 | 1.0000 |
C4—C12 | 1.404 (7) | C52—H52 | 1.0000 |
C5—H5 | 0.9500 | C52—C53 | 1.420 (9) |
C5—C6 | 1.383 (8) | C52—C59 | 1.485 (10) |
C5—C13 | 1.398 (8) | C53—H53 | 1.0000 |
C6—H6 | 0.9500 | C53—C54 | 1.527 (10) |
C6—C7 | 1.384 (9) | C54—H54A | 0.9900 |
C7—H7 | 0.9500 | C54—H54B | 0.9900 |
C7—C8 | 1.399 (9) | C54—C55 | 1.504 (10) |
C8—H8 | 0.9500 | C55—H55A | 0.9900 |
C8—C14 | 1.392 (8) | C55—H55B | 0.9900 |
C9—C11 | 1.480 (7) | C55—C56 | 1.520 (10) |
C9—C14 | 1.492 (8) | C56—H56 | 1.0000 |
C10—C12 | 1.464 (7) | C56—C57 | 1.429 (10) |
C10—C13 | 1.490 (7) | C57—H57 | 1.0000 |
C11—C12 | 1.408 (7) | C57—C58 | 1.507 (11) |
C13—C14 | 1.404 (8) | C58—H58A | 0.9900 |
C15—C16 | 1.527 (8) | C58—H58B | 0.9900 |
C15—C17 | 1.537 (7) | C58—C59 | 1.497 (11) |
C15—C18 | 1.535 (7) | C59—H59A | 0.9900 |
C16—H16A | 0.9800 | C59—H59B | 0.9900 |
C16—H16B | 0.9800 | C60—H60A | 0.9800 |
C16—H16C | 0.9800 | C60—H60B | 0.9800 |
C17—H17A | 0.9800 | C60—H60C | 0.9800 |
C17—H17B | 0.9800 | C60—C61 | 1.484 (11) |
C17—H17C | 0.9800 | C61—C62 | 1.408 (11) |
C18—H18A | 0.9800 | C61—C66 | 1.378 (13) |
C18—H18B | 0.9800 | C62—H62 | 0.9500 |
C18—H18C | 0.9800 | C62—C63 | 1.362 (12) |
C19—C20 | 1.530 (8) | C63—H63 | 0.9500 |
C19—C21 | 1.526 (7) | C63—C64 | 1.392 (16) |
C19—C22 | 1.530 (7) | C64—H64 | 0.9500 |
C20—H20A | 0.9800 | C64—C65 | 1.424 (17) |
C20—H20B | 0.9800 | C65—H65 | 0.9500 |
C20—H20C | 0.9800 | C65—C66 | 1.372 (13) |
C21—H21A | 0.9800 | C66—H66 | 0.9500 |
C21—H21B | 0.9800 | Ir3A—C52A | 2.16 (2) |
C21—H21C | 0.9800 | Ir3A—C56A | 2.08 (2) |
C22—H22A | 0.9800 | Ir3A—C46A | 2.41 (2) |
C22—H22B | 0.9800 | Ir3A—C47A | 2.38 (2) |
C22—H22C | 0.9800 | Ir3A—C53A | 2.13 (2) |
C23—H23 | 0.9500 | Ir3A—C48A | 2.28 (2) |
C23—C24 | 1.381 (8) | Ir3A—C49A | 2.38 (2) |
C23—C33 | 1.397 (7) | Ir3A—C57A | 2.12 (2) |
C24—C25 | 1.425 (6) | Ir3A—C50A | 2.37 (2) |
C25—C26 | 1.374 (7) | Ir3A—C51A | 2.25 (2) |
C26—H26 | 0.9500 | C52A—H52A | 1.0000 |
C26—C34 | 1.393 (8) | C52A—C53A | 1.41 (3) |
C27—H27 | 0.9500 | C52A—C59A | 1.48 (2) |
C27—C28 | 1.372 (9) | C56A—H56A | 1.0000 |
C27—C35 | 1.396 (7) | C56A—C55A | 1.53 (2) |
C28—H28 | 0.9500 | C56A—C57A | 1.44 (3) |
C28—C29 | 1.397 (8) | C45A—H45D | 0.9800 |
C29—H29 | 0.9500 | C45A—H45E | 0.9800 |
C29—C30 | 1.389 (8) | C45A—H45F | 0.9800 |
C30—H30 | 0.9500 | C45A—C46A | 1.48 (4) |
C30—C36 | 1.389 (8) | C54A—H54C | 0.9900 |
C31—C33 | 1.486 (7) | C54A—H54D | 0.9900 |
C31—C36 | 1.475 (7) | C54A—C53A | 1.53 (2) |
C32—C34 | 1.468 (7) | C54A—C55A | 1.50 (2) |
C32—C35 | 1.489 (8) | C46A—C47A | 1.41 (3) |
C33—C34 | 1.408 (6) | C46A—C51A | 1.44 (3) |
C35—C36 | 1.406 (7) | C58A—H58C | 0.9900 |
C37—C38 | 1.534 (9) | C58A—H58D | 0.9900 |
C37—C39 | 1.545 (8) | C58A—C57A | 1.50 (2) |
C37—C40 | 1.537 (8) | C58A—C59A | 1.50 (2) |
C38—H38A | 0.9800 | C47A—H47A | 1.0000 |
C38—H38B | 0.9800 | C47A—C48A | 1.41 (3) |
C38—H38C | 0.9800 | C53A—H53A | 1.0000 |
C39—H39A | 0.9800 | C48A—H48A | 1.0000 |
C39—H39B | 0.9800 | C48A—C49A | 1.42 (3) |
C39—H39C | 0.9800 | C55A—H55C | 0.9900 |
C40—H40A | 0.9800 | C55A—H55D | 0.9900 |
C40—H40B | 0.9800 | C49A—H49A | 1.0000 |
C40—H40C | 0.9800 | C49A—C50A | 1.38 (3) |
C41—C42 | 1.540 (8) | C57A—H57A | 1.0000 |
C41—C43 | 1.536 (7) | C50A—H50A | 1.0000 |
C41—C44 | 1.524 (7) | C50A—C51A | 1.43 (3) |
C42—H42A | 0.9800 | C59A—H59C | 0.9900 |
C42—H42B | 0.9800 | C59A—H59D | 0.9900 |
C42—H42C | 0.9800 | C51A—H51A | 1.0000 |
C43—H43A | 0.9800 | ||
Cl1—Ir1—H1A | 94.5 | C56—Ir3—C51 | 99.1 (2) |
Cl1—Ir1—Cl2 | 80.80 (4) | C56—Ir3—C52 | 94.3 (2) |
Cl1—Ir1—Cl3 | 81.98 (4) | C56—Ir3—C53 | 80.5 (2) |
Cl2—Ir1—H1A | 82.5 | C56—Ir3—C57 | 39.1 (3) |
Cl2—Ir1—Cl3 | 78.35 (4) | C57—Ir3—C46 | 121.2 (3) |
Cl3—Ir1—H1A | 160.9 | C57—Ir3—C47 | 154.4 (3) |
P1—Ir1—H1A | 91.8 | C57—Ir3—C48 | 161.6 (3) |
P1—Ir1—Cl1 | 101.24 (4) | C57—Ir3—C49 | 125.7 (3) |
P1—Ir1—Cl2 | 174.13 (4) | C57—Ir3—C50 | 101.2 (3) |
P1—Ir1—Cl3 | 107.33 (4) | C57—Ir3—C51 | 97.6 (3) |
C2—Ir1—H1A | 82.5 | C57—Ir3—C52 | 80.3 (3) |
C2—Ir1—Cl1 | 175.33 (14) | H45A—C45—H45B | 109.5 |
C2—Ir1—Cl2 | 95.21 (13) | H45A—C45—H45C | 109.5 |
C2—Ir1—Cl3 | 99.66 (14) | H45B—C45—H45C | 109.5 |
C2—Ir1—P1 | 82.49 (13) | C46—C45—H45A | 109.5 |
Cl1—Ir2—H2A | 164.5 | C46—C45—H45B | 109.5 |
Cl2—Ir2—H2A | 85.6 | C46—C45—H45C | 109.5 |
Cl2—Ir2—Cl1 | 79.18 (4) | C45—C46—Ir3 | 132.1 (5) |
Cl3—Ir2—H2A | 91.9 | C47—C46—Ir3 | 71.0 (4) |
Cl3—Ir2—Cl1 | 82.68 (4) | C47—C46—C45 | 123.0 (6) |
Cl3—Ir2—Cl2 | 80.07 (4) | C47—C46—C51 | 117.8 (6) |
P2—Ir2—H2A | 88.6 | C51—C46—Ir3 | 66.0 (4) |
P2—Ir2—Cl1 | 106.79 (4) | C51—C46—C45 | 119.2 (6) |
P2—Ir2—Cl2 | 173.06 (4) | Ir3—C47—H47 | 119.0 |
P2—Ir2—Cl3 | 103.93 (4) | C46—C47—Ir3 | 75.1 (4) |
C24—Ir2—H2A | 85.3 | C46—C47—H47 | 119.0 |
C24—Ir2—Cl1 | 98.54 (13) | C46—C47—C48 | 120.7 (6) |
C24—Ir2—Cl2 | 93.93 (14) | C48—C47—Ir3 | 67.5 (4) |
C24—Ir2—Cl3 | 173.57 (14) | C48—C47—H47 | 119.0 |
C24—Ir2—P2 | 81.82 (14) | Ir3—C48—H48 | 120.1 |
Ir1—Cl1—Ir2 | 83.38 (3) | C47—C48—Ir3 | 76.5 (4) |
Ir1—Cl2—Ir2 | 84.37 (4) | C47—C48—H48 | 120.1 |
Ir2—Cl3—Ir1 | 82.67 (4) | C49—C48—Ir3 | 74.8 (4) |
O3—P1—Ir1 | 105.38 (12) | C49—C48—C47 | 119.8 (6) |
O3—P1—C15 | 100.8 (2) | C49—C48—H48 | 120.1 |
O3—P1—C19 | 101.1 (2) | Ir3—C49—H49 | 119.7 |
C15—P1—Ir1 | 118.60 (17) | C48—C49—Ir3 | 69.1 (3) |
C15—P1—C19 | 110.6 (2) | C48—C49—H49 | 119.7 |
C19—P1—Ir1 | 117.04 (16) | C50—C49—Ir3 | 73.0 (4) |
O6—P2—Ir2 | 104.83 (13) | C50—C49—C48 | 119.4 (6) |
O6—P2—C37 | 100.7 (2) | C50—C49—H49 | 119.7 |
O6—P2—C41 | 99.9 (2) | Ir3—C50—H50 | 119.3 |
C37—P2—Ir2 | 117.47 (17) | C49—C50—Ir3 | 72.3 (3) |
C37—P2—C41 | 111.1 (3) | C49—C50—H50 | 119.3 |
C41—P2—Ir2 | 118.91 (17) | C49—C50—C51 | 119.9 (6) |
C3—O3—P1 | 114.4 (3) | C51—C50—Ir3 | 69.0 (3) |
C25—O6—P2 | 113.7 (3) | C51—C50—H50 | 119.3 |
C2—C1—H1 | 118.6 | Ir3—C51—H51 | 119.9 |
C11—C1—H1 | 118.6 | C46—C51—Ir3 | 78.4 (3) |
C11—C1—C2 | 122.7 (4) | C46—C51—H51 | 119.9 |
C1—C2—Ir1 | 126.5 (3) | C50—C51—Ir3 | 74.9 (3) |
C1—C2—C3 | 115.0 (4) | C50—C51—C46 | 120.2 (6) |
C3—C2—Ir1 | 118.4 (3) | C50—C51—H51 | 119.9 |
O3—C3—C2 | 117.6 (4) | Ir3—C52—H52 | 113.3 |
C4—C3—O3 | 118.1 (4) | C53—C52—Ir3 | 70.3 (3) |
C4—C3—C2 | 124.3 (4) | C53—C52—H52 | 113.3 |
C3—C4—H4 | 120.6 | C53—C52—C59 | 125.6 (6) |
C3—C4—C12 | 118.9 (4) | C59—C52—Ir3 | 113.9 (4) |
C12—C4—H4 | 120.6 | C59—C52—H52 | 113.3 |
C6—C5—H5 | 120.1 | Ir3—C53—H53 | 114.6 |
C6—C5—C13 | 119.7 (6) | C52—C53—Ir3 | 71.1 (3) |
C13—C5—H5 | 120.1 | C52—C53—H53 | 114.6 |
C5—C6—H6 | 119.5 | C52—C53—C54 | 120.3 (7) |
C5—C6—C7 | 121.1 (6) | C54—C53—Ir3 | 114.7 (4) |
C7—C6—H6 | 119.5 | C54—C53—H53 | 114.6 |
C6—C7—H7 | 120.2 | C53—C54—H54A | 108.8 |
C6—C7—C8 | 119.5 (5) | C53—C54—H54B | 108.8 |
C8—C7—H7 | 120.2 | H54A—C54—H54B | 107.7 |
C7—C8—H8 | 119.9 | C55—C54—C53 | 113.7 (6) |
C14—C8—C7 | 120.2 (6) | C55—C54—H54A | 108.8 |
C14—C8—H8 | 119.9 | C55—C54—H54B | 108.8 |
O1—C9—C11 | 122.2 (5) | C54—C55—H55A | 108.7 |
O1—C9—C14 | 120.0 (5) | C54—C55—H55B | 108.7 |
C11—C9—C14 | 117.7 (4) | C54—C55—C56 | 114.1 (6) |
O2—C10—C12 | 121.7 (5) | H55A—C55—H55B | 107.6 |
O2—C10—C13 | 120.6 (5) | C56—C55—H55A | 108.7 |
C12—C10—C13 | 117.7 (5) | C56—C55—H55B | 108.7 |
C1—C11—C9 | 119.5 (4) | Ir3—C56—H56 | 113.7 |
C1—C11—C12 | 119.7 (5) | C55—C56—Ir3 | 114.0 (4) |
C12—C11—C9 | 120.7 (5) | C55—C56—H56 | 113.7 |
C4—C12—C10 | 119.4 (4) | C57—C56—Ir3 | 70.9 (4) |
C4—C12—C11 | 119.3 (5) | C57—C56—C55 | 123.5 (7) |
C11—C12—C10 | 121.3 (4) | C57—C56—H56 | 113.8 |
C5—C13—C10 | 119.5 (5) | Ir3—C57—H57 | 115.0 |
C5—C13—C14 | 119.8 (5) | C56—C57—Ir3 | 70.0 (4) |
C14—C13—C10 | 120.7 (5) | C56—C57—H57 | 115.0 |
C8—C14—C9 | 119.5 (5) | C56—C57—C58 | 121.0 (7) |
C8—C14—C13 | 119.6 (5) | C58—C57—Ir3 | 113.2 (5) |
C13—C14—C9 | 120.8 (5) | C58—C57—H57 | 115.0 |
C16—C15—P1 | 109.2 (3) | C57—C58—H58A | 108.3 |
C16—C15—C17 | 107.0 (4) | C57—C58—H58B | 108.3 |
C16—C15—C18 | 108.0 (5) | H58A—C58—H58B | 107.4 |
C17—C15—P1 | 112.6 (4) | C59—C58—C57 | 115.9 (7) |
C18—C15—P1 | 108.7 (3) | C59—C58—H58A | 108.3 |
C18—C15—C17 | 111.2 (4) | C59—C58—H58B | 108.3 |
C15—C16—H16A | 109.5 | C52—C59—C58 | 113.3 (6) |
C15—C16—H16B | 109.5 | C52—C59—H59A | 108.9 |
C15—C16—H16C | 109.5 | C52—C59—H59B | 108.9 |
H16A—C16—H16B | 109.5 | C58—C59—H59A | 108.9 |
H16A—C16—H16C | 109.5 | C58—C59—H59B | 108.9 |
H16B—C16—H16C | 109.5 | H59A—C59—H59B | 107.7 |
C15—C17—H17A | 109.5 | H60A—C60—H60B | 109.5 |
C15—C17—H17B | 109.5 | H60A—C60—H60C | 109.5 |
C15—C17—H17C | 109.5 | H60B—C60—H60C | 109.5 |
H17A—C17—H17B | 109.5 | C61—C60—H60A | 109.5 |
H17A—C17—H17C | 109.5 | C61—C60—H60B | 109.5 |
H17B—C17—H17C | 109.5 | C61—C60—H60C | 109.5 |
C15—C18—H18A | 109.5 | C62—C61—C60 | 119.4 (7) |
C15—C18—H18B | 109.5 | C66—C61—C60 | 121.9 (7) |
C15—C18—H18C | 109.5 | C66—C61—C62 | 118.6 (7) |
H18A—C18—H18B | 109.5 | C61—C62—H62 | 120.2 |
H18A—C18—H18C | 109.5 | C63—C62—C61 | 119.6 (8) |
H18B—C18—H18C | 109.5 | C63—C62—H62 | 120.2 |
C20—C19—P1 | 104.6 (4) | C62—C63—H63 | 119.3 |
C20—C19—C22 | 110.2 (4) | C62—C63—C64 | 121.5 (8) |
C21—C19—P1 | 113.7 (4) | C64—C63—H63 | 119.3 |
C21—C19—C20 | 107.8 (5) | C63—C64—H64 | 120.2 |
C21—C19—C22 | 109.9 (4) | C63—C64—C65 | 119.5 (8) |
C22—C19—P1 | 110.5 (4) | C65—C64—H64 | 120.2 |
C19—C20—H20A | 109.5 | C64—C65—H65 | 121.3 |
C19—C20—H20B | 109.5 | C66—C65—C64 | 117.3 (11) |
C19—C20—H20C | 109.5 | C66—C65—H65 | 121.3 |
H20A—C20—H20B | 109.5 | C61—C66—H66 | 118.4 |
H20A—C20—H20C | 109.5 | C65—C66—C61 | 123.3 (9) |
H20B—C20—H20C | 109.5 | C65—C66—H66 | 118.4 |
C19—C21—H21A | 109.5 | C52A—Ir3A—C46A | 156.3 (12) |
C19—C21—H21B | 109.5 | C52A—Ir3A—C47A | 122.0 (12) |
C19—C21—H21C | 109.5 | C52A—Ir3A—C48A | 95.4 (11) |
H21A—C21—H21B | 109.5 | C52A—Ir3A—C49A | 94.5 (11) |
H21A—C21—H21C | 109.5 | C52A—Ir3A—C50A | 117.9 (12) |
H21B—C21—H21C | 109.5 | C52A—Ir3A—C51A | 153.3 (13) |
C19—C22—H22A | 109.5 | C56A—Ir3A—C52A | 95.0 (10) |
C19—C22—H22B | 109.5 | C56A—Ir3A—C46A | 103.5 (12) |
C19—C22—H22C | 109.5 | C56A—Ir3A—C47A | 126.1 (13) |
H22A—C22—H22B | 109.5 | C56A—Ir3A—C53A | 81.7 (9) |
H22A—C22—H22C | 109.5 | C56A—Ir3A—C48A | 160.4 (15) |
H22B—C22—H22C | 109.5 | C56A—Ir3A—C49A | 158.8 (13) |
C24—C23—H23 | 119.0 | C56A—Ir3A—C57A | 40.2 (10) |
C24—C23—C33 | 122.1 (4) | C56A—Ir3A—C50A | 126.0 (12) |
C33—C23—H23 | 119.0 | C56A—Ir3A—C51A | 100.9 (11) |
C23—C24—Ir2 | 126.0 (3) | C47A—Ir3A—C46A | 34.3 (8) |
C23—C24—C25 | 116.2 (5) | C53A—Ir3A—C52A | 38.3 (9) |
C25—C24—Ir2 | 117.8 (4) | C53A—Ir3A—C46A | 129.8 (13) |
O6—C25—C24 | 118.1 (4) | C53A—Ir3A—C47A | 103.3 (12) |
C26—C25—O6 | 118.6 (4) | C53A—Ir3A—C48A | 96.5 (11) |
C26—C25—C24 | 123.3 (5) | C53A—Ir3A—C49A | 116.8 (12) |
C25—C26—H26 | 120.5 | C53A—Ir3A—C50A | 149.6 (13) |
C25—C26—C34 | 119.1 (4) | C53A—Ir3A—C51A | 165.5 (14) |
C34—C26—H26 | 120.5 | C48A—Ir3A—C46A | 62.7 (9) |
C28—C27—H27 | 119.7 | C48A—Ir3A—C47A | 35.1 (8) |
C28—C27—C35 | 120.6 (5) | C48A—Ir3A—C49A | 35.5 (8) |
C35—C27—H27 | 119.7 | C48A—Ir3A—C50A | 62.0 (9) |
C27—C28—H28 | 119.8 | C49A—Ir3A—C46A | 73.3 (9) |
C27—C28—C29 | 120.4 (5) | C49A—Ir3A—C47A | 62.4 (9) |
C29—C28—H28 | 119.8 | C57A—Ir3A—C52A | 80.7 (9) |
C28—C29—H29 | 120.4 | C57A—Ir3A—C46A | 123.0 (12) |
C30—C29—C28 | 119.2 (6) | C57A—Ir3A—C47A | 157.1 (12) |
C30—C29—H29 | 120.4 | C57A—Ir3A—C53A | 93.2 (10) |
C29—C30—H30 | 119.4 | C57A—Ir3A—C48A | 158.8 (14) |
C29—C30—C36 | 121.2 (5) | C57A—Ir3A—C49A | 123.6 (13) |
C36—C30—H30 | 119.4 | C57A—Ir3A—C50A | 101.2 (12) |
O4—C31—C33 | 121.4 (5) | C57A—Ir3A—C51A | 97.9 (11) |
O4—C31—C36 | 120.9 (5) | C50A—Ir3A—C46A | 61.9 (9) |
C36—C31—C33 | 117.6 (4) | C50A—Ir3A—C47A | 72.2 (9) |
O5—C32—C34 | 121.6 (5) | C50A—Ir3A—C49A | 33.7 (8) |
O5—C32—C35 | 120.0 (5) | C51A—Ir3A—C46A | 35.7 (8) |
C34—C32—C35 | 118.4 (4) | C51A—Ir3A—C47A | 63.6 (9) |
C23—C33—C31 | 119.0 (4) | C51A—Ir3A—C48A | 76.2 (9) |
C23—C33—C34 | 119.9 (5) | C51A—Ir3A—C49A | 63.9 (9) |
C34—C33—C31 | 121.1 (5) | C51A—Ir3A—C50A | 35.8 (8) |
C26—C34—C32 | 119.9 (4) | Ir3A—C52A—H52A | 112.5 |
C26—C34—C33 | 119.5 (5) | C53A—C52A—Ir3A | 69.7 (11) |
C33—C34—C32 | 120.6 (5) | C53A—C52A—H52A | 112.5 |
C27—C35—C32 | 119.7 (5) | C53A—C52A—C59A | 129 (3) |
C27—C35—C36 | 119.7 (5) | C59A—C52A—Ir3A | 112.4 (18) |
C36—C35—C32 | 120.6 (4) | C59A—C52A—H52A | 112.5 |
C30—C36—C31 | 120.0 (4) | Ir3A—C56A—H56A | 114.6 |
C30—C36—C35 | 118.9 (5) | C55A—C56A—Ir3A | 115.1 (16) |
C35—C36—C31 | 121.1 (5) | C55A—C56A—H56A | 114.6 |
C38—C37—P2 | 106.4 (4) | C57A—C56A—Ir3A | 71.3 (11) |
C38—C37—C39 | 109.4 (4) | C57A—C56A—H56A | 114.6 |
C38—C37—C40 | 107.9 (5) | C57A—C56A—C55A | 120 (3) |
C39—C37—P2 | 109.9 (4) | H45D—C45A—H45E | 109.5 |
C40—C37—P2 | 114.7 (4) | H45D—C45A—H45F | 109.5 |
C40—C37—C39 | 108.4 (5) | H45E—C45A—H45F | 109.5 |
C37—C38—H38A | 109.5 | C46A—C45A—H45D | 109.5 |
C37—C38—H38B | 109.5 | C46A—C45A—H45E | 109.5 |
C37—C38—H38C | 109.5 | C46A—C45A—H45F | 109.5 |
H38A—C38—H38B | 109.5 | H54C—C54A—H54D | 107.7 |
H38A—C38—H38C | 109.5 | C53A—C54A—H54C | 108.8 |
H38B—C38—H38C | 109.5 | C53A—C54A—H54D | 108.8 |
C37—C39—H39A | 109.5 | C55A—C54A—H54C | 108.8 |
C37—C39—H39B | 109.5 | C55A—C54A—H54D | 108.8 |
C37—C39—H39C | 109.5 | C55A—C54A—C53A | 113.8 (19) |
H39A—C39—H39B | 109.5 | C45A—C46A—Ir3A | 134 (3) |
H39A—C39—H39C | 109.5 | C47A—C46A—Ir3A | 71.6 (11) |
H39B—C39—H39C | 109.5 | C47A—C46A—C45A | 122 (3) |
C37—C40—H40A | 109.5 | C47A—C46A—C51A | 118.0 (19) |
C37—C40—H40B | 109.5 | C51A—C46A—Ir3A | 66.0 (11) |
C37—C40—H40C | 109.5 | C51A—C46A—C45A | 120 (3) |
H40A—C40—H40B | 109.5 | H58C—C58A—H58D | 107.4 |
H40A—C40—H40C | 109.5 | C57A—C58A—H58C | 108.3 |
H40B—C40—H40C | 109.5 | C57A—C58A—H58D | 108.3 |
C42—C41—P2 | 109.0 (3) | C59A—C58A—H58C | 108.3 |
C43—C41—P2 | 111.9 (4) | C59A—C58A—H58D | 108.3 |
C43—C41—C42 | 111.7 (5) | C59A—C58A—C57A | 116 (2) |
C44—C41—P2 | 108.2 (4) | Ir3A—C47A—H47A | 119.3 |
C44—C41—C42 | 108.3 (5) | C46A—C47A—Ir3A | 74.1 (12) |
C44—C41—C43 | 107.6 (4) | C46A—C47A—H47A | 119.3 |
C41—C42—H42A | 109.5 | C48A—C47A—Ir3A | 68.8 (11) |
C41—C42—H42B | 109.5 | C48A—C47A—C46A | 120 (2) |
C41—C42—H42C | 109.5 | C48A—C47A—H47A | 119.3 |
H42A—C42—H42B | 109.5 | Ir3A—C53A—H53A | 114.2 |
H42A—C42—H42C | 109.5 | C52A—C53A—Ir3A | 72.0 (11) |
H42B—C42—H42C | 109.5 | C52A—C53A—C54A | 122 (3) |
C41—C43—H43A | 109.5 | C52A—C53A—H53A | 114.2 |
C41—C43—H43B | 109.5 | C54A—C53A—Ir3A | 113.9 (15) |
C41—C43—H43C | 109.5 | C54A—C53A—H53A | 114.2 |
H43A—C43—H43B | 109.5 | Ir3A—C48A—H48A | 119.5 |
H43A—C43—H43C | 109.5 | C47A—C48A—Ir3A | 76.1 (13) |
H43B—C43—H43C | 109.5 | C47A—C48A—H48A | 119.5 |
C41—C44—H44A | 109.5 | C47A—C48A—C49A | 121 (2) |
C41—C44—H44B | 109.5 | C49A—C48A—Ir3A | 75.9 (12) |
C41—C44—H44C | 109.5 | C49A—C48A—H48A | 119.5 |
H44A—C44—H44B | 109.5 | C56A—C55A—H55C | 108.7 |
H44A—C44—H44C | 109.5 | C56A—C55A—H55D | 108.7 |
H44B—C44—H44C | 109.5 | C54A—C55A—C56A | 114.4 (19) |
C47—Ir3—C46 | 33.9 (2) | C54A—C55A—H55C | 108.7 |
C48—Ir3—C46 | 63.4 (2) | C54A—C55A—H55D | 108.7 |
C48—Ir3—C47 | 36.0 (2) | H55C—C55A—H55D | 107.6 |
C48—Ir3—C49 | 36.1 (2) | Ir3A—C49A—H49A | 120.6 |
C48—Ir3—C50 | 63.9 (2) | C48A—C49A—Ir3A | 68.7 (11) |
C48—Ir3—C51 | 76.8 (2) | C48A—C49A—H49A | 120.6 |
C49—Ir3—C46 | 74.0 (3) | C50A—C49A—Ir3A | 73.0 (12) |
C49—Ir3—C47 | 63.4 (2) | C50A—C49A—C48A | 118 (2) |
C49—Ir3—C50 | 34.8 (2) | C50A—C49A—H49A | 120.6 |
C50—Ir3—C46 | 62.9 (2) | Ir3A—C57A—H57A | 114.7 |
C50—Ir3—C47 | 73.8 (2) | C56A—C57A—Ir3A | 68.4 (11) |
C51—Ir3—C46 | 35.6 (2) | C56A—C57A—C58A | 123 (4) |
C51—Ir3—C47 | 63.3 (2) | C56A—C57A—H57A | 114.7 |
C51—Ir3—C49 | 64.3 (2) | C58A—C57A—Ir3A | 113.3 (16) |
C51—Ir3—C50 | 36.1 (2) | C58A—C57A—H57A | 114.7 |
C52—Ir3—C46 | 158.2 (2) | Ir3A—C50A—H50A | 118.0 |
C52—Ir3—C47 | 124.3 (2) | C49A—C50A—Ir3A | 73.3 (12) |
C52—Ir3—C48 | 97.6 (2) | C49A—C50A—H50A | 118.0 |
C52—Ir3—C49 | 97.1 (3) | C49A—C50A—C51A | 121.7 (19) |
C52—Ir3—C50 | 120.1 (2) | C51A—C50A—Ir3A | 67.3 (11) |
C52—Ir3—C51 | 155.6 (2) | C51A—C50A—H50A | 118.0 |
C53—Ir3—C46 | 128.9 (2) | C52A—C59A—C58A | 113 (2) |
C53—Ir3—C47 | 103.7 (2) | C52A—C59A—H59C | 108.9 |
C53—Ir3—C48 | 97.7 (2) | C52A—C59A—H59D | 108.9 |
C53—Ir3—C49 | 119.3 (3) | C58A—C59A—H59C | 108.9 |
C53—Ir3—C50 | 152.8 (3) | C58A—C59A—H59D | 108.9 |
C53—Ir3—C51 | 164.3 (3) | H59C—C59A—H59D | 107.7 |
C53—Ir3—C52 | 38.7 (2) | Ir3A—C51A—H51A | 120.6 |
C53—Ir3—C57 | 91.9 (3) | C46A—C51A—Ir3A | 78.3 (12) |
C56—Ir3—C46 | 100.8 (3) | C46A—C51A—H51A | 120.6 |
C56—Ir3—C47 | 123.2 (3) | C50A—C51A—Ir3A | 76.9 (12) |
C56—Ir3—C48 | 158.3 (3) | C50A—C51A—C46A | 118 (2) |
C56—Ir3—C49 | 158.5 (3) | C50A—C51A—H51A | 120.6 |
C56—Ir3—C50 | 124.1 (3) | ||
Ir1—P1—O3—C3 | −14.1 (4) | C29—C30—C36—C35 | 1.0 (8) |
Ir1—P1—C15—C16 | −31.9 (4) | C31—C33—C34—C26 | 176.5 (4) |
Ir1—P1—C15—C17 | −150.6 (3) | C31—C33—C34—C32 | −6.4 (7) |
Ir1—P1—C15—C18 | 85.7 (4) | C32—C35—C36—C30 | 179.2 (4) |
Ir1—P1—C19—C20 | 61.8 (4) | C32—C35—C36—C31 | −2.8 (7) |
Ir1—P1—C19—C21 | 179.1 (3) | C33—C23—C24—Ir2 | 177.0 (4) |
Ir1—P1—C19—C22 | −56.8 (4) | C33—C23—C24—C25 | 0.2 (7) |
Ir1—C2—C3—O3 | −1.4 (6) | C33—C31—C36—C30 | 173.9 (4) |
Ir1—C2—C3—C4 | 179.3 (4) | C33—C31—C36—C35 | −4.1 (6) |
Ir2—P2—O6—C25 | −19.8 (3) | C34—C32—C35—C27 | −174.3 (4) |
Ir2—P2—C37—C38 | 59.7 (4) | C34—C32—C35—C36 | 5.3 (7) |
Ir2—P2—C37—C39 | −58.7 (5) | C35—C27—C28—C29 | 0.4 (8) |
Ir2—P2—C37—C40 | 179.0 (4) | C35—C32—C34—C26 | 176.5 (4) |
Ir2—P2—C41—C42 | 83.5 (4) | C35—C32—C34—C33 | −0.6 (7) |
Ir2—P2—C41—C43 | −152.4 (3) | C36—C31—C33—C23 | −173.8 (4) |
Ir2—P2—C41—C44 | −34.1 (4) | C36—C31—C33—C34 | 8.8 (7) |
Ir2—C24—C25—O6 | 2.4 (6) | C37—P2—O6—C25 | 102.6 (3) |
Ir2—C24—C25—C26 | −178.1 (4) | C37—P2—C41—C42 | −57.6 (4) |
P1—O3—C3—C2 | 11.0 (6) | C37—P2—C41—C43 | 66.4 (4) |
P1—O3—C3—C4 | −169.7 (4) | C37—P2—C41—C44 | −175.3 (4) |
P2—O6—C25—C24 | 12.8 (5) | C41—P2—O6—C25 | −143.4 (3) |
P2—O6—C25—C26 | −166.8 (4) | C41—P2—C37—C38 | −158.5 (3) |
O1—C9—C11—C1 | −3.5 (9) | C41—P2—C37—C39 | 83.1 (4) |
O1—C9—C11—C12 | 179.8 (6) | C41—P2—C37—C40 | −39.3 (5) |
O1—C9—C14—C8 | 7.0 (10) | Ir3—C46—C47—C48 | −51.7 (6) |
O1—C9—C14—C13 | −175.4 (6) | Ir3—C46—C51—C50 | 64.7 (5) |
O2—C10—C12—C4 | 10.3 (9) | Ir3—C47—C48—C49 | −63.4 (5) |
O2—C10—C12—C11 | −168.4 (6) | Ir3—C48—C49—C50 | −54.8 (6) |
O2—C10—C13—C5 | −9.2 (9) | Ir3—C49—C50—C51 | −51.8 (6) |
O2—C10—C13—C14 | 172.9 (6) | Ir3—C50—C51—C46 | −66.5 (5) |
O3—P1—C15—C16 | 82.4 (4) | Ir3—C52—C53—C54 | −108.1 (5) |
O3—P1—C15—C17 | −36.3 (4) | Ir3—C52—C59—C58 | 21.4 (9) |
O3—P1—C15—C18 | −160.0 (4) | Ir3—C53—C54—C55 | 2.8 (10) |
O3—P1—C19—C20 | −52.0 (4) | Ir3—C56—C57—C58 | −105.6 (6) |
O3—P1—C19—C21 | 65.3 (4) | Ir3—C57—C58—C59 | 2.9 (11) |
O3—P1—C19—C22 | −170.6 (3) | C45—C46—C47—Ir3 | −128.4 (7) |
O3—C3—C4—C12 | −176.0 (5) | C45—C46—C47—C48 | 179.9 (7) |
O4—C31—C33—C23 | 7.5 (7) | C45—C46—C51—Ir3 | 126.3 (6) |
O4—C31—C33—C34 | −170.0 (5) | C45—C46—C51—C50 | −169.1 (7) |
O4—C31—C36—C30 | −7.4 (7) | C46—C47—C48—Ir3 | 55.2 (6) |
O4—C31—C36—C35 | 174.7 (5) | C46—C47—C48—C49 | −8.2 (10) |
O5—C32—C34—C26 | −2.9 (7) | C47—C46—C51—Ir3 | −50.4 (6) |
O5—C32—C34—C33 | 179.9 (5) | C47—C46—C51—C50 | 14.2 (9) |
O5—C32—C35—C27 | 5.2 (7) | C47—C48—C49—Ir3 | 64.3 (5) |
O5—C32—C35—C36 | −175.3 (4) | C47—C48—C49—C50 | 9.5 (10) |
O6—P2—C37—C38 | −53.4 (4) | C48—C49—C50—Ir3 | 53.0 (6) |
O6—P2—C37—C39 | −171.8 (4) | C48—C49—C50—C51 | 1.1 (10) |
O6—P2—C37—C40 | 65.9 (5) | C49—C50—C51—Ir3 | 53.3 (6) |
O6—P2—C41—C42 | −163.3 (4) | C49—C50—C51—C46 | −13.2 (10) |
O6—P2—C41—C43 | −39.3 (4) | C51—C46—C47—Ir3 | 48.1 (5) |
O6—P2—C41—C44 | 79.1 (4) | C51—C46—C47—C48 | −3.6 (10) |
O6—C25—C26—C34 | −179.7 (4) | C52—C53—C54—C55 | 84.4 (9) |
C1—C2—C3—O3 | 174.9 (5) | C53—C52—C59—C58 | −60.7 (10) |
C1—C2—C3—C4 | −4.4 (8) | C53—C54—C55—C56 | −14.4 (12) |
C1—C11—C12—C4 | −3.2 (8) | C54—C55—C56—Ir3 | 19.7 (10) |
C1—C11—C12—C10 | 175.6 (5) | C54—C55—C56—C57 | −62.6 (10) |
C2—C1—C11—C9 | −174.9 (5) | C55—C56—C57—Ir3 | 106.7 (6) |
C2—C1—C11—C12 | 1.9 (9) | C55—C56—C57—C58 | 1.1 (10) |
C2—C3—C4—C12 | 3.3 (8) | C56—C57—C58—C59 | 82.7 (10) |
C3—C4—C12—C10 | −178.1 (5) | C57—C58—C59—C52 | −15.9 (12) |
C3—C4—C12—C11 | 0.7 (8) | C59—C52—C53—Ir3 | 105.8 (6) |
C5—C6—C7—C8 | 0.4 (11) | C59—C52—C53—C54 | −2.4 (9) |
C5—C13—C14—C8 | −1.5 (10) | C60—C61—C62—C63 | −178.2 (7) |
C5—C13—C14—C9 | −179.1 (6) | C60—C61—C66—C65 | 179.0 (10) |
C6—C5—C13—C10 | −176.5 (6) | C61—C62—C63—C64 | −2.0 (14) |
C6—C5—C13—C14 | 1.4 (10) | C62—C61—C66—C65 | −4.6 (16) |
C6—C7—C8—C14 | −0.5 (10) | C62—C63—C64—C65 | −2.2 (17) |
C7—C8—C14—C9 | 178.6 (6) | C63—C64—C65—C66 | 3.0 (19) |
C7—C8—C14—C13 | 1.0 (10) | C64—C65—C66—C61 | 0.4 (19) |
C9—C11—C12—C4 | 173.6 (5) | C66—C61—C62—C63 | 5.3 (12) |
C9—C11—C12—C10 | −7.7 (9) | Ir3A—C52A—C53A—C54A | −108 (2) |
C10—C13—C14—C8 | 176.4 (6) | Ir3A—C52A—C59A—C58A | 24 (7) |
C10—C13—C14—C9 | −1.2 (9) | Ir3A—C56A—C55A—C54A | 10 (7) |
C11—C1—C2—Ir1 | 177.7 (4) | Ir3A—C56A—C57A—C58A | −105 (2) |
C11—C1—C2—C3 | 1.8 (8) | Ir3A—C46A—C47A—C48A | −53 (2) |
C11—C9—C14—C8 | −171.8 (6) | Ir3A—C46A—C51A—C50A | 67.9 (18) |
C11—C9—C14—C13 | 5.7 (9) | Ir3A—C47A—C48A—C49A | −63.7 (19) |
C12—C10—C13—C5 | 170.3 (6) | Ir3A—C48A—C49A—C50A | −56 (2) |
C12—C10—C13—C14 | −7.6 (9) | Ir3A—C49A—C50A—C51A | −49 (2) |
C13—C5—C6—C7 | −0.9 (11) | Ir3A—C50A—C51A—C46A | −68.7 (18) |
C13—C10—C12—C4 | −169.1 (5) | C45A—C46A—C47A—Ir3A | −131 (4) |
C13—C10—C12—C11 | 12.1 (8) | C45A—C46A—C47A—C48A | 176 (4) |
C14—C9—C11—C1 | 175.4 (5) | C45A—C46A—C51A—Ir3A | 129 (4) |
C14—C9—C11—C12 | −1.3 (9) | C45A—C46A—C51A—C50A | −163 (4) |
C15—P1—O3—C3 | −138.0 (4) | C46A—C47A—C48A—Ir3A | 55 (2) |
C15—P1—C19—C20 | −158.1 (3) | C46A—C47A—C48A—C49A | −8 (4) |
C15—P1—C19—C21 | −40.8 (5) | C47A—C46A—C51A—Ir3A | −51 (2) |
C15—P1—C19—C22 | 83.3 (4) | C47A—C46A—C51A—C50A | 17 (3) |
C19—P1—O3—C3 | 108.2 (4) | C47A—C48A—C49A—Ir3A | 64 (2) |
C19—P1—C15—C16 | −171.3 (3) | C47A—C48A—C49A—C50A | 8 (3) |
C19—P1—C15—C17 | 70.0 (4) | C53A—C52A—C59A—C58A | −58 (8) |
C19—P1—C15—C18 | −53.7 (4) | C53A—C54A—C55A—C56A | −3 (9) |
C23—C24—C25—O6 | 179.5 (4) | C48A—C49A—C50A—Ir3A | 54 (2) |
C23—C24—C25—C26 | −0.9 (7) | C48A—C49A—C50A—C51A | 5 (4) |
C23—C33—C34—C26 | −1.0 (7) | C55A—C56A—C57A—Ir3A | 109 (2) |
C23—C33—C34—C32 | 176.1 (4) | C55A—C56A—C57A—C58A | 4 (3) |
C24—C23—C33—C31 | −176.8 (4) | C55A—C54A—C53A—Ir3A | −5 (8) |
C24—C23—C33—C34 | 0.8 (7) | C55A—C54A—C53A—C52A | 78 (7) |
C24—C25—C26—C34 | 0.7 (7) | C49A—C50A—C51A—Ir3A | 51 (2) |
C25—C26—C34—C32 | −176.9 (4) | C49A—C50A—C51A—C46A | −17 (3) |
C25—C26—C34—C33 | 0.3 (7) | C57A—C56A—C55A—C54A | −72 (7) |
C27—C28—C29—C30 | −0.7 (8) | C57A—C58A—C59A—C52A | −17 (10) |
C27—C35—C36—C30 | −1.2 (7) | C59A—C52A—C53A—Ir3A | 103 (3) |
C27—C35—C36—C31 | 176.8 (4) | C59A—C52A—C53A—C54A | −5 (4) |
C28—C27—C35—C32 | −179.9 (5) | C59A—C58A—C57A—Ir3A | 3 (8) |
C28—C27—C35—C36 | 0.5 (7) | C59A—C58A—C57A—C56A | 81 (7) |
C28—C29—C30—C36 | −0.1 (8) | C51A—C46A—C47A—Ir3A | 49 (2) |
C29—C30—C36—C31 | −177.0 (5) | C51A—C46A—C47A—C48A | −4 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···Cl2 | 0.95 | 2.72 | 3.348 (5) | 124 |
C20—H20A···Cl3 | 0.98 | 2.67 | 3.555 (5) | 151 |
C22—H22C···Cl3 | 0.98 | 2.74 | 3.613 (6) | 149 |
C23—H23···Cl2 | 0.95 | 2.70 | 3.316 (5) | 123 |
C38—H38A···Cl1 | 0.98 | 2.71 | 3.589 (6) | 149 |
C39—H39C···Cl1 | 0.98 | 2.66 | 3.559 (7) | 152 |
C7—H7···O5i | 0.95 | 2.44 | 3.262 (8) | 145 |
C16—H16A···O5ii | 0.98 | 2.40 | 3.306 (6) | 154 |
C45—H45A···O1i | 0.98 | 2.51 | 3.468 (11) | 167 |
C45—H45C···O2iii | 0.98 | 2.34 | 3.197 (11) | 145 |
C48—H48···O4i | 1.00 | 2.50 | 3.125 (8) | 120 |
C49—H49···O4i | 1.00 | 2.52 | 3.142 (9) | 120 |
C52—H52···O4i | 1.00 | 2.36 | 3.303 (8) | 157 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z; (iii) x+1, y, z. |
[Ir2H2(C23H26O2P)2Cl2(CO)2] | Z = 1 |
Mr = 1244.15 | F(000) = 608 |
Triclinic, P1 | Dx = 1.388 Mg m−3 |
a = 8.8215 (3) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 12.1331 (4) Å | Cell parameters from 13538 reflections |
c = 14.4895 (3) Å | θ = 3.1–77.0° |
α = 81.5747 (19)° | µ = 10.16 mm−1 |
β = 84.576 (2)° | T = 173 K |
γ = 76.465 (3)° | Needle, light yellow |
V = 1488.57 (7) Å3 | 0.19 × 0.04 × 0.03 mm |
XtaLAB Synergy, Dualflex, HyPix diffractometer | 6137 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 5626 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.046 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 77.7°, θmin = 3.1° |
ω scans | h = −10→11 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2023) | k = −15→15 |
Tmin = 0.459, Tmax = 1.000 | l = −18→11 |
20510 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: mixed |
wR(F2) = 0.067 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0333P)2 + 0.1077P] where P = (Fo2 + 2Fc2)/3 |
6137 reflections | (Δ/σ)max = 0.003 |
277 parameters | Δρmax = 0.99 e Å−3 |
0 restraints | Δρmin = −1.03 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Reflection contributions from highly disordered solvent were fixed and added to the calculated structure factors using the SQUEEZE routine of program Platon (Spek, 2015), which determined there to be 184 electrons in 492 Å3 treated this way per unit cell. Because the exact identity and amount of solvent were unknown, no solvent was included in the atom list or molecular formula. Thus all calculated quantities that derive from the molecular formula (e.g., F(000), density, molecular weight, etc.) are known to be inaccurate. The hydrido ligand's position was based on a peak found in the difference Fourier map. Once located, it was given a riding model that preserved its angle relative to the other ligands, but with its Ir–H distance fixed at approximately 1.55 Å (based on an average obtained from the Cambridge Structural Database for six-coordinate Ir complexes; Groom et al., 2016). Independent spectroscopic experiments confirm the presence of this ligand. |
x | y | z | Uiso*/Ueq | ||
Ir1 | 0.48460 (2) | 0.63470 (2) | 0.55302 (2) | 0.02185 (6) | |
H1A | 0.336844 | 0.727771 | 0.574795 | 0.044* | |
Cl1 | 0.32114 (8) | 0.55180 (7) | 0.46723 (5) | 0.02494 (15) | |
P1 | 0.61658 (10) | 0.70682 (7) | 0.64763 (5) | 0.02345 (16) | |
O1 | 0.0183 (3) | 0.4082 (3) | 0.73070 (17) | 0.0457 (8) | |
O2 | 0.3803 (3) | 0.3658 (3) | 1.01700 (16) | 0.0363 (6) | |
O3 | 0.5734 (4) | 0.7724 (3) | 0.37031 (18) | 0.0497 (8) | |
C1 | 0.2859 (4) | 0.5016 (3) | 0.6961 (2) | 0.0260 (7) | |
H1 | 0.223718 | 0.505372 | 0.645139 | 0.031* | |
C2 | 0.4178 (4) | 0.5481 (3) | 0.6806 (2) | 0.0237 (6) | |
C3 | 0.5103 (4) | 0.5376 (3) | 0.7576 (2) | 0.0223 (6) | |
C4 | 0.4697 (4) | 0.4833 (3) | 0.8446 (2) | 0.0233 (6) | |
H4 | 0.534134 | 0.476328 | 0.894991 | 0.028* | |
C5 | 0.0756 (5) | 0.3309 (4) | 1.0592 (2) | 0.0374 (9) | |
H5 | 0.140147 | 0.321387 | 1.109978 | 0.045* | |
C6 | −0.0738 (5) | 0.3123 (4) | 1.0755 (2) | 0.0419 (10) | |
H6 | −0.111593 | 0.290184 | 1.137368 | 0.050* | |
C7 | −0.1693 (5) | 0.3257 (4) | 1.0014 (3) | 0.0390 (9) | |
H7 | −0.272684 | 0.314287 | 1.012753 | 0.047* | |
C8 | −0.1126 (5) | 0.3559 (4) | 0.9114 (2) | 0.0339 (8) | |
H8 | −0.176718 | 0.363464 | 0.860638 | 0.041* | |
C9 | 0.0940 (4) | 0.4107 (3) | 0.7965 (2) | 0.0302 (7) | |
C10 | 0.2921 (4) | 0.3870 (3) | 0.9533 (2) | 0.0269 (7) | |
C11 | 0.2420 (4) | 0.4497 (3) | 0.7835 (2) | 0.0243 (6) | |
C12 | 0.3369 (4) | 0.4393 (3) | 0.8589 (2) | 0.0237 (6) | |
C13 | 0.1323 (4) | 0.3635 (3) | 0.9687 (2) | 0.0279 (7) | |
C14 | 0.0372 (4) | 0.3751 (3) | 0.8943 (2) | 0.0287 (7) | |
C15 | 0.6506 (4) | 0.5901 (3) | 0.7446 (2) | 0.0249 (6) | |
H15A | 0.745979 | 0.532112 | 0.729981 | 0.030* | |
H15B | 0.664720 | 0.619963 | 0.802497 | 0.030* | |
C16 | 0.4960 (5) | 0.8365 (3) | 0.6999 (2) | 0.0319 (7) | |
C17 | 0.3595 (5) | 0.7995 (3) | 0.7610 (3) | 0.0350 (8) | |
H17A | 0.300180 | 0.765709 | 0.723284 | 0.052* | |
H17B | 0.290820 | 0.866313 | 0.785190 | 0.052* | |
H17C | 0.400591 | 0.742966 | 0.813315 | 0.052* | |
C18 | 0.5891 (6) | 0.8839 (4) | 0.7628 (3) | 0.0435 (10) | |
H18A | 0.636523 | 0.822425 | 0.810120 | 0.065* | |
H18B | 0.518912 | 0.944836 | 0.793613 | 0.065* | |
H18C | 0.671283 | 0.914644 | 0.724694 | 0.065* | |
C19 | 0.4265 (6) | 0.9315 (4) | 0.6231 (3) | 0.0423 (9) | |
H19A | 0.511215 | 0.957389 | 0.583710 | 0.063* | |
H19B | 0.360430 | 0.995829 | 0.651968 | 0.063* | |
H19C | 0.363424 | 0.901764 | 0.584677 | 0.063* | |
C20 | 0.8163 (4) | 0.7304 (3) | 0.6026 (2) | 0.0316 (7) | |
C21 | 0.9217 (5) | 0.7243 (4) | 0.6829 (3) | 0.0400 (9) | |
H21A | 0.877403 | 0.787223 | 0.719756 | 0.060* | |
H21B | 1.026473 | 0.730713 | 0.656990 | 0.060* | |
H21C | 0.928330 | 0.651212 | 0.723108 | 0.060* | |
C22 | 0.8028 (6) | 0.8456 (4) | 0.5398 (3) | 0.0430 (9) | |
H22A | 0.729995 | 0.850908 | 0.491437 | 0.064* | |
H22B | 0.905755 | 0.851252 | 0.510210 | 0.064* | |
H22C | 0.764030 | 0.908112 | 0.577805 | 0.064* | |
C23 | 0.8956 (4) | 0.6342 (4) | 0.5443 (2) | 0.0355 (8) | |
H23A | 0.901853 | 0.560058 | 0.582909 | 0.053* | |
H23B | 1.001115 | 0.643141 | 0.522377 | 0.053* | |
H23C | 0.834414 | 0.638018 | 0.490403 | 0.053* | |
C24 | 0.5430 (4) | 0.7199 (4) | 0.4371 (2) | 0.0332 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ir1 | 0.02111 (8) | 0.02909 (9) | 0.01463 (7) | −0.00636 (5) | 0.00080 (5) | −0.00046 (5) |
Cl1 | 0.0202 (3) | 0.0360 (4) | 0.0183 (3) | −0.0056 (3) | −0.0005 (2) | −0.0042 (3) |
P1 | 0.0244 (4) | 0.0288 (4) | 0.0181 (3) | −0.0098 (3) | 0.0011 (3) | −0.0016 (3) |
O1 | 0.0365 (15) | 0.084 (2) | 0.0244 (12) | −0.0330 (15) | −0.0053 (10) | 0.0024 (12) |
O2 | 0.0339 (14) | 0.0569 (18) | 0.0209 (11) | −0.0203 (12) | −0.0055 (9) | 0.0050 (10) |
O3 | 0.068 (2) | 0.055 (2) | 0.0246 (12) | −0.0256 (16) | 0.0018 (12) | 0.0141 (12) |
C1 | 0.0242 (16) | 0.0332 (18) | 0.0192 (13) | −0.0057 (13) | −0.0004 (11) | −0.0011 (12) |
C2 | 0.0226 (15) | 0.0298 (17) | 0.0164 (13) | −0.0041 (13) | 0.0027 (11) | −0.0016 (11) |
C3 | 0.0211 (15) | 0.0235 (16) | 0.0215 (13) | −0.0042 (12) | 0.0024 (11) | −0.0037 (11) |
C4 | 0.0224 (15) | 0.0279 (17) | 0.0199 (13) | −0.0063 (13) | −0.0011 (11) | −0.0029 (11) |
C5 | 0.037 (2) | 0.055 (3) | 0.0223 (15) | −0.0201 (18) | 0.0020 (14) | 0.0003 (15) |
C6 | 0.040 (2) | 0.065 (3) | 0.0235 (16) | −0.024 (2) | 0.0077 (14) | −0.0008 (16) |
C7 | 0.0305 (19) | 0.051 (3) | 0.0374 (19) | −0.0184 (18) | 0.0051 (15) | −0.0023 (16) |
C8 | 0.0321 (19) | 0.040 (2) | 0.0308 (17) | −0.0137 (16) | 0.0004 (14) | −0.0022 (14) |
C9 | 0.0271 (17) | 0.039 (2) | 0.0238 (15) | −0.0105 (15) | −0.0013 (12) | 0.0019 (13) |
C10 | 0.0286 (17) | 0.0316 (18) | 0.0205 (14) | −0.0095 (14) | 0.0021 (12) | −0.0014 (12) |
C11 | 0.0226 (15) | 0.0313 (18) | 0.0192 (13) | −0.0078 (13) | 0.0013 (11) | −0.0031 (12) |
C12 | 0.0239 (16) | 0.0275 (17) | 0.0183 (13) | −0.0056 (13) | 0.0011 (11) | −0.0006 (11) |
C13 | 0.0274 (17) | 0.0336 (19) | 0.0241 (15) | −0.0119 (14) | 0.0049 (12) | −0.0038 (13) |
C14 | 0.0311 (18) | 0.0330 (19) | 0.0227 (14) | −0.0112 (15) | 0.0023 (12) | −0.0021 (12) |
C15 | 0.0244 (16) | 0.0325 (18) | 0.0179 (13) | −0.0083 (13) | −0.0024 (11) | 0.0004 (12) |
C16 | 0.038 (2) | 0.0333 (19) | 0.0239 (15) | −0.0103 (16) | 0.0035 (13) | −0.0029 (13) |
C17 | 0.036 (2) | 0.032 (2) | 0.0333 (17) | −0.0040 (16) | 0.0083 (14) | −0.0061 (14) |
C18 | 0.054 (3) | 0.043 (2) | 0.0380 (19) | −0.015 (2) | 0.0017 (17) | −0.0161 (17) |
C19 | 0.053 (3) | 0.032 (2) | 0.0361 (19) | −0.0038 (18) | 0.0034 (17) | 0.0041 (15) |
C20 | 0.0313 (18) | 0.042 (2) | 0.0249 (15) | −0.0185 (16) | 0.0027 (13) | −0.0007 (13) |
C21 | 0.037 (2) | 0.057 (3) | 0.0325 (18) | −0.0242 (19) | −0.0022 (15) | −0.0054 (16) |
C22 | 0.049 (2) | 0.044 (2) | 0.0389 (19) | −0.026 (2) | 0.0031 (17) | 0.0045 (16) |
C23 | 0.0230 (17) | 0.055 (2) | 0.0289 (16) | −0.0120 (16) | 0.0046 (13) | −0.0062 (15) |
C24 | 0.0305 (18) | 0.041 (2) | 0.0276 (16) | −0.0075 (16) | −0.0024 (13) | −0.0043 (15) |
Ir1—H1A | 1.5529 | C10—C12 | 1.480 (4) |
Ir1—Cl1i | 2.5353 (8) | C10—C13 | 1.493 (5) |
Ir1—Cl1 | 2.4537 (7) | C11—C12 | 1.411 (4) |
Ir1—P1 | 2.2650 (8) | C13—C14 | 1.398 (5) |
Ir1—C2 | 2.093 (3) | C15—H15A | 0.9900 |
Ir1—C24 | 1.932 (4) | C15—H15B | 0.9900 |
P1—C15 | 1.835 (3) | C16—C17 | 1.539 (5) |
P1—C16 | 1.896 (4) | C16—C18 | 1.533 (6) |
P1—C20 | 1.891 (4) | C16—C19 | 1.538 (5) |
O1—C9 | 1.222 (4) | C17—H17A | 0.9800 |
O2—C10 | 1.223 (4) | C17—H17B | 0.9800 |
O3—C24 | 1.125 (5) | C17—H17C | 0.9800 |
C1—H1 | 0.9500 | C18—H18A | 0.9800 |
C1—C2 | 1.394 (5) | C18—H18B | 0.9800 |
C1—C11 | 1.393 (4) | C18—H18C | 0.9800 |
C2—C3 | 1.417 (4) | C19—H19A | 0.9800 |
C3—C4 | 1.390 (4) | C19—H19B | 0.9800 |
C3—C15 | 1.504 (5) | C19—H19C | 0.9800 |
C4—H4 | 0.9500 | C20—C21 | 1.541 (5) |
C4—C12 | 1.384 (5) | C20—C22 | 1.538 (6) |
C5—H5 | 0.9500 | C20—C23 | 1.536 (5) |
C5—C6 | 1.382 (6) | C21—H21A | 0.9800 |
C5—C13 | 1.394 (5) | C21—H21B | 0.9800 |
C6—H6 | 0.9500 | C21—H21C | 0.9800 |
C6—C7 | 1.394 (6) | C22—H22A | 0.9800 |
C7—H7 | 0.9500 | C22—H22B | 0.9800 |
C7—C8 | 1.381 (5) | C22—H22C | 0.9800 |
C8—H8 | 0.9500 | C23—H23A | 0.9800 |
C8—C14 | 1.389 (5) | C23—H23B | 0.9800 |
C9—C11 | 1.477 (5) | C23—H23C | 0.9800 |
C9—C14 | 1.495 (5) | ||
Cl1—Ir1—H1A | 88.0 | C14—C13—C10 | 121.4 (3) |
Cl1i—Ir1—H1A | 165.1 | C8—C14—C9 | 119.4 (3) |
Cl1—Ir1—Cl1i | 82.39 (3) | C8—C14—C13 | 119.9 (3) |
P1—Ir1—H1A | 88.7 | C13—C14—C9 | 120.6 (3) |
P1—Ir1—Cl1 | 173.11 (3) | P1—C15—H15A | 110.2 |
P1—Ir1—Cl1i | 99.58 (3) | P1—C15—H15B | 110.2 |
C2—Ir1—H1A | 84.0 | C3—C15—P1 | 107.5 (2) |
C2—Ir1—Cl1i | 84.99 (9) | C3—C15—H15A | 110.2 |
C2—Ir1—Cl1 | 91.80 (9) | C3—C15—H15B | 110.2 |
C2—Ir1—P1 | 81.83 (10) | H15A—C15—H15B | 108.5 |
C24—Ir1—H1A | 94.2 | C17—C16—P1 | 107.8 (3) |
C24—Ir1—Cl1i | 96.98 (12) | C18—C16—P1 | 112.7 (3) |
C24—Ir1—Cl1 | 89.22 (11) | C18—C16—C17 | 107.5 (3) |
C24—Ir1—P1 | 97.06 (11) | C18—C16—C19 | 109.7 (4) |
C24—Ir1—C2 | 177.89 (14) | C19—C16—P1 | 111.1 (2) |
Ir1—Cl1—Ir1i | 97.61 (3) | C19—C16—C17 | 107.9 (3) |
C15—P1—Ir1 | 101.12 (11) | C16—C17—H17A | 109.5 |
C15—P1—C16 | 106.24 (15) | C16—C17—H17B | 109.5 |
C15—P1—C20 | 105.84 (16) | C16—C17—H17C | 109.5 |
C16—P1—Ir1 | 113.99 (12) | H17A—C17—H17B | 109.5 |
C20—P1—Ir1 | 117.45 (11) | H17A—C17—H17C | 109.5 |
C20—P1—C16 | 110.74 (17) | H17B—C17—H17C | 109.5 |
C2—C1—H1 | 118.8 | C16—C18—H18A | 109.5 |
C11—C1—H1 | 118.8 | C16—C18—H18B | 109.5 |
C11—C1—C2 | 122.4 (3) | C16—C18—H18C | 109.5 |
C1—C2—Ir1 | 124.6 (2) | H18A—C18—H18B | 109.5 |
C1—C2—C3 | 117.2 (3) | H18A—C18—H18C | 109.5 |
C3—C2—Ir1 | 118.3 (2) | H18B—C18—H18C | 109.5 |
C2—C3—C15 | 118.8 (3) | C16—C19—H19A | 109.5 |
C4—C3—C2 | 120.9 (3) | C16—C19—H19B | 109.5 |
C4—C3—C15 | 120.3 (3) | C16—C19—H19C | 109.5 |
C3—C4—H4 | 119.5 | H19A—C19—H19B | 109.5 |
C12—C4—C3 | 121.1 (3) | H19A—C19—H19C | 109.5 |
C12—C4—H4 | 119.5 | H19B—C19—H19C | 109.5 |
C6—C5—H5 | 119.8 | C21—C20—P1 | 111.8 (2) |
C6—C5—C13 | 120.4 (3) | C22—C20—P1 | 110.9 (3) |
C13—C5—H5 | 119.8 | C22—C20—C21 | 110.0 (3) |
C5—C6—H6 | 119.9 | C23—C20—P1 | 108.2 (3) |
C5—C6—C7 | 120.3 (3) | C23—C20—C21 | 107.2 (3) |
C7—C6—H6 | 119.9 | C23—C20—C22 | 108.6 (3) |
C6—C7—H7 | 120.2 | C20—C21—H21A | 109.5 |
C8—C7—C6 | 119.6 (4) | C20—C21—H21B | 109.5 |
C8—C7—H7 | 120.2 | C20—C21—H21C | 109.5 |
C7—C8—H8 | 119.7 | H21A—C21—H21B | 109.5 |
C7—C8—C14 | 120.6 (3) | H21A—C21—H21C | 109.5 |
C14—C8—H8 | 119.7 | H21B—C21—H21C | 109.5 |
O1—C9—C11 | 122.2 (3) | C20—C22—H22A | 109.5 |
O1—C9—C14 | 120.3 (3) | C20—C22—H22B | 109.5 |
C11—C9—C14 | 117.4 (3) | C20—C22—H22C | 109.5 |
O2—C10—C12 | 121.8 (3) | H22A—C22—H22B | 109.5 |
O2—C10—C13 | 120.9 (3) | H22A—C22—H22C | 109.5 |
C12—C10—C13 | 117.2 (3) | H22B—C22—H22C | 109.5 |
C1—C11—C9 | 119.3 (3) | C20—C23—H23A | 109.5 |
C1—C11—C12 | 119.3 (3) | C20—C23—H23B | 109.5 |
C12—C11—C9 | 121.3 (3) | C20—C23—H23C | 109.5 |
C4—C12—C10 | 120.0 (3) | H23A—C23—H23B | 109.5 |
C4—C12—C11 | 119.1 (3) | H23A—C23—H23C | 109.5 |
C11—C12—C10 | 120.8 (3) | H23B—C23—H23C | 109.5 |
C5—C13—C10 | 119.4 (3) | O3—C24—Ir1 | 177.8 (4) |
C5—C13—C14 | 119.2 (3) | ||
Ir1—P1—C15—C3 | −35.1 (2) | C6—C7—C8—C14 | −1.4 (7) |
Ir1—P1—C16—C17 | 62.1 (3) | C7—C8—C14—C9 | −178.3 (4) |
Ir1—P1—C16—C18 | −179.4 (2) | C7—C8—C14—C13 | 0.3 (6) |
Ir1—P1—C16—C19 | −55.9 (3) | C9—C11—C12—C4 | −176.1 (3) |
Ir1—P1—C20—C21 | −153.4 (2) | C9—C11—C12—C10 | 1.0 (5) |
Ir1—P1—C20—C22 | 83.5 (3) | C10—C13—C14—C8 | −178.1 (4) |
Ir1—P1—C20—C23 | −35.6 (3) | C10—C13—C14—C9 | 0.5 (5) |
Ir1—C2—C3—C4 | 178.5 (2) | C11—C1—C2—Ir1 | −176.7 (3) |
Ir1—C2—C3—C15 | 0.7 (4) | C11—C1—C2—C3 | 1.9 (5) |
O1—C9—C11—C1 | 10.0 (6) | C11—C9—C14—C8 | 169.5 (3) |
O1—C9—C11—C12 | −172.4 (4) | C11—C9—C14—C13 | −9.1 (5) |
O1—C9—C14—C8 | −9.8 (6) | C12—C10—C13—C5 | −170.2 (4) |
O1—C9—C14—C13 | 171.6 (4) | C12—C10—C13—C14 | 8.8 (5) |
O2—C10—C12—C4 | −10.9 (5) | C13—C5—C6—C7 | 0.1 (7) |
O2—C10—C12—C11 | 171.9 (3) | C13—C10—C12—C4 | 167.5 (3) |
O2—C10—C13—C5 | 8.2 (6) | C13—C10—C12—C11 | −9.6 (5) |
O2—C10—C13—C14 | −172.7 (4) | C14—C9—C11—C1 | −169.2 (3) |
C1—C2—C3—C4 | −0.2 (5) | C14—C9—C11—C12 | 8.3 (5) |
C1—C2—C3—C15 | −178.0 (3) | C15—P1—C16—C17 | −48.4 (3) |
C1—C11—C12—C4 | 1.5 (5) | C15—P1—C16—C18 | 70.1 (3) |
C1—C11—C12—C10 | 178.6 (3) | C15—P1—C16—C19 | −166.3 (3) |
C2—C1—C11—C9 | 175.0 (3) | C15—P1—C20—C21 | −41.5 (3) |
C2—C1—C11—C12 | −2.6 (5) | C15—P1—C20—C22 | −164.6 (3) |
C2—C3—C4—C12 | −0.9 (5) | C15—P1—C20—C23 | 76.4 (3) |
C2—C3—C15—P1 | 24.8 (4) | C15—C3—C4—C12 | 176.9 (3) |
C3—C4—C12—C10 | −177.0 (3) | C16—P1—C15—C3 | 84.2 (2) |
C3—C4—C12—C11 | 0.2 (5) | C16—P1—C20—C21 | 73.2 (3) |
C4—C3—C15—P1 | −153.1 (3) | C16—P1—C20—C22 | −49.9 (3) |
C5—C6—C7—C8 | 1.2 (7) | C16—P1—C20—C23 | −168.9 (2) |
C5—C13—C14—C8 | 0.9 (6) | C20—P1—C15—C3 | −158.1 (2) |
C5—C13—C14—C9 | 179.6 (4) | C20—P1—C16—C17 | −162.8 (2) |
C6—C5—C13—C10 | 177.9 (4) | C20—P1—C16—C18 | −44.4 (3) |
C6—C5—C13—C14 | −1.2 (6) | C20—P1—C16—C19 | 79.2 (3) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C15—H15A···O1ii | 0.99 | 2.52 | 3.477 (5) | 163 |
C15—H15B···O2iii | 0.99 | 2.63 | 3.548 (4) | 154 |
C23—H23A···Cl1i | 0.98 | 2.84 | 3.312 (4) | 111 |
C23—H23B···Cl1ii | 0.98 | 2.86 | 3.757 (4) | 152 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) −x+1, −y+1, −z+2. |
Acknowledgements
The authors thank the X-ray Crystallographic Facility at the University of Rochester for structural analyses.
Funding information
The authors thank the office of Research, Scholarship, and Creative Activities (RSCA) at SUNY New Paltz for funding in the form of Academic Year Undergraduate Research Experience (AYURE) grants
References
Aguilà, D., Escribano, E., Speed, S., Talancón, D., Yermán, L. & Alvarez, S. (2009). Dalton Trans. pp. 6610–6625. Google Scholar
Albrecht, M. & van Koten, G. (2001). Angew. Chem. Int. Ed. 40, 3750–3781. Web of Science CrossRef CAS Google Scholar
Alig, L., Fritz, M. & Schneider, S. (2019). Chem. Rev. 119, 2681–2751. Web of Science CrossRef CAS PubMed Google Scholar
Allevi, M., Capitani, D., Ettorre, A. & Mura, P. (1998). Inorg. Chim. Acta, 282, 17–24. Web of Science CSD CrossRef CAS Google Scholar
Alvarez, S. (2015). Chem. Rev. 115, 13447–13483. Web of Science CrossRef CAS PubMed Google Scholar
Bandera, D. Baldridge, K. K., Linden, A. L., Spingler, B. & Siegel, J. S. (2020). CSD Communication (refcode BUNXEQ). CCDC, Cambridge, England. Google Scholar
Boom, M. E. van der & Milstein, D. (2003). Chem. Rev. 103, 1759–1792. Web of Science CrossRef PubMed Google Scholar
Byrn, M. P., Curtis, C. J., Khan, S. I., Sawin, P. A., Tsurumi, R. & Strouse, C. E. (1990). J. Am. Chem. Soc. 112, 1865–1874. CSD CrossRef CAS Web of Science Google Scholar
Choi, J., MacArthur, A. H. R., Brookhart, M. & Goldman, A. S. (2011). Chem. Rev. 111, 1761–1779. Web of Science CrossRef CAS PubMed Google Scholar
Cremades, E., Echeverría, J. & Alvarez, S. (2010). Chem. A Eur. J. 16, 10380–10396. CrossRef CAS Google Scholar
Dahlenburg, L., Heinemann, F. W., Kramer, D. & Menzel, R. (2008). Acta Cryst. C64, m144–m146. CrossRef IUCr Journals Google Scholar
Dahlenburg, L., Menzel, R. & Heinemann, F. W. (2007). Eur. J. Inorg. Chem. pp. 4364–4374. Web of Science CSD CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dorta, R., Broggini, D., Kissner, R. & Togni, A. (2004). Chem. Eur. J. 10, 4546–4555. CrossRef PubMed CAS Google Scholar
Drover, M. W., Bowes, E. G., Love, J. A. & Schafer, L. L. (2017). Organometallics, 36, 331–341. CrossRef CAS Google Scholar
Fisher, S. P., McArthur, S. G., Tej, V., Lee, S. E., Chan, A. L., Banda, I., Gregory, A., Berkley, K., Tsay, C., Rheingold, A. L., Guisado-Barrios, G. & Lavallo, V. (2020). J. Am. Chem. Soc. 142, 251–256. CrossRef CAS PubMed Google Scholar
Goldberg, J. M., Wong, G. W., Brastow, K. E., Kaminsky, W., Goldberg, K. I. & Heinekey, D. M. (2015). Organometallics, 34, 753–762. Web of Science CSD CrossRef CAS Google Scholar
Göttker-Schnetmann, I., White, P. & Brookhart, M. (2004). J. Am. Chem. Soc. 126, 1804–1811. Web of Science PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Il'in, S. G., Chetkina, L. A. & Golder, G. A. (1975). Kristallografiya, 20, 1051. Google Scholar
Ishii, Y., Onaka, K., Hirakawa, H. & Shiramizu, K. (2002). Chem. Commun. pp. 1150–1151. CrossRef Google Scholar
Kanchiku, S., Suematsu, H., Matsumoto, K., Uchida, T. & Katsuki, T. (2007). Angew. Chem. Int. Ed. 46, 3889–3891. CrossRef CAS Google Scholar
Ketker, S. N., Kelley, M., Fink, M. & Ivey, R. C. (1981). J. Mol. Struct. 77, 127–138. CrossRef Google Scholar
Lenstra, A. T. H. & van Loock, J. F. J. (1984). Bull. Soc. Chim. 93, 1053–1055. CrossRef CAS Google Scholar
Linden, A. L. & Dorta, R. (2020). CSD Communication (refcode VUQBUH). CCDC, Cambridge, England. Google Scholar
Maekawa, M., Hashimoto, N., Sugimoto, K., Kuroda-Sowa, T., Suenaga, Y. & Munakata, M. (2003). Inorg. Chim. Acta, 344, 143–157. CrossRef CAS Google Scholar
Maekawa, M., Suenaga, Y., Kuroda-Sowa, T. & Munakata, M. (2004a). Inorg. Chim. Acta, 357, 331–338. CrossRef CAS Google Scholar
Maekawa, M., Suenaga, Y., Kuroda-Sowa, T. & Munakata, M. (2004b). Anal. Sci. X, 20, X11–X12. CAS Google Scholar
Melcher, M., von Wachenfeldt, H., Sundin, A. & Strand, D. (2015). Chem. Eur. J. 21, 531–535. CrossRef CAS PubMed Google Scholar
Morales-Morales, D. (2008). Mini-Rev. Org. Chem. 5, 141–152. CAS Google Scholar
Morales-Morales, D. (2018). Editor. Pincer Compounds: Chemistry and Applications. Cambridge, Massachusetts: Elsevier. Google Scholar
Moulton, C. J. & Shaw, B. L. (1976). J. Chem. Soc. Dalton Trans., pp. 1020–1024. Google Scholar
Muetterties, E. L., Bleeke, J. R. & Sievert, A. C. (1979). J. Organomet. Chem. 178, 197–216. CrossRef CAS Google Scholar
Muldoon, J. & Brown, S. N. (2003). Organometallics, 22, 4480–4489. CrossRef CAS Google Scholar
Mura, P. (2000). J. Coord. Chem. 51, 253–260. CrossRef CAS Google Scholar
Pascal, R. A., Dudnikov, A., Love, L. A., Geng, X., Dougherty, K. J., Mague, J. T., Kraml, C. M. & Byrne, N. (2017). Eur. J. Org. Chem. pp. 4194–4200. CrossRef Google Scholar
Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Roddick, D. M. (2013). In Topics in Organometallic Chemistry: Organometallic Pincer Chemistry, Vol 40, edited by G. van Koten & D. Milstein, pp. 49–88. Berlin, Heidelberg: Springer. Google Scholar
Shafiei-Haghighi, S., Singer, L. M., Tamang, S. R. & Findlater, M. (2018). Polyhedron, 143, 126–131. CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sievers, R., Sellin, M., Rupf, S. M., Parche, J. & Malischewski, M. (2022). Angew. Chem. Int. Ed. 61, e202211147. CrossRef Google Scholar
Sievert, A. C. & Muetterties, E. L. (1981). Inorg. Chem. 20, 489–501. CrossRef CAS Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Stiefel, E. I. & Brown, G. F. (1972). Inorg. Chem. 11, 434–436. CrossRef CAS Web of Science Google Scholar
Sumitani, R., Kuwahara, D. & Mochida, T. (2023). Inorg. Chem. 62, 2169–2180. CrossRef CAS PubMed Google Scholar
Tatarin, S. V., Smirnov, D. E., Taydakov, I. V., Metlin, M. T., Emets, V. V. & Bezzubov, S. I. (2023). Dalton Trans. 52, 6435–6450. CrossRef CAS PubMed Google Scholar
Tejel, C., Ciriano, M.., Passarelli, V., López, J.. & de Bruin, B. (2008). Chem. Eur. J. 14, 10985–10998. CrossRef PubMed CAS Google Scholar
Viciano, M., Poyatos, M., Sanaú, M., Peris, E., Rossin, A., Ujaque, G. & Lledós, A. (2006). Organometallics, 25, 1120–1134. CrossRef CAS Google Scholar
Ward, T. M., Schafer, O., Daul, C. & Hofmann, P. (1997). Organometallics, 16, 3207–3215. CrossRef CAS Google Scholar
Wilklow-Marnell, M. & Brennessel, W. W. (2019). Polyhedron, 160, 83–91. CAS Google Scholar
Yellowlees, L., Elliot, M., Parsons, S. & Messenger, D. (2005). Private communication (refcode: MASNEA). CCDC, Cambridge, England. Google Scholar
Yellowlees, L. J. & Macnamara, K. G. (2003). In Comprehensive Coordination Chemistry II, Vol. 6, edited by J. A. McCleverty & T. J. Meyer, pp. 147–246. Oxford: Elsevier. Google Scholar
Zhang, X., Emge, T. J. & Goldman, A. S. (2004). Inorg. Chim. Acta, 357, 3014–3018. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.