research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (E)-N-(2-styrylphen­yl)benzene­sulfonamide

crossmark logo

aCAS in Crystallography and Biophysics, University of Madras, Chennai, India, and bDepartment of Organic Chemistry, University of Madras, Chennai, India
*Correspondence e-mail: drgugank@gmail.com

Edited by X. Hao, Institute of Chemistry, Chinese Academy of Sciences (Received 9 September 2024; accepted 11 September 2024; online 20 September 2024)

The crystal structure of the title compound C20H17NO2S features hydrogen-bonding and C—H⋯π inter­actions. Hirshfeld surface analysis revealed that H⋯H, C⋯H/H⋯C and O⋯H/H⋯O inter­actions make a major contribution to the crystal packing. Docking studies were carried out to determine the binding affinity and inter­action profile of the title compound with EGFR kinase, a member of the ErbB family of receptor tyrosine kinases, which is crucial for processes such as cell proliferation and differentiation. The title compound shows a strong binding affinity with EGFR kinase, with the most favourable conformation having a binding energy of −8.27 kcal mol−1 and a predicted IC50 of 870.34 nM, indicating its potential as a promising candidate for targeted lung cancer therapy.

1. Chemical context

The indole structure is widely regarded as a privileged scaffold, capable of serving as a ligand for various biological targets (Kaushik et al., 2013[Kaushik, N. K., Kaushik, N., Attri, P., Kumar, N., Kim, C. H., Verma, A. K. & Choi, E. H. (2013). Molecules, 18, 6620-6662.]). Indoles are prevalent across a broad spectrum of natural sources, including plants, animals and microorganisms. Numerous indole-containing compounds exhibit notable biological activities; for instance, indole-based alkaloids such as serotonin, tryptamine, and ergotamine are crucial in regulating physiological processes and significantly impact human health and behaviour. Indoles are also present in a variety of pharmaceuticals, such as anti­psychotic, anti­depressant and anti­microbial drugs. Beyond their biological significance, indoles are valuable as they are versatile building blocks in organic synthesis, with the indole ring being functionalized and modified to produce a diverse array of chemical compounds. Although many methods for synthesizing indole derivatives exist, there remains a strong inter­est in developing new and more efficient synthesis techniques. The transformation of 2-alkenylanilines into indoles has gained popularity as a straightforward approach due to the widespread availability of both anilines and alkenes (or styrenes). One such method involves C—H amination via transition-metal catalysts. Recently, methods that avoid the use of metals in cyclization have garnered considerable attention (Hegedus et al., 1978[Hegedus, L. S., Allen, G. F., Bozell, J. J. & Waterman, E. L. (1978). J. Am. Chem. Soc. 100, 5800-5807.]; Larock et al., 1996[Larock, R. C., Hightower, T. R., Hasvold, L. A. & Peterson, K. P. (1996). J. Org. Chem. 61, 3584-3585.]; Maity et al., 2012[Maity, S. & Zheng, N. A. (2012). Angew. Chem. Int. Ed. 51, 9562-9566.]; Youn et al., 2015[Youn, S. W., Ko, T. Y., Jang, M. J. & Jang, S. S. (2015). Adv. Synth. Catal. 357, 227-234.], 2016[Youn, S. W., Jang, S. S. & Lee, S. R. (2016). Tetrahedron, 72, 4902-4909.]). A reaction was carried out with the aim of synthesizing 2-phenyl­indole from (E)-N-(2-styrylphen­yl)benzene­sulfon­amide through PIDA/BF3·OEt2-mediated intra­molecular cyclization and the structure of the (E)-N-(2-styrylphen­yl)benzene­sulfonamide inter­mediate of 2-phenyl­indole was confirmed through X-ray diffraction analysis.

[Scheme 1]

2. Structural commentary

In the title compound, the sulfur atom is bound to two oxygens, a nitro­gen (which is connected to another aromatic ring) and a carbon atom, forming a tetra­hedral structure between the two aromatic moieties with sulfur at the centre. Relevant bond lengths and angles are given in Table 1[link]. For the C1–C6 ring, the weighted average bond distance is 1.3959 Å, the weighted average absolute torsion angle is 0.34° and the pseudo-rotation parameter (τ) is 0.3°. The C7–C12 ring has a weighted average bond distance of 1.3899 Å, a weighted average absolute torsion angle of 0.83° and a τ value of 0.8. Similarly, the C15–C20 ring exhibits a weighted average bond distance of 1.3925 Å, a weighted average absolute torsion angle of 1.76° and τ value of 1.8°. An intra­molecular C7—H7⋯O2 hydrogen bond (Fig. 1[link], Table 2[link]) directs the relative orientation of the C7–C12 ring in the mol­ecular structure.

Table 1
Selected geometric parameters (Å, °)

S1—O1 1.4422 (9) S1—C8 1.7653 (12)
S1—O2 1.4300 (9) N1—C1 1.4343 (14)
S1—N1 1.6342 (10)    
       
O1—S1—N1 105.29 (5) O2—S1—C8 108.68 (6)
O1—S1—C8 107.63 (6) N1—S1—C8 106.87 (5)
O2—S1—O1 119.83 (5) C1—N1—S1 121.88 (8)
O2—S1—N1 107.85 (5)    

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.888 (18) 2.010 (18) 2.8907 (14) 170.8 (17)
C6—H6⋯O2ii 0.95 2.53 3.3332 (16) 143
C7—H7⋯O2 0.95 2.54 2.9208 (16) 104
C12—H12⋯Cg1iii 0.95 2.59 3.4333 (15) 148
C19—H19⋯Cg1iv 0.95 2.81 3.5747 (15) 141
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, y+1, z]; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
View of title compound showing the atom-numbering scheme with displacement ellipsoids drawn at the 50% probability level. The intra­molecular C7—H7⋯O2 hydrogen bond is shown as a dashed line.

3. Supra­molecular features

In the crystal, N1—H1⋯O1 and C6—H6⋯O2 hydrogen bonds and C—H⋯π inter­actions (Table 1[link]) are observed. The packing is shown in Fig. 2[link].

[Figure 2]
Figure 2
The crystal packing of the title compound viewed along the a axis.

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.45; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the term ‘(styrylphen­yl)benzene­sulfonamide’ gave one hit, (Z)-N-(di­fluoro­meth­yl)-4-methyl-N-(2-styrylphen­yl)benzene­sulfonamide (CSD refcode HINBEO; Polley et al., 2018[Polley, A., Bairy, G., Das, P. & Jana, R. (2018). Adv Synth Catal. 360, 4161-4167.]). In this structure there is a difluromethyl group attached to the nitro­gen in addition to a methyl group at the para position of the benzene ring of benzene­sulfonamide.

5. Hirshfeld surface analysis

The Hirshfeld surface analysis was carried out using Crystal Explorer 21 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) to study the non-covalent inter­actions and the inter­atomic contacts. The Hirshfeld surface mapped over dnorm with shorter contacts in red, contacts around the van der Waals separation in white and longer contacts in blue is shown in Fig. 3[link].

[Figure 3]
Figure 3
The Hirshfeld surface of the title compound mapped over dnorm.

The two-dimensional fingerprint plots for significant contacts are given in Fig. 4[link]. The contacts making the largest contributions are H⋯H (40.1%) due to the large number of hydrogen atoms in the mol­ecule, C⋯H/H⋯C (37.1%) and O⋯H/H⋯O (19.7%). Contacts making minor contributions include C⋯C (1.4%), N⋯H/H⋯N (1.3%) and O⋯C/C⋯O (0.4%).

[Figure 4]
Figure 4
The various two dimensional fingerprint plots with the significant contacts labelled.

6. In silico analysis

Mol­ecular docking studies were carried out to assess the potential of the title compound as a therapeutic agent by targeting EGFR kinase, a key protein involved in lung cancer development (Kavarthapu et al., 2021[Kavarthapu, R., Anbazhagan, R. & Dufau, M. L. (2021). Cancers, 13, 4685.]). Dysregulation of EGFR, often through mutations or overexpression, is a major driver of non-small cell lung cancer (NSCLC), making it a key therapeutic target.

Docking was carried out using AutoDock 4.2 (Morris et al., 2009[Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S. & Olson, A. J. (2009). J. Comput. Chem. 30, 2785-2791.]) software, with the EGFR kinase's high-resolution 3D crystal structure (PDB ID: 2ITY; Yun et al., 2007[Yun, C. H., Boggon, T. J., Li, Y., Woo, M. S., Greulich, H., Meyerson, M. & Eck, M. J. (2007). Cancer Cell, 11, 217-227.]) obtained from the Protein Data Bank (Berman et al., 2000[Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. & Bourne, P. E. (2000). Nucleic Acids Res. 28, 235-242.]). Prior to docking, co-crystallized ligands and solvent mol­ecules were removed using PyMOL (DeLano, 2002[DeLano, W. L. (2002). CCP4 Newsl. Protein Crystallogr. 40, 82-92.]), the polar hydrogen atoms were added and the Kollman and Gasteiger charges were assigned to the protein. AutoGrid was used to calculate grid parameters, with a 40 × 40 × 40 point grid box and a spacing of 0.375 Å, centered on the binding site determined by the ligand-bound EGFR kinase (2ITY). Docking was conducted with the Lamarckian Genetic Algorithm (LGA) for 100 independent runs, keeping all other parameters at default. The protein was treated as rigid, while the ligand was allowed full flexibility. Docking results were evaluated based on binding inter­actions, binding energy (kcal mol−1), and predicted inhibitory concentration (IC50). The docking results showed that (E)-N-(2-styrylphen­yl)benzene­sulfonamide has a strong binding affinity for EGFR kinase, with the most favourable conformation having a binding energy of −8.27 kcal mol−1 and a predicted IC50 of 870.34 nM.

Further inter­action analysis shows that the ligand forms a hydrogen bond with the MET-793 residue at 3.0 Å, a crucial inter­action for the stability of the ligand–protein complex (Fig. 5[link]). Additionally, the compound engages in various non-covalent inter­actions, including π–alkyl with VAL-726, ALA-743, LYS-745, LEU-788, and LEU-792; π–sigma with LEU-718, THR-790, and LEU-844; pi-sulfur with CYS-797; and van der Waals with ILE-744, MET-766, PRO-794, GLY-796, and THR-854. These inter­actions collectively enhance the ligand's stability and affinity for EGFR kinase.

[Figure 5]
Figure 5
Mol­ecular docking results illustrating the inter­action of the title compound with EGFR kinase. (a) Hydrogen-bond inter­action and (b) overall inter­actions (the vdW, π–alkyl, π–sigma, and π–sulfur inter­actions are indicated in green, pink, purple, and yellow, respectively)

Considering EGFR's critical role in NSCLC, the inter­action profile suggests the potential of the title compound as a therapeutic agent. Its strong binding affinity and specific inter­actions with EGFR kinase highlight its promise for further development in targeted lung cancer treatment, particularly for patients with EGFR mutations.

7. Synthesis and crystallization

To a hot solution of (E)-1-nitro-2-styryl­benzene (2.9 g, 12.88 mmol) in 50 mL of an EtOH–AcOH mixture (4:1 ratio), Fe powder (3.5 g, 64.40 mmol) was added, and the reaction mixture was refluxed for 6 h. Once the reaction was complete, as monitored by TLC, the solution was carefully deca­nted to remove the iron residue and then poured over crushed ice (100 g) containing 5 mL of concentrated HCl. The resulting solid was filtered and dried over CaCl2. The crude product was used directly in the next step without further purification. Subsequently, a solution of the resulting amine salts (2.2 g, 9.52 mmol) in dry DCM (20 mL) was prepared, to which benzene­sulfonyl chloride (1.3 mL, 10.47 mmol) and pyridine (0.92 mL, 11.42 mmol) were slowly added. The mixture was stirred at room temperature for 8 h under a nitro­gen atmosphere. After the reaction was complete, as monitored by TLC, the mixture was poured into ice–water (50 mL) containing 1 mL of concentrated HCl, extracted with DCM (2 × 20 mL), and then washed with water (2 × 20 mL) and dried over Na2SO4. The solvent was removed under reduced pressure, and the crude product was triturated with diethyl ether (10 mL), yielding (E)-N-(2-styrylphen­yl)benzene­sulfonamide (2.3 g, 61% yield over two steps) as a white solid, m.p. 399–401 K.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The N-bound H atom was fully refined. C-bound H atoms were positioned geometrically (C—H = 0.95 Å) with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula C20H17NO2S
Mr 335.40
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 13.7320 (1), 8.2475 (1), 15.5387 (2)
β (°) 107.505 (1)
V3) 1678.33 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.80
Crystal size (mm) 0.21 × 0.14 × 0.1
 
Data collection
Diffractometer SuperNova, Dual, Cu at home/near, HyPix
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.560, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 37664, 3562, 3380
Rint 0.039
(sin θ/λ)max−1) 0.634
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.084, 1.07
No. of reflections 3562
No. of parameters 221
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.36, −0.46
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

N-{2-[(E)-2-Phenylethenyl]phenyl}benzenesulfonamide top
Crystal data top
C20H17NO2SF(000) = 704
Mr = 335.40Dx = 1.327 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 13.7320 (1) ÅCell parameters from 18551 reflections
b = 8.2475 (1) Åθ = 5.1–77.6°
c = 15.5387 (2) ŵ = 1.80 mm1
β = 107.505 (1)°T = 100 K
V = 1678.33 (3) Å3Block, clear intense colourless
Z = 40.21 × 0.14 × 0.1 mm
Data collection top
SuperNova, Dual, Cu at home/near, HyPix
diffractometer
3562 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source3380 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.039
Detector resolution: 10.0000 pixels mm-1θmax = 77.7°, θmin = 3.4°
ω scansh = 1717
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2022)
k = 1010
Tmin = 0.560, Tmax = 1.000l = 1919
37664 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0413P)2 + 0.655P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3562 reflectionsΔρmax = 0.36 e Å3
221 parametersΔρmin = 0.46 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.47127 (2)0.62654 (3)0.61679 (2)0.02047 (10)
O10.56671 (6)0.60255 (11)0.59762 (6)0.0253 (2)
O20.47052 (7)0.64449 (11)0.70812 (6)0.0267 (2)
N10.40171 (7)0.46841 (12)0.57421 (7)0.0195 (2)
C10.31138 (8)0.42782 (14)0.59774 (8)0.0187 (2)
C20.21387 (8)0.44410 (13)0.53465 (8)0.0183 (2)
C60.32417 (10)0.35980 (15)0.68241 (8)0.0235 (3)
H60.3907500.3492660.7237290.028*
C30.13033 (9)0.38948 (14)0.56134 (8)0.0212 (2)
H30.0634920.3984830.5202990.025*
C150.10379 (9)0.56186 (14)0.28252 (8)0.0211 (2)
C130.20040 (8)0.51323 (14)0.44460 (8)0.0197 (2)
H130.2548250.5765310.4365910.024*
C140.11773 (9)0.49428 (14)0.37298 (8)0.0214 (2)
H140.0632390.4316190.3813520.026*
C80.41068 (9)0.79664 (14)0.55434 (8)0.0217 (2)
C90.41757 (9)0.82218 (15)0.46753 (9)0.0243 (2)
H90.4583560.7531360.4435390.029*
C200.17418 (10)0.66848 (16)0.26366 (9)0.0260 (3)
H200.2321790.7023990.3110780.031*
C160.01775 (9)0.51760 (15)0.21170 (8)0.0252 (3)
H160.0324130.4490580.2233980.030*
C70.35190 (10)0.89704 (16)0.59075 (9)0.0276 (3)
H70.3490450.8799510.6504040.033*
C40.14281 (10)0.32289 (15)0.64586 (9)0.0247 (3)
H40.0848780.2878960.6622300.030*
C50.23998 (10)0.30723 (16)0.70673 (8)0.0260 (3)
H50.2487530.2609220.7645500.031*
C180.07681 (11)0.67486 (17)0.10673 (9)0.0306 (3)
H180.0689380.7102810.0468430.037*
C190.16044 (10)0.72510 (17)0.17695 (9)0.0292 (3)
H190.2083690.7985300.1654620.035*
C100.36395 (10)0.94990 (16)0.41689 (9)0.0280 (3)
H100.3685830.9697980.3580240.034*
C170.00479 (10)0.57280 (17)0.12428 (9)0.0307 (3)
H170.0534390.5405290.0766120.037*
C110.30336 (11)1.04897 (16)0.45224 (10)0.0322 (3)
H110.2658291.1351750.4168940.039*
C120.29735 (11)1.02292 (16)0.53841 (10)0.0334 (3)
H120.2557931.0912630.5619360.040*
H10.4039 (13)0.447 (2)0.5188 (12)0.036 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01609 (15)0.02539 (16)0.01903 (16)0.00204 (10)0.00389 (11)0.00271 (10)
O10.0159 (4)0.0348 (5)0.0244 (4)0.0009 (3)0.0046 (3)0.0016 (4)
O20.0253 (4)0.0339 (5)0.0197 (4)0.0052 (4)0.0052 (3)0.0049 (3)
N10.0165 (4)0.0227 (5)0.0189 (5)0.0000 (4)0.0046 (4)0.0018 (4)
C10.0176 (5)0.0178 (5)0.0212 (5)0.0009 (4)0.0064 (4)0.0017 (4)
C20.0184 (5)0.0164 (5)0.0198 (5)0.0008 (4)0.0056 (4)0.0016 (4)
C60.0235 (6)0.0246 (6)0.0210 (6)0.0016 (4)0.0044 (5)0.0005 (4)
C30.0188 (5)0.0216 (5)0.0234 (6)0.0002 (4)0.0069 (4)0.0017 (4)
C150.0196 (5)0.0220 (6)0.0211 (5)0.0029 (4)0.0051 (4)0.0006 (4)
C130.0177 (5)0.0196 (5)0.0223 (6)0.0002 (4)0.0067 (4)0.0014 (4)
C140.0199 (5)0.0217 (5)0.0226 (6)0.0019 (4)0.0066 (4)0.0001 (4)
C80.0180 (5)0.0203 (5)0.0261 (6)0.0044 (4)0.0054 (4)0.0032 (4)
C90.0218 (6)0.0247 (6)0.0268 (6)0.0023 (5)0.0077 (5)0.0031 (5)
C200.0229 (6)0.0285 (6)0.0249 (6)0.0001 (5)0.0048 (5)0.0036 (5)
C160.0223 (6)0.0266 (6)0.0248 (6)0.0016 (5)0.0039 (5)0.0026 (5)
C70.0293 (6)0.0239 (6)0.0326 (7)0.0036 (5)0.0139 (5)0.0055 (5)
C40.0261 (6)0.0247 (6)0.0273 (6)0.0028 (5)0.0142 (5)0.0015 (5)
C50.0322 (6)0.0267 (6)0.0203 (6)0.0001 (5)0.0096 (5)0.0028 (5)
C180.0362 (7)0.0348 (7)0.0214 (6)0.0149 (6)0.0093 (5)0.0055 (5)
C190.0299 (6)0.0305 (7)0.0298 (7)0.0063 (5)0.0125 (5)0.0080 (5)
C100.0286 (6)0.0256 (6)0.0291 (6)0.0039 (5)0.0075 (5)0.0013 (5)
C170.0303 (7)0.0348 (7)0.0223 (6)0.0084 (5)0.0009 (5)0.0032 (5)
C110.0329 (7)0.0210 (6)0.0422 (8)0.0004 (5)0.0106 (6)0.0022 (5)
C120.0367 (7)0.0221 (6)0.0456 (8)0.0022 (5)0.0189 (6)0.0043 (6)
Geometric parameters (Å, º) top
S1—O11.4422 (9)C9—H90.9500
S1—O21.4300 (9)C9—C101.3865 (18)
S1—N11.6342 (10)C20—H200.9500
S1—C81.7653 (12)C20—C191.3842 (18)
N1—C11.4343 (14)C16—H160.9500
N1—H10.888 (18)C16—C171.3924 (18)
C1—C21.4080 (15)C7—H70.9500
C1—C61.3918 (16)C7—C121.391 (2)
C2—C31.4061 (16)C4—H40.9500
C2—C131.4701 (15)C4—C51.3901 (18)
C6—H60.9500C5—H50.9500
C6—C51.3894 (17)C18—H180.9500
C3—H30.9500C18—C191.388 (2)
C3—C41.3859 (17)C18—C171.387 (2)
C15—C141.4702 (16)C19—H190.9500
C15—C201.4013 (17)C10—H100.9500
C15—C161.3993 (16)C10—C111.3916 (19)
C13—H130.9500C17—H170.9500
C13—C141.3385 (17)C11—H110.9500
C14—H140.9500C11—C121.383 (2)
C8—C91.3963 (17)C12—H120.9500
C8—C71.3900 (17)
O1—S1—N1105.29 (5)C10—C9—H9120.5
O1—S1—C8107.63 (6)C15—C20—H20119.5
O2—S1—O1119.83 (5)C19—C20—C15120.97 (12)
O2—S1—N1107.85 (5)C19—C20—H20119.5
O2—S1—C8108.68 (6)C15—C16—H16119.6
N1—S1—C8106.87 (5)C17—C16—C15120.79 (12)
S1—N1—H1111.2 (11)C17—C16—H16119.6
C1—N1—S1121.88 (8)C8—C7—H7120.6
C1—N1—H1119.1 (11)C8—C7—C12118.90 (13)
C2—C1—N1120.96 (10)C12—C7—H7120.6
C6—C1—N1117.52 (10)C3—C4—H4120.0
C6—C1—C2121.33 (11)C3—C4—C5120.09 (11)
C1—C2—C13121.39 (10)C5—C4—H4120.0
C3—C2—C1116.96 (10)C6—C5—C4119.53 (11)
C3—C2—C13121.65 (10)C6—C5—H5120.2
C1—C6—H6119.9C4—C5—H5120.2
C5—C6—C1120.27 (11)C19—C18—H18120.1
C5—C6—H6119.9C17—C18—H18120.1
C2—C3—H3119.1C17—C18—C19119.80 (12)
C4—C3—C2121.82 (11)C20—C19—C18120.18 (13)
C4—C3—H3119.1C20—C19—H19119.9
C20—C15—C14122.56 (11)C18—C19—H19119.9
C16—C15—C14119.30 (11)C9—C10—H10120.0
C16—C15—C20118.14 (11)C9—C10—C11120.03 (12)
C2—C13—H13117.3C11—C10—H10120.0
C14—C13—C2125.34 (11)C16—C17—H17120.0
C14—C13—H13117.3C18—C17—C16120.06 (12)
C15—C14—H14117.1C18—C17—H17120.0
C13—C14—C15125.78 (11)C10—C11—H11119.7
C13—C14—H14117.1C12—C11—C10120.53 (13)
C9—C8—S1119.56 (9)C12—C11—H11119.7
C7—C8—S1119.01 (10)C7—C12—H12119.9
C7—C8—C9121.31 (12)C11—C12—C7120.25 (13)
C8—C9—H9120.5C11—C12—H12119.9
C10—C9—C8118.96 (12)
S1—N1—C1—C2110.23 (11)C6—C1—C2—C13178.89 (11)
S1—N1—C1—C674.82 (13)C3—C2—C13—C1418.42 (18)
S1—C8—C9—C10175.66 (9)C3—C4—C5—C60.44 (19)
S1—C8—C7—C12174.65 (10)C15—C20—C19—C180.9 (2)
O1—S1—N1—C1164.82 (9)C15—C16—C17—C180.97 (19)
O1—S1—C8—C937.47 (11)C13—C2—C3—C4179.40 (11)
O1—S1—C8—C7146.36 (10)C14—C15—C20—C19177.62 (12)
O2—S1—N1—C135.79 (10)C14—C15—C16—C17176.72 (11)
O2—S1—C8—C9168.65 (9)C8—S1—N1—C180.91 (10)
O2—S1—C8—C715.19 (11)C8—C9—C10—C110.86 (18)
N1—S1—C8—C975.20 (10)C8—C7—C12—C111.2 (2)
N1—S1—C8—C7100.96 (10)C9—C8—C7—C121.44 (18)
N1—C1—C2—C3175.13 (10)C9—C10—C11—C121.1 (2)
N1—C1—C2—C134.13 (16)C20—C15—C14—C136.09 (19)
N1—C1—C6—C5175.42 (11)C20—C15—C16—C172.61 (18)
C1—C2—C3—C40.15 (17)C16—C15—C14—C13173.20 (12)
C1—C2—C13—C14160.81 (12)C16—C15—C20—C191.68 (19)
C1—C6—C5—C40.07 (19)C7—C8—C9—C100.41 (18)
C2—C1—C6—C50.48 (18)C19—C18—C17—C161.7 (2)
C2—C3—C4—C50.56 (18)C10—C11—C12—C70.0 (2)
C2—C13—C14—C15179.52 (11)C17—C18—C19—C202.6 (2)
C6—C1—C2—C30.37 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.888 (18)2.010 (18)2.8907 (14)170.8 (17)
C6—H6···O2ii0.952.533.3332 (16)143
C7—H7···O20.952.542.9208 (16)104
C12—H12···Cg1iii0.952.593.4333 (15)148
C19—H19···Cg1iv0.952.813.5747 (15)141
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1/2, z+3/2; (iii) x, y+1, z; (iv) x, y+3/2, z1/2.
 

Footnotes

Additional correspondence author, e-mail: achyuta11@gmail.com.

References

First citationBerman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. & Bourne, P. E. (2000). Nucleic Acids Res. 28, 235–242.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDeLano, W. L. (2002). CCP4 Newsl. Protein Crystallogr. 40, 82–92.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHegedus, L. S., Allen, G. F., Bozell, J. J. & Waterman, E. L. (1978). J. Am. Chem. Soc. 100, 5800–5807.  CrossRef CAS Google Scholar
First citationKaushik, N. K., Kaushik, N., Attri, P., Kumar, N., Kim, C. H., Verma, A. K. & Choi, E. H. (2013). Molecules, 18, 6620–6662.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKavarthapu, R., Anbazhagan, R. & Dufau, M. L. (2021). Cancers, 13, 4685.  CrossRef PubMed Google Scholar
First citationLarock, R. C., Hightower, T. R., Hasvold, L. A. & Peterson, K. P. (1996). J. Org. Chem. 61, 3584–3585.  CrossRef PubMed CAS Google Scholar
First citationMaity, S. & Zheng, N. A. (2012). Angew. Chem. Int. Ed. 51, 9562–9566.  CrossRef CAS Google Scholar
First citationMorris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S. & Olson, A. J. (2009). J. Comput. Chem. 30, 2785–2791.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPolley, A., Bairy, G., Das, P. & Jana, R. (2018). Adv Synth Catal. 360, 4161–4167.  CSD CrossRef CAS Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoun, S. W., Jang, S. S. & Lee, S. R. (2016). Tetrahedron, 72, 4902–4909.  CrossRef CAS Google Scholar
First citationYoun, S. W., Ko, T. Y., Jang, M. J. & Jang, S. S. (2015). Adv. Synth. Catal. 357, 227–234.  CrossRef CAS Google Scholar
First citationYun, C. H., Boggon, T. J., Li, Y., Woo, M. S., Greulich, H., Meyerson, M. & Eck, M. J. (2007). Cancer Cell, 11, 217–227.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds