research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of poly[[μ-chlorido-μ-(2,3-di­methyl­pyrazine)-copper(I)] ethanol hemisolvate], which shows a new isomeric CuCl(2,3-di­methyl­pyrazine) network

crossmark logo

aInstitut für Anorganische Chemie, Universität Kiel, Max-Eyth.-Str. 2, 24118 Kiel, Germany
*Correspondence e-mail: cnaether@ac.uni-kiel.de

Edited by X. Hao, Institute of Chemistry, Chinese Academy of Sciences (Received 17 September 2024; accepted 19 September 2024; online 24 September 2024)

Reaction of copper(I)chloride with 2,3-di­methyl­pyrazine in ethanol leads to the formation of the title compound, poly[[μ-chlorido-μ-(2,3-di­methyl­pyrazine)-copper(I)] ethanol hemisolvate], {[CuCl(C6H8N2)]·0.5C2H5OH}n or CuCl(2,3-di­methyl­pyrazine) ethanol hemisolvate. Its asymmetric unit consists of two crystallographically independent copper cations, two chloride anions and two 2,3-di­methyl­pyrazine ligands as well as one ethanol solvate mol­ecule in general positions. The ethanol mol­ecule is disordered and was refined using a split model. The methyl H atoms of the 2,3-di­methyl­pyrazine ligands are also disordered and were refined in two orientations rotated by 60° relative to each other. In the crystal structure, each copper cation is tetra­hedrally coordinated by two N atoms of two bridging 2,3-di­methyl­pyrazine ligands and two μ-1,1-bridg­ing chloride anions. Each of the two copper cations are linked by pairs of bridging chloride anions into dinuclear units that are further linked into layers via bridging 2,3-di­methyl­pyrazine coligands. These layers are stacked in such a way that channels are formed in which the disordered solvent mol­ecules are located. The topology of this network is completely different from that observed in the two polymorphic modifications of CuCl(2,3-di­methyl­pyrazine) reported in the literature [Jess & Näther (2006). Inorg. Chem. 45, 7446–7454]. Powder X-ray diffraction measurements reveal that the title compound is unstable and transforms immediately into an unknown crystalline phase.

1. Chemical context

Many coordination compounds based on copper(I) halides and N-donor coligands are reported in the literature and some of them are of inter­est because of their luminescence properties (Näther et al., 2003[Näther, C., Greve, J., Jess, I. & Wickleder, C. (2003). Solid State Sci. 5, 1167-1176.]; Jess et al., 2007a[Jess, I., Taborsky, P., Pospíšil, J. & Näther, C. (2007a). Dalton Trans. pp. 2263-2270.]; Pospíšil et al., 2011[Pospíšil, J., Jess, I., Näther, C., Necas, M. & Taborsky, P. (2011). New J. Chem. 35, 861-864.]; Gibbons et al., 2017[Gibbons, S. K., Hughes, R. P., Glueck, D. S., Royappa, A. T., Rheingold, A. L., Arthur, R. B., Nicholas, A. D. & Patterson, H. H. (2017). Inorg. Chem. 56, 12809-12820.]; Mensah et al., 2022[Mensah, A., Shao, J. J., Ni, J. L., Li, G. J., Wang, F. M. & Chen, L. Z. (2022). Front. Chem. 9, 816363.]). The main inter­est, however, originates from their extremely versatile structural behavior, for which there are two main explanations (Kromp & Sheldrick, 1999[Kromp, T. & Sheldrick, W. S. (1999). Z. Naturforsch. B, 54, 1175-1180.]; Peng et al., 2010[Peng, R., Li, M. & Li, D. (2010). Coord. Chem. Rev. 254, 1-18.]; Näther & Jess, 2004[Näther, C. & Jess, I. (2004). Eur. J. Inorg. Chem. 2004, 2868-2876.]; Li et al., 2005[Li, D., Shi, W. J. & Hou, L. (2005). Inorg. Chem. 44, 3907-3913.]). Firstly, such compounds consist of different CuX substructures such as monomeric or dimeric units, rings, chains and double chains because halide anions are able to connect metal cations via the μ-1,1-bridging mode (Näther et al., 2013[Näther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696-2714.]). These CuX substructures can be further connected if bridging coligands are used in the synthesis. Secondly, for a given copper halide and a given coligand, frequently several compounds of different stoichiometry exist in which the ratio between CuX and the coligand vary (Näther et al., 2013[Näther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696-2714.]). In most cases, the compounds with a small CuX:coligand ratio can easily be prepared in solution using conventional solvents or, in some cases, using the pure coligand. In contrast, the compounds with a large ratio between CuX and coligand are frequently difficult to prepare in solution but are mostly accessible by thermal ligand removal starting from the colig­and-rich compounds (Näther et al., 2001[Näther, C., Jess, I. & Greve, J. (2001). Polyhedron, 20, 1017-1022.], 2002[Näther, C., Greve, J. & Jess, I. (2002). Solid State Sci. 4, 813-820.], 2013[Näther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696-2714.]; Näther & Jess, 2001[Näther, C. & Jess, I. (2001). Monatsh. Chem. 132, 897-910.]). In this case, compounds with more condensed CuX networks will form. This procedure can be used for the synthesis of a wide range of coordination compounds with different cations and different anionic ligands such as, for example, thio- and seleno­cyanates (Näther et al., 2013[Näther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696-2714.]).

[Scheme 1]

In this context we have reported on compounds based on CuCl and 2,3-di­methyl­pyrazine as coligand (Jess & Näther, 2006[Jess, I. & Näther, C. (2006). Inorg. Chem. 45, 7446-7454.]). In the most 2,3-di­methyl­pyrazine-rich compound, (CuCl)4(2,3-di­methyl­pyrazine)6-tris­(2,3-di­methyl­pyrazine) solvate, the copper cations are tetra­hedrally coordinated by two chloride anions and one terminal as well as one bridging 2,3-di­methyl­pyrazine coligand. Each of the two copper cations are linked by two μ-1,1-bridging chloride anions into (CuCl)2 rings and two such rings are linked via the two bridging 2,3-di­methyl­pyrazine ligands into discrete tetra­nuclear complexes. If the solvate mol­ecules are not considered, the ratio between CuCl and coligand is 1:2. If the discrete complexes are heated, some of the coligands are removed and a transformation into (CuCl)3(2,3-di­methyl­pyrazine)2 (ratio 3:2) is observed. This loses additional coligands upon further heating and finally transforms into (CuCl)2(2,3-di­methyl­pyrazine) with a CuCl:coligand ratio of 2:1. In the 3:2 compound, six-membered (CuCl)3 rings are observed, which are connected by the 2,3-di­methyl­pyrazine ligands into chains, whereas the 2:1 compound consists of CuCl double chains that are connected by the 2,3-di­methyl­pyrazine ligands into layers. Two additional compounds with the composition CuCl(2,3-di­methyl­pyrazine) (ratio 1:1) were obtained from solution, which transform into the 3:2 compound upon heating (Jess & Näther, 2006[Jess, I. & Näther, C. (2006). Inorg. Chem. 45, 7446-7454.]). One of the 1:1 compounds is thermodynamically stable at room temperature and consists of dinuclear (CuCl)2 units that are connected by the 2,3-di­methyl­pyrazine ligands into layers. In the metastable isomer, similar (CuCl)2 units are observed that are linked by the coligands into layers, but the layer topology is different. Much later we accidentally found crystals of an additional compound with a ratio of 1:1 that contains ethanol as solvent and that was characterized by single crystal X-ray analysis. Investigations using powder X-ray diffraction revealed that this compound is unstable and transforms into an unknown crystalline phase upon storage and this might be the reason why it was overlooked in our previous work.

2. Structural commentary

The asymmetric unit of the title compound, poly[CuCl(2,3-di­methyl­pyrazine) ethanol hemisolvate], consists of two crystallographically independent copper(I) cations, chloride anions and 2,3-di­methyl­pyrazine coligands as well as of one ethanol mol­ecule in general positions (Fig. 1[link]). The methyl H atoms of all 2,3-di­methyl­pyrazine coligands are disordered, which is also the case for the ethanol mol­ecule, which was refined using a split model. Each Cu cation is coordinated by two bridging chloride anions and two N atoms of two 2,3-di­methyl­pyrazine coligands within slightly distorted tetra­hedra (Fig. 1[link] and Table 1[link]). The Cu cations are linked by the two μ-1,1-bridging chloride anions into (CuCl)2 units, in which the Cu⋯Cu distance is 2.9516 (5) Å (Table 1[link]). Both of these (CuCl)2 units are linked by two bridging 2,3-di­methyl­pyrazine units into (CuCl)2(2,3-di­methyl­pyrazine)2 building blocks (Fig. 2[link]) that are further connected into layers by additional bridging 2,3-di­methyl­pyrazine coligands (Fig. 3[link]).

Table 1
Selected bond lengths (Å)

Cu1—Cu2 2.9516 (5) Cu2—Cl1 2.4047 (8)
Cu1—Cl1 2.4055 (8) Cu2—Cl2 2.4641 (9)
Cu1—Cl2 2.3768 (8) Cu2—N2i 2.026 (2)
Cu1—N1 2.063 (2) Cu2—N12ii 2.031 (2)
Cu1—N11 2.061 (2)    
Symmetry codes: (i) [-x+2, -y+1, -z+1]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level. The disorder of the methyl H atoms and of the ethanol mol­ecule is shown with full and open bonds. Symmetry codes for the generation of equivalent atoms: (i) −x + 2, −y + 1, −z + 1; (ii) −x + 1, y + [{1\over 2}], −z + [{3\over 2}].
[Figure 2]
Figure 2
View of the(CuCl)4(2,3-di­methyl­pyrazine)6 unit.
[Figure 3]
Figure 3
Crystal structure of the title compound in a view along the crystallographic a axis. Only one position for the disordered ethanol mol­ecules is shown.

In this context it is noted that the title compound shows a new isomeric CuCl(2,3-di­methyl­pyrazine) network that is completely different from that reported for the two polymorphic modifications CuCl(2,3-di­methyl­pyrazine) (Jess & Näther, 2006[Jess, I. & Näther, C. (2006). Inorg. Chem. 45, 7446-7454.]). In both forms, (CuCl)2 units are observed in which the copper cations are tetra­hedrally coordinated. These units are linked by bridging 2,3-di­methyl­pyrazine ligands into larger rings built up of four (CuCl)2 units and four 2,3-di­methyl­pyrazine ligands that finally condense into layers (Fig. S1 in the supporting information). The topology of the network is identical in both forms, but in the ortho­rhom­bic polymorph (Fig. S1: top) the rings are perfectly stacked onto each other, which is not the case in the monoclinic form (Fig. S1: bottom).

3. Supra­molecular features

In the crystal structure of the title compound, the layers are stacked in such a way that cavities are formed in which the disordered ethanol mol­ecules are embedded (Fig. 3[link]). These ethanol mol­ecules are linked by inter­molecular O—H⋯Cl and C—H⋯O inter­actions into layers parallel to (102) (Table 2[link]). There are a number of C—H⋯Cl inter­actions, but for most of them the C—H⋯Cl angles are far from linear with large H⋯Cl distances, indicating only weak inter­actions (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cl2i 0.95 2.79 3.463 (3) 128
C4—H4⋯Cl1 0.95 2.77 3.444 (3) 128
C4—H4⋯Cl1iii 0.95 2.81 3.513 (3) 132
C5—H5B⋯Cl1iv 0.98 2.83 3.609 (3) 137
C6—H6C⋯Cl1iv 0.98 2.98 3.653 (3) 127
C13—H13⋯Cl1v 0.95 2.75 3.395 (3) 126
C15—H15A⋯Cl2 0.98 2.85 3.805 (4) 166
C15—H15B⋯O1′vi 0.98 2.51 3.114 (10) 120
C15—H15E⋯Cl1 0.98 2.74 3.606 (4) 148
C16—H16B⋯O1 0.98 2.53 3.372 (11) 144
C16—H16D⋯O1′ 0.98 2.41 3.275 (10) 147
O1—H1⋯Cl2vii 0.88 2.36 3.158 (7) 151
Symmetry codes: (i) [-x+2, -y+1, -z+1]; (iii) [-x+1, -y+1, -z+1]; (iv) [x+1, y, z]; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) [-x+1, -y+1, -z+2]; (vii) [x-1, y, z].

4. Database survey

As already mentioned above, several compounds based on CuCl and 2,3-di­methyl­pyrazine are listed in the CCDC database (CSD Version 5.43, March 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). These include (CuCl)4(2,3-di­methyl­pyrazine)3-tris­(2,3-di­methyl­pyrazine) solvate (Refcode JEPPAW, Jess & Näther, 2006[Jess, I. & Näther, C. (2006). Inorg. Chem. 45, 7446-7454.]), (CuCl)3(2,3-di­methyl­pyrazine)2 (Refcodes JEPPEA, Jess & Näther, 2006[Jess, I. & Näther, C. (2006). Inorg. Chem. 45, 7446-7454.] and JEPPEA01, Turnbull et al., 2020[Turnbull, M. M., Butcher, R. T. & Robinson, W. T. (2020). CSD Communication (CCDC 1994875). CCDC, Cambridge, England.]), (CuCl)2(2,3-di­methyl­pyrazine (Refcode JEPPIE, Jess & Näther, 2006[Jess, I. & Näther, C. (2006). Inorg. Chem. 45, 7446-7454.]) and two isomers of CuCl(2,3-di­methyl­pyrazine (Refcodes JESXEL and JESXEL01, Jess & Näther, 2006[Jess, I. & Näther, C. (2006). Inorg. Chem. 45, 7446-7454.]). There is also one compound with the composition (CuCl)4(2,3-di­methyl­pyrazine)4(aceto­nitrile)4 (Refcode KICZEC, Jess & Näther, 2007[Jess, I. & Näther, C. (2007). Z. Naturforsch. B, 62, 617-620.]) that forms tetra­nuclear units.

It is noted that two compounds have been reported that contain copper(II) cations. In one, CuCl2(2,3-di­methyl­pyrazine (Refcode: GEDTOA, Jornet-Somoza et al., 2012[Jornet-Somoza, J., Codina-Castillo, N., Deumal, M., Mota, F., Novoa, J. J., Butcher, R. T., Turnbull, M. M., Keith, B., Landee, C. P. & Wikaira, J. L. (2012). Inorg. Chem. 51, 6315-6325.]), the copper cations are fivefold coordinated by one terminal and two μ-1,1-bridging chloride anions in a trigonal–bipyramidal coordination. Each of the two copper cations are linked by pairs of μ-1,1-bridging chloride anions into Cu2Cl6 units that are further linked into double chains by bridging 2,3-di­methyl­pyrazine ligands. No atomic coordinates are given for the other compound, CuClNO2-(2,3-di­methyl­pyrazine) (Refcode XIGKAB, Xiao et al., 2010[Xiao, X., Yang, L. F., Hou, H. B., Xue, S. F., Tao, Z. & Zhu, Q. J. (2010). J. Mol. Sci. 26, 396-399.]).

Finally, some 2,3-di­methyl­pyrazine compounds with copper(I) cations and bromide as well as iodide anions are also known, including (CuBr)2(2,3-di­methyl­pyrazine, which is not isotypic to its Cl analog (Refcode KICZOM, Jess et al., 2007b[Jess, I., Taborsky, P. & Näther, C. (2007b). Z. Naturforsch. B, 62, 501-507.]), CuBr(2,3-di­methyl­pyrazine) (Refcode QIJTEI, Näther & Greve, 2001[Näther, C. & Greve, J. (2001). Acta Cryst. C57, 377-378.]) and (CuBr)3(2,3-di­methyl­pyrazine)2, which is isotypic to its Cl analog (Refcode XANKIH, Wells et al., 2005[Wells, B. M., Landee, C. P., Turnbull, M. M., Awwadi, F. F. & Twamley, B. (2005). J. Mol. Catal. A Chem. 228, 117-123.]).

For CuI and 2,3-di­methyl­pyrazine, two compounds are listed in the CSD, viz. (CuI)2(2,3-di­methyl­pyrazine)3 (Refcode LIDXOM, Jess et al., 2007a[Jess, I., Taborsky, P., Pospíšil, J. & Näther, C. (2007a). Dalton Trans. pp. 2263-2270.]), (CuI)(2,3-di­methyl­pyrazine) (Refcode LIDXUS, Jess et al., 2007a[Jess, I., Taborsky, P., Pospíšil, J. & Näther, C. (2007a). Dalton Trans. pp. 2263-2270.]) and (CuI)2(2,3-di­methyl­pyrazine) [Refcodes LIDYAZ (Jess et al., 2007a[Jess, I., Taborsky, P., Pospíšil, J. & Näther, C. (2007a). Dalton Trans. pp. 2263-2270.]) and LIDYAZ01 (Xu et al., 2020[Xu, C., Lv, L., Luo, D. & Liu, W. (2020). New J. Chem. 44, 14103-14107.])].

5. Synthesis and crystallization

Synthesis

CuCl and 2,3-di­methyl­pyrazine were purchased from Sigma-Aldrich.

Light-orange single crystals were obtained within three days by the reaction of 99.0 mg (1 mmol) of CuCl and 108.14 mg (1 mmol) of 2,3-di­methyl­pyrazine) in 2 mL of ethanol. Larger amounts of a microcrystalline powder were obtained by stirring stoichiometric ratios of CuCl and 2,3-di­methyl­pyrazine in ethanol. Powder X-ray diffraction measurements proved that a pure crystalline phase had been obtained that is unstable and decomposes immediately into an unknown crystalline phase (Fig. 4[link]).

[Figure 4]
Figure 4
Calculated PXRD pattern of the title compound (A) and experimental powder pattern of a freshly prepared sample (B) and after storing this sample for 10 min (C) and for 24 h (D) at room temperature.

Experimental details

The PXRD measurements were performed with Cu Kα1 radiation (λ = 1.540598 Å) using a Stoe Transmission Powder Diffraction System (STADI P) equipped with a MYTHEN 1K detector and a Johansson-type Ge(111) monochromator.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The C—H hydrogen atoms of the pyrazine rings and the ethanol mol­ecule were positioned with an idealized geometry and refined isotropically with Uiso(H) = 1.2Ueq(C) (1.5 for methyl H atoms). The methyl H atoms of the pyrazine rings are disordered and were positioned in two orientations rotated by 60° and were refined isotropically with Uiso(H) = 1.5Ueq(C). The O—H H atoms of the ethanol mol­ecules were located in difference maps, their bond lengths were set to ideal values and finally they were refined isotropically with Uiso(H) = 1.5Ueq(O). The ethanol solvate mol­ecule is disordered over two orientations and was refined with restraints (SAME, RIGU).

Table 3
Experimental details

Crystal data
Chemical formula [CuCl(C6H8N2)]·0.5C2H6O
Mr 230.17
Crystal system, space group Monoclinic, P21/c
Temperature (K) 170
a, b, c (Å) 7.0557 (5), 14.5923 (8), 17.4171 (13)
β (°) 92.253 (9)
V3) 1791.9 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 2.68
Crystal size (mm) 0.4 × 0.3 × 0.25
 
Data collection
Diffractometer Stoe IPDS2
Absorption correction Numerical (X-SHAPE and X-RED 32; Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.603, 0.729
No. of measured, independent and observed [I > 2σ(I)] reflections 16726, 4230, 3278
Rint 0.058
(sin θ/λ)max−1) 0.662
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.100, 1.01
No. of reflections 4230
No. of parameters 243
No. of restraints 21
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.05, −0.67
Computer programs: X-AREA (Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), SHELXT2014/4 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), XP in SHELXTL-PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Poly[[µ-chlorido-µ-(2,3-dimethylpyrazine)-copper(I)] ethanol hemisolvate] top
Crystal data top
[CuCl(C6H8N2)]·0.5C2H6OF(000) = 936
Mr = 230.17Dx = 1.706 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.0557 (5) ÅCell parameters from 4230 reflections
b = 14.5923 (8) Åθ = 2.3–28.1°
c = 17.4171 (13) ŵ = 2.68 mm1
β = 92.253 (9)°T = 170 K
V = 1791.9 (2) Å3Block, orange
Z = 80.4 × 0.3 × 0.25 mm
Data collection top
Stoe IPDS-2
diffractometer
3278 reflections with I > 2σ(I)
ω scansRint = 0.058
Absorption correction: numerical
(X-Shape and X-Red 32; Stoe, 2008)
θmax = 28.1°, θmin = 2.3°
Tmin = 0.603, Tmax = 0.729h = 89
16726 measured reflectionsk = 1719
4230 independent reflectionsl = 2222
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0621P)2 + 0.265P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.100(Δ/σ)max = 0.001
S = 1.01Δρmax = 1.05 e Å3
4230 reflectionsΔρmin = 0.67 e Å3
243 parametersExtinction correction: SHELXL2016/6 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
21 restraintsExtinction coefficient: 0.0066 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.78188 (6)0.47540 (2)0.68448 (2)0.01808 (12)
Cu20.71798 (6)0.66110 (3)0.62144 (2)0.02162 (13)
Cl10.50112 (10)0.53390 (5)0.61872 (4)0.01799 (16)
Cl20.93604 (11)0.61192 (5)0.72751 (4)0.02134 (17)
N10.9212 (4)0.41035 (16)0.59795 (13)0.0137 (5)
C11.0935 (4)0.37340 (19)0.60741 (17)0.0146 (5)
C21.1961 (4)0.34341 (19)0.54407 (17)0.0152 (5)
N21.1223 (4)0.35171 (16)0.47210 (14)0.0145 (5)
C30.9452 (4)0.38599 (19)0.46354 (16)0.0151 (5)
H30.8877390.3901040.4134140.018*
C40.8454 (4)0.41518 (19)0.52532 (16)0.0151 (5)
H40.7211200.4391490.5169090.018*
C51.1757 (5)0.3646 (2)0.68748 (17)0.0214 (6)
H5A1.0965040.3983170.7228330.032*0.5
H5B1.3044130.3899710.6899390.032*0.5
H5C1.1800870.2997930.7021590.032*0.5
H5D1.2908320.3270710.6871210.032*0.5
H5E1.0829230.3354160.7200150.032*0.5
H5F1.2072500.4255940.7077950.032*0.5
C61.3878 (5)0.3008 (2)0.55575 (19)0.0222 (6)
H6A1.4576580.3063730.5084400.033*0.5
H6B1.3736230.2358650.5687110.033*0.5
H6C1.4577640.3322120.5977380.033*0.5
H6D1.4017050.2765930.6081530.033*0.5
H6E1.4857400.3471020.5478810.033*0.5
H6F1.4015990.2507550.5188550.033*0.5
N110.6763 (4)0.39165 (16)0.76792 (14)0.0157 (5)
C110.5375 (4)0.41740 (19)0.81394 (16)0.0157 (6)
C120.4226 (4)0.3518 (2)0.84878 (16)0.0170 (6)
N120.4515 (4)0.26194 (16)0.83942 (14)0.0164 (5)
C130.5989 (5)0.2370 (2)0.79683 (18)0.0191 (6)
H130.6280900.1737940.7917450.023*
C140.7076 (5)0.3006 (2)0.76071 (18)0.0206 (6)
H140.8074570.2802410.7298850.025*
C150.5046 (6)0.5175 (2)0.8253 (2)0.0280 (7)
H15A0.6101760.5522540.8048470.042*0.5
H15B0.4961020.5303780.8803240.042*0.5
H15C0.3859510.5355530.7983480.042*0.5
H15D0.3846430.5265360.8508320.042*0.5
H15E0.4987180.5484120.7753550.042*0.5
H15F0.6088680.5432380.8573320.042*0.5
C160.2612 (6)0.3801 (2)0.8967 (2)0.0345 (9)
H16A0.1672820.3306000.8973360.052*0.5
H16B0.2018570.4354360.8748240.052*0.5
H16C0.3085770.3926550.9492670.052*0.5
H16D0.2845280.4418610.9169490.052*0.5
H16E0.2499540.3370250.9394610.052*0.5
H16F0.1432340.3798060.8650180.052*0.5
O10.0035 (15)0.5719 (6)0.9050 (5)0.085 (3)0.549 (9)
H10.0643170.5839780.8611340.127*0.549 (9)
C210.1135 (13)0.6449 (7)0.9304 (6)0.0394 (19)0.549 (9)
H21A0.0361540.7012270.9337060.047*0.549 (9)
H21B0.2117180.6557660.8924050.047*0.549 (9)
C220.209 (3)0.6259 (12)1.0078 (9)0.048 (3)0.549 (9)
H22A0.1273270.5862581.0377640.072*0.549 (9)
H22B0.2305080.6838181.0352870.072*0.549 (9)
H22C0.3305460.5953081.0007730.072*0.549 (9)
O1'0.2744 (15)0.5440 (6)1.0252 (5)0.067 (3)0.451 (9)
H1'0.1889870.5116961.0437880.101*0.451 (9)
C21'0.200 (3)0.6295 (13)1.0044 (8)0.043 (2)0.451 (9)
H21C0.3070170.6696140.9911920.052*0.451 (9)
H21D0.1423960.6562681.0502320.052*0.451 (9)
C22'0.054 (2)0.6334 (9)0.9387 (7)0.045 (2)0.451 (9)
H22D0.1047320.6681140.8959990.068*0.451 (9)
H22E0.0612560.6635270.9559120.068*0.451 (9)
H22F0.0227240.5709940.9215190.068*0.451 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0204 (2)0.0183 (2)0.01597 (19)0.00030 (14)0.00639 (14)0.00095 (13)
Cu20.0211 (2)0.0198 (2)0.0248 (2)0.00221 (14)0.01132 (15)0.00322 (14)
Cl10.0147 (4)0.0174 (3)0.0219 (3)0.0010 (2)0.0017 (2)0.0021 (2)
Cl20.0239 (4)0.0218 (4)0.0183 (3)0.0067 (3)0.0009 (3)0.0019 (3)
N10.0137 (13)0.0139 (11)0.0136 (11)0.0018 (8)0.0026 (9)0.0003 (8)
C10.0142 (15)0.0123 (12)0.0174 (13)0.0030 (10)0.0012 (10)0.0020 (10)
C20.0118 (14)0.0115 (12)0.0225 (14)0.0007 (10)0.0027 (10)0.0009 (10)
N20.0151 (13)0.0115 (11)0.0173 (11)0.0001 (8)0.0042 (9)0.0000 (9)
C30.0141 (15)0.0158 (13)0.0155 (13)0.0015 (10)0.0025 (10)0.0007 (10)
C40.0129 (15)0.0150 (13)0.0176 (13)0.0009 (10)0.0025 (10)0.0012 (10)
C50.0191 (17)0.0283 (16)0.0168 (14)0.0002 (12)0.0003 (11)0.0031 (11)
C60.0147 (16)0.0234 (16)0.0289 (16)0.0070 (11)0.0044 (12)0.0014 (12)
N110.0160 (13)0.0163 (12)0.0153 (11)0.0003 (9)0.0054 (9)0.0026 (9)
C110.0182 (16)0.0155 (13)0.0135 (13)0.0009 (10)0.0032 (10)0.0011 (10)
C120.0187 (16)0.0180 (14)0.0149 (13)0.0009 (11)0.0070 (11)0.0021 (10)
N120.0167 (13)0.0148 (11)0.0181 (12)0.0013 (9)0.0054 (9)0.0029 (9)
C130.0202 (16)0.0142 (13)0.0235 (14)0.0002 (11)0.0088 (11)0.0001 (11)
C140.0216 (17)0.0154 (14)0.0256 (15)0.0021 (11)0.0114 (12)0.0002 (11)
C150.040 (2)0.0151 (14)0.0301 (17)0.0030 (13)0.0179 (15)0.0020 (12)
C160.037 (2)0.0229 (17)0.046 (2)0.0030 (14)0.0295 (18)0.0040 (15)
O10.114 (5)0.078 (4)0.059 (4)0.032 (4)0.040 (4)0.022 (3)
C210.027 (4)0.048 (3)0.043 (3)0.019 (2)0.000 (3)0.002 (2)
C220.052 (6)0.044 (4)0.048 (3)0.016 (3)0.012 (4)0.002 (3)
O1'0.078 (5)0.050 (3)0.074 (5)0.006 (3)0.007 (4)0.002 (3)
C21'0.052 (5)0.049 (3)0.030 (3)0.007 (3)0.029 (3)0.001 (3)
C22'0.057 (5)0.049 (4)0.032 (3)0.007 (4)0.026 (3)0.013 (3)
Geometric parameters (Å, º) top
Cu1—Cu22.9516 (5)C12—N121.338 (4)
Cu1—Cl12.4055 (8)C12—C161.496 (4)
Cu1—Cl22.3768 (8)N12—C131.351 (4)
Cu1—N12.063 (2)C13—H130.9500
Cu1—N112.061 (2)C13—C141.373 (4)
Cu2—Cl12.4047 (8)C14—H140.9500
Cu2—Cl22.4641 (9)C15—H15A0.9800
Cu2—N2i2.026 (2)C15—H15B0.9800
Cu2—N12ii2.031 (2)C15—H15C0.9800
N1—C11.334 (4)C15—H15D0.9800
N1—C41.356 (4)C15—H15E0.9800
C1—C21.412 (4)C15—H15F0.9800
C1—C51.495 (4)C16—H16A0.9800
C2—N21.344 (4)C16—H16B0.9800
C2—C61.496 (4)C16—H16C0.9800
N2—C31.349 (4)C16—H16D0.9800
C3—H30.9500C16—H16E0.9800
C3—C41.377 (4)C16—H16F0.9800
C4—H40.9500O1—H10.8792
C5—H5A0.9800O1—C211.408 (13)
C5—H5B0.9800C21—H21A0.9900
C5—H5C0.9800C21—H21B0.9900
C5—H5D0.9800C21—C221.508 (11)
C5—H5E0.9800C22—H22A0.9800
C5—H5F0.9800C22—H22B0.9800
C6—H6A0.9800C22—H22C0.9800
C6—H6B0.9800O1'—H1'0.8401
C6—H6C0.9800O1'—C21'1.396 (18)
C6—H6D0.9800C21'—H21C0.9900
C6—H6E0.9800C21'—H21D0.9900
C6—H6F0.9800C21'—C22'1.512 (14)
N11—C111.343 (4)C22'—H22D0.9800
N11—C141.353 (4)C22'—H22E0.9800
C11—C121.407 (4)C22'—H22F0.9800
C11—C151.494 (4)
Cl1—Cu1—Cu252.14 (2)C14—N11—Cu1116.86 (19)
Cl2—Cu1—Cu253.79 (2)N11—C11—C12120.9 (3)
Cl2—Cu1—Cl1102.17 (3)N11—C11—C15118.3 (3)
N1—Cu1—Cu2102.76 (7)C12—C11—C15120.8 (3)
N1—Cu1—Cl1102.87 (7)C11—C12—C16121.1 (3)
N1—Cu1—Cl2113.00 (7)N12—C12—C11121.4 (3)
N11—Cu1—Cu2138.82 (7)N12—C12—C16117.4 (3)
N11—Cu1—Cl1103.44 (8)C12—N12—Cu2iii125.1 (2)
N11—Cu1—Cl2116.64 (7)C12—N12—C13117.1 (2)
N11—Cu1—N1115.99 (10)C13—N12—Cu2iii117.7 (2)
Cl1—Cu2—Cu152.16 (2)N12—C13—H13119.1
Cl1—Cu2—Cl299.68 (3)N12—C13—C14121.7 (3)
Cl2—Cu2—Cu151.10 (2)C14—C13—H13119.1
N2i—Cu2—Cu197.63 (7)N11—C14—C13121.7 (3)
N2i—Cu2—Cl1106.65 (7)N11—C14—H14119.2
N2i—Cu2—Cl2103.03 (8)C13—C14—H14119.2
N2i—Cu2—N12ii133.66 (10)C11—C15—H15A109.5
N12ii—Cu2—Cu1128.59 (7)C11—C15—H15B109.5
N12ii—Cu2—Cl1100.57 (8)C11—C15—H15C109.5
N12ii—Cu2—Cl2108.53 (8)C11—C15—H15D109.5
Cu2—Cl1—Cu175.70 (3)C11—C15—H15E109.5
Cu1—Cl2—Cu275.11 (3)C11—C15—H15F109.5
C1—N1—Cu1123.63 (19)H15A—C15—H15B109.5
C1—N1—C4117.4 (2)H15A—C15—H15C109.5
C4—N1—Cu1118.4 (2)H15A—C15—H15D141.1
N1—C1—C2121.4 (3)H15A—C15—H15E56.3
N1—C1—C5117.9 (3)H15A—C15—H15F56.3
C2—C1—C5120.7 (3)H15B—C15—H15C109.5
C1—C2—C6120.7 (3)H15B—C15—H15D56.3
N2—C2—C1120.6 (3)H15B—C15—H15E141.1
N2—C2—C6118.6 (3)H15B—C15—H15F56.3
C2—N2—Cu2i122.3 (2)H15C—C15—H15D56.3
C2—N2—C3117.4 (2)H15C—C15—H15E56.3
C3—N2—Cu2i119.17 (19)H15C—C15—H15F141.1
N2—C3—H3119.0H15D—C15—H15E109.5
N2—C3—C4121.9 (3)H15D—C15—H15F109.5
C4—C3—H3119.0H15E—C15—H15F109.5
N1—C4—C3121.2 (3)C12—C16—H16A109.5
N1—C4—H4119.4C12—C16—H16B109.5
C3—C4—H4119.4C12—C16—H16C109.5
C1—C5—H5A109.5C12—C16—H16D109.5
C1—C5—H5B109.5C12—C16—H16E109.5
C1—C5—H5C109.5C12—C16—H16F109.5
C1—C5—H5D109.5H16A—C16—H16B109.5
C1—C5—H5E109.5H16A—C16—H16C109.5
C1—C5—H5F109.5H16A—C16—H16D141.1
H5A—C5—H5B109.5H16A—C16—H16E56.3
H5A—C5—H5C109.5H16A—C16—H16F56.3
H5A—C5—H5D141.1H16B—C16—H16C109.5
H5A—C5—H5E56.3H16B—C16—H16D56.3
H5A—C5—H5F56.3H16B—C16—H16E141.1
H5B—C5—H5C109.5H16B—C16—H16F56.3
H5B—C5—H5D56.3H16C—C16—H16D56.3
H5B—C5—H5E141.1H16C—C16—H16E56.3
H5B—C5—H5F56.3H16C—C16—H16F141.1
H5C—C5—H5D56.3H16D—C16—H16E109.5
H5C—C5—H5E56.3H16D—C16—H16F109.5
H5C—C5—H5F141.1H16E—C16—H16F109.5
H5D—C5—H5E109.5C21—O1—H1112.5
H5D—C5—H5F109.5O1—C21—H21A109.2
H5E—C5—H5F109.5O1—C21—H21B109.2
C2—C6—H6A109.5O1—C21—C22112.2 (12)
C2—C6—H6B109.5H21A—C21—H21B107.9
C2—C6—H6C109.5C22—C21—H21A109.2
C2—C6—H6D109.5C22—C21—H21B109.2
C2—C6—H6E109.5C21—C22—H22A109.5
C2—C6—H6F109.5C21—C22—H22B109.5
H6A—C6—H6B109.5C21—C22—H22C109.5
H6A—C6—H6C109.5H22A—C22—H22B109.5
H6A—C6—H6D141.1H22A—C22—H22C109.5
H6A—C6—H6E56.3H22B—C22—H22C109.5
H6A—C6—H6F56.3C21'—O1'—H1'109.4
H6B—C6—H6C109.5O1'—C21'—H21C107.8
H6B—C6—H6D56.3O1'—C21'—H21D107.8
H6B—C6—H6E141.1O1'—C21'—C22'117.9 (16)
H6B—C6—H6F56.3H21C—C21'—H21D107.2
H6C—C6—H6D56.3C22'—C21'—H21C107.8
H6C—C6—H6E56.3C22'—C21'—H21D107.8
H6C—C6—H6F141.1C21'—C22'—H22D109.5
H6D—C6—H6E109.5C21'—C22'—H22E109.5
H6D—C6—H6F109.5C21'—C22'—H22F109.5
H6E—C6—H6F109.5H22D—C22'—H22E109.5
C11—N11—Cu1123.18 (19)H22D—C22'—H22F109.5
C11—N11—C14117.1 (2)H22E—C22'—H22F109.5
Cu1—N1—C1—C2169.2 (2)C5—C1—C2—N2179.7 (3)
Cu1—N1—C1—C510.7 (4)C5—C1—C2—C61.0 (4)
Cu1—N1—C4—C3169.7 (2)C6—C2—N2—Cu2i15.6 (4)
Cu1—N11—C11—C12156.2 (2)C6—C2—N2—C3176.6 (3)
Cu1—N11—C11—C1522.1 (4)N11—C11—C12—N122.2 (5)
Cu1—N11—C14—C13159.5 (3)N11—C11—C12—C16176.7 (3)
Cu2i—N2—C3—C4165.5 (2)C11—N11—C14—C132.0 (5)
Cu2iii—N12—C13—C14172.4 (3)C11—C12—N12—Cu2iii174.2 (2)
N1—C1—C2—N20.2 (4)C11—C12—N12—C131.8 (4)
N1—C1—C2—C6179.0 (3)C12—N12—C13—C143.9 (5)
C1—N1—C4—C32.2 (4)N12—C13—C14—N112.1 (5)
C1—C2—N2—Cu2i165.1 (2)C14—N11—C11—C124.1 (4)
C1—C2—N2—C32.7 (4)C14—N11—C11—C15177.7 (3)
C2—N2—C3—C42.7 (4)C15—C11—C12—N12179.5 (3)
N2—C3—C4—N10.2 (4)C15—C11—C12—C161.5 (5)
C4—N1—C1—C22.2 (4)C16—C12—N12—Cu2iii4.7 (4)
C4—N1—C1—C5177.8 (2)C16—C12—N12—C13179.2 (3)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cl2i0.952.793.463 (3)128
C4—H4···Cl10.952.773.444 (3)128
C4—H4···Cl1iv0.952.813.513 (3)132
C5—H5B···Cl1v0.982.833.609 (3)137
C6—H6C···Cl1v0.982.983.653 (3)127
C13—H13···Cl1iii0.952.753.395 (3)126
C15—H15A···Cl20.982.853.805 (4)166
C15—H15B···O1vi0.982.513.114 (10)120
C15—H15E···Cl10.982.743.606 (4)148
C16—H16B···O10.982.533.372 (11)144
C16—H16D···O10.982.413.275 (10)147
O1—H1···Cl2vii0.882.363.158 (7)151
Symmetry codes: (i) x+2, y+1, z+1; (iii) x+1, y1/2, z+3/2; (iv) x+1, y+1, z+1; (v) x+1, y, z; (vi) x+1, y+1, z+2; (vii) x1, y, z.
 

Acknowledgements

Financial support by the State of Schleswig-Holstein is gratefully acknowledged.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationGibbons, S. K., Hughes, R. P., Glueck, D. S., Royappa, A. T., Rheingold, A. L., Arthur, R. B., Nicholas, A. D. & Patterson, H. H. (2017). Inorg. Chem. 56, 12809–12820.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJess, I., Taborsky, P., Pospíšil, J. & Näther, C. (2007a). Dalton Trans. pp. 2263–2270.  Google Scholar
First citationJess, I. & Näther, C. (2006). Inorg. Chem. 45, 7446–7454.  CSD CrossRef PubMed CAS Google Scholar
First citationJess, I. & Näther, C. (2007). Z. Naturforsch. B, 62, 617–620.  CAS Google Scholar
First citationJess, I., Taborsky, P. & Näther, C. (2007b). Z. Naturforsch. B, 62, 501–507.  CAS Google Scholar
First citationJornet-Somoza, J., Codina-Castillo, N., Deumal, M., Mota, F., Novoa, J. J., Butcher, R. T., Turnbull, M. M., Keith, B., Landee, C. P. & Wikaira, J. L. (2012). Inorg. Chem. 51, 6315–6325.  CAS PubMed Google Scholar
First citationKromp, T. & Sheldrick, W. S. (1999). Z. Naturforsch. B, 54, 1175–1180.  CrossRef CAS Google Scholar
First citationLi, D., Shi, W. J. & Hou, L. (2005). Inorg. Chem. 44, 3907–3913.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMensah, A., Shao, J. J., Ni, J. L., Li, G. J., Wang, F. M. & Chen, L. Z. (2022). Front. Chem. 9, 816363.  Web of Science CrossRef PubMed Google Scholar
First citationNäther, C. & Greve, J. (2001). Acta Cryst. C57, 377–378.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNäther, C., Greve, J. & Jess, I. (2002). Solid State Sci. 4, 813–820.  Google Scholar
First citationNäther, C., Greve, J., Jess, I. & Wickleder, C. (2003). Solid State Sci. 5, 1167–1176.  Web of Science CSD CrossRef CAS Google Scholar
First citationNäther, C. & Jess, I. (2004). Eur. J. Inorg. Chem. 2004, 2868–2876.  Google Scholar
First citationNäther, C., Jess, I. & Greve, J. (2001). Polyhedron, 20, 1017–1022.  Web of Science CrossRef CAS Google Scholar
First citationNäther, C. & Jess, I. (2001). Monatsh. Chem. 132, 897–910.  Web of Science CSD CrossRef CAS Google Scholar
First citationNäther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696–2714.  Google Scholar
First citationPeng, R., Li, M. & Li, D. (2010). Coord. Chem. Rev. 254, 1–18.  Web of Science CrossRef CAS Google Scholar
First citationPospíšil, J., Jess, I., Näther, C., Necas, M. & Taborsky, P. (2011). New J. Chem. 35, 861–864.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTurnbull, M. M., Butcher, R. T. & Robinson, W. T. (2020). CSD Communication (CCDC 1994875). CCDC, Cambridge, England.  Google Scholar
First citationWells, B. M., Landee, C. P., Turnbull, M. M., Awwadi, F. F. & Twamley, B. (2005). J. Mol. Catal. A Chem. 228, 117–123.  CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, X., Yang, L. F., Hou, H. B., Xue, S. F., Tao, Z. & Zhu, Q. J. (2010). J. Mol. Sci. 26, 396–399.  CAS Google Scholar
First citationXu, C., Lv, L., Luo, D. & Liu, W. (2020). New J. Chem. 44, 14103–14107.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds