research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of poly[ethanol(μ-4-methyl­pyridine N-oxide)di-μ-thio­cyanato-cobalt(II)]

crossmark logo

aInstitut für Anorganische Chemie, Universität Kiel, Germany
*Correspondence e-mail: cnaether@ac.uni-kiel.de

Edited by S. Parkin, University of Kentucky, USA (Received 4 September 2024; accepted 16 September 2024; online 20 September 2024)

Reaction of 4-methyl­pyridine N-oxide and Co(NCS)2 in ethanol as solvent accidentally leads to the formation of single crystals of Co(NCS)2(4-methyl­pyridine N-oxide)(ethanol) or [Co(NCS)2(C6H7NO)(C2H6O)]n. The asymmetric unit of the title compound consists of one CoII cation, two crystallographically independent thio­cyanate anions, one 4-methyl­pyridine N-oxide coligand and one ethanol mol­ecule on general positions. The cobalt cations are sixfold coordinated by one terminal and two bridging thio­cyanate anions, two bridging 4-methyl­pyridine N-oxide coligands and one ethanol mol­ecule, with a slightly distorted octa­hedral geometry. The cobalt cations are linked by single μ-1,3(N,S)-bridging thio­cyanate anions into corrugated chains, that are further connected into layers by pairs of μ-1,1(O,O)-bridging 4-methyl­pyridine N-oxide coligands. The layers are parallel to the bc plane and are separated by the methyl groups of the 4-methyl­pyridine N-oxide coligands. Within the layers, intra­layer hydrogen bonding is observed.

1. Chemical context

Coordination polymers based on transition-metal thio­cyanate coordination polymers are characterized by a pronounced structural variability, which can partly be traced back to the variety of coordination modes of this anionic ligand. This includes mainly the terminal coordination, the μ-1,3(N,S) and the μ-1,3,3(N,S,S) bridging modes. With μ-1,3(N,S) bridging anionic ligands and octa­hedrally coordinated metal cations the majority of compounds consist of M(NCS)2 chains, in which the metal centers are connected by pairs of thio­cyanate anions. In most cases an all-trans coordination is found, which leads to the formation of linear chains (Rams et al., 2017a[Rams, M., Böhme, M., Kataev, V., Krupskaya, Y., Büchner, B., Plass, W., Neumann, T., Tomkowicz, Z. & Näther, C. (2017a). Phys. Chem. Chem. Phys. 19, 24534-24544.], 2020[Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837-2851.]; Mautner et al., 2018a[Mautner, F. E., Berger, C., Fischer, R. C., Massoud, S. S. & Vicente, R. (2018a). Polyhedron, 141, 17-24.],b[Mautner, F. E., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massound, S. S. (2018b). Polyhedron, 154, 436-442.]). Linear chains are also observed if the co-ligands are in trans-positions and the thio­cyanate N and S atoms are in cis-positions (Rams et al., 2017b[Rams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017b). Phys. Chem. Chem. Phys. 19, 3232-3243.]). For the other or ciscistrans and the all-cis coordination, corrugated chains are observed (Maji et al., 2001[Maji, T. K., Laskar, I. R., Mostafa, G., Welch, A. J., Mukherjee, P. S. & Chaudhuri, N. E. (2001). Polyhedron, 20, 651-655.]; Marsh, 2009[Marsh, R. E. (2009). Acta Cryst. B65, 782-783.]; Shi et al., 2006a[Shi, J. M. L., Liu, Z., Sun, Y. M., Yi, L. & Liu, L. D. (2006a). Chem. Phys. 325, 237-242.], 2007a[Shi, J. M., Li, W. N., Zhang, F. X., Zhang, X. & Liu, L. D. (2007a). Chin. J. Struct. Chem. 26, 118-121.]; Böhme et al., 2020[Böhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 5325-5338.]). In contrast, chain compounds in which the metal cations are linked by single μ-1,3-bridging thio­cyanate anions are rarer (Palion-Gazda et al., 2015[Palion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 56, 2380-2388.]; Neumann et al., 2018[Neumann, T., Ceglarska, M., Rams, M., Germann, L. Z., Dinnebier, R. E., Suckert, S., Jess, I. & Näther, C. (2018). Inorg. Chem. 57, 3305-3314.]).

We have been inter­ested in transition-metal thio­cyanates for a long time, with special focus on Co(NCS)2 chain compounds with pyridine derivatives as coligands (Rams et al., 2017a[Rams, M., Böhme, M., Kataev, V., Krupskaya, Y., Büchner, B., Plass, W., Neumann, T., Tomkowicz, Z. & Näther, C. (2017a). Phys. Chem. Chem. Phys. 19, 24534-24544.],b[Rams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017b). Phys. Chem. Chem. Phys. 19, 3232-3243.], 2020[Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837-2851.]; Böhme et al., 2022[Böhme, M., Rams, M., Krebs, C., Mangelsen, S., Jess, I., Plass, W. & Näther, C. (2022). Inorg. Chem. 61, 16841-16855.]). Later we also used pyridine N-oxide derivatives as coligands, because they can additionally connect metal cations via the μ-1,1(O,O) bridging mode. In this regard we became inter­ested in 4-methyl­pyridine N-oxide as coligand. With this ligand, two compounds with the composition Co(NCS)2(4-methyl­pyridine-N-oxide) (Zhang et al., 2006a[Zhang, S.-G., Li, W.-N. & Shi, J.-M. (2006a). Acta Cryst. E62, m3506-m3608.]) and Co(NCS)2(4-methyl­pyridine N-oxide)(meth­anol) (Shi et al., 2006a[Shi, J. M. L., Liu, Z., Sun, Y. M., Yi, L. & Liu, L. D. (2006a). Chem. Phys. 325, 237-242.]) were reported in the literature. In the first compound, the cobalt cations are octa­hedrally coordinated by two N- and two S-bonding thio­cyanate anions and two bridging 4-methyl­pyridine N-oxide coligands and are connected by pairs of bridging anionic ligands into corrugated chains, which are further connected into layers by the 4-methyl­pyridine N-oxide coligands. In the second compound, the cobalt cations are octa­hedrally coordinated by one terminal and two bridging thio­cyanate anions, two bridging 4-methyl­pyridine N-oxide coligands and one methanol mol­ecule. The metal cations are linked by alternating pairs of μ-1,3-bridging thio­cyanate anions and μ-1,1(O,O) bridging 4-methyl­pyridine N-oxide coligands into chains. In the course of our investigations we have synthesized two discrete complexes with the composition Co(NCS)2(4-methyl­pyridine N-oxide)3 and Co(NCS)2(4-methyl­pyridine N-oxide)4 that show a trigonal–bipyramidal or an octa­hedral coordination (Näther & Jess, 2024a[Näther, C. & Jess, I. (2024a). Acta Cryst. E80, 174-179.]). The first complex can easily be synthesized from methanol, but in some of these batches an additional 4-methyl­pyridine N-oxide compound was detected. Later we have found that a compound with the composition Co2(NCS)4(4-methyl­pyridine N-oxide)4(methanol)2 was obtained as a by-phase, in which the CoII cations are linked by pairs of μ-1,1-bridging 4-methyl­pyridine N-oxide coligands into centrosymmetric dinuclear units (Näther & Jess, 2024b[Näther, C. & Jess, I. (2024b). Acta Cryst. E80, 481-485.]).

Some of the 4-pyridine N-oxide compounds mentioned above can also be prepared in ethanol as solvent. However, in some of these batches traces of an additional product were detected by X-ray powder diffraction and therefore a large number of crystallization experiments were performed. In one of these batches crystals suitable for single-crystal X-ray diffraction were accidentally obtained, which proved that a compound with the composition Co(NCS)2(4-methyl­pyridine N-oxide)(ethanol) had formed.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound, Co(NCS)2(4-methyl­pyridine N-oxide)(ethanol), is built up of one cobalt cation, two crystallographically independent thio­cyanate anions, one ethanol and one 4-methyl­pyridine N-oxide coligand that are located in general positions. The Co cations are sixfold coordinated by one terminal N-bonded and two μ-1,3(N,S)-bridging thio­cyanate anions, one ethanol mol­ecule and two μ-1,1(O,O)-bridging 4-methyl­pyridine N-oxide co­ligands (Fig. 1[link]). The bridging thio­cyanate anions and the 4-methyl­pyridine N-oxide coligands are each in cis-positions. The Co—N bond length to the terminal anions is slightly shorter than that to the bridging anionic ligands (Table 1[link]). The bond angles deviate from ideal values, which shows that a distorted octa­hedral coordination is present (Table 1[link]). The CoII cations are linked by single μ-1,3(N,S)-bridging thio­cyanate anions into corrugated chains that proceed along the crystallographic c-axis direction (Fig. 2[link]). The chains are linked by two μ-1,1(O,O)-bridging 4-methyl­pyridine N-oxide co­ligands into layers via four-membered Co2O2 rings (Fig. 3[link]). These layers consist of large rings built up of six CoII cations, four bridging thio­cyanate anions and two bridging 4-methyl­pyridine N-oxide coligands (Fig. 3[link]). Within these rings, each of the two CoII cations are linked by pairs of μ-1,1(O,O)-bridg­ing 4-methyl­pyridine N-oxide coligands into dinuclear units that are further connected by single μ-1,3-bridging thio­cyanate anions (Fig. 3[link]).

Table 1
Selected geometric parameters (Å, °)

Co1—N1 2.0472 (13) Co1—O11 2.0971 (10)
Co1—N2 2.0569 (12) Co1—O11ii 2.1594 (10)
Co1—S2i 2.5171 (4) Co1—O21 2.1559 (10)
       
N1—Co1—N2 110.80 (5) N2—Co1—O21 86.53 (5)
N1—Co1—S2i 90.75 (4) O11—Co1—S2i 98.02 (3)
N1—Co1—O11ii 160.49 (5) O11ii—Co1—S2i 95.96 (3)
N1—Co1—O11 89.92 (4) O11—Co1—O11ii 71.03 (4)
N1—Co1—O21 82.55 (5) O11—Co1—O21 92.89 (4)
N2—Co1—S2i 85.67 (4) O21—Co1—S2i 167.20 (3)
N2—Co1—O11ii 88.01 (4) O21—Co1—O11ii 93.90 (4)
N2—Co1—O11 158.96 (5)    
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, -y+1, -z+1].
[Figure 1]
Figure 1
Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level. Symmetry codes: (i) x, −y + [{1\over 2}], z − [{1\over 2}]; (ii) −x + 1, −y + 1, −z + 1.
[Figure 2]
Figure 2
Crystal structure of the title compound with view of a Co(NCS)2 chain.
[Figure 3]
Figure 3
Crystal structure of the title compound with view along the crystallographic a-axis, showing the layered network. For the 4-methyl­pyridine N-oxide coligands, only the O atoms are shown.

Even though the overall composition of the title compound is very similar to that of Co(NCS)2(4-methyl­pyridine N-oxide)(methanol), which has already been reported in the literature, their crystal structures are completely different. In the compound with methanol, the CoII cations are linked by alternating pairs of μ-1,3-bridging thio­cyanate anions and μ-1,1(O,O)-bridging 4-methyl­pyridine N-oxide coligands into chains (Shi et al., 2006a[Shi, J. M. L., Liu, Z., Sun, Y. M., Yi, L. & Liu, L. D. (2006a). Chem. Phys. 325, 237-242.]). However, layered thio­cyanate networks that also consist of condensed rings are known from compounds with pyridine derivatives as coligands. In, for example, M(NCS)2(ethyl­isonicotinate)2 with M = Co, Ni (Suckert et al., 2016[Suckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190-18201.]), both metal cations are linked by pairs of μ-1,3-bridging anions into dinuclear units that, as in the title compound, are further connected by single μ-1,3-bridging anionic ligands into layers.

3. Supra­molecular features

In the crystal structure of the title compound, the layers are parallel to the bc plane and are separated by the methyl groups of the 4-methyl­pyridine N-oxide coligands (Fig. 3[link]). Therefore, no significant inter­molecular inter­actions are observed between the layers (Table 2[link]). However, intra­layer C—H⋯S and O—H⋯S hydrogen bonding is present with C—H⋯S and O—H⋯S angles close to linearity (Table 2[link] and Fig. 4[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯S2iii 0.95 2.95 3.4900 (15) 118
C11—H11⋯O21 0.95 2.57 3.2004 (18) 124
C12—H12⋯S1iv 0.95 2.96 3.8544 (16) 157
O21—H21⋯S1v 0.82 (2) 2.53 (2) 3.3028 (11) 159 (2)
C22—H22C⋯S2vi 0.98 2.93 3.7185 (18) 138
Symmetry codes: (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+2, -y+1, -z+1]; (v) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) [-x+1, -y+1, -z+2].
[Figure 4]
Figure 4
Crystal structure of the title compound with view along the crystallographic b-axis, showing the arrangement of the layers. Intra­layer hydrogen bonding is shown as dashed lines.

4. Database survey

As mentioned above, two compounds based on Co(NCS)2 and 4-methyl­pyridine N-oxide are already reported in the CSD (version 5.43, last update March 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). These include Co(NCS)2(4-methyl­pyridine N-oxide) (Ref­code: MEQKOJ, Zhang et al., 2006a[Zhang, S.-G., Li, W.-N. & Shi, J.-M. (2006a). Acta Cryst. E62, m3506-m3608.]) and Co(NCS)2(4-methyl­pyridineN-oxide)(methanol) (Refcode: REKBUF, Shi et al., 2006a[Shi, J. M. L., Liu, Z., Sun, Y. M., Yi, L. & Liu, L. D. (2006a). Chem. Phys. 325, 237-242.]). Two discrete complexes with the composition Co(NCS)2(4-methyl­pyridine N-oxide)3 and Co(NCS)2(4-meth­yl­pyridine N-oxide)4 (Näther & Jess, 2024a[Näther, C. & Jess, I. (2024a). Acta Cryst. E80, 174-179.]) as well as one chain compound with the composition Co2(NCS)4(4-methyl­pyridine N-oxide)4(methanol)2 (Näther & Jess, 2024b[Näther, C. & Jess, I. (2024b). Acta Cryst. E80, 481-485.]) are also reported.

Additionally, several other M(NCS)2 compounds with 4-methyl­pyridine N-oxide are also listed in the CSD. These include M(NCS)2(4-methyl­pyridine N-oxide) with M = Ni, Cd) (Refcodes: PEDSUN, Shi et al., 2006b[Shi, J. M., Sun, Y. M., Liu, Z. & Liu, L. D. (2006b). Chem. Phys. Lett. 418, 84-89.]; PEDSUN01, Marsh, 2009[Marsh, R. E. (2009). Acta Cryst. B65, 782-783.]; TEQKAC, Shi et al., 2006c[Shi, J. M., Liu, Z., Wu, C. J., Xu, H. Y. & Liu, L. D. (2006c). J. Coord. Chem. 59, 1883-1889.]). With copper(II), a compound with the composition Cu(NCS)2(4-methyl­pyridine N-oxide) is reported in which the CuII cations are octa­hedrally coordinated and linked into chains by pairs of bridging thio­cyanate anions, which are further connected into double chains via Cu2S2 rings (Refcode TEBTAW, Shi et al., 2006d[Shi, J. M., Sun, Y. M., Liu, Z., Liu, L. D., Shi, W. & Cheng, P. (2006d). Dalton Trans. 376-380.pp.]). With NiII and MnII, two discrete aqua complexes with the composition M(NCS)2(4-methyl­pyridine N-oxide)2(H2O)2 (M = Ni, Shi et al., 2006a[Shi, J. M. L., Liu, Z., Sun, Y. M., Yi, L. & Liu, L. D. (2006a). Chem. Phys. 325, 237-242.] and M = Mn, Mautner et al., 2018a[Mautner, F. E., Berger, C., Fischer, R. C., Massoud, S. S. & Vicente, R. (2018a). Polyhedron, 141, 17-24.],b[Mautner, F. E., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massound, S. S. (2018b). Polyhedron, 154, 436-442.]) are also reported. Three isotypic compounds with the composition M(NCS)2)(acetato)2(H2O)3(4-methyl­pyridine N-oxide) with M = Sm, Eu, Gd) are also known (Refcodes: GIHBUV, Zhang & Shi, 2007[Zhang, S.-G. & Shi, J.-M. (2007). Acta Cryst. E63, m1775-m1776.]; PIJBIU and PIJBOA, Shi et al., 2007a[Shi, J. M., Li, W. N., Zhang, F. X., Zhang, X. & Liu, L. D. (2007a). Chin. J. Struct. Chem. 26, 118-121.]).

Some Co(NCS)2 compounds with other pyridine N-oxide derivatives are also known. These include Co(NCS)2(pyridine N-oxide)2(H2O)2 and Co(NCS)2(3-hy­droxy­pyridine N-oxide)2(H2O)2, which consist of discrete octa­hedral complexes (Refcodes: FONBIU, Shi et al., 2005[Shi, J. M., Liu, Z., Lu, J. J. & Liu, L. D. (2005). Acta Cryst. E61, m1133-m1134.]; IDOYEG, Shi et al., 2006e[Shi, J.-M., Xu, H.-Y. & Liu, L.-D. (2006e). Acta Cryst. E62, m1577-m1578.]). They also include Co(NCS)2(4-meth­oxy­pyridine N-oxide), which is isotypic to its 4-methyl­pyridine analog (Refcode TERRAK, Zhang et al., 2006b[Zhang, S.-G., Li, W.-N. & Shi, J.-M. (2006b). Acta Cryst. E62, m3398-m3400.]) and Co(NCS)2(4-nitro­pyridine N-oxide) (Shi et al., 2007b[Shi, J. M., Chen, J. N., Wu, C. J. & Ma, J. P. (2007b). J. Coord. Chem. 60, 2009-2013.]). Finally, we have also reported some Co(NCS)2 compounds with pyridine N-oxide derivatives, including Co(NCS)2(3-cyano­pyridine N-oxide)4 (Näther & Jess, 2023[Näther, C. & Jess, I. (2023). Acta Cryst. E79, 302-307.]), Co(NCS)2(2-methyl­pyridine N-oxide) (Näther & Jess, 2024c[Näther, C. & Jess, I. (2024c). Acta Cryst. E80, 67-71.]), and Co(NCS)2(2-methyl­pyridine N-oxide)3 (Näther & Jess, 2024d[Näther, C. & Jess, I. (2024d). Acta Cryst. E80, 463-467.]).

5. Synthesis and crystallization

Co(NCS)2 (99%) was purchased from Sigma Aldrich and 4-methyl­pyridine N-oxide (97%) from Thermo Scientific.

Synthesis:

Crystals of the title compound were accidentally obtained by the reaction of 0.5 mmol (87 mg) Co(SCN)2 and 0.5 mmol (54 mg) of 4-methyl­pyridine N-oxide in 1 mL of ethanol. The reaction mixture was stored overnight, which led to the formation of a violet-colored crystalline precipitate. X-ray powder diffraction measurements prove that the majority of the sample consists of the known discrete complex Co(NCS)2(4-methyl­pyridine N-oxide)3 (Näther & Jess, 2024a[Näther, C. & Jess, I. (2024a). Acta Cryst. E80, 174-179.]) and that only traces of the title compound are present.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The C—H hydrogen atoms were positioned with idealized geometry (methyl H atoms allowed to rotate and not to tip) and were refined with Uiso(H) = 1.2Ueq(C) (1.5 for methyl H atoms) using a riding model.

Table 3
Experimental details

Crystal data
Chemical formula [Co(NCS)2(C6H7NO)(C2H6O)]
Mr 330.28
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 11.67627 (7), 11.61861 (6), 10.60662 (7)
β (°) 107.5929 (7)
V3) 1371.62 (2)
Z 4
Radiation type Cu Kα
μ (mm−1) 12.65
Crystal size (mm) 0.15 × 0.12 × 0.10 × 0.08 (radius)
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.453, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 23514, 2937, 2909
Rint 0.022
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.058, 1.05
No. of reflections 2937
No. of parameters 170
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.35, −0.29
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and XP in SHELXTL-PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Poly[ethanol(µ-4-methylpyridine N-oxide)di-µ-thiocyanato-cobalt(II)] top
Crystal data top
[Co(NCS)2(C6H7NO)(C2H6O)]F(000) = 676
Mr = 330.28Dx = 1.599 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 11.67627 (7) ÅCell parameters from 19460 reflections
b = 11.61861 (6) Åθ = 4.0–79.9°
c = 10.60662 (7) ŵ = 12.65 mm1
β = 107.5929 (7)°T = 100 K
V = 1371.62 (2) Å3Block, pink
Z = 40.15 × 0.12 × 0.10 × 0.08 (radius) mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
2937 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source2909 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.022
Detector resolution: 10.0000 pixels mm-1θmax = 80.4°, θmin = 4.0°
ω scansh = 1413
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
k = 1414
Tmin = 0.453, Tmax = 1.000l = 1113
23514 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.022 w = 1/[σ2(Fo2) + (0.0303P)2 + 0.9886P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.058(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.35 e Å3
2937 reflectionsΔρmin = 0.29 e Å3
170 parametersExtinction correction: SHELXL2016/6 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.00084 (11)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.56402 (2)0.37657 (2)0.58362 (2)0.01116 (8)
N10.70562 (11)0.28747 (11)0.55557 (12)0.0163 (3)
C10.77833 (13)0.25258 (12)0.51159 (14)0.0156 (3)
S10.88296 (3)0.20182 (3)0.45220 (4)0.02192 (10)
N20.51802 (11)0.31162 (11)0.74214 (12)0.0155 (2)
C20.47782 (13)0.29336 (12)0.82748 (14)0.0143 (3)
S20.41839 (3)0.26862 (3)0.94760 (3)0.01787 (9)
O110.56699 (9)0.48910 (9)0.43004 (10)0.0133 (2)
N110.66546 (11)0.50302 (10)0.38914 (12)0.0123 (2)
C110.76069 (13)0.56068 (13)0.46681 (14)0.0164 (3)
H110.7594490.5890980.5503710.020*
C120.86013 (13)0.57840 (13)0.42474 (15)0.0179 (3)
H120.9270760.6196640.4793060.021*
C130.86310 (13)0.53621 (13)0.30276 (15)0.0175 (3)
C140.76325 (14)0.47485 (13)0.22755 (15)0.0182 (3)
H140.7629900.4437430.1446370.022*
C150.66507 (13)0.45867 (13)0.27160 (14)0.0164 (3)
H150.5975230.4165770.2195920.020*
C160.96938 (15)0.55720 (18)0.25409 (17)0.0289 (4)
H16A0.9849660.4883500.2084760.043*
H16B1.0400500.5745190.3293440.043*
H16C0.9524950.6224530.1926630.043*
O210.70560 (9)0.46801 (9)0.72670 (10)0.0153 (2)
H210.7507 (19)0.4167 (18)0.764 (2)0.036 (6)*
C210.68639 (13)0.54339 (13)0.82663 (15)0.0173 (3)
H21A0.6713580.4969010.8982430.021*
H21B0.6148110.5919500.7873260.021*
C220.79487 (16)0.61910 (14)0.88314 (18)0.0248 (4)
H22A0.8086290.6661750.8124280.037*
H22B0.8655220.5708880.9224940.037*
H22C0.7808820.6693900.9511980.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01275 (12)0.01291 (13)0.00940 (12)0.00043 (8)0.00570 (9)0.00058 (8)
N10.0177 (6)0.0179 (6)0.0145 (6)0.0026 (5)0.0067 (5)0.0004 (5)
C10.0164 (7)0.0152 (7)0.0144 (6)0.0010 (5)0.0033 (5)0.0004 (5)
S10.01501 (17)0.0262 (2)0.0272 (2)0.00084 (14)0.01044 (14)0.00874 (15)
N20.0178 (6)0.0167 (6)0.0136 (6)0.0006 (5)0.0070 (5)0.0013 (5)
C20.0151 (6)0.0137 (6)0.0135 (6)0.0023 (5)0.0033 (5)0.0004 (5)
S20.02135 (18)0.02055 (18)0.01625 (17)0.00594 (13)0.01250 (14)0.00563 (13)
O110.0125 (5)0.0164 (5)0.0145 (5)0.0014 (4)0.0092 (4)0.0033 (4)
N110.0127 (5)0.0132 (5)0.0130 (5)0.0007 (4)0.0067 (4)0.0018 (4)
C110.0170 (7)0.0187 (7)0.0139 (6)0.0007 (6)0.0051 (5)0.0004 (5)
C120.0149 (7)0.0213 (7)0.0181 (7)0.0022 (6)0.0060 (5)0.0009 (6)
C130.0162 (7)0.0206 (7)0.0181 (7)0.0010 (6)0.0087 (6)0.0031 (6)
C140.0206 (7)0.0212 (7)0.0152 (7)0.0013 (6)0.0092 (6)0.0008 (6)
C150.0183 (7)0.0173 (7)0.0145 (6)0.0017 (6)0.0063 (5)0.0021 (5)
C160.0216 (8)0.0459 (11)0.0242 (8)0.0054 (7)0.0143 (7)0.0012 (7)
O210.0154 (5)0.0180 (5)0.0130 (5)0.0007 (4)0.0052 (4)0.0017 (4)
C210.0169 (7)0.0196 (7)0.0165 (7)0.0011 (6)0.0067 (6)0.0039 (6)
C220.0225 (8)0.0266 (9)0.0263 (8)0.0042 (6)0.0088 (7)0.0098 (6)
Geometric parameters (Å, º) top
Co1—N12.0472 (13)C13—C141.393 (2)
Co1—N22.0569 (12)C13—C161.501 (2)
Co1—S2i2.5171 (4)C14—H140.9500
Co1—O112.0971 (10)C14—C151.375 (2)
Co1—O11ii2.1594 (10)C15—H150.9500
Co1—O212.1559 (10)C16—H16A0.9800
N1—C11.158 (2)C16—H16B0.9800
C1—S11.6438 (15)C16—H16C0.9800
N2—C21.158 (2)O21—H210.815 (16)
C2—S21.6498 (15)O21—C211.4437 (17)
O11—N111.3557 (15)C21—H21A0.9900
N11—C111.3454 (19)C21—H21B0.9900
N11—C151.3477 (18)C21—C221.509 (2)
C11—H110.9500C22—H22A0.9800
C11—C121.379 (2)C22—H22B0.9800
C12—H120.9500C22—H22C0.9800
C12—C131.394 (2)
N1—Co1—N2110.80 (5)C13—C12—H12119.8
N1—Co1—S2i90.75 (4)C12—C13—C16121.15 (14)
N1—Co1—O11ii160.49 (5)C14—C13—C12117.39 (14)
N1—Co1—O1189.92 (4)C14—C13—C16121.46 (14)
N1—Co1—O2182.55 (5)C13—C14—H14119.5
N2—Co1—S2i85.67 (4)C15—C14—C13120.97 (14)
N2—Co1—O11ii88.01 (4)C15—C14—H14119.5
N2—Co1—O11158.96 (5)N11—C15—C14119.46 (14)
N2—Co1—O2186.53 (5)N11—C15—H15120.3
O11—Co1—S2i98.02 (3)C14—C15—H15120.3
O11ii—Co1—S2i95.96 (3)C13—C16—H16A109.5
O11—Co1—O11ii71.03 (4)C13—C16—H16B109.5
O11—Co1—O2192.89 (4)C13—C16—H16C109.5
O21—Co1—S2i167.20 (3)H16A—C16—H16B109.5
O21—Co1—O11ii93.90 (4)H16A—C16—H16C109.5
C1—N1—Co1163.29 (12)H16B—C16—H16C109.5
N1—C1—S1178.79 (14)Co1—O21—H21103.2 (17)
C2—N2—Co1166.81 (12)C21—O21—Co1124.02 (9)
N2—C2—S2178.99 (14)C21—O21—H21107.9 (17)
C2—S2—Co1iii100.98 (5)O21—C21—H21A109.6
Co1—O11—Co1ii108.96 (4)O21—C21—H21B109.6
N11—O11—Co1122.53 (8)O21—C21—C22110.31 (12)
N11—O11—Co1ii122.99 (8)H21A—C21—H21B108.1
C11—N11—O11119.16 (12)C22—C21—H21A109.6
C11—N11—C15121.87 (12)C22—C21—H21B109.6
C15—N11—O11118.97 (12)C21—C22—H22A109.5
N11—C11—H11120.1C21—C22—H22B109.5
N11—C11—C12119.79 (13)C21—C22—H22C109.5
C12—C11—H11120.1H22A—C22—H22B109.5
C11—C12—H12119.8H22A—C22—H22C109.5
C11—C12—C13120.49 (14)H22B—C22—H22C109.5
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···S2iv0.952.953.4900 (15)118
C11—H11···O210.952.573.2004 (18)124
C12—H12···S1v0.952.963.8544 (16)157
O21—H21···S1iii0.82 (2)2.53 (2)3.3028 (11)159 (2)
C22—H22C···S2vi0.982.933.7185 (18)138
Symmetry codes: (iii) x, y+1/2, z+1/2; (iv) x+1, y+1/2, z+3/2; (v) x+2, y+1, z+1; (vi) x+1, y+1, z+2.
 

Acknowledgements

This work was supported by the State of Schleswig-Holstein.

References

First citationBöhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 5325–5338.  Web of Science PubMed Google Scholar
First citationBöhme, M., Rams, M., Krebs, C., Mangelsen, S., Jess, I., Plass, W. & Näther, C. (2022). Inorg. Chem. 61, 16841–16855.  Web of Science PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMaji, T. K., Laskar, I. R., Mostafa, G., Welch, A. J., Mukherjee, P. S. & Chaudhuri, N. E. (2001). Polyhedron, 20, 651–655.  Web of Science CSD CrossRef CAS Google Scholar
First citationMarsh, R. E. (2009). Acta Cryst. B65, 782–783.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMautner, F. E., Berger, C., Fischer, R. C., Massoud, S. S. & Vicente, R. (2018a). Polyhedron, 141, 17–24.  Web of Science CSD CrossRef CAS Google Scholar
First citationMautner, F. E., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massound, S. S. (2018b). Polyhedron, 154, 436–442.  CSD CrossRef CAS Google Scholar
First citationNäther, C. & Jess, I. (2023). Acta Cryst. E79, 302–307.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNäther, C. & Jess, I. (2024a). Acta Cryst. E80, 174–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNäther, C. & Jess, I. (2024b). Acta Cryst. E80, 481–485.  CSD CrossRef IUCr Journals Google Scholar
First citationNäther, C. & Jess, I. (2024c). Acta Cryst. E80, 67–71.  CSD CrossRef IUCr Journals Google Scholar
First citationNäther, C. & Jess, I. (2024d). Acta Cryst. E80, 463–467.  CSD CrossRef IUCr Journals Google Scholar
First citationNeumann, T., Ceglarska, M., Rams, M., Germann, L. Z., Dinnebier, R. E., Suckert, S., Jess, I. & Näther, C. (2018). Inorg. Chem. 57, 3305–3314.  CSD CrossRef CAS PubMed Google Scholar
First citationPalion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 56, 2380–2388.  Google Scholar
First citationRams, M., Böhme, M., Kataev, V., Krupskaya, Y., Büchner, B., Plass, W., Neumann, T., Tomkowicz, Z. & Näther, C. (2017a). Phys. Chem. Chem. Phys. 19, 24534–24544.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837–2851.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017b). Phys. Chem. Chem. Phys. 19, 3232–3243.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, J. M., Chen, J. N., Wu, C. J. & Ma, J. P. (2007b). J. Coord. Chem. 60, 2009–2013.  Web of Science CSD CrossRef CAS Google Scholar
First citationShi, J. M., Li, W. N., Zhang, F. X., Zhang, X. & Liu, L. D. (2007a). Chin. J. Struct. Chem. 26, 118–121.  CAS Google Scholar
First citationShi, J. M., Liu, Z., Lu, J. J. & Liu, L. D. (2005). Acta Cryst. E61, m1133–m1134.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShi, J. M., Liu, Z., Wu, C. J., Xu, H. Y. & Liu, L. D. (2006c). J. Coord. Chem. 59, 1883–1889.  Web of Science CSD CrossRef CAS Google Scholar
First citationShi, J. M., Sun, Y. M., Liu, Z. & Liu, L. D. (2006b). Chem. Phys. Lett. 418, 84–89.  Web of Science CSD CrossRef CAS Google Scholar
First citationShi, J. M., Sun, Y. M., Liu, Z., Liu, L. D., Shi, W. & Cheng, P. (2006d). Dalton Trans. 376–380.pp.  CSD CrossRef Google Scholar
First citationShi, J.-M., Xu, H.-Y. & Liu, L.-D. (2006e). Acta Cryst. E62, m1577–m1578.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShi, J. M. L., Liu, Z., Sun, Y. M., Yi, L. & Liu, L. D. (2006a). Chem. Phys. 325, 237–242.  Web of Science CSD CrossRef CAS Google Scholar
First citationSuckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190–18201.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, S.-G., Li, W.-N. & Shi, J.-M. (2006a). Acta Cryst. E62, m3506–m3608.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, S.-G., Li, W.-N. & Shi, J.-M. (2006b). Acta Cryst. E62, m3398–m3400.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, S.-G. & Shi, J.-M. (2007). Acta Cryst. E63, m1775–m1776.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds