research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis, DFT optimized mol­ecular structure and the mol­ecular docking studies of 1-[2-(cyano­sulfan­yl)acet­yl]-3-methyl-2,6-bis­­(4-methyl­phen­yl)piperidin-4-one

crossmark logo

aDepartment of Chemistry, Annamalai University, Annamalainagar, Chidambaram 608 002, India, bDepartment of Chemistry, Annamalai University, Annamalainagar, Chidambaram 608 002, PG & Research Department of Chemistry, Government Arts College, Chidambaram 608 102, India, and cPG & Research Department of Physics, Government Arts College, Melur 625 106, India
*Correspondence e-mail: tvschemau@gmail.com

Edited by F. Di Salvo, University of Buenos Aires, Argentina (Received 10 June 2024; accepted 27 August 2024; online 12 September 2024)

The two mol­ecules in the asymmetric unit of the title compound, C23H24N2O2S, have a structural overlap with an r.m.s. deviation of 0.82 Å. The piperidine rings adopt a distorted boat conformation. Intra- and inter­molecular C—H⋯O hydrogen bonds are responsible for the cohesion of the crystal packing. The inter­molecular inter­actions were qu­anti­fied and analysed using Hirshfeld surface analysis. The mol­ecular structure optimized by density functional theory (DFT) at the B3LYP/6–311++G(d,p)level is compared with the experimentally determined mol­ecular structure in the solid state.

1. Chemical context

Organic thio­cyanates (RSCN) are important synthetic inter­mediates for accessing various valuable sulfur-containing compounds. They belong to the chemical class of organic chalcogen-cyanates (RX—CRN), in which the heteroatom X (i.e. O, S, Se, Te) is attached by a single bond to the organic substituent (alkyl, ar­yl⋯) and by another one to the CN group. As a result of the specific reactivity of the XCN function (particularly when acting as a leaving group), these compounds are often considered organic pseudohalides (Castanheiro et al., 2016[Castanheiro, T., Suffert, J., Donnard, M. & Gulea, M. (2016). Chem. Soc. Rev. 45, 494-505.]; Chen et al., 2022[Chen, H., Shi, X., Liu, X. & Zhao, L. (2022). Org. Biomol. Chem. 20, 6508-6527.]). Organic thio­cyanates exhibit a wide spectrum of biological activities such as anti­proliferative (Kumar et al., 2014[Kumar, S., Gopalakrishnan, V., Hegde, M., Rana, V., Dhepe, S. S., Ramareddy, S. A., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Srivastava, M., Raghavan, S. C. & Karki, S. S. (2014). Bioorg. Med. Chem. Lett. 24, 4682-4688.]), anti­cancer (Krishnegowda et al., 2011[Krishnegowda, G., Prakasha Gowda, A. S., Tagaram, H. R. S., Carroll, K. F. S., Irby, R. B., Sharma, A. K. & Amin, S. (2011). Bioorg. Med. Chem. 19, 6006-6014.]), cytotoxic (Noolvi et al., 2011[Noolvi, M. N., Patel, H. M., Singh, N., Gadad, A. K., Cameotra, S. S. & Badiger, A. (2011). Eur. J. Med. Chem. 46, 4411-4418.]), the causative agent of Chagas' disease (Liñares et al., 2007[Liñares, G. G., Gismondi, S., Codesido, N. O., Moreno, S. N., Docampo, R. & Rodriguez, J. B. (2007). Bioorg. Med. Chem. Lett. 17, 5068-5071.]) and treatment of leishmanial infections (Cottrell et al., 2004[Cottrell, D. M., Capers, J., Salem, M. M., DeLuca-Fradley, K., Croft, S. L. & Werbovetz, K. A. (2004). Bioorg. Med. Chem. 12, 2815-2824.]).

[Scheme 1]

In view of the importance of such compounds, we have undertaken a single-crystal X-ray diffraction study of the title compound and the results are presented here. In addition, DFT, Hirshfeld surface and mol­ecular docking studies were carried out to determine the electronic properties, inter­molecular contacts and protein–ligand inter­actions of the compound.

2. Structural commentary

The mol­ecular structure of the title compound, (I)[link], is illus­trated in Fig. 1[link]. There are two mol­ecules in the asymmetric unit, A and B. Fig. 2[link] shows a superposition of the two mol­ecules except for O1 (due to disorder of this atom in molecule B) using Qmol (Gans & Shalloway, 2001[Gans, J. D. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557-559.]); the r.m.s. deviation is 0.82 Å. The two methyl­phenyl rings in mol­ecule A are oriented at a dihedral angle of 74.6 (1)°. The methyl atoms C13 and C20 in mol­ecule A deviate by −0.043 (1) and 0.018 (1) Å, respectively, from the ring to which they are attached. The two methyl­phenyl rings in mol­ecule B subtend a dihedral angle of 68.0 (1)°. The methyl atoms C13 and C20 in mol­ecule B deviate by −0.013 (1) and 0.035 (1) Å, respectively, from the ring to which they are attached. The piperidine rings (N1/C1–C5) in both mol­ecules A and B have a distorted boat conformation, with puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) q2 = QT = 0.669 (1) Å and θ = 90.6 (1)° (mol­ecule A) and q2 = QT = 0.676 (1) Å and θ = 92.5 (1)° (mol­ecule B). An intra­molecular C—H⋯O contact leads to the stabilization of the mol­ecular conformation in both A and B (Fig. 1[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1A—H1A⋯O2A 0.98 2.22 2.706 (5) 109
C1B—H1B⋯O2B 0.98 2.20 2.697 (6) 110
C5A—H5A⋯O2Bi 0.98 2.40 3.345 (5) 161
C5B—H5B⋯O2Aii 0.98 2.51 3.458 (5) 163
C22A—H22B⋯O2Bi 0.97 2.24 3.162 (5) 159
C22B—H22D⋯O2Aii 0.97 2.34 3.293 (5) 166
Symmetry codes: (i) [-x, -y+1, -z+1]; (ii) [-x+1, -y+1, -z+1].
[Figure 1]
Figure 1
A view of the mol­ecular structure of compound (I)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. Intra­molecular hydrogen bonds are shown as dashed lines.
[Figure 2]
Figure 2
Superposition of mol­ecule A (purple) and mol­ecule B (brown) in compound (I)[link] except for O1.

3. Supra­molecular features

In the crystal of compound (I)[link], mol­ecules A associate with B mol­ecules via C—H⋯O inter­actions (C5A—H5A⋯O2Bi and C22A—H22B⋯O2Bi; Table 1[link]) propagating along [110] in an anti-parallel manner, see Fig. 3[link]. Similarly, B mol­ecules associate with A mol­ecules via C—H⋯O inter­actions (C5B—H5B⋯O2Aii and C22B—H22D⋯O2Aii, Table 1[link]) propagating along [110] in an anti-parallel manner; see Fig. 4[link]. Atoms O2A and O2B act as bifurcated acceptors for these inter­molecular inter­actions.

[Figure 3]
Figure 3
The crystal packing of the title compound (I)[link] viewed down the a axis. The C—H⋯O inter­molecular inter­actions are shown as dashed lines. For clarity H atoms not involved in these hydrogen bonds have been omitted.
[Figure 4]
Figure 4
The crystal packing of the title compound (I)[link] showing C—H⋯O inter­molecular inter­actions as dashed lines. For clarity H atoms not involved in these hydrogen bonds have been omitted.

4. Hirshfeld surface analysis

To further characterize the inter­molecular inter­actions in the title compound, we carried out a Hirshfeld surface (HS) analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) using Crystal Explorer 21 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) and generated the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). The HS mapped over dnorm in the range −0.3611 to +1.5697 a.u. is illustrated in Fig. 5[link], using colours to indicate contacts that are shorter (red areas), equal to (white areas), or longer than (blue areas) the sum of the van der Waals radii (Ashfaq et al., 2021[Ashfaq, M., Tahir, M. N., Muhammad, S., Munawar, K. S., Ali, A., Bogdanov, G. & Alarfaji, S. S. (2021). ACS Omega, 6, 31211-31225.]).

[Figure 5]
Figure 5
A view of the Hirshfeld surface mapped over dnorm.

The two-dimensional fingerprint plots provide qu­anti­tative information about the non-covalent inter­actions and the crystal packing in terms of the percentage contribution of the inter­atomic contacts (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]; Ashfaq et al., 2021[Ashfaq, M., Tahir, M. N., Muhammad, S., Munawar, K. S., Ali, A., Bogdanov, G. & Alarfaji, S. S. (2021). ACS Omega, 6, 31211-31225.]). The overall two-dimensional fingerprint plot is shown in Fig. 6[link]a. The HS analysis reveals that H⋯H (53.7%) and H⋯O/O⋯H (15.6%) contacts are the main contributors to the crystal packing, followed by H⋯C/C⋯H (13.3%), N⋯H/H⋯N (9.4%) and H⋯S/S⋯H (4.2%) contacts; see Fig. 6[link]bf. The HS analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯O/O⋯H and H⋯C/C⋯H inter­actions suggest that van der Waals and C—H⋯O hydrogen-bonding inter­actions in the structure play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]). The fragment patches on the HS provide an easy way to investigate the nearest neighbour coordination environment of a mol­ecule (coordination number), which is 23.

[Figure 6]
Figure 6
Two-dimensional fingerprint plots for the compound (I)[link], showing (a) all inter­actions, and delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) C⋯H/H⋯C, (e) N⋯H/H⋯N and (f) S⋯H/H⋯S inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

5. DFT Studies

The optimized structure of (I)[link] in the gas phase was computed using DFT at the B3LYP/6-311++ G(d,p) level of theory with Gaussian 09W (Frisch, 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian Inc., Wallingford, CT, USA.]), and GaussView 5.0 was used to generate the optimized structure (Fig. 7[link]), the HOMO and LUMO (Fig. 8[link]) and the MEP surface (Fig. 9[link]). The optimized structure reveals the conformation of the piperidine ring of (I)[link] as a distorted boat in the gas phase, which is concordant with the findings obtained from the SC-XRD (solid state) study. Comparison of theoretical bond parameters with those obtained from the diffraction study show the consistency between them (Table 2[link]).

Table 2
Selected bond distances, bond angles and torsion angles (Å, °) and theoretical (DFT) calculations of mol­ecules A and B

Parameter Mol­ecule A Mol­ecule B DFT
S1—C22 1.802 (4) 1.785 (4) 1.857
S1—C23 1.670 (6) 1.660 (7) 1.698
N2—C23 1.133 (6) 1.149 (7) 1.16
O2—C21 1.221 (5) 1.226 (5) 1.21
N1—C21 1.357 (5) 1.350 (5) 1.225
O1—C3 1.206 (6) 1.25 (2) 1.371
O2—C21—N1 122.8 (4) 122.3 (4) 122.918
O1—C3—C4 122.1 (6) 124.8 (12) 122.429
N2—C23—S1 177.9 (5) 177.2 (6) 178.413
N1—C21—C22 116.9 (4) 119.1 (4) 119.705
C21—C22—S1 114.3 (3) 106.7 (3) 111.057
C3—C4—C5—C14 −173.2 (4) −174.4 (4) −170.027
C7—C1—C2—C3 78.6 (5) 74.5 (6) 74.64
C3—C4—C5—N1 −46.7 (5) −47.4 (5) −44.249
N1—C1—C2—C3 −47.9 (5) −53.2 (7) −54.725
O1—C3—C4—C5 −132.8 (6) −114 (4) −145.373
C1—C2—C3—O1 −178.3 (5) 168 (3) −164.24
O1—C3—C4—C6 −7.6 (7) 12 (4) −17.713
C6—C4—C5—N1 −171.0 (4) −173.6 (5) −171.39
[Figure 7]
Figure 7
DFT optimized structure of (I)[link].
[Figure 8]
Figure 8
Frontier mol­ecular orbital structure of (I)[link].
[Figure 9]
Figure 9
Mol­ecular electrostatic potential surface of (I)[link].

The frontier mol­ecular orbitals HOMO and LUMO of compound (I)[link] were computed using DFT [B3LYP/6-311++ G(d,p) method]. The calculated energies of the HOMO and LUMO are −6.8050 and −1.6463 eV, respectively. The energy gap ΔE is 5.1587 eV. The value of ΔE can also be utilized to understand the biological activity (Behzadi et al., 2015[Behzadi, H., Roonasi, P., Assle taghipour, K., van der Spoel, D. & Manzetti, S. (2015). J. Mol. Struct. 1091, 196-202.]; Gülseven Sidir et al., 2011[Gülseven Sidir, Y., Sidir, İ., Taşal, E. & Öğretir, C. (2011). Int. J. Quantum Chem. 111, 3616-3629.]), i.e., lower toxicity, longer half-life and sustained activity can be correlated and understood from the value of ΔE. Therefore, compound (I)[link] with ΔE = 5.1587 eV is expected to have a pronounced biological influence with minimum side effects.

The MEP surface of the optimized structure of (I)[link] is depicted in Fig. 9[link]. Nucleophilic and electrophilic reactive sites of the mol­ecule are represented by red- and blue-coloured regions on the MEP surface. In the MEP surface of (I)[link], the red colour covers both carbonyl oxygen atoms and the nitro­gen atom of the thio­cyanate group, revealing their sensitivity towards nucleophilic attack. The pale-blue colour spread over the phenyl rings indicates weak electrophilic sites. The existence of these areas on the MEP surface predicts the favourable inter­action sites of the mol­ecule (towards chemical reactions and binding sites for targeted biological entities (Rathi et al., 2020[Rathi, P. C., Ludlow, R. F. & Verdonk, M. L. (2020). J. Med. Chem. 63, 8778-8790.]).

6. Mol­ecular docking studies

Among the numerous life-threatening types of cancers, multiple reports have emphasized that more than one in ten new cancer cases diagnosed in women worldwide are identified as breast cancer. The development and progression of breast cancer can be controlled by targeting ERα receptors, as these receptors only get activated when they get bound with estradiol, an estrogen hormone. Drugs like tamoxifen and doxorubicin bind to ER and block the action of estrogen, thus inhibiting the action of these receptors and thereby cancerous growth (Li et al., 2011[Li, M.-J., Greenblatt, H. M., Dym, O., Albeck, S., Pais, A., Gunanathan, C., Milstein, D., Degani, H. & Sussman, J. L. (2011). J. Med. Chem. 54, 3575-3580.]).

The human estrogen receptor is a type of nuclear receptor with a PDB ID: 3ERT that was chosen for the present docking study to explore the anti­cancer potency of the title compound (I)[link]. Mol­ecular docking by AutoDock tools (Huey et al., 2012[Huey, R., Morris, G. M. & Forli, S. (2012). The Scripps Research Institute Molecular Graphics Laboratory, La Jolla, California, USA.]; Ferreira et al., 2015[Ferreira, L. G., Dos Santos, R. N., Oliva, G. & Andricopulo, A. D. (2015). Molecules, 20, 13384-13421.]) was used to predict the binding efficiency of ligand mol­ecule (I)[link] with the target protein (3ERT) (Fig. 10[link]). To compare the efficacy of the mol­ecule under study, its binding affinity was also compared with those of two standard drugs, viz., tamoxifen and doxorubicin whose binding energies were calculated by adopting similar procedure as that for the title compound. Surprisingly, the binding affinity of the title compound (I)[link] towards 3ERT (−9.11 kcal mol−1) is comparable with that of tamoxifen (−8.02 kcal mol−1) and doxorubicin (−10.02 kcal mol−1). Among the several inter­actions of the ligand (I)[link] with the target protein, the conventional hydrogen-bonding inter­actions seen between three moieties, i.e., two carbonyl oxygen atoms and the nitro­gen atom of the thio­cyanato group with three different amino acid groups (CYS A:530, LEU A:536, TRP A:383) attracts inter­est because the MEP surface diagram (Fig. 9[link]) also highlights these three areas of the mol­ecule as electron-rich centres that are vulnerable sites for nucleophilic attacks, which is emphasized by the docking at these sites.

[Figure 10]
Figure 10
Two- and three-dimensional inter­actions of the title compound (ligand) with amino acid residues with distances in Å.

7. Synthesis and crystallization

Compound (I)[link] was synthesized by adopting the procedure previously reported by us (Pillai et al., 2016[Pillai, M. V., Rajeswari, K., Kumar, C. U., Ramalingan, C., Manohar, A. & Vidhyasagar, T. (2016). Phosphorus Sulfur Silicon, 191, 1209-1215.]). The solid product was collected, washed and recrystallized from methanol to obtain the pure product.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were placed in idealized positions and allowed to ride on their parent atoms: C—H = 0.93–0.98 Å, with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms. Atom O1 in mol­ecule B is disordered over two positions, with the occupancy of the major component being 0.58 (12).

Table 3
Experimental details

Crystal data
Chemical formula C23H24N2O2S
Mr 392.50
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 300
a, b, c (Å) 9.3404 (6), 13.1888 (9), 17.4549 (11)
α, β, γ (°) 79.515 (2), 87.981 (2), 88.516 (2)
V3) 2112.6 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.17
Crystal size (mm) 0.20 × 0.15 × 0.11
 
Data collection
Diffractometer Bruker APEXII CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 43593, 7726, 3914
Rint 0.068
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.077, 0.242, 1.05
No. of reflections 7726
No. of parameters 515
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.64, −0.37
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

1-[2-(Cyanosulfanyl)acetyl]-3-methyl-2,6-bis(4-methylphenyl)piperidin-4-one top
Crystal data top
C23H24N2O2SZ = 4
Mr = 392.50F(000) = 832
Triclinic, P1Dx = 1.234 Mg m3
a = 9.3404 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.1888 (9) ÅCell parameters from 8307 reflections
c = 17.4549 (11) Åθ = 2.4–19.2°
α = 79.515 (2)°µ = 0.17 mm1
β = 87.981 (2)°T = 300 K
γ = 88.516 (2)°Block, yellow
V = 2112.6 (2) Å30.20 × 0.15 × 0.11 mm
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.068
φ and ω scansθmax = 25.4°, θmin = 1.8°
43593 measured reflectionsh = 1111
7726 independent reflectionsk = 1515
3914 reflections with I > 2σ(I)l = 2121
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.077H-atom parameters constrained
wR(F2) = 0.242 w = 1/[σ2(Fo2) + (0.1031P)2 + 1.1564P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
7726 reflectionsΔρmax = 0.64 e Å3
515 parametersΔρmin = 0.37 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S1A0.12113 (14)0.61899 (9)0.46084 (6)0.0789 (4)
O1A0.0429 (5)0.6285 (4)0.0388 (3)0.164 (2)
O2A0.2923 (3)0.6402 (2)0.31469 (18)0.0869 (9)
N1A0.1540 (3)0.5582 (2)0.24215 (18)0.0591 (8)
N2A0.0045 (6)0.8171 (4)0.4120 (3)0.1205 (17)
C1A0.2541 (5)0.5883 (3)0.1739 (2)0.0744 (12)
H1A0.3188340.6389100.1878250.089*
C2A0.1661 (6)0.6452 (4)0.1057 (3)0.0937 (16)
H2A10.1403580.7133770.1157560.112*
H2A20.2262710.6538990.0586510.112*
C3A0.0341 (6)0.5933 (4)0.0916 (3)0.0928 (15)
C4A0.0012 (5)0.4954 (3)0.1466 (2)0.0698 (11)
H4A0.0708510.4427920.1354370.084*
C5A0.0179 (4)0.5070 (3)0.2325 (2)0.0560 (10)
H5A0.0608960.5517520.2459270.067*
C6A0.1425 (7)0.4601 (5)0.1327 (3)0.127 (2)
H6A10.1624020.3972020.1683540.190*
H6A20.2128910.5118770.1405240.190*
H6A30.1458870.4481380.0801510.190*
C7A0.3473 (5)0.4970 (4)0.1586 (2)0.0716 (12)
C8A0.3551 (6)0.4589 (5)0.0907 (3)0.0966 (16)
H8A0.3011940.4905170.0488550.116*
C9A0.4411 (6)0.3745 (5)0.0828 (3)0.1048 (17)
H9A0.4430010.3506440.0358170.126*
C10A0.5240 (5)0.3248 (4)0.1421 (3)0.0887 (14)
C11A0.5194 (5)0.3648 (4)0.2101 (3)0.0839 (14)
H11A0.5754620.3339860.2512520.101*
C12A0.4335 (5)0.4495 (4)0.2185 (2)0.0754 (12)
H12A0.4335390.4748610.2648640.090*
C13A0.6155 (7)0.2313 (5)0.1340 (4)0.133 (2)
H13A0.6650080.2078300.1814900.200*
H13B0.5558110.1774070.1237560.200*
H13C0.6840400.2489800.0917130.200*
C14A0.0006 (4)0.4026 (3)0.2839 (2)0.0518 (9)
C15A0.1263 (4)0.3784 (3)0.3260 (2)0.0588 (10)
H15A0.1971880.4291790.3263090.071*
C16A0.1494 (4)0.2806 (3)0.3674 (2)0.0636 (11)
H16A0.2354230.2667200.3953450.076*
C17A0.0478 (5)0.2032 (3)0.3682 (2)0.0658 (11)
C18A0.0804 (5)0.2273 (3)0.3277 (3)0.0706 (12)
H18A0.1516880.1765840.3285210.085*
C19A0.1045 (4)0.3253 (3)0.2861 (2)0.0647 (11)
H19A0.1915290.3395610.2592680.078*
C20A0.0733 (6)0.0957 (3)0.4132 (3)0.0915 (15)
H20A0.0089250.0524450.4069560.137*
H20B0.0892500.0983090.4674590.137*
H20C0.1559460.0679770.3938030.137*
C21A0.1855 (5)0.5910 (3)0.3088 (2)0.0614 (10)
C22A0.0849 (4)0.5601 (3)0.3784 (2)0.0632 (11)
H22A0.0905300.4857350.3944110.076*
H22B0.0123880.5782290.3625960.076*
C23A0.0510 (5)0.7366 (4)0.4305 (3)0.0786 (13)
S1B0.31199 (16)0.38092 (12)0.54897 (10)0.1127 (6)
O1B'0.566 (3)0.190 (4)0.947 (2)0.113 (12)0.42 (12)
O1B"0.539 (4)0.131 (8)0.970 (3)0.171 (18)0.58 (12)
O2B0.1951 (4)0.3255 (3)0.69262 (19)0.0931 (10)
N1B0.3482 (3)0.2068 (3)0.7563 (2)0.0683 (9)
N2B0.5088 (7)0.3965 (5)0.4222 (3)0.138 (2)
C1B0.2562 (5)0.1995 (4)0.8278 (3)0.0818 (13)
H1B0.1847970.2557150.8172850.098*
C2B0.3475 (6)0.2238 (5)0.8937 (3)0.113 (2)
H2B10.3729670.2959220.8820920.135*
H2B20.2909580.2126340.9420810.135*
C3B0.4784 (7)0.1601 (6)0.9040 (3)0.117 (2)
C4B0.5166 (5)0.0956 (4)0.8439 (3)0.0867 (14)
H4B0.4520760.0369500.8530030.104*
C5B0.4925 (4)0.1539 (3)0.7612 (2)0.0683 (11)
H5B0.5643980.2078520.7498350.082*
C6B0.6656 (7)0.0527 (7)0.8517 (4)0.161 (3)
H6B10.6858940.0119370.8122030.241*
H6B20.7318870.1082730.8457180.241*
H6B30.6750860.0103530.9022420.241*
C7B0.1730 (5)0.1004 (4)0.8438 (3)0.0743 (12)
C8B0.1751 (6)0.0319 (5)0.9134 (3)0.1013 (17)
H8B0.2320600.0448630.9530410.122*
C9B0.0933 (7)0.0562 (5)0.9251 (3)0.1070 (19)
H9B0.0962680.1004070.9731130.128*
C10B0.0078 (6)0.0812 (4)0.8688 (3)0.0907 (15)
C11B0.0082 (5)0.0112 (4)0.7989 (3)0.0859 (14)
H11B0.0468630.0243490.7586130.103*
C12B0.0874 (5)0.0768 (4)0.7876 (3)0.0806 (13)
H12B0.0827610.1220160.7400950.097*
C13B0.0806 (8)0.1760 (5)0.8814 (4)0.131 (2)
H13D0.1317330.1785880.8350430.197*
H13E0.0192570.2359280.8931030.197*
H13F0.1477280.1742850.9241060.197*
C14B0.5181 (4)0.0832 (3)0.7030 (2)0.0600 (10)
C15B0.6424 (5)0.0907 (3)0.6581 (3)0.0725 (12)
H15B0.7057530.1430120.6611860.087*
C16B0.6754 (5)0.0229 (4)0.6087 (3)0.0798 (13)
H16B0.7609800.0297720.5794530.096*
C17B0.5853 (6)0.0543 (4)0.6016 (3)0.0843 (14)
C18B0.4602 (6)0.0629 (4)0.6471 (3)0.0899 (15)
H18B0.3974030.1155460.6440310.108*
C19B0.4262 (5)0.0057 (3)0.6975 (3)0.0755 (12)
H19B0.3413690.0011900.7273320.091*
C20B0.6186 (7)0.1281 (5)0.5459 (3)0.128 (2)
H20D0.5428300.1766450.5492880.192*
H20E0.6270030.0899790.4936080.192*
H20F0.7072040.1643700.5594730.192*
C21B0.3082 (5)0.2761 (4)0.6935 (3)0.0705 (12)
C22B0.4038 (5)0.2918 (4)0.6211 (3)0.0782 (13)
H22C0.4214080.2268510.6034420.094*
H22D0.4949520.3192380.6315570.094*
C23B0.4310 (7)0.3895 (4)0.4752 (4)0.0989 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.1036 (9)0.0730 (8)0.0638 (7)0.0026 (6)0.0158 (6)0.0203 (6)
O1A0.148 (4)0.203 (5)0.109 (3)0.008 (3)0.046 (3)0.066 (3)
O2A0.085 (2)0.088 (2)0.092 (2)0.0289 (19)0.0028 (17)0.0259 (18)
N1A0.069 (2)0.0524 (19)0.0539 (19)0.0043 (16)0.0046 (16)0.0064 (15)
N2A0.190 (5)0.070 (3)0.106 (4)0.007 (3)0.019 (3)0.025 (3)
C1A0.082 (3)0.072 (3)0.064 (3)0.006 (2)0.004 (2)0.000 (2)
C2A0.116 (4)0.084 (3)0.067 (3)0.011 (3)0.011 (3)0.017 (3)
C3A0.096 (4)0.106 (4)0.067 (3)0.019 (3)0.006 (3)0.007 (3)
C4A0.072 (3)0.079 (3)0.058 (3)0.010 (2)0.011 (2)0.011 (2)
C5A0.061 (2)0.053 (2)0.053 (2)0.0078 (19)0.0071 (18)0.0064 (18)
C6A0.129 (5)0.160 (6)0.092 (4)0.007 (4)0.022 (4)0.023 (4)
C7A0.069 (3)0.086 (3)0.057 (3)0.005 (2)0.010 (2)0.004 (2)
C8A0.098 (4)0.138 (5)0.053 (3)0.019 (4)0.003 (2)0.017 (3)
C9A0.110 (4)0.142 (5)0.069 (3)0.019 (4)0.004 (3)0.040 (3)
C10A0.083 (3)0.108 (4)0.076 (3)0.013 (3)0.006 (3)0.023 (3)
C11A0.070 (3)0.112 (4)0.071 (3)0.007 (3)0.009 (2)0.017 (3)
C12A0.069 (3)0.099 (4)0.061 (3)0.002 (3)0.001 (2)0.020 (3)
C13A0.136 (5)0.138 (5)0.134 (5)0.040 (4)0.005 (4)0.052 (4)
C14A0.056 (2)0.048 (2)0.053 (2)0.0017 (19)0.0058 (18)0.0139 (18)
C15A0.058 (3)0.058 (3)0.063 (2)0.006 (2)0.006 (2)0.016 (2)
C16A0.068 (3)0.062 (3)0.064 (3)0.010 (2)0.003 (2)0.017 (2)
C17A0.075 (3)0.057 (3)0.065 (3)0.005 (2)0.010 (2)0.008 (2)
C18A0.068 (3)0.056 (3)0.085 (3)0.013 (2)0.012 (2)0.003 (2)
C19A0.059 (3)0.057 (3)0.076 (3)0.006 (2)0.002 (2)0.008 (2)
C20A0.110 (4)0.064 (3)0.094 (3)0.008 (3)0.004 (3)0.005 (3)
C21A0.071 (3)0.047 (2)0.066 (3)0.000 (2)0.002 (2)0.009 (2)
C22A0.076 (3)0.052 (2)0.064 (2)0.005 (2)0.008 (2)0.0151 (19)
C23A0.109 (4)0.059 (3)0.073 (3)0.011 (3)0.003 (3)0.023 (2)
S1B0.1023 (11)0.0932 (10)0.1248 (12)0.0301 (8)0.0101 (9)0.0202 (9)
O1B'0.107 (11)0.17 (3)0.072 (12)0.009 (10)0.014 (8)0.048 (12)
O1B"0.138 (11)0.30 (5)0.095 (13)0.01 (2)0.033 (9)0.08 (2)
O2B0.081 (2)0.088 (2)0.112 (3)0.0324 (19)0.0037 (18)0.0274 (19)
N1B0.058 (2)0.082 (2)0.069 (2)0.0078 (18)0.0014 (18)0.028 (2)
N2B0.140 (5)0.161 (5)0.103 (4)0.019 (4)0.004 (4)0.002 (4)
C1B0.070 (3)0.106 (4)0.074 (3)0.015 (3)0.005 (2)0.033 (3)
C2B0.097 (4)0.173 (6)0.084 (4)0.008 (4)0.003 (3)0.068 (4)
C3B0.099 (4)0.187 (6)0.078 (4)0.007 (4)0.016 (3)0.059 (4)
C4B0.068 (3)0.120 (4)0.073 (3)0.019 (3)0.016 (2)0.021 (3)
C5B0.054 (2)0.079 (3)0.076 (3)0.004 (2)0.003 (2)0.026 (2)
C6B0.123 (5)0.238 (9)0.122 (5)0.059 (6)0.033 (4)0.038 (6)
C7B0.065 (3)0.105 (4)0.053 (3)0.012 (3)0.005 (2)0.017 (3)
C8B0.099 (4)0.138 (5)0.068 (4)0.003 (4)0.003 (3)0.022 (4)
C9B0.125 (5)0.120 (5)0.065 (3)0.028 (4)0.005 (3)0.005 (3)
C10B0.101 (4)0.092 (4)0.074 (3)0.010 (3)0.018 (3)0.006 (3)
C11B0.086 (3)0.102 (4)0.068 (3)0.003 (3)0.001 (2)0.009 (3)
C12B0.080 (3)0.096 (4)0.060 (3)0.002 (3)0.000 (2)0.000 (3)
C13B0.179 (6)0.099 (4)0.110 (5)0.015 (4)0.022 (4)0.002 (4)
C14B0.055 (2)0.059 (2)0.067 (3)0.006 (2)0.008 (2)0.014 (2)
C15B0.069 (3)0.070 (3)0.081 (3)0.006 (2)0.001 (2)0.020 (2)
C16B0.079 (3)0.079 (3)0.080 (3)0.018 (3)0.007 (2)0.016 (3)
C17B0.092 (4)0.079 (3)0.087 (3)0.036 (3)0.025 (3)0.027 (3)
C18B0.087 (4)0.068 (3)0.122 (4)0.007 (3)0.032 (3)0.034 (3)
C19B0.064 (3)0.074 (3)0.091 (3)0.001 (2)0.004 (2)0.021 (3)
C20B0.157 (5)0.114 (4)0.131 (5)0.058 (4)0.052 (4)0.072 (4)
C21B0.069 (3)0.069 (3)0.078 (3)0.007 (2)0.003 (2)0.027 (3)
C22B0.072 (3)0.080 (3)0.084 (3)0.005 (2)0.009 (2)0.017 (3)
C23B0.104 (4)0.083 (4)0.101 (4)0.006 (3)0.003 (3)0.008 (3)
Geometric parameters (Å, º) top
S1A—C23A1.670 (6)S1B—C22B1.785 (4)
S1A—C22A1.802 (4)O1B'—C3B1.25 (2)
O1A—C3A1.206 (6)O1B"—C3B1.29 (4)
O2A—C21A1.221 (5)O2B—C21B1.226 (5)
N1A—C21A1.357 (5)N1B—C21B1.350 (5)
N1A—C5A1.484 (5)N1B—C1B1.481 (5)
N1A—C1A1.490 (5)N1B—C5B1.499 (5)
N2A—C23A1.133 (6)N2B—C23B1.149 (7)
C1A—C7A1.525 (6)C1B—C7B1.515 (7)
C1A—C2A1.538 (6)C1B—C2B1.539 (7)
C1A—H1A0.9800C1B—H1B0.9800
C2A—C3A1.475 (7)C2B—C3B1.463 (8)
C2A—H2A10.9700C2B—H2B10.9700
C2A—H2A20.9700C2B—H2B20.9700
C3A—C4A1.493 (7)C3B—C4B1.494 (7)
C4A—C6A1.475 (7)C4B—C6B1.490 (7)
C4A—C5A1.548 (5)C4B—C5B1.529 (6)
C4A—H4A0.9800C4B—H4B0.9800
C5A—C14A1.510 (5)C5B—C14B1.509 (5)
C5A—H5A0.9800C5B—H5B0.9800
C6A—H6A10.9600C6B—H6B10.9600
C6A—H6A20.9600C6B—H6B20.9600
C6A—H6A30.9600C6B—H6B30.9600
C7A—C8A1.369 (6)C7B—C12B1.371 (6)
C7A—C12A1.389 (6)C7B—C8B1.376 (7)
C8A—C9A1.379 (7)C8B—C9B1.388 (8)
C8A—H8A0.9300C8B—H8B0.9300
C9A—C10A1.373 (7)C9B—C10B1.378 (8)
C9A—H9A0.9300C9B—H9B0.9300
C10A—C11A1.382 (6)C10B—C11B1.389 (7)
C10A—C13A1.508 (7)C10B—C13B1.494 (8)
C11A—C12A1.385 (6)C11B—C12B1.373 (7)
C11A—H11A0.9300C11B—H11B0.9300
C12A—H12A0.9300C12B—H12B0.9300
C13A—H13A0.9600C13B—H13D0.9600
C13A—H13B0.9600C13B—H13E0.9600
C13A—H13C0.9600C13B—H13F0.9600
C14A—C19A1.385 (5)C14B—C19B1.369 (6)
C14A—C15A1.386 (5)C14B—C15B1.374 (5)
C15A—C16A1.377 (5)C15B—C16B1.374 (6)
C15A—H15A0.9300C15B—H15B0.9300
C16A—C17A1.374 (6)C16B—C17B1.364 (7)
C16A—H16A0.9300C16B—H16B0.9300
C17A—C18A1.382 (6)C17B—C18B1.385 (7)
C17A—C20A1.512 (6)C17B—C20B1.515 (7)
C18A—C19A1.383 (6)C18B—C19B1.396 (6)
C18A—H18A0.9300C18B—H18B0.9300
C19A—H19A0.9300C19B—H19B0.9300
C20A—H20A0.9600C20B—H20D0.9600
C20A—H20B0.9600C20B—H20E0.9600
C20A—H20C0.9600C20B—H20F0.9600
C21A—C22A1.512 (5)C21B—C22B1.507 (6)
C22A—H22A0.9700C22B—H22C0.9700
C22A—H22B0.9700C22B—H22D0.9700
S1B—C23B1.660 (7)
C23A—S1A—C22A99.8 (2)C21B—N1B—C1B117.1 (3)
C21A—N1A—C5A122.9 (3)C21B—N1B—C5B122.8 (4)
C21A—N1A—C1A116.7 (3)C1B—N1B—C5B119.0 (3)
C5A—N1A—C1A119.9 (3)N1B—C1B—C7B111.6 (4)
N1A—C1A—C7A111.4 (3)N1B—C1B—C2B108.4 (4)
N1A—C1A—C2A107.9 (3)C7B—C1B—C2B117.5 (4)
C7A—C1A—C2A116.9 (4)N1B—C1B—H1B106.2
N1A—C1A—H1A106.7C7B—C1B—H1B106.2
C7A—C1A—H1A106.7C2B—C1B—H1B106.2
C2A—C1A—H1A106.7C3B—C2B—C1B112.5 (4)
C3A—C2A—C1A115.0 (4)C3B—C2B—H2B1109.1
C3A—C2A—H2A1108.5C1B—C2B—H2B1109.1
C1A—C2A—H2A1108.5C3B—C2B—H2B2109.1
C3A—C2A—H2A2108.5C1B—C2B—H2B2109.1
C1A—C2A—H2A2108.5H2B1—C2B—H2B2107.8
H2A1—C2A—H2A2107.5O1B'—C3B—C2B113.5 (15)
O1A—C3A—C2A121.7 (5)O1B"—C3B—C2B124.3 (12)
O1A—C3A—C4A122.1 (6)O1B'—C3B—C4B124.8 (12)
C2A—C3A—C4A116.2 (4)O1B"—C3B—C4B115 (3)
C6A—C4A—C3A110.3 (4)C2B—C3B—C4B117.7 (5)
C6A—C4A—C5A112.1 (4)C6B—C4B—C3B112.1 (5)
C3A—C4A—C5A111.6 (4)C6B—C4B—C5B111.1 (4)
C6A—C4A—H4A107.6C3B—C4B—C5B112.1 (4)
C3A—C4A—H4A107.6C6B—C4B—H4B107.1
C5A—C4A—H4A107.6C3B—C4B—H4B107.1
N1A—C5A—C14A114.3 (3)C5B—C4B—H4B107.1
N1A—C5A—C4A110.9 (3)N1B—C5B—C14B113.9 (3)
C14A—C5A—C4A108.7 (3)N1B—C5B—C4B110.6 (3)
N1A—C5A—H5A107.5C14B—C5B—C4B110.4 (4)
C14A—C5A—H5A107.5N1B—C5B—H5B107.2
C4A—C5A—H5A107.5C14B—C5B—H5B107.2
C4A—C6A—H6A1109.5C4B—C5B—H5B107.2
C4A—C6A—H6A2109.5C4B—C6B—H6B1109.5
H6A1—C6A—H6A2109.5C4B—C6B—H6B2109.5
C4A—C6A—H6A3109.5H6B1—C6B—H6B2109.5
H6A1—C6A—H6A3109.5C4B—C6B—H6B3109.5
H6A2—C6A—H6A3109.5H6B1—C6B—H6B3109.5
C8A—C7A—C12A117.2 (4)H6B2—C6B—H6B3109.5
C8A—C7A—C1A125.7 (4)C12B—C7B—C8B116.8 (5)
C12A—C7A—C1A117.0 (4)C12B—C7B—C1B119.6 (4)
C7A—C8A—C9A121.5 (5)C8B—C7B—C1B123.6 (5)
C7A—C8A—H8A119.2C7B—C8B—C9B120.8 (5)
C9A—C8A—H8A119.2C7B—C8B—H8B119.6
C10A—C9A—C8A122.1 (5)C9B—C8B—H8B119.6
C10A—C9A—H9A119.0C10B—C9B—C8B122.9 (5)
C8A—C9A—H9A119.0C10B—C9B—H9B118.6
C9A—C10A—C11A116.6 (5)C8B—C9B—H9B118.6
C9A—C10A—C13A122.0 (5)C9B—C10B—C11B115.2 (5)
C11A—C10A—C13A121.4 (5)C9B—C10B—C13B123.0 (5)
C10A—C11A—C12A121.8 (4)C11B—C10B—C13B121.9 (6)
C10A—C11A—H11A119.1C12B—C11B—C10B122.1 (5)
C12A—C11A—H11A119.1C12B—C11B—H11B119.0
C11A—C12A—C7A120.8 (4)C10B—C11B—H11B119.0
C11A—C12A—H12A119.6C7B—C12B—C11B122.2 (5)
C7A—C12A—H12A119.6C7B—C12B—H12B118.9
C10A—C13A—H13A109.5C11B—C12B—H12B118.9
C10A—C13A—H13B109.5C10B—C13B—H13D109.5
H13A—C13A—H13B109.5C10B—C13B—H13E109.5
C10A—C13A—H13C109.5H13D—C13B—H13E109.5
H13A—C13A—H13C109.5C10B—C13B—H13F109.5
H13B—C13A—H13C109.5H13D—C13B—H13F109.5
C19A—C14A—C15A117.6 (3)H13E—C13B—H13F109.5
C19A—C14A—C5A121.9 (3)C19B—C14B—C15B118.3 (4)
C15A—C14A—C5A120.3 (3)C19B—C14B—C5B122.0 (4)
C16A—C15A—C14A121.2 (4)C15B—C14B—C5B119.5 (4)
C16A—C15A—H15A119.4C16B—C15B—C14B121.5 (4)
C14A—C15A—H15A119.4C16B—C15B—H15B119.2
C17A—C16A—C15A121.3 (4)C14B—C15B—H15B119.2
C17A—C16A—H16A119.4C17B—C16B—C15B121.3 (4)
C15A—C16A—H16A119.4C17B—C16B—H16B119.3
C16A—C17A—C18A117.8 (4)C15B—C16B—H16B119.3
C16A—C17A—C20A121.4 (4)C16B—C17B—C18B117.5 (4)
C18A—C17A—C20A120.8 (4)C16B—C17B—C20B121.9 (5)
C17A—C18A—C19A121.2 (4)C18B—C17B—C20B120.6 (5)
C17A—C18A—H18A119.4C17B—C18B—C19B121.4 (5)
C19A—C18A—H18A119.4C17B—C18B—H18B119.3
C18A—C19A—C14A120.8 (4)C19B—C18B—H18B119.3
C18A—C19A—H19A119.6C14B—C19B—C18B119.9 (4)
C14A—C19A—H19A119.6C14B—C19B—H19B120.0
C17A—C20A—H20A109.5C18B—C19B—H19B120.0
C17A—C20A—H20B109.5C17B—C20B—H20D109.5
H20A—C20A—H20B109.5C17B—C20B—H20E109.5
C17A—C20A—H20C109.5H20D—C20B—H20E109.5
H20A—C20A—H20C109.5C17B—C20B—H20F109.5
H20B—C20A—H20C109.5H20D—C20B—H20F109.5
O2A—C21A—N1A122.8 (4)H20E—C20B—H20F109.5
O2A—C21A—C22A120.2 (4)O2B—C21B—N1B122.3 (4)
N1A—C21A—C22A116.9 (4)O2B—C21B—C22B118.5 (4)
C21A—C22A—S1A114.3 (3)N1B—C21B—C22B119.1 (4)
C21A—C22A—H22A108.7C21B—C22B—S1B106.7 (3)
S1A—C22A—H22A108.7C21B—C22B—H22C110.4
C21A—C22A—H22B108.7S1B—C22B—H22C110.4
S1A—C22A—H22B108.7C21B—C22B—H22D110.4
H22A—C22A—H22B107.6S1B—C22B—H22D110.4
N2A—C23A—S1A177.9 (5)H22C—C22B—H22D108.6
C23B—S1B—C22B100.1 (2)N2B—C23B—S1B177.2 (6)
C21A—N1A—C1A—C7A106.1 (4)C21B—N1B—C1B—C2B120.5 (5)
C5A—N1A—C1A—C7A81.7 (4)C5B—N1B—C1B—C2B47.7 (5)
C21A—N1A—C1A—C2A124.2 (4)N1B—C1B—C2B—C3B53.2 (7)
C5A—N1A—C1A—C2A47.9 (5)C7B—C1B—C2B—C3B74.5 (6)
N1A—C1A—C2A—C3A47.9 (5)C1B—C2B—C3B—O1B'168 (3)
C7A—C1A—C2A—C3A78.6 (5)C1B—C2B—C3B—O1B"149 (6)
C1A—C2A—C3A—O1A178.3 (5)C1B—C2B—C3B—C4B9.5 (8)
C1A—C2A—C3A—C4A2.1 (6)O1B'—C3B—C4B—C6B12 (4)
O1A—C3A—C4A—C6A7.6 (7)O1B"—C3B—C4B—C6B32 (5)
C2A—C3A—C4A—C6A172.0 (5)C2B—C3B—C4B—C6B167.8 (6)
O1A—C3A—C4A—C5A132.8 (6)O1B'—C3B—C4B—C5B114 (4)
C2A—C3A—C4A—C5A46.7 (6)O1B"—C3B—C4B—C5B157 (5)
C21A—N1A—C5A—C14A66.4 (4)C2B—C3B—C4B—C5B42.1 (7)
C1A—N1A—C5A—C14A122.0 (3)C21B—N1B—C5B—C14B65.4 (5)
C21A—N1A—C5A—C4A170.3 (3)C1B—N1B—C5B—C14B127.2 (4)
C1A—N1A—C5A—C4A1.4 (4)C21B—N1B—C5B—C4B169.6 (4)
C6A—C4A—C5A—N1A171.0 (4)C1B—N1B—C5B—C4B2.1 (5)
C3A—C4A—C5A—N1A46.7 (5)C6B—C4B—C5B—N1B173.6 (5)
C6A—C4A—C5A—C14A62.5 (5)C3B—C4B—C5B—N1B47.4 (5)
C3A—C4A—C5A—C14A173.2 (4)C6B—C4B—C5B—C14B59.4 (6)
N1A—C1A—C7A—C8A122.0 (5)C3B—C4B—C5B—C14B174.4 (4)
C2A—C1A—C7A—C8A2.8 (7)N1B—C1B—C7B—C12B55.5 (5)
N1A—C1A—C7A—C12A59.1 (5)C2B—C1B—C7B—C12B178.4 (4)
C2A—C1A—C7A—C12A176.2 (4)N1B—C1B—C7B—C8B126.0 (5)
C12A—C7A—C8A—C9A2.2 (7)C2B—C1B—C7B—C8B0.0 (6)
C1A—C7A—C8A—C9A178.9 (5)C12B—C7B—C8B—C9B0.3 (7)
C7A—C8A—C9A—C10A0.4 (9)C1B—C7B—C8B—C9B178.2 (5)
C8A—C9A—C10A—C11A1.3 (8)C7B—C8B—C9B—C10B0.9 (8)
C8A—C9A—C10A—C13A178.7 (6)C8B—C9B—C10B—C11B0.4 (8)
C9A—C10A—C11A—C12A1.2 (7)C8B—C9B—C10B—C13B179.8 (5)
C13A—C10A—C11A—C12A178.8 (5)C9B—C10B—C11B—C12B0.6 (7)
C10A—C11A—C12A—C7A0.6 (7)C13B—C10B—C11B—C12B178.9 (5)
C8A—C7A—C12A—C11A2.2 (7)C8B—C7B—C12B—C11B0.7 (7)
C1A—C7A—C12A—C11A178.7 (4)C1B—C7B—C12B—C11B179.2 (4)
N1A—C5A—C14A—C19A52.6 (5)C10B—C11B—C12B—C7B1.2 (7)
C4A—C5A—C14A—C19A71.9 (4)N1B—C5B—C14B—C19B54.5 (5)
N1A—C5A—C14A—C15A132.6 (3)C4B—C5B—C14B—C19B70.6 (5)
C4A—C5A—C14A—C15A102.8 (4)N1B—C5B—C14B—C15B130.7 (4)
C19A—C14A—C15A—C16A1.2 (5)C4B—C5B—C14B—C15B104.2 (4)
C5A—C14A—C15A—C16A173.8 (3)C19B—C14B—C15B—C16B0.0 (6)
C14A—C15A—C16A—C17A0.3 (6)C5B—C14B—C15B—C16B174.9 (4)
C15A—C16A—C17A—C18A1.7 (6)C14B—C15B—C16B—C17B0.6 (7)
C15A—C16A—C17A—C20A179.6 (4)C15B—C16B—C17B—C18B1.1 (7)
C16A—C17A—C18A—C19A1.6 (6)C15B—C16B—C17B—C20B178.5 (4)
C20A—C17A—C18A—C19A179.7 (4)C16B—C17B—C18B—C19B0.9 (7)
C17A—C18A—C19A—C14A0.1 (6)C20B—C17B—C18B—C19B178.6 (4)
C15A—C14A—C19A—C18A1.3 (6)C15B—C14B—C19B—C18B0.1 (6)
C5A—C14A—C19A—C18A173.6 (4)C5B—C14B—C19B—C18B174.9 (4)
C5A—N1A—C21A—O2A174.1 (3)C17B—C18B—C19B—C14B0.4 (7)
C1A—N1A—C21A—O2A2.2 (5)C1B—N1B—C21B—O2B5.8 (6)
C5A—N1A—C21A—C22A8.5 (5)C5B—N1B—C21B—O2B173.5 (4)
C1A—N1A—C21A—C22A179.6 (3)C1B—N1B—C21B—C22B175.7 (4)
O2A—C21A—C22A—S1A9.6 (5)C5B—N1B—C21B—C22B8.0 (6)
N1A—C21A—C22A—S1A172.9 (3)O2B—C21B—C22B—S1B2.5 (5)
C23A—S1A—C22A—C21A77.3 (3)N1B—C21B—C22B—S1B176.0 (3)
C21B—N1B—C1B—C7B108.6 (4)C23B—S1B—C22B—C21B179.5 (3)
C5B—N1B—C1B—C7B83.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1A—H1A···O2A0.982.222.706 (5)109
C1B—H1B···O2B0.982.202.697 (6)110
C5A—H5A···O2Bi0.982.403.345 (5)161
C5B—H5B···O2Aii0.982.513.458 (5)163
C22A—H22B···O2Bi0.972.243.162 (5)159
C22B—H22D···O2Aii0.972.343.293 (5)166
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1.
Selected bond distances, bond angles and torsion angles (Å, °) and theoretical (DFT) calculations of molecules A and B top
ParameterMolecule AMolecule BDFT
S1—C221.802 (4)1.785 (4)1.857
S1—C231.670 (6)1.660 (7)1.698
N2—C231.133 (6)1.149 (7)1.16
O2—C211.221 (5)1.226 (5)1.21
N1—C211.357 (5)1.350 (5)1.225
O1—C31.206 (6)1.25 (2)1.371
O2—C21—N1122.8 (4)122.3 (4)122.918
O1—C3—C4122.1 (6)124.8 (12)122.429
N2—C23—S1177.9 (5)177.2 (6)178.413
N1—C21—C22116.9 (4)119.1 (4)119.705
C21—C22—S1114.3 (3)106.7 (3)111.057
C3—C4—C5—C14-173.2 (4)-174.4 (4)-170.027
C7—C1—C2—C378.6 (5)74.5 (6)74.64
C3—C4—C5—N1-46.7 (5)-47.4 (5)-44.249
N1—C1—C2—C3-47.9 (5)-53.2 (7)-54.725
O1—C3—C4—C5-132.8 (6)-114 (4)-145.373
C1—C2—C3—O1-178.3 (5)168 (3)-164.24
O1—C3—C4—C6-7.6 (7)12 (4)-17.713
C6—C4—C5—N1-171.0 (4)-173.6 (5)-171.39
Global reactivity parameters of (I) top
Parameters (eV)B3LYP/6311G++(d,p)
Energy (a.u)-1549.3657
Energy-42160.4098
HOMO-6.805
LUMO-1.6463
Energy gap5.1587
Ionization potential (IP)6.805
electron affinity (EA)1.6463
Absolute electronegativity (χ)4.2257
global softness (σ)0.3877
global hardness (η)2.5794
electronic chemical potential (µ)-4.2257
electrophilicity index (ω)6.9227

Footnotes

Additional correspondence author, e-mail: s_selvanayagam@rediffmail.com.

References

First citationAshfaq, M., Tahir, M. N., Muhammad, S., Munawar, K. S., Ali, A., Bogdanov, G. & Alarfaji, S. S. (2021). ACS Omega, 6, 31211–31225.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBehzadi, H., Roonasi, P., Assle taghipour, K., van der Spoel, D. & Manzetti, S. (2015). J. Mol. Struct. 1091, 196–202.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastanheiro, T., Suffert, J., Donnard, M. & Gulea, M. (2016). Chem. Soc. Rev. 45, 494–505.  Web of Science CrossRef CAS PubMed Google Scholar
First citationChen, H., Shi, X., Liu, X. & Zhao, L. (2022). Org. Biomol. Chem. 20, 6508–6527.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCottrell, D. M., Capers, J., Salem, M. M., DeLuca-Fradley, K., Croft, S. L. & Werbovetz, K. A. (2004). Bioorg. Med. Chem. 12, 2815–2824.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerreira, L. G., Dos Santos, R. N., Oliva, G. & Andricopulo, A. D. (2015). Molecules, 20, 13384–13421.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGans, J. D. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557–559.  Web of Science CrossRef CAS Google Scholar
First citationGülseven Sidir, Y., Sidir, İ., Taşal, E. & Öğretir, C. (2011). Int. J. Quantum Chem. 111, 3616–3629.  Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHuey, R., Morris, G. M. & Forli, S. (2012). The Scripps Research Institute Molecular Graphics Laboratory, La Jolla, California, USA.  Google Scholar
First citationKrishnegowda, G., Prakasha Gowda, A. S., Tagaram, H. R. S., Carroll, K. F. S., Irby, R. B., Sharma, A. K. & Amin, S. (2011). Bioorg. Med. Chem. 19, 6006–6014.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKumar, S., Gopalakrishnan, V., Hegde, M., Rana, V., Dhepe, S. S., Ramareddy, S. A., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Srivastava, M., Raghavan, S. C. & Karki, S. S. (2014). Bioorg. Med. Chem. Lett. 24, 4682–4688.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLi, M.-J., Greenblatt, H. M., Dym, O., Albeck, S., Pais, A., Gunanathan, C., Milstein, D., Degani, H. & Sussman, J. L. (2011). J. Med. Chem. 54, 3575–3580.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLiñares, G. G., Gismondi, S., Codesido, N. O., Moreno, S. N., Docampo, R. & Rodriguez, J. B. (2007). Bioorg. Med. Chem. Lett. 17, 5068–5071.  Web of Science PubMed Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationNoolvi, M. N., Patel, H. M., Singh, N., Gadad, A. K., Cameotra, S. S. & Badiger, A. (2011). Eur. J. Med. Chem. 46, 4411–4418.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPillai, M. V., Rajeswari, K., Kumar, C. U., Ramalingan, C., Manohar, A. & Vidhyasagar, T. (2016). Phosphorus Sulfur Silicon, 191, 1209–1215.  Web of Science CrossRef CAS Google Scholar
First citationRathi, P. C., Ludlow, R. F. & Verdonk, M. L. (2020). J. Med. Chem. 63, 8778–8790.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds