research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure, and Hirshfeld surface analysis of 1,3-di­hydro-2H-benzimidazol-2-iminium 3-carb­­oxy-4-hy­dr­oxy­benzene­sulfonate

crossmark logo

aUzbekistan Japan Innovation Center of Youth, University str. 2B, Tashkent, 100095, Uzbekistan, bNational University of Uzbekistan named after Mirzo Ulugbek, University str. 4, Tashkent 100174, Uzbekistan, cUniversity of Geological Sciences, Olimlar str. 64, Tashkent 100125, Uzbekistan, dInstitute of Bioorganic Chemistry of Academy of Sciences of Uzbekistan, Mirzo, Ulug`bek st. 83, Tashkent 100125, Uzbekistan, and eNational University of Uzbekistan named after Mirzo Ulugbek, University str., 4, Tashkent 100174, Uzbekistan
*Correspondence e-mail: salmonmuxammadiyev97@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 4 June 2024; accepted 29 August 2024; online 6 September 2024)

The asymmetric unit of the title salt, C7H8N3+·C7H5O6S, comprises two 1,3-di­hydro-2H-benzimidazol-2-iminium cations and two 2-hy­droxy-5-sulfobenzoate anions (Z′ = 2). In the crystal, the mol­ecules inter­act through N—H⋯O, O—H⋯O hydrogen bonds and C—O⋯π contacts. The hydrogen-bonding inter­actions lead to the formation of layers parallel to ([\overline{1}]01). Hirshfeld surface analysis revealed that H⋯H contacts contribute to most of the crystal packing with 38.9%, followed by H⋯O contacts with 36.2%.

1. Chemical context

The increasing development of benzimidazoles and their derivatives in medicine is still the subject of intensive research due to their diverse biological activities (Suku & Ravindran, 2023[Suku, S. & Ravindran, R. (2023). J. Mol. Struct. 1283, 135217-135228.]). Benzimidazole derivatives have anti­hypertensive, anti­allergic, anti­diabetic, anti-inflammatory, mycobacterial, anti­oxidant, anti­protozoal, anti­viral and anti­microbial effects (Dokla et al., 2020[Dokla, E. M. E., Abutaleb, N. S., Milik, S. N., Li, D., El-Baz, K., Shalaby, M., Al-Karaki, R., Nasr, M., Klein, C. D., Abouzid, K. A. M. & Seleem, M. N. (2020). Eur. J. Med. Chem. 186, 111850-111858.]; Dvornikova et al., 2019[Dvornikova, I. A., Buravlev, E. V., Fedorova, I. V., Shevchenko, O. G., Chukicheva, I. Y. & Kutchin, A. V. (2019). Russ. Chem. Bull. 68, 1000-1005.]; Aboul-Enein & El Rashedy, 2015[Aboul-Enein, H. Y. & El Rashedy, A. A. (2015). Med. Chem. 5, 318-325.]). In addition, benzimidazole derivatives are an important class of chemicals with regard to their activity against several viruses such as HIV, herpes (HSV-1), influenza, Epstein-Barr and Burkitt's lymphoma (Ramla et al., 2007[Ramla, M. M., Omar, A. M., Tokuda, H. & El-Diwani, H. I. (2007). Bioorg. Med. Chem. 15, 6489-6496.]), and their use as anti-cancer agents (Ottanà et al., 2005[Ottanà, R., Carotti, S., Maccari, R., Landini, I., Chiricosta, G., Caciagli, B., Vigorita, G. M. & Mini, E. (2005). Bioorg. Med. Chem. Lett. 15, 3930-3933.]).

5-Sulfosalicylic acid is a particularly strong organic acid, which is capable of protonating N-containing heterocycles and other Lewis bases (Mu­thiah et al., 2003[Muthiah, P. T., Francis, S., Bocelli, G. & Cantoni, A. (2003). Acta Cryst. E59, m1164-m1167.]) and thus can form structures with a variety of supra­molecular arrangements.

[Scheme 1]

The present work was undertaken as part of our research program aimed at further understanding hydrogen-bonding inter­actions involving 2-amino­benzimidazole and 5-sulfo­salicylic acid. Here, we report the synthesis, crystal structure, and Hirshfeld surface analysis of the new organic salt 1,3-di­hydro-2H-benzimidazol-2-iminium 2-hy­droxy-5-sulfobenzoate, C7H8N3+·C7H5O6S.

2. Structural commentary

The asymmetric unit of the title salt (Fig. 1[link]) contains two 1,3-di­hydro-2H-benzimidazol-2-iminium cations and two 2-hy­droxy-5-sulfobenzoate anions (Z′ = 2). The N—C and S—O bond lengths range from 1.318 (2) to 1.394 (2) Å and from 1.4417 (12) to 1.4727 (12) Å, respectively. The O—S—O and N—C—N angles range from 110.60 (7) to 113.71 (8)° and from 109.10 (13) to 125.67 (15)°, respectively (Table 1[link]). Overlays of the two cations and the two anions show that they are almost identical (Figs. S1 and S2 in the ESI), with somewhat greater deviations between the two anions. Analysis of bond lengths and angles shows that these data differ only slightly from those of other related compounds with similar structural units (Saiadali Fathima et al., 2019[Saiadali Fathima, K., Sathiyendran, M. & Anitha, K. (2019). J. Mol. Struct. 1177, 457-468.]; Atria et al., 2012[Atria, A. M., Garland, M. T. & Baggio, R. (2012). Acta Cryst. C68, m185-m188.]; Low et al., 2003[Low, J. N., Cobo, J., Abonia, R., Insuasty, B. & Glidewell, C. (2003). Acta Cryst. C59, o669-o671.]; ESI Table S1).

Table 1
Selected geometric parameters (Å, °)

S1—O3 1.4727 (12) N1—C6 1.3886 (19)
S1—O1 1.4479 (13) N2—C7 1.3350 (19)
S1—O2 1.4417 (12) N2—C5 1.394 (2)
S1—C13 1.7634 (15) N4—C21 1.340 (2)
S2—O7 1.4615 (12) N4—C20 1.391 (2)
S2—O8 1.4455 (12) N5—C21 1.335 (2)
S2—O9 1.4516 (14) N5—C19 1.391 (2)
S2—C22 1.7645 (16) N3—C7 1.322 (2)
N1—C7 1.3390 (19) N6—C21 1.318 (2)
       
O1—S1—O3 110.60 (7) N2—C7—N1 109.10 (13)
O2—S1—O3 111.98 (8) N3—C7—N1 125.51 (14)
O2—S1—O1 113.71 (8) N3—C7—N2 125.39 (15)
O8—S2—O7 111.30 (8) N5—C21—N4 108.91 (14)
O8—S2—O9 113.02 (9) N6—C21—N4 125.42 (15)
O9—S2—O7 111.40 (8) N6—C21—N5 125.67 (15)
[Figure 1]
Figure 1
The structures of the mol­ecular entities in the title salt. Displacement ellipsoids are drawn at the 50% probability level.

An intra­molecular O—H⋯O hydrogen bond between the hy­droxy group and the non-protonated O atom of the carb­oxy group stabilizes the mol­ecular conformation for each of the cations (O4—H4⋯O5; O10—H10⋯O11; Fig. 2[link], Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 2.08 2.8645 (16) 152
N2—H2⋯O9 0.86 2.07 2.8799 (19) 157
N3—H3A⋯O3i 0.86 2.37 3.0153 (19) 132
N3—H3B⋯O4ii 0.86 2.32 3.005 (2) 137
N4—H4B⋯O7 0.86 2.04 2.8760 (17) 163
N5—H5⋯O3 0.86 2.22 3.0331 (18) 158
N6—H6A⋯O2 0.86 2.17 2.877 (2) 140
N6—H6B⋯O8 0.86 2.06 2.845 (2) 152
O4—H4⋯O5 0.82 1.88 2.6007 (17) 147
O6—H6⋯O3iii 0.82 1.89 2.6958 (16) 165
O10—H10⋯O11 0.82 1.90 2.619 (2) 146
O12—H12A⋯O7iii 0.82 1.89 2.6746 (17) 159
Symmetry codes: (i) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x, -y+1, -z+1]; (iii) [x, y+1, z].
[Figure 2]
Figure 2
Crystal packing in a view along the b axis. Inter­molecular N—H⋯O and O—H⋯O inter­actions are shown as light-blue dashed lines and intra­molecular O—H⋯O inter­actions as dark-blue dashed lines.

3. Supra­molecular features

In the crystal, the N atoms of the imidazolium cation form inter­molecular N—H⋯O hydrogen bonds with oxygen atoms of the sulfate group of the two hy­droxy­benzoate anions. Moreover, O—H⋯O inter­actions between the carb­oxy group and one of the sulfonate O atoms are present (Fig. 2[link], Table 2[link]). Additionally, ππ inter­actions between the aromatic rings with centroid-to-centroid distances between 3.5094 (9) and 3.9824 (10) Å (numerical details are given in ESI Table S2) as well as C14=O5⋯Cg4(x, [{1\over 2}] − y, −[{1\over 2}] + z) inter­actions of 3.7089 (19) Å are present (Fig. 3[link]). All of the above contacts contribute to the tri-periodic packing of the mol­ecular entities in the crystal.

[Figure 3]
Figure 3
Inter­actions between aromatic rings in the title salt, leading to ππ stacking between the following ring centroids (Cg) shown as colored spheres: Cg1 (C8–C13, purple sphere); Cg2 (C22–C27, yellow sphere); Cg3 (N1/C5–C7/N2, green sphere); Cg4 (C1–C6, red sphere); Cg6 (N4/C19–C21/N5, black sphere); Cg7 (C15–C20, magenta sphere). The dashed red lines represent C14=O5⋯Cg4 contacts [3.7089 (19) Å].

4. Hirshfeld surface analysis

In order to qu­antify the inter­molecular inter­actions in the title salt, the Hirshfeld surface (HS) (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was analysed and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) calculated with CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The HS mapped over dnorm is represented in Fig. 4[link]. White surface areas indicate contacts with distances equal to the sum of van der Waals radii, whereas red and blue colors denote distances shorter or longer than the sum of the van der Waals radii. The red spots clearly visible in Fig. 4[link] emphasize the importance of classical hydrogen-bonding inter­actions in the title salt. The two-dimensional fingerprint plot for all contacts is depicted in Fig. 5[link]a. H⋯H contacts are responsible for the largest contribution (38.9%) to the Hirshfeld surface (Fig. 5[link]b). Besides these contacts, H⋯O/O⋯H (36.2%), C⋯C (10.2%), H⋯C/C⋯H (5.1%) and O⋯C/C⋯O (3.7%) inter­actions contribute significantly to the total Hirshfeld surface; their decomposed fingerprint plots are shown in Fig. 5[link]cf. The contributions of further contacts are only minor and amount to N⋯C/C⋯N (2.6%), O⋯O (2.1%) and N⋯H/H⋯N (1.1%).

[Figure 4]
Figure 4
HS plotted over dnorm (a) along the a axis, (b) along the b axis and (c) along the c axis.
[Figure 5]
Figure 5
Two-dimensional fingerprint plots for (a) all inter­actions and (b)–(i) individual inter­atomic contacts.

5. Database survey

A survey of the Cambridge Structural Database (CSD, version 5.43, update of November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed 47 hits related to the 2-amino­benzimidazolium cation. Among them are those that form inter­molecular hydrogen bonds like in the title salt: 2-amino­benzimidazolium hydrogen sulfate (DOKZEJ: You et al., 2009[You, W., Fan, Y., Qian, H.-F., Yao, C. & Huang, W. (2009). Acta Cryst. E65, o115.]), 2-amino­benzimidazolium O-ethyl malonate (EMIHAJ: Low et al., 2003[Low, J. N., Cobo, J., Abonia, R., Insuasty, B. & Glidewell, C. (2003). Acta Cryst. C59, o669-o671.]), 2-amino-1H-benzimidazol-3-ium 1,3-dioxo-1,3-di­hydro-2H-isoindol-2-olate 2-hy­droxy-1H-iso­indole-1,3(2H)-dione (EPETOK: Mahendiran et al., 2016[Mahendiran, D., Vinitha, G., Shobana, S., Viswanathan, V., Velmurugan, D. & Rahiman, A. K. (2016). RSC Adv. 6, 60336-60348.]), 2-amino­benzimidazolium picrate (HUZSIE: El-Medani et al., 2003[El-Medani, S. M., Youssef, T. A. & Ramadan, R. M. (2003). J. Mol. Struct. 644, 77-87.]), 2-amino-1H-benzimidazol-3-ium 2-propanamido­benzoat (NUVZIQ: Amor et al., 2020[Amor, A. B. H., Akriche, S., Arfaoui, Y. & Abderrahim, R. (2020). J. Mol. Struct. 1222, 128921-128930.]) and 2-amino-1H-benzimidazol-3-ium pyridine-3-carboxyl­ate (VARCOJ: Fathima et al., 2017[Fathima, K. S., Kavitha, P. & Anitha, K. (2017). J. Mol. Struct. 1143, 444-451.]). Eight hits containing sulfosalicylic acid in related organic salts were identified, among them 5-sulfosalicylic acid thio­urea (ETABAC: Xiong et al., 2003[Xiong, J., Hu, M.-L., Shi, Q. & Xiao, H.-P. (2003). Z. Kristallogr. 218, 565-566.]), 2-hy­droxy-5-sulfo­benzoic acid aniline monohydrate (JUCJOG: Bakasova et al., 1991[Bakasova, Z. B., Abdybaliev, D. A., Sharipov, Kh. T., Akbaev, A. A., Ibragimov, R. T., Talipov, S. A. & Ismankulov, A. I. (1991). Uzb. Khim. Zh. pp. 22-25.]), tris­(benzohydrazido)­cobalt chloride hydroxide 2-hy­droxy-5-sulfo­benzoic acid monohydrate (MOWTAV: Antsyshkina et al., 2014[Antsyshkina, A. S., Koksharova, T. V., Sergienko, V. S., Mandzii, T. V. & Sadikov, G. G. (2014). Russ. J. Inorg. Chem. 59, 1417-1423.]). In all these structures inter­molecular hydrogen bonds are the dominant motif in the crystal packing.

6. Synthesis and crystallization

All reagents for synthesis and analysis were commercially available and purchased from Sigma Aldrich and used as received without further purification.

Sulfosalicylic acid and 2-amino­benzimidazole were reacted in a molar ratio of 1:1, using a solution of 0.133 g of 2-amino­benzimidazole in 5 ml of ethanol that was added dropwise to 0.228 g of the acid dissolved in 5 ml of ethanol. The mixture was stirred on a magnetic stirrer for 4 h. During the reaction time, the color of the solution changed from transparent to light brown. The solution was left for 2 weeks at room temperature for crystal growth. The formed crystals were filtered off and washed several times with ethanol to remove impurities.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were geometrically placed with C—H = 0.93 Å, O—H = 0.82 Å, N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O,N).

Table 3
Experimental details

Crystal data
Chemical formula C7H8N3+·C7H5O6S
Mr 351.33
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 21.03214 (18), 8.61349 (6), 16.69445 (13)
β (°) 102.5549 (8)
V3) 2952.05 (4)
Z 8
Radiation type Cu Kα
μ (mm−1) 2.33
Crystal size (mm) 0.48 × 0.16 × 0.08
 
Data collection
Diffractometer XtaLAB Synergy, Single source at home/near, HyPix3000
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.871, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 29960, 5715, 5051
Rint 0.029
(sin θ/λ)max−1) 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.099, 1.06
No. of reflections 5715
No. of parameters 438
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.36
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

1,3-Dihydro-2H-benzimidazol-2-iminium 3-carboxy-4-hydroxybenzenesulfonate top
Crystal data top
C7H8N3+·C7H5O6SF(000) = 1456
Mr = 351.33Dx = 1.581 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 21.03214 (18) ÅCell parameters from 16513 reflections
b = 8.61349 (6) Åθ = 2.7–71.3°
c = 16.69445 (13) ŵ = 2.33 mm1
β = 102.5549 (8)°T = 293 K
V = 2952.05 (4) Å3Block, light brown
Z = 80.48 × 0.16 × 0.08 mm
Data collection top
XtaLAB Synergy, Single source at home/near, HyPix3000
diffractometer
5715 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source5051 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 10.0000 pixels mm-1θmax = 71.5°, θmin = 4.3°
ω scansh = 2525
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2020)
k = 1010
Tmin = 0.871, Tmax = 1.000l = 2020
29960 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0567P)2 + 0.6854P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.099(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.27 e Å3
5715 reflectionsΔρmin = 0.36 e Å3
438 parametersExtinction correction: SHELXL2016/6 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00055 (7)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.11934 (2)0.24229 (4)0.55062 (2)0.03300 (11)
S20.34651 (2)0.27387 (4)0.95601 (2)0.03508 (12)
O30.15655 (6)0.14053 (13)0.50668 (7)0.0400 (3)
O40.01170 (6)0.66757 (14)0.29142 (7)0.0440 (3)
H40.0031300.7556650.2992450.066*
O10.07143 (6)0.15365 (15)0.58177 (7)0.0470 (3)
O70.38626 (6)0.15583 (13)0.92733 (7)0.0437 (3)
O50.06294 (6)0.88704 (14)0.36682 (7)0.0471 (3)
O60.12027 (7)0.83981 (13)0.49325 (8)0.0538 (4)
H60.1243830.9345060.4940930.081*
O20.16137 (7)0.33480 (14)0.61221 (7)0.0533 (4)
O80.31346 (7)0.37100 (14)0.88921 (8)0.0548 (4)
O120.41101 (8)0.86010 (14)0.97231 (8)0.0570 (4)
H12A0.4118080.9548690.9679800.085*
O110.47871 (7)0.91026 (15)1.09195 (9)0.0538 (3)
O90.30261 (6)0.20503 (17)1.00215 (8)0.0545 (3)
O100.52275 (7)0.67731 (17)1.18904 (8)0.0574 (4)
H100.5199210.7680361.1738040.086*
N10.13245 (6)0.09746 (15)0.75004 (7)0.0341 (3)
H10.1039150.1265680.7076280.041*
N20.19964 (6)0.10264 (16)0.86938 (8)0.0356 (3)
H20.2213360.1353810.9160260.043*
N40.33971 (7)0.05422 (16)0.76079 (8)0.0377 (3)
H4B0.3614310.0819680.8083920.045*
N50.27558 (7)0.06439 (16)0.63948 (8)0.0399 (3)
H50.2494910.0997950.5964110.048*
N30.14323 (8)0.33421 (16)0.82363 (9)0.0463 (4)
H3A0.1619260.3841460.8669790.056*
H3B0.1153430.3804270.7858400.056*
N60.28709 (8)0.29260 (18)0.71966 (10)0.0509 (4)
H6A0.2610230.3440770.6821730.061*
H6B0.3047920.3368810.7652260.061*
C80.09424 (7)0.52774 (17)0.48123 (9)0.0314 (3)
H80.1259570.5632680.5252130.038*
C90.06462 (7)0.63126 (17)0.42016 (9)0.0303 (3)
C70.15735 (8)0.18636 (18)0.81509 (9)0.0327 (3)
C60.16017 (7)0.04933 (18)0.76213 (9)0.0327 (3)
C100.01692 (7)0.57477 (18)0.35440 (9)0.0319 (3)
C50.20288 (7)0.04648 (18)0.83812 (9)0.0341 (3)
C130.07684 (7)0.37327 (17)0.47686 (9)0.0308 (3)
C220.40035 (7)0.39564 (18)1.02406 (9)0.0338 (3)
C120.02746 (8)0.31920 (18)0.41300 (9)0.0352 (3)
H120.0148330.2155630.4113410.042*
C140.08204 (8)0.79738 (18)0.42341 (10)0.0360 (3)
C210.29989 (8)0.14585 (19)0.70729 (9)0.0362 (3)
C110.00241 (8)0.42021 (18)0.35255 (9)0.0351 (3)
H110.0356600.3849260.3102870.042*
C190.29916 (8)0.0868 (2)0.64961 (10)0.0366 (3)
C250.48227 (8)0.5887 (2)1.13349 (10)0.0390 (4)
C230.40528 (8)0.55034 (18)1.00533 (9)0.0348 (3)
H230.3812870.5891290.9559590.042*
C270.43664 (8)0.33542 (19)1.09781 (10)0.0400 (4)
H270.4335980.2308051.1102420.048*
C200.34016 (8)0.09308 (19)0.72674 (10)0.0361 (3)
C260.47681 (8)0.4322 (2)1.15167 (11)0.0442 (4)
H260.5006740.3926961.2009330.053*
C240.44597 (8)0.64935 (18)1.05978 (10)0.0348 (3)
C10.15138 (9)0.1813 (2)0.71355 (11)0.0458 (4)
H1A0.1234460.1822440.6620540.055*
C280.44777 (8)0.81802 (19)1.04362 (11)0.0409 (4)
C150.37191 (9)0.2290 (2)0.75666 (12)0.0452 (4)
H150.3997290.2333540.8081850.054*
C40.23850 (9)0.1770 (2)0.86892 (12)0.0500 (5)
H4A0.2677110.1755180.9194860.060*
C180.28712 (9)0.2161 (2)0.59962 (11)0.0462 (4)
H180.2591580.2119270.5481860.055*
C160.36023 (9)0.3572 (2)0.70630 (13)0.0514 (5)
H160.3809140.4502820.7242370.062*
C170.31836 (10)0.3514 (2)0.62939 (12)0.0517 (5)
H170.3113350.4408190.5974260.062*
C20.18617 (11)0.3113 (2)0.74543 (14)0.0577 (5)
H2A0.1809260.4029130.7152020.069*
C30.22868 (10)0.3085 (2)0.82137 (15)0.0599 (6)
H30.2513070.3984620.8407970.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0425 (2)0.02530 (18)0.02788 (19)0.00298 (14)0.00036 (15)0.00239 (13)
S20.0397 (2)0.02640 (19)0.0354 (2)0.00288 (15)0.00023 (16)0.00232 (14)
O30.0455 (6)0.0324 (6)0.0411 (6)0.0087 (5)0.0071 (5)0.0030 (5)
O40.0517 (7)0.0398 (6)0.0348 (6)0.0040 (5)0.0032 (5)0.0100 (5)
O10.0532 (7)0.0468 (7)0.0415 (6)0.0019 (6)0.0117 (5)0.0151 (5)
O70.0562 (7)0.0301 (6)0.0429 (6)0.0088 (5)0.0067 (5)0.0024 (5)
O50.0556 (7)0.0336 (6)0.0481 (7)0.0027 (5)0.0025 (6)0.0135 (5)
O60.0771 (9)0.0260 (6)0.0485 (7)0.0054 (6)0.0076 (6)0.0012 (5)
O20.0699 (8)0.0341 (6)0.0420 (7)0.0021 (6)0.0182 (6)0.0023 (5)
O80.0699 (9)0.0343 (6)0.0467 (7)0.0102 (6)0.0168 (6)0.0016 (5)
O120.0818 (10)0.0277 (6)0.0537 (8)0.0024 (6)0.0021 (7)0.0057 (6)
O110.0555 (8)0.0354 (6)0.0666 (8)0.0102 (6)0.0047 (6)0.0057 (6)
O90.0484 (7)0.0638 (8)0.0509 (7)0.0183 (6)0.0099 (6)0.0115 (7)
O100.0562 (8)0.0524 (8)0.0528 (8)0.0137 (7)0.0117 (6)0.0037 (6)
N10.0405 (7)0.0321 (7)0.0262 (6)0.0022 (5)0.0000 (5)0.0030 (5)
N20.0375 (7)0.0386 (7)0.0274 (6)0.0016 (6)0.0001 (5)0.0018 (5)
N40.0409 (7)0.0364 (7)0.0328 (7)0.0032 (6)0.0011 (5)0.0011 (5)
N50.0474 (8)0.0405 (7)0.0293 (7)0.0064 (6)0.0026 (6)0.0017 (6)
N30.0593 (9)0.0318 (7)0.0452 (8)0.0039 (7)0.0056 (7)0.0024 (6)
N60.0648 (10)0.0365 (8)0.0449 (8)0.0093 (7)0.0024 (7)0.0017 (6)
C80.0353 (8)0.0284 (7)0.0289 (7)0.0021 (6)0.0031 (6)0.0002 (6)
C90.0335 (7)0.0274 (7)0.0300 (7)0.0025 (6)0.0070 (6)0.0021 (6)
C70.0365 (8)0.0321 (8)0.0300 (7)0.0017 (6)0.0078 (6)0.0024 (6)
C60.0350 (8)0.0301 (7)0.0342 (8)0.0000 (6)0.0101 (6)0.0037 (6)
C100.0336 (8)0.0348 (8)0.0272 (7)0.0063 (6)0.0064 (6)0.0031 (6)
C50.0330 (8)0.0339 (8)0.0361 (8)0.0001 (6)0.0090 (6)0.0070 (6)
C130.0364 (8)0.0280 (7)0.0270 (7)0.0039 (6)0.0047 (6)0.0007 (6)
C220.0351 (8)0.0285 (7)0.0362 (8)0.0029 (6)0.0041 (6)0.0002 (6)
C120.0406 (8)0.0285 (7)0.0343 (8)0.0007 (6)0.0032 (6)0.0009 (6)
C140.0386 (8)0.0305 (8)0.0378 (8)0.0005 (7)0.0056 (6)0.0038 (7)
C210.0395 (8)0.0364 (8)0.0323 (8)0.0013 (7)0.0069 (6)0.0030 (6)
C110.0362 (8)0.0358 (8)0.0302 (7)0.0002 (6)0.0007 (6)0.0032 (6)
C190.0375 (8)0.0387 (8)0.0348 (8)0.0023 (7)0.0106 (6)0.0008 (7)
C250.0349 (8)0.0397 (9)0.0398 (8)0.0035 (7)0.0025 (7)0.0023 (7)
C230.0388 (8)0.0299 (8)0.0337 (8)0.0039 (6)0.0033 (6)0.0017 (6)
C270.0429 (9)0.0320 (8)0.0415 (9)0.0024 (7)0.0012 (7)0.0064 (7)
C200.0371 (8)0.0365 (8)0.0350 (8)0.0017 (7)0.0088 (6)0.0013 (7)
C260.0431 (9)0.0443 (9)0.0390 (9)0.0021 (8)0.0045 (7)0.0071 (7)
C240.0353 (8)0.0293 (8)0.0394 (8)0.0002 (6)0.0070 (6)0.0000 (6)
C10.0544 (10)0.0393 (9)0.0467 (10)0.0075 (8)0.0176 (8)0.0069 (8)
C280.0420 (9)0.0319 (8)0.0492 (10)0.0023 (7)0.0111 (7)0.0017 (7)
C150.0460 (10)0.0425 (9)0.0457 (10)0.0068 (8)0.0068 (8)0.0054 (8)
C40.0416 (9)0.0505 (11)0.0578 (11)0.0088 (8)0.0105 (8)0.0227 (9)
C180.0479 (10)0.0491 (10)0.0413 (9)0.0004 (8)0.0089 (8)0.0094 (8)
C160.0510 (11)0.0386 (9)0.0665 (12)0.0063 (8)0.0167 (9)0.0042 (9)
C170.0553 (11)0.0408 (10)0.0621 (12)0.0027 (8)0.0196 (9)0.0131 (9)
C20.0669 (13)0.0334 (9)0.0813 (15)0.0004 (9)0.0345 (11)0.0049 (9)
C30.0591 (12)0.0354 (10)0.0924 (16)0.0144 (9)0.0324 (12)0.0181 (10)
Geometric parameters (Å, º) top
S1—O31.4727 (12)C8—C131.378 (2)
S1—O11.4479 (13)C9—C101.403 (2)
S1—O21.4417 (12)C9—C141.475 (2)
S1—C131.7634 (15)C6—C51.386 (2)
S2—O71.4615 (12)C6—C11.385 (2)
S2—O81.4455 (12)C10—C111.390 (2)
S2—O91.4516 (14)C5—C41.386 (2)
S2—C221.7645 (16)C13—C121.397 (2)
O4—H40.8200C22—C231.378 (2)
O4—C101.3533 (17)C22—C271.400 (2)
O5—C141.2188 (19)C12—H120.9300
O6—H60.8200C12—C111.376 (2)
O6—C141.3160 (19)C11—H110.9300
O12—H12A0.8200C19—C201.386 (2)
O12—C281.321 (2)C19—C181.382 (2)
O11—C281.216 (2)C25—C261.391 (2)
O10—H100.8200C25—C241.401 (2)
O10—C251.3507 (19)C23—H230.9300
N1—H10.8600C23—C241.396 (2)
N1—C71.3390 (19)C27—H270.9300
N1—C61.3886 (19)C27—C261.374 (2)
N2—H20.8600C20—C151.386 (2)
N2—C71.3350 (19)C26—H260.9300
N2—C51.394 (2)C24—C281.480 (2)
N4—H4B0.8600C1—H1A0.9300
N4—C211.340 (2)C1—C21.380 (3)
N4—C201.391 (2)C15—H150.9300
N5—H50.8600C15—C161.378 (3)
N5—C211.335 (2)C4—H4A0.9300
N5—C191.391 (2)C4—C31.373 (3)
N3—H3A0.8600C18—H180.9300
N3—H3B0.8600C18—C171.377 (3)
N3—C71.322 (2)C16—H160.9300
N6—H6A0.8600C16—C171.391 (3)
N6—H6B0.8600C17—H170.9300
N6—C211.318 (2)C2—H2A0.9300
C8—H80.9300C2—C31.384 (3)
C8—C91.395 (2)C3—H30.9300
O3—S1—C13106.05 (7)C11—C12—C13119.60 (14)
O1—S1—O3110.60 (7)C11—C12—H12120.2
O1—S1—C13107.55 (7)O5—C14—O6123.07 (15)
O2—S1—O3111.98 (8)O5—C14—C9123.28 (14)
O2—S1—O1113.71 (8)O6—C14—C9113.65 (13)
O2—S1—C13106.47 (7)N5—C21—N4108.91 (14)
O7—S2—C22106.97 (7)N6—C21—N4125.42 (15)
O8—S2—O7111.30 (8)N6—C21—N5125.67 (15)
O8—S2—O9113.02 (9)C10—C11—H11119.9
O8—S2—C22106.64 (7)C12—C11—C10120.29 (14)
O9—S2—O7111.40 (8)C12—C11—H11119.9
O9—S2—C22107.12 (8)C20—C19—N5106.42 (14)
C10—O4—H4109.5C18—C19—N5131.89 (15)
C14—O6—H6109.5C18—C19—C20121.67 (16)
C28—O12—H12A109.5O10—C25—C26117.85 (15)
C25—O10—H10109.5O10—C25—C24122.28 (15)
C7—N1—H1125.5C26—C25—C24119.86 (15)
C7—N1—C6108.96 (12)C22—C23—H23119.7
C6—N1—H1125.5C22—C23—C24120.60 (14)
C7—N2—H2125.6C24—C23—H23119.7
C7—N2—C5108.86 (13)C22—C27—H27120.3
C5—N2—H2125.6C26—C27—C22119.40 (15)
C21—N4—H4B125.6C26—C27—H27120.3
C21—N4—C20108.88 (13)C19—C20—N4106.61 (14)
C20—N4—H4B125.6C15—C20—N4131.96 (15)
C21—N5—H5125.4C15—C20—C19121.42 (16)
C21—N5—C19109.16 (13)C25—C26—H26119.6
C19—N5—H5125.4C27—C26—C25120.88 (15)
H3A—N3—H3B120.0C27—C26—H26119.6
C7—N3—H3A120.0C25—C24—C28119.73 (14)
C7—N3—H3B120.0C23—C24—C25118.95 (14)
H6A—N6—H6B120.0C23—C24—C28121.17 (14)
C21—N6—H6A120.0C6—C1—H1A121.7
C21—N6—H6B120.0C2—C1—C6116.63 (18)
C9—C8—H8119.8C2—C1—H1A121.7
C13—C8—H8119.8O12—C28—C24113.61 (14)
C13—C8—C9120.48 (13)O11—C28—O12122.87 (16)
C8—C9—C10118.67 (14)O11—C28—C24123.50 (16)
C8—C9—C14121.67 (13)C20—C15—H15121.6
C10—C9—C14119.66 (13)C16—C15—C20116.70 (17)
N2—C7—N1109.10 (13)C16—C15—H15121.6
N3—C7—N1125.51 (14)C5—C4—H4A121.5
N3—C7—N2125.39 (15)C3—C4—C5116.97 (18)
C5—C6—N1106.56 (13)C3—C4—H4A121.5
C1—C6—N1131.59 (15)C19—C18—H18121.5
C1—C6—C5121.85 (15)C17—C18—C19117.00 (17)
O4—C10—C9121.64 (14)C17—C18—H18121.5
O4—C10—C11118.02 (13)C15—C16—H16119.1
C11—C10—C9120.34 (13)C15—C16—C17121.86 (18)
C6—C5—N2106.52 (13)C17—C16—H16119.1
C6—C5—C4121.03 (16)C18—C17—C16121.34 (17)
C4—C5—N2132.45 (16)C18—C17—H17119.3
C8—C13—S1119.50 (11)C16—C17—H17119.3
C8—C13—C12120.49 (14)C1—C2—H2A119.3
C12—C13—S1119.97 (12)C1—C2—C3121.47 (19)
C23—C22—S2119.88 (12)C3—C2—H2A119.3
C23—C22—C27120.30 (15)C4—C3—C2122.02 (18)
C27—C22—S2119.80 (12)C4—C3—H3119.0
C13—C12—H12120.2C2—C3—H3119.0
S1—C13—C12—C11175.55 (12)C6—C1—C2—C31.3 (3)
S2—C22—C23—C24177.81 (12)C10—C9—C14—O59.1 (2)
S2—C22—C27—C26177.85 (14)C10—C9—C14—O6170.92 (15)
O3—S1—C13—C8111.11 (13)C5—N2—C7—N10.55 (18)
O3—S1—C13—C1266.71 (14)C5—N2—C7—N3178.33 (15)
O4—C10—C11—C12176.78 (14)C5—C6—C1—C21.5 (3)
O1—S1—C13—C8130.53 (13)C5—C4—C3—C21.1 (3)
O1—S1—C13—C1251.65 (15)C13—C8—C9—C100.0 (2)
O7—S2—C22—C23117.00 (14)C13—C8—C9—C14179.72 (15)
O7—S2—C22—C2764.59 (15)C13—C12—C11—C100.8 (2)
O2—S1—C13—C88.31 (15)C22—C23—C24—C250.6 (2)
O2—S1—C13—C12173.88 (13)C22—C23—C24—C28175.03 (16)
O8—S2—C22—C232.19 (16)C22—C27—C26—C250.6 (3)
O8—S2—C22—C27176.22 (14)C14—C9—C10—O43.1 (2)
O9—S2—C22—C23123.46 (14)C14—C9—C10—C11176.73 (14)
O9—S2—C22—C2754.95 (15)C21—N4—C20—C190.50 (18)
O10—C25—C26—C27179.84 (17)C21—N4—C20—C15178.85 (18)
O10—C25—C24—C23179.85 (16)C21—N5—C19—C201.00 (18)
O10—C25—C24—C284.4 (2)C21—N5—C19—C18177.32 (18)
N1—C6—C5—N20.16 (17)C19—N5—C21—N41.34 (19)
N1—C6—C5—C4179.65 (15)C19—N5—C21—N6178.87 (17)
N1—C6—C1—C2178.53 (17)C19—C20—C15—C160.6 (3)
N2—C5—C4—C3178.81 (17)C19—C18—C17—C160.1 (3)
N4—C20—C15—C16178.71 (18)C25—C24—C28—O12179.47 (16)
N5—C19—C20—N40.30 (18)C25—C24—C28—O111.2 (3)
N5—C19—C20—C15179.73 (15)C23—C22—C27—C260.6 (3)
N5—C19—C18—C17178.94 (18)C23—C24—C28—O123.8 (2)
C8—C9—C10—O4177.17 (14)C23—C24—C28—O11174.42 (17)
C8—C9—C10—C113.0 (2)C27—C22—C23—C240.6 (2)
C8—C9—C14—O5171.10 (16)C20—N4—C21—N51.14 (19)
C8—C9—C14—O68.8 (2)C20—N4—C21—N6179.06 (17)
C8—C13—C12—C112.2 (2)C20—C19—C18—C170.8 (3)
C9—C8—C13—S1175.20 (11)C20—C15—C16—C170.4 (3)
C9—C8—C13—C122.6 (2)C26—C25—C24—C230.7 (2)
C9—C10—C11—C123.4 (2)C26—C25—C24—C28175.07 (17)
C7—N1—C6—C50.49 (17)C24—C25—C26—C270.6 (3)
C7—N1—C6—C1179.48 (17)C1—C6—C5—N2179.82 (15)
C7—N2—C5—C60.24 (17)C1—C6—C5—C40.4 (2)
C7—N2—C5—C4179.98 (17)C1—C2—C3—C40.0 (3)
C6—N1—C7—N20.65 (17)C15—C16—C17—C180.7 (3)
C6—N1—C7—N3178.23 (16)C18—C19—C20—N4178.23 (16)
C6—C5—C4—C30.9 (3)C18—C19—C20—C151.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.862.082.8645 (16)152
N2—H2···O90.862.072.8799 (19)157
N3—H3A···O3i0.862.373.0153 (19)132
N3—H3B···O4ii0.862.323.005 (2)137
N4—H4B···O70.862.042.8760 (17)163
N5—H5···O30.862.223.0331 (18)158
N6—H6A···O20.862.172.877 (2)140
N6—H6B···O80.862.062.845 (2)152
O4—H4···O50.821.882.6007 (17)147
O6—H6···O3iii0.821.892.6958 (16)165
O10—H10···O110.821.902.619 (2)146
O12—H12A···O7iii0.821.892.6746 (17)159
C3—H3···O8iv0.932.423.347 (2)178
C8—H8···O20.932.462.8626 (19)106
C23—H23···O80.932.472.872 (2)106
C23—H23···O120.932.422.732 (2)100
Symmetry codes: (i) x, y1/2, z1/2; (ii) x, y+1, z+1; (iii) x, y+1, z; (iv) x, y1, z.
 

Acknowledgements

The authors acknowledge technical equipment support provided by the Institute of Bioorganic Chemistry of Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan.

References

First citationAboul-Enein, H. Y. & El Rashedy, A. A. (2015). Med. Chem. 5, 318–325.  Google Scholar
First citationAmor, A. B. H., Akriche, S., Arfaoui, Y. & Abderrahim, R. (2020). J. Mol. Struct. 1222, 128921–128930.  Web of Science CSD CrossRef CAS Google Scholar
First citationAntsyshkina, A. S., Koksharova, T. V., Sergienko, V. S., Mandzii, T. V. & Sadikov, G. G. (2014). Russ. J. Inorg. Chem. 59, 1417–1423.  Web of Science CrossRef CAS Google Scholar
First citationAtria, A. M., Garland, M. T. & Baggio, R. (2012). Acta Cryst. C68, m185–m188.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBakasova, Z. B., Abdybaliev, D. A., Sharipov, Kh. T., Akbaev, A. A., Ibragimov, R. T., Talipov, S. A. & Ismankulov, A. I. (1991). Uzb. Khim. Zh. pp. 22–25.  Google Scholar
First citationDokla, E. M. E., Abutaleb, N. S., Milik, S. N., Li, D., El-Baz, K., Shalaby, M., Al-Karaki, R., Nasr, M., Klein, C. D., Abouzid, K. A. M. & Seleem, M. N. (2020). Eur. J. Med. Chem. 186, 111850–111858.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDvornikova, I. A., Buravlev, E. V., Fedorova, I. V., Shevchenko, O. G., Chukicheva, I. Y. & Kutchin, A. V. (2019). Russ. Chem. Bull. 68, 1000–1005.  Web of Science CrossRef CAS Google Scholar
First citationEl-Medani, S. M., Youssef, T. A. & Ramadan, R. M. (2003). J. Mol. Struct. 644, 77–87.  CAS Google Scholar
First citationFathima, K. S., Kavitha, P. & Anitha, K. (2017). J. Mol. Struct. 1143, 444–451.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLow, J. N., Cobo, J., Abonia, R., Insuasty, B. & Glidewell, C. (2003). Acta Cryst. C59, o669–o671.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMahendiran, D., Vinitha, G., Shobana, S., Viswanathan, V., Velmurugan, D. & Rahiman, A. K. (2016). RSC Adv. 6, 60336–60348.  Web of Science CSD CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMuthiah, P. T., Francis, S., Bocelli, G. & Cantoni, A. (2003). Acta Cryst. E59, m1164–m1167.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOttanà, R., Carotti, S., Maccari, R., Landini, I., Chiricosta, G., Caciagli, B., Vigorita, G. M. & Mini, E. (2005). Bioorg. Med. Chem. Lett. 15, 3930–3933.  Web of Science PubMed Google Scholar
First citationRamla, M. M., Omar, A. M., Tokuda, H. & El-Diwani, H. I. (2007). Bioorg. Med. Chem. 15, 6489–6496.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSaiadali Fathima, K., Sathiyendran, M. & Anitha, K. (2019). J. Mol. Struct. 1177, 457–468.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuku, S. & Ravindran, R. (2023). J. Mol. Struct. 1283, 135217–135228.  Web of Science CSD CrossRef CAS Google Scholar
First citationXiong, J., Hu, M.-L., Shi, Q. & Xiao, H.-P. (2003). Z. Kristallogr. 218, 565–566.  CAS Google Scholar
First citationYou, W., Fan, Y., Qian, H.-F., Yao, C. & Huang, W. (2009). Acta Cryst. E65, o115.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds