research communications
Synthesis, characterization, and H-imidazole-κN3)zinc(II) dinitrate
of hexakis(1-methyl-1aUniversity of South Africa, Department of Chemistry, Private Bag X6, Florida, Gauteng, 1710, South Africa, and bAdvanced Materials Division, Mintek, 200 Malibongwe Drive, Randburg, 2125, South Africa
*Correspondence e-mail: Magwanp@unisa.ac.za
This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.
The synthesis of the title compound, [Zn(C4H6N2)6](NO3)2, is described. This complex consists of a central zinc metal ion surrounded by six 1-methylimidazole ligands, charge balanced by two nitrate anions. The complex crystallizes in the P. In the crystal, the nitrate ions are situated within the cavities created by the [Zn(N-Melm)6]2+ cations, serving as counter-ions. The three oxygen atoms of the nitrate ion engage in weak C—H⋯O interactions. In addition to single-crystal X-ray the complex was characterized using elemental analysis, 1H NMR, 13C NMR, and FTIR spectroscopy.
Keywords: N-methylimidazole; Zn complex; NMR; FTIR; crystal structure.
CCDC reference: 2270103
1. Chemical context
Extensive research has been conducted on zinc complexes containing imidazole and its derivatives due to their significance in chemistry and their diverse applications (Victor et al., 2014; Porchia et al., 2020). These complexes play crucial roles as anticancer agents (Porchia et al., 2020; Babijczuk et al., 2023), antibacterial agents (Guo et al., 2022), fluorescent sensors (Anjali et al., 2022), in anti-counterfeiting and latent fingerprint detection (Kempegowda et al., 2021), and in materials chemistry (Rashamuse et al., 2023; Bezvikonnyi et al., 2022; Yu et al., 2021). Notably, zinc is the second most prevalent trace metal in the human body and is essential in a variety of biological systems (Haase & Rink, 2014; Kolenko et al., 2013). Consequently, it is unsurprising that ZnII ions demonstrate the ability to inhibit certain bacterial species (McDevitt et al., 2011; Velasco et al., 2018). The use of ZnII as the metal center in coordination chemistry is motivated by its ability to form strong complexes with ligands and the low cost of Zn precursors (Häggman et al., 2020; Rashamuse et al., 2023). In recent years, great efforts have been made to develop new organic zinc complexes with various architectures and applications (Abendrot, et al., 2020; Brahma & Baruah, 2020; Chen et al., 2021; Kseniya et al., 2022; Loke et al., 2020).
On the other hand, N-substituted imidazoles, or 1-substituted imidazoles, have emerged as highly attractive compounds due to a broad spectrum of applications (Chen et al., 2020; Gu et al., 2014; Kanzaki et al., 2012; Kseniya et al., 2022; Liu et al., 2014; Bogdanov & Svinyarov, 2017; Park et al., 2020; Wang et al., 2013). This ligand set features a conjugated diaza five-membered heterocyclic ring structure. One nitrogen atom has an N-methyl substituent, and its lone pair is delocalized in the aromatic ring, while the other nitrogen is sp2 hybridized and capable of coordinating Lewis acids, including metal ions. Numerous studies have been published on transition metal ion complexes involving imidazole and its derivatives (Erer et al., 2011; He et al., 2021; Kühl et al., 2011; Jawad & Al-Adilee 2022; Konarev et al., 2018; Neumüller & Dehnicke, 2010; Reedijk et al., 2012; Zhang et al., 2020). The lack of N-methyl group enhances the appeal of N-substituted imidazole for the synthesis of novel molecules. The coordination of imidazole derivatives with metal centers has had a positive impact on the development of novel metal complexes with applications in the field of material science (Anjali et al., 2022; Bezvikonnyi et al., 2022; Kempegowda et al., 2021; Rashamuse et al., 2023; Yu et al., 2021). In addition, the use of imidazole derivatives alongside zinc metal ions is an interesting technique to expand the complex repertoire in coordination chemistry. Therefore, our goal was to utilize the N-methylimidazole core in conjunction with a zinc metal ion in the presence of ammonia to generate unique complexes with different topologies.
The utilization of 1-methylimidazole as a starting ligand for the synthesis of zinc complexes has been previously explored (Rashidi et al., 2021; Appleton & Sarkar, 1977; Chen et al., 1996; Steichen et al., 2014). In this article, we report the synthesis of a new compound hexakis(1-methyl-1H-imidazole-κN3)zinc(II) dinitrate, [Zn(C4H6N2)6](NO3)2, which is synthesized in the manner depicted in the scheme. The structure of the complex was confirmed via proton NMR, FTIR, and single-crystal X-ray diffraction.
2. Structural commentary
The title compound (Fig. 1) crystallizes in the P with half of a formula unit in the There are two crystallographically distinct zinc atoms. One has 1/3 occupancy and is bound to two crystallographically unique 1-methylimidazole ligands and the other has 1/6 occupancy and is bound to one crystallographically unique 1-methylimidazole ligand. One full occupancy nitrate anion is also present in the asymmetric unit.
The full zinc complex ions {[Zn(N-Melm)6]2+, where N-Melm denotes N-methylimidazole} exhibit coordination by six N-Melm ligands. The ions are in a distorted octahedral coordination environment, demonstrated by N—Zn—N angles close to 90° or 180° depending on their cis or trans relationship. The Zn—N lengths are 2.182 (2) Å for N1—Zn1, 2.177 (2) Å for N3—Zn1, and 2.179 (2) Å for N5—Zn2. The complex molecule also displays fifteen unique C—N bond lengths ranging from 1.308 (3) to 1.471 (4) Å. The nitrate counter-ion demonstrates O—N—O bond angles of 125.4 (4) ° for O2—N7—O3, 118.0 (4)° for O2—N7—O1, and 116.5 (4) ° for O3—N7—O1 and N—O bond lengths of 1.202 (5) Å for N7—O2, 1.209 (4) Å for N7—O3 and 1.234 (5) Å for N7—O1.
3. Supramolecular features
The packing of the title compound is shown in Fig. 2 while Fig. 3 shows the intermolecular interactions in the [Zn(C4H6N2)6][NO3]2 complex. In the crystal, the nitrate ions are situated within the cavities created by the [Zn(N-Melm)6]2+ cations, serving as counter-ions. The three oxygen atoms of the nitrate ion engage in weak C—H⋯O interactions (Table 1) with two hydrogen atoms from the imidazole rings and one hydrogen atom from the methyl groups.
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.45, update of March 2024; Groom et al., 2016) for [Zn(C4H6N2)6] compounds with nitrate cations resulted in no hits. However, when the search was expanded to include other cationic salts, six relevant ones were found, including a discrete Zn complex with a sixfold coordination. These entries include [Zn(C4H6N2)6](I)2 (CCDC reference: 2347502; Rashidi et al., 2021), [Zn(MeIm)6](Tf2N)2, [Zn(EtIm)6](Tf2N)2, [Zn(MeIm)(EtIm)5](Tf2N)2, [Zn(MeIm)2(EtIm)4](Tf2N)2, and [Zn(MeIm)4.5(EtIm)1.5](Tf2N)2 (CCDC references: 978387, 978388, 978389, 978390, and 978391; Steichen et al., 2014) where Melm is 1-methyl-1H-imidazole), EtIm is 1-ethyl-1H-imidazole, and (Tf2N)2 is bis(trifluoromethylsulfonyl)imide. The cationic zinc complex paired with iodine anions, [Zn(C4H6N2)6](I)2, is particularly interesting as it exhibits a very similar structure, similar packing, similar cell parameters, and the same as the title compound. Although the zinc ions in the other five complexes had a similar sixfold coordination, the anion involved in these complexes was bis(trifluoromethylsulfonyl)imide, and their crystals exhibited different structures and space groups.
5. Synthesis and crystallization
In a typical synthesis, 0.9 g of zinc nitrate hexahydrate, Zn(NO3)2·6H2O (3.0 mmol), was dissolved in 10 mL of ethanol. A second solution consisting of 0.52 g of N-methyl-1H-imidazole (6.0 mmol) in 30 mL of ethanol and 2.8 ml of ammonia solution (2.48 mmol) was prepared in parallel. The ZnII solution was poured rapidly into the second solution. The resultant mixture was stirred at room temperature for 10 minutes to complete crystallization. The crystals were collected by centrifugation, filtered, washed three times with ethanol, and dried overnight at room temperature to afford [Zn(C4H6N2)6][NO3]2 as light-blue crystals in 67% yield. Analysis calculated for C24H36N14O6Zn: C, 42.27%; H 5.32%; N, 28.75%; Found: C, 42.71%; H5.39%; N, 28.56%; 1H NMR δ/ppm (400 MHz, CDCl3): 3.77 (s, 3H), 7.06 (s, 2H), 8.13 (s, 1H); 13C NMR δ/ppm (101 MHz, CDCl3): 32.23, 127.99, 140.04; FTIR νmax/cm−1: 3121, 1643, 1528, 1516, 1327, 1288, 1231, 1088, 1026, 934, 826,768, 660, 621.
The overlaid 1H NMR spectra of the ligand and zinc complex are shown in Fig. 4. In the proton NMR spectrum of the free N-methyl-1H-imidazole ligand, there are four sharp signals with the methyl group appearing at 3.47 ppm and the three protons of the imidazole motif appearing at 6.69. 6.84 and 7.21 ppm. However, upon complexation with the zinc ion, the methyl proton shifted to 3.77 ppm, while the imidazole signals are broadened with two protons merged at 7.06 ppm, and the third proton exhibiting a downfield shift to 8.13 ppm. Similar behavior can also be observed in the 13C NMR spectra, demonstrating complexation.
The comparative FTIR spectra of the free ligand and the zinc complex are presented in Fig. 5. In the spectrum of the zinc complex, a vibrational peak at 3476 cm−1 is observed, which is attributed to the O—H stretching of water molecules as the complex is hygroscopic. The characteristic vibrational peak associated with C=C stretching appears at 1678 cm−1 in the free ligand, but in the complex spectrum, it is shifted to the vibrational frequency of 1630 cm−1. Furthermore, an intense band at around 1516 cm−1 is evident, which originates from the C=N stretching mode of the imidazole moiety of the free ligand. However, upon zinc coordination, two different vibrational frequencies are observed at 1545 and 1527 cm−1, corresponding to the C=N stretching mode. Notably, both asymmetric and symmetric NO3 stretching vibrations at 1330 and 958 cm−1 are clearly visible as intense vibrational peaks in the zinc complex spectrum, with both features absent in the free ligand spectrum. Furthermore, a stretching band of Zn—N is observed at a vibrational frequency of 467 cm−1, providing further evidence of the coordination of zinc ions with the nitrogen atom of the N-methylimidazole group.
6. Refinement
Crystal data, data collection and structure . All C bound hydrogen atoms were placed at idealized positions and refined as riding atoms with isotropic parameters 1.2 or 1.5 times those of their parent atoms. The crystal studied was refined as a two-component twin. H atoms were positioned in idealized locations and refined using a riding model, with isotropic displacement parameters set to 1.2 or 1.5 times those of their respective parent atoms. A was also applied.
details are summarized in Table 2Supporting information
CCDC reference: 2270103
https://doi.org/10.1107/S2056989024008806/yy2011sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024008806/yy2011Isup3.hkl
[Zn(C4H6N2)6](NO3)2 | Dx = 1.435 Mg m−3 |
Mr = 682.04 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, P3 | Cell parameters from 9720 reflections |
a = 19.1227 (10) Å | θ = 3.3–26.2° |
c = 7.4770 (5) Å | µ = 0.84 mm−1 |
V = 2367.9 (3) Å3 | T = 173 K |
Z = 3 | Block, colourless |
F(000) = 1068 | 0.45 × 0.34 × 0.23 mm |
Bruker D8 Venture Photon CCD area detector diffractometer | 3073 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
ω scans | θmax = 26.4°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −23→23 |
Tmin = 0.660, Tmax = 0.745 | k = −23→23 |
119969 measured reflections | l = −9→9 |
3247 independent reflections |
Refinement on F2 | Primary atom site location: dual - dual-space method e.g. SHELXD |
Least-squares matrix: full | Secondary atom site location: dual - dual-space method e.g. SHELXD |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: mixed |
wR(F2) = 0.090 | H-atom parameters constrained |
S = 1.12 | w = 1/[σ2(Fo2) + (0.0449P)2 + 1.2961P] where P = (Fo2 + 2Fc2)/3 |
3247 reflections | (Δ/σ)max < 0.001 |
208 parameters | Δρmax = 0.51 e Å−3 |
0 restraints | Δρmin = −0.36 e Å−3 |
0 constraints |
Experimental. Absorption corrections were made using the program SADABS (Sheldrick, 1996) Intensity data were determined on a Bruker Venture D8 Photon CMOS diffractometer with graphite-monochromated Mo Ka1 (λ = 0.71073 Å) radiation at 173 K using an Oxford Cryostream 600 cooler. Data reduction was carried out using the program SAINT+, version 6.02 (Bruker, 2016) and empirical absorption corrections were made using SADABS (Bruker 2016) Space group assignments was made using XPREP (Bruker, 2016). The structure was solved in the WinGX (Farrugia, 2012) Suite of programs, using intrinsic phasing through SHELXT (Sheldrick, 2015a) and refined using full-matrix least-squares/difference Fourier techniques on F2 using SHELXL2017 (Sheldrick, 2015b). Diagrams and publication material were generated using ORTEP-3 (Farrugia, 2012) and PLATON (Spek, 2020). |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component twin. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.35319 (17) | 0.56158 (16) | 0.8432 (4) | 0.0370 (5) | |
H1 | 0.397348 | 0.608195 | 0.894545 | 0.044* | |
C2 | 0.32525 (18) | 0.48483 (17) | 0.8998 (4) | 0.0408 (6) | |
H2 | 0.345852 | 0.467857 | 0.995698 | 0.049* | |
C3 | 0.25403 (19) | 0.48549 (16) | 0.6749 (4) | 0.0434 (6) | |
H3 | 0.214048 | 0.466944 | 0.583882 | 0.052* | |
C4 | 0.2155 (3) | 0.3487 (2) | 0.7945 (6) | 0.0742 (12) | |
H4A | 0.221478 | 0.328911 | 0.911228 | 0.111* | |
H4B | 0.235574 | 0.327455 | 0.700603 | 0.111* | |
H4C | 0.158422 | 0.330563 | 0.773011 | 0.111* | |
C5 | 0.31191 (18) | 0.77017 (19) | 0.2309 (4) | 0.0408 (6) | |
H5 | 0.26636 | 0.723578 | 0.183396 | 0.049* | |
C6 | 0.34153 (19) | 0.84611 (19) | 0.1679 (4) | 0.0451 (7) | |
H6 | 0.321104 | 0.862707 | 0.071015 | 0.054* | |
C7 | 0.41433 (19) | 0.84552 (17) | 0.3924 (4) | 0.0479 (7) | |
H7 | 0.455942 | 0.864052 | 0.479686 | 0.057* | |
C8 | 0.4553 (3) | 0.9812 (2) | 0.2607 (6) | 0.0860 (15) | |
H8A | 0.510363 | 0.998228 | 0.300205 | 0.129* | |
H8B | 0.431985 | 1.005728 | 0.337839 | 0.129* | |
H8C | 0.456463 | 0.998554 | 0.136826 | 0.129* | |
N1 | 0.30848 (13) | 0.56202 (13) | 0.7012 (3) | 0.0321 (4) | |
N2 | 0.26215 (16) | 0.43720 (15) | 0.7926 (3) | 0.0437 (6) | |
N3 | 0.35725 (12) | 0.77013 (12) | 0.3735 (3) | 0.0330 (4) | |
N4 | 0.40615 (19) | 0.89350 (16) | 0.2712 (4) | 0.0510 (7) | |
Zn1 | 0.333333 | 0.666667 | 0.53840 (6) | 0.02973 (13) | |
C9 | 0.11565 (17) | 0.12401 (17) | 0.2960 (4) | 0.0397 (6) | |
H9 | 0.129642 | 0.086107 | 0.340727 | 0.048* | |
C10 | 0.14947 (19) | 0.20166 (17) | 0.3498 (4) | 0.0472 (7) | |
H10 | 0.192987 | 0.227884 | 0.431476 | 0.057* | |
C11 | 0.06016 (17) | 0.17677 (16) | 0.1425 (4) | 0.0394 (6) | |
H11 | 0.027212 | 0.18447 | 0.058845 | 0.047* | |
C12 | 0.1277 (3) | 0.31748 (19) | 0.2617 (6) | 0.0669 (10) | |
H12A | 0.101449 | 0.327601 | 0.160283 | 0.1* | |
H12B | 0.185931 | 0.3554 | 0.257408 | 0.1* | |
H12C | 0.105592 | 0.324868 | 0.373768 | 0.1* | |
N5 | 0.05952 (13) | 0.10858 (12) | 0.1642 (3) | 0.0353 (5) | |
N6 | 0.11268 (16) | 0.23427 (14) | 0.2519 (4) | 0.0453 (6) | |
Zn2 | 0 | 0 | 0 | 0.03046 (17) | |
N7 | 0.65532 (18) | 0.6614 (2) | 0.7378 (5) | 0.0581 (7) | |
O1 | 0.6741 (2) | 0.6106 (2) | 0.6944 (6) | 0.1096 (13) | |
O2 | 0.6618 (3) | 0.6807 (3) | 0.8925 (5) | 0.1172 (14) | |
O3 | 0.6354 (3) | 0.6903 (2) | 0.6181 (6) | 0.1214 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0432 (14) | 0.0399 (13) | 0.0321 (13) | 0.0239 (11) | 0.0013 (11) | 0.0015 (11) |
C2 | 0.0552 (16) | 0.0522 (15) | 0.0319 (12) | 0.0395 (14) | 0.0082 (12) | 0.0065 (11) |
C3 | 0.0529 (16) | 0.0332 (13) | 0.0378 (14) | 0.0167 (12) | −0.0037 (12) | 0.0044 (11) |
C4 | 0.099 (3) | 0.0314 (16) | 0.080 (3) | 0.0237 (18) | −0.013 (2) | 0.0114 (16) |
C5 | 0.0464 (15) | 0.0511 (16) | 0.0335 (13) | 0.0309 (14) | −0.0040 (12) | 0.0000 (13) |
C6 | 0.0587 (17) | 0.0621 (18) | 0.0342 (13) | 0.0449 (15) | 0.0066 (13) | 0.0111 (12) |
C7 | 0.0596 (18) | 0.0318 (13) | 0.0474 (16) | 0.0192 (13) | −0.0115 (13) | 0.0062 (11) |
C8 | 0.126 (4) | 0.043 (2) | 0.082 (3) | 0.037 (2) | 0.003 (3) | 0.0250 (19) |
N1 | 0.0334 (10) | 0.0332 (11) | 0.0304 (10) | 0.0171 (9) | 0.0050 (8) | 0.0026 (8) |
N2 | 0.0554 (15) | 0.0339 (12) | 0.0426 (13) | 0.0230 (11) | 0.0064 (11) | 0.0087 (10) |
N3 | 0.0356 (10) | 0.0352 (11) | 0.0307 (10) | 0.0197 (9) | 0.0013 (8) | 0.0031 (8) |
N4 | 0.0727 (19) | 0.0420 (14) | 0.0467 (14) | 0.0351 (14) | 0.0049 (13) | 0.0130 (11) |
Zn1 | 0.02969 (16) | 0.02969 (16) | 0.0298 (2) | 0.01484 (8) | 0 | 0 |
C9 | 0.0411 (14) | 0.0366 (13) | 0.0371 (15) | 0.0160 (12) | −0.0034 (11) | −0.0042 (11) |
C10 | 0.0530 (16) | 0.0423 (15) | 0.0385 (14) | 0.0179 (13) | −0.0033 (13) | −0.0024 (12) |
C11 | 0.0407 (13) | 0.0328 (12) | 0.0433 (14) | 0.0173 (11) | 0.0000 (12) | −0.0068 (11) |
C12 | 0.083 (3) | 0.0314 (16) | 0.081 (3) | 0.0242 (17) | −0.006 (2) | −0.0153 (16) |
N5 | 0.0340 (11) | 0.0311 (10) | 0.0395 (12) | 0.0153 (9) | 0.0015 (9) | −0.0015 (9) |
N6 | 0.0497 (14) | 0.0293 (12) | 0.0493 (14) | 0.0141 (11) | 0.0028 (11) | −0.0058 (10) |
Zn2 | 0.0271 (2) | 0.0271 (2) | 0.0372 (4) | 0.01354 (10) | 0 | 0 |
N7 | 0.0479 (16) | 0.0584 (17) | 0.0692 (19) | 0.0275 (14) | 0.0088 (14) | 0.0225 (14) |
O1 | 0.108 (3) | 0.088 (2) | 0.147 (4) | 0.059 (2) | −0.004 (3) | −0.018 (2) |
O2 | 0.156 (4) | 0.150 (4) | 0.0653 (18) | 0.091 (3) | 0.029 (2) | 0.016 (2) |
O3 | 0.131 (3) | 0.113 (3) | 0.133 (3) | 0.071 (3) | −0.051 (3) | 0.016 (3) |
C1—C2 | 1.355 (4) | C8—H8A | 0.98 |
C1—N1 | 1.365 (3) | C8—H8B | 0.98 |
C1—H1 | 0.95 | C8—H8C | 0.98 |
C2—N2 | 1.352 (4) | N1—Zn1 | 2.182 (2) |
C2—H2 | 0.95 | N3—Zn1 | 2.177 (2) |
C3—N1 | 1.319 (3) | C9—C10 | 1.351 (4) |
C3—N2 | 1.339 (4) | C9—N5 | 1.376 (4) |
C3—H3 | 0.95 | C9—H9 | 0.95 |
C4—N2 | 1.467 (4) | C10—N6 | 1.363 (4) |
C4—H4A | 0.98 | C10—H10 | 0.9486 |
C4—H4B | 0.98 | C11—N5 | 1.308 (3) |
C4—H4C | 0.98 | C11—N6 | 1.335 (4) |
C5—C6 | 1.352 (4) | C11—H11 | 0.95 |
C5—N3 | 1.375 (3) | C12—N6 | 1.471 (4) |
C5—H5 | 0.95 | C12—H12A | 0.98 |
C6—N4 | 1.351 (4) | C12—H12B | 0.98 |
C6—H6 | 0.95 | C12—H12C | 0.98 |
C7—N3 | 1.310 (3) | N5—Zn2 | 2.179 (2) |
C7—N4 | 1.353 (4) | N7—O2 | 1.202 (5) |
C7—H7 | 0.95 | N7—O3 | 1.209 (4) |
C8—N4 | 1.458 (4) | N7—O1 | 1.234 (5) |
C2—C1—N1 | 109.9 (2) | N3—Zn1—N1i | 88.74 (8) |
C2—C1—H1 | 125 | N3i—Zn1—N1i | 179.34 (8) |
N1—C1—H1 | 125 | N3ii—Zn1—N1i | 88.28 (8) |
N2—C2—C1 | 106.3 (2) | N1ii—Zn1—N1i | 91.89 (8) |
N2—C2—H2 | 126.9 | N3—Zn1—N1 | 179.34 (9) |
C1—C2—H2 | 126.9 | N3i—Zn1—N1 | 88.28 (8) |
N1—C3—N2 | 111.6 (3) | N3ii—Zn1—N1 | 88.73 (8) |
N1—C3—H3 | 124.2 | N1ii—Zn1—N1 | 91.89 (8) |
N2—C3—H3 | 124.2 | N1i—Zn1—N1 | 91.89 (8) |
N2—C4—H4A | 109.5 | C10—C9—N5 | 110.0 (3) |
N2—C4—H4B | 109.5 | C10—C9—H9 | 124.8 |
H4A—C4—H4B | 109.5 | N5—C9—H9 | 125.1 |
N2—C4—H4C | 109.5 | C9—C10—N6 | 105.7 (3) |
H4A—C4—H4C | 109.5 | C9—C10—H10 | 125.7 |
H4B—C4—H4C | 109.5 | N6—C10—H10 | 128.4 |
C6—C5—N3 | 110.2 (3) | N5—C11—N6 | 111.9 (3) |
C6—C5—H5 | 124.9 | N5—C11—H11 | 124 |
N3—C5—H5 | 124.9 | N6—C11—H11 | 124 |
N4—C6—C5 | 105.8 (2) | N6—C12—H12A | 109.5 |
N4—C6—H6 | 127.1 | N6—C12—H12B | 109.5 |
C5—C6—H6 | 127.1 | H12A—C12—H12B | 109.5 |
N3—C7—N4 | 111.0 (3) | N6—C12—H12C | 109.5 |
N3—C7—H7 | 124.5 | H12A—C12—H12C | 109.5 |
N4—C7—H7 | 124.5 | H12B—C12—H12C | 109.5 |
N4—C8—H8A | 109.5 | C11—N5—C9 | 104.9 (2) |
N4—C8—H8B | 109.5 | C11—N5—Zn2 | 128.3 (2) |
H8A—C8—H8B | 109.5 | C9—N5—Zn2 | 125.97 (18) |
N4—C8—H8C | 109.5 | C11—N6—C10 | 107.5 (2) |
H8A—C8—H8C | 109.5 | C11—N6—C12 | 125.5 (3) |
H8B—C8—H8C | 109.5 | C10—N6—C12 | 127.1 (3) |
C3—N1—C1 | 105.0 (2) | N5iii—Zn2—N5iv | 180.00 (9) |
C3—N1—Zn1 | 128.56 (18) | N5iii—Zn2—N5 | 88.61 (8) |
C1—N1—Zn1 | 126.11 (18) | N5iv—Zn2—N5 | 91.39 (8) |
C3—N2—C2 | 107.3 (2) | N5iii—Zn2—N5v | 91.39 (8) |
C3—N2—C4 | 126.1 (3) | N5iv—Zn2—N5v | 88.61 (8) |
C2—N2—C4 | 126.5 (3) | N5—Zn2—N5v | 180 |
C7—N3—C5 | 105.2 (2) | N5iii—Zn2—N5vi | 88.61 (8) |
C7—N3—Zn1 | 128.32 (18) | N5iv—Zn2—N5vi | 91.39 (8) |
C5—N3—Zn1 | 126.43 (19) | N5—Zn2—N5vi | 91.39 (8) |
C6—N4—C7 | 107.8 (3) | N5v—Zn2—N5vi | 88.61 (8) |
C6—N4—C8 | 126.0 (3) | N5iii—Zn2—N5vii | 91.39 (8) |
C7—N4—C8 | 126.1 (3) | N5iv—Zn2—N5vii | 88.61 (8) |
N3—Zn1—N3i | 91.09 (8) | N5—Zn2—N5vii | 88.61 (8) |
N3—Zn1—N3ii | 91.09 (8) | N5v—Zn2—N5vii | 91.39 (8) |
N3i—Zn1—N3ii | 91.09 (8) | N5vi—Zn2—N5vii | 180.00 (8) |
N3—Zn1—N1ii | 88.28 (8) | O2—N7—O3 | 125.4 (4) |
N3i—Zn1—N1ii | 88.73 (8) | O2—N7—O1 | 118.0 (4) |
N3ii—Zn1—N1ii | 179.34 (8) | O3—N7—O1 | 116.5 (4) |
N1—C1—C2—N2 | −0.4 (3) | C5—C6—N4—C7 | 0.3 (3) |
N3—C5—C6—N4 | 0.5 (3) | C5—C6—N4—C8 | −176.3 (4) |
N2—C3—N1—C1 | 0.1 (3) | N3—C7—N4—C6 | −1.1 (4) |
N2—C3—N1—Zn1 | 173.38 (18) | N3—C7—N4—C8 | 175.5 (4) |
C2—C1—N1—C3 | 0.2 (3) | N5—C9—C10—N6 | 1.0 (3) |
C2—C1—N1—Zn1 | −173.31 (17) | N6—C11—N5—C9 | −0.2 (3) |
N1—C3—N2—C2 | −0.3 (3) | N6—C11—N5—Zn2 | −170.42 (18) |
N1—C3—N2—C4 | −175.6 (3) | C10—C9—N5—C11 | −0.6 (3) |
C1—C2—N2—C3 | 0.4 (3) | C10—C9—N5—Zn2 | 170.0 (2) |
C1—C2—N2—C4 | 175.7 (3) | N5—C11—N6—C10 | 0.8 (3) |
N4—C7—N3—C5 | 1.4 (4) | N5—C11—N6—C12 | −179.7 (3) |
N4—C7—N3—Zn1 | −175.52 (19) | C9—C10—N6—C11 | −1.1 (3) |
C6—C5—N3—C7 | −1.2 (3) | C9—C10—N6—C12 | 179.4 (3) |
C6—C5—N3—Zn1 | 175.81 (18) |
Symmetry codes: (i) −y+1, x−y+1, z; (ii) −x+y, −x+1, z; (iii) x−y, x, −z; (iv) −x+y, −x, z; (v) −x, −y, −z; (vi) −y, x−y, z; (vii) y, −x+y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12B···O1viii | 0.98 | 2.44 | 3.339 (7) | 152 |
C12—H12C···O3ii | 0.98 | 2.36 | 3.333 (7) | 169 |
C12—H12A···O2ix | 0.98 | 2.62 | 3.596 (8) | 174 |
Symmetry codes: (ii) −x+y, −x+1, z; (viii) −x+1, −y+1, −z+1; (ix) −x+y, −x+1, z−1. |
Funding information
The authors gratefully acknowledge Mintek Science Vote Work Package AM27, the UNISA, and the South African National Research Foundation's NRF Thuthuka grant (grant Nos. UID: 138397 and 129744) for technical, material, and financial support.
References
Abendrot, M., Chęcińsk, L., Kusz, J., Lisowska, K., Zawadzka, K., Felczak, A. & Kalinowska-Lis, U. (2020). Molecules, 25, 951, 1–17. Google Scholar
Anjali, K. G., Jibin, K. V., Aswathy, P. V., Shanty, A. A., Shijo, F., Dhanya, T. M., Savitha, D. P. & Mohanan, P. V. (2022). J. Photochem. Photobiol. Chem. 433, 114134. CrossRef Google Scholar
Appleton, D. W. & Sarkar, B. (1977). Bioinorg. Chem. 7, 211–224. CrossRef PubMed CAS Google Scholar
Babijczuk, K., Warżajtis, B., Starzyk, J., Mrówczyńska, L., Jasiewicz, B. & Rychlewska, U. (2023). Molecules, 28, 4132, 1–19. Google Scholar
Bezvikonnyi, O., Bernard, R. S., Andruleviciene, V., Andruleviciene, V., Volyniuk, D., Keruckiene, R., Vaiciulaityte, K., Labanauskas, L. & Grazulevicius, J. V. (2022). Materials, 15, 8495. CrossRef PubMed Google Scholar
Bogdanov, M. G. & Svinyarov, I. (2017). Processes, 5, 52, 1–11. Google Scholar
Brahma, R. & Baruah, J. B. (2020). ACS Omega, 5, 3774–3785. CSD CrossRef CAS PubMed Google Scholar
Bruker (2016). APEX3 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, X., An, D.-L., Zhan, X.-Q. & Zhou, Z.-H. (2020). Molecules, 25, 1286, 1–12. Google Scholar
Chen, X., Hu, H., Wang, S., Li, B. & Wang, H. (2021). Chemistry Select, 69460, 13286–13290. Google Scholar
Chen, X.-M., Huang, X.-C., Xu, Z.-T. & Huang, X.-Y. (1996). Acta Cryst. C52, 2482–2484. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Erer, H., Yeşilel, O. Z., Darcan, C. & Büyükgüngör, O. (2011). Polyhedron, 30, 2406–2413. CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gu, Z.-S., Chen, W.-X. & Shao, L.-X. (2014). J. Org. Chem. 79, 5806–5811. CrossRef CAS PubMed Google Scholar
Guo, J.-L., Liu, G.-Y., Wang, R.-Y. & Sun, S.-X. (2022). Molecules, 27, 1886. CrossRef PubMed Google Scholar
Haase, H. & Rink, L. (2014). Metallomics, 6, 1175–1180. CrossRef CAS PubMed Google Scholar
Häggman, L., Lindblad, C., Cassel, A. & Persson, I. (2020). J. Solution Chem. 49, 1279–1289. Google Scholar
He, Q., Liu, S. & Xue, Z. (2021). Z. Kristallogr. New Cryst. Struct. 236, 847–849. CSD CrossRef CAS Google Scholar
Jawad, S. H. & Al-Adilee, K. J. (2022). Res. Chem. 4, 100573, 1–18. Google Scholar
Kanzaki, R., Doi, H., Song, X., Hara, S., Ishiguro, S.-I. & Umebayashi, Y. (2012). J. Phys. Chem. B, 116, 14146–14152. CrossRef CAS PubMed Google Scholar
Kempegowda, R. M., Malavalli, M. K., Malimath, G. H., Naik, L. & Manjappa, K. B. (2021). Chem. Sel, 6, 3033–3039. CAS Google Scholar
Kolenko, V., Teper, E., Kutikov, A. & Uzzo, R. (2013). Nat. Rev. Urol. 10, 219–226. CrossRef CAS PubMed Google Scholar
Konarev, D. V., Kuzmin, A. V., Nakano, Y., Khasanov, S. S., Otsuka, A., Yamochi, H., Kitagawa, H. & Lyubovskaya, R. N. (2018). Dalton Trans. 47, 4661–4671. CSD CrossRef CAS PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Kseniya, V., Belyaeva, K. V., Nikitina, L. P., Gen, V. S., Tomilin, D. N., Sobenina, L. N., Afonin, A. V., Oparina, L. A. & Trofimov, B. A. (2022). Catalysts, 12:1604, 1–11. Google Scholar
Kühl, O., Millinghaus, S. & Palm, G. J. (2011). Open Chem. J. 9, 706–711. Google Scholar
Liu, J., Wang, Z., Levin, A., Emge, T. J., Rablen, P. R., Floyd, D. M. & Knapp, S. (2014). J. Org. Chem. 79, 7593–7599. CSD CrossRef CAS PubMed Google Scholar
Loke, S. K., Pagadala, E., Devaraju, S., Srinivasadesikan, V. & Kottalanka, R. K. (2020). RSC Adv. 10, 36275–36286. CSD CrossRef CAS PubMed Google Scholar
McDevitt, C. A., Ogunniyi, A. D., Valkov, E., Lawrence, M. C., Kobe, B., McEwan, A. G. & Paton, J. C. (2011). PLoS Pathog. 7, e1002357. Web of Science CrossRef PubMed Google Scholar
Neumüller, B. & Dehnicke, K. Z. (2010). Z. Anorg. Allge Chem. 636, 1438–1440. Google Scholar
Park, H. J., Chae, E. A., Seo, H. W., Jang, J.-H., Chnung, W. J., Lee, J. Y., Hwang, D.-H. & Yoon, U. C. (2020). Mater. Chem. C. 8, 13843–13851. CSD CrossRef CAS Google Scholar
Porchia, M., Pellei, M., Del Bello, F. & Santini, C. (2020). Molecules, 25, 5814. Web of Science CrossRef PubMed Google Scholar
Rashamuse, T. J., Mohlala, R. L., Coyanis, E. M. & Magwa, N. P. (2023). Molecules, 28, 5272. CrossRef PubMed Google Scholar
Rashidi, N., Fard, M. J. S., Hayati, P., Janczak, J., Yazdian, F., Rouhani, S. & Msagati, T. A. M. (2021). J. Mol. Struct. 1231, 129947. CSD CrossRef Google Scholar
Reedijk, J., Albada, G. A. van, Limburg, B., Mutikainen, I. & Turpeinen, U. (2012). Acta Cryst. E68, m90. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Steichen, M., Brooks, N. R., Van Meervelt, L., Fransaer, J. & Binnemans, K. (2014). Dalton Trans. 43, 12329–12341. CSD CrossRef CAS PubMed Google Scholar
Velasco, E., Wang, S., Sanet, M., Fernández-Vázquez, J., Jové, D., Glaría, E., Valledor, A. F., O'Halloran, T. V. & Balsalobre, C. (2018). Sci. Rep. 8, 6535, 1–11. Google Scholar
Victor, E., Kim, S. & Lippard, S. J. (2014). Inorg. Chem. 53, 12809–12821. CSD CrossRef CAS PubMed Google Scholar
Wang, P., Yang, J., Cai, J., Sun, C., Li, L. & Ji, M. (2013). J. Serb. Chem. Soc. 78, 917–920. CrossRef CAS Google Scholar
Yu, H. Yu. S., Yu, J., Chen, S., Guan, Y. & Li, L. (2021). J. Mater. Sci. Mater. Electron. 32, 22459–22471. CrossRef CAS Google Scholar
Zhang, G., Luan, J. & Wang, X.-J. (2020). Z. Kristallogr. New Cryst. Struct. 235, 1307–1309. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.