research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, characterization, and crystal structure of hexa­kis­(1-methyl-1H-imidazole-κN3)zinc(II) dinitrate

crossmark logo

aUniversity of South Africa, Department of Chemistry, Private Bag X6, Florida, Gauteng, 1710, South Africa, and bAdvanced Materials Division, Mintek, 200 Malibongwe Drive, Randburg, 2125, South Africa
*Correspondence e-mail: Magwanp@unisa.ac.za

Edited by D. R. Manke, University of Massachusetts Dartmouth, USA (Received 3 May 2024; accepted 9 September 2024; online 24 September 2024)

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

The synthesis of the title compound, [Zn(C4H6N2)6](NO3)2, is described. This complex consists of a central zinc metal ion surrounded by six 1-methyl­imidazole ligands, charge balanced by two nitrate anions. The complex crystallizes in the space group P[\overline{3}]. In the crystal, the nitrate ions are situated within the cavities created by the [Zn(N-Melm)6]2+ cations, serving as counter-ions. The three oxygen atoms of the nitrate ion engage in weak C—H⋯O inter­actions. In addition to single-crystal X-ray diffraction analysis, the complex was characterized using elemental analysis, 1H NMR, 13C NMR, and FTIR spectroscopy.

1. Chemical context

Extensive research has been conducted on zinc complexes containing imidazole and its derivatives due to their significance in chemistry and their diverse applications (Victor et al., 2014[Victor, E., Kim, S. & Lippard, S. J. (2014). Inorg. Chem. 53, 12809-12821.]; Porchia et al., 2020[Porchia, M., Pellei, M., Del Bello, F. & Santini, C. (2020). Molecules, 25, 5814.]). These complexes play crucial roles as anti­cancer agents (Porchia et al., 2020[Porchia, M., Pellei, M., Del Bello, F. & Santini, C. (2020). Molecules, 25, 5814.]; Babijczuk et al., 2023[Babijczuk, K., Warżajtis, B., Starzyk, J., Mrówczyńska, L., Jasiewicz, B. & Rychlewska, U. (2023). Molecules, 28, 4132, 1-19.]), anti­bacterial agents (Guo et al., 2022[Guo, J.-L., Liu, G.-Y., Wang, R.-Y. & Sun, S.-X. (2022). Molecules, 27, 1886.]), fluorescent sensors (Anjali et al., 2022[Anjali, K. G., Jibin, K. V., Aswathy, P. V., Shanty, A. A., Shijo, F., Dhanya, T. M., Savitha, D. P. & Mohanan, P. V. (2022). J. Photochem. Photobiol. Chem. 433, 114134.]), in anti-counterfeiting and latent fingerprint detection (Kempegowda et al., 2021[Kempegowda, R. M., Malavalli, M. K., Malimath, G. H., Naik, L. & Manjappa, K. B. (2021). Chem. Sel, 6, 3033-3039.]), and in materials chemistry (Rashamuse et al., 2023[Rashamuse, T. J., Mohlala, R. L., Coyanis, E. M. & Magwa, N. P. (2023). Molecules, 28, 5272.]; Bezvikonnyi et al., 2022[Bezvikonnyi, O., Bernard, R. S., Andruleviciene, V., Andruleviciene, V., Volyniuk, D., Keruckiene, R., Vaiciulaityte, K., Labanauskas, L. & Grazulevicius, J. V. (2022). Materials, 15, 8495.]; Yu et al., 2021[Yu, H. Yu. S., Yu, J., Chen, S., Guan, Y. & Li, L. (2021). J. Mater. Sci. Mater. Electron. 32, 22459-22471.]). Notably, zinc is the second most prevalent trace metal in the human body and is essential in a variety of biological systems (Haase & Rink, 2014[Haase, H. & Rink, L. (2014). Metallomics, 6, 1175-1180.]; Kolenko et al., 2013[Kolenko, V., Teper, E., Kutikov, A. & Uzzo, R. (2013). Nat. Rev. Urol. 10, 219-226.]). Consequently, it is unsurprising that ZnII ions demonstrate the ability to inhibit certain bacterial species (McDevitt et al., 2011[McDevitt, C. A., Ogunniyi, A. D., Valkov, E., Lawrence, M. C., Kobe, B., McEwan, A. G. & Paton, J. C. (2011). PLoS Pathog. 7, e1002357.]; Velasco et al., 2018[Velasco, E., Wang, S., Sanet, M., Fernández-Vázquez, J., Jové, D., Glaría, E., Valledor, A. F., O'Halloran, T. V. & Balsalobre, C. (2018). Sci. Rep. 8, 6535, 1-11.]). The use of ZnII as the metal center in coordination chemistry is motivated by its ability to form strong complexes with ligands and the low cost of Zn precursors (Häggman et al., 2020[Häggman, L., Lindblad, C., Cassel, A. & Persson, I. (2020). J. Solution Chem. 49, 1279-1289.]; Rashamuse et al., 2023[Rashamuse, T. J., Mohlala, R. L., Coyanis, E. M. & Magwa, N. P. (2023). Molecules, 28, 5272.]). In recent years, great efforts have been made to develop new organic zinc complexes with various architectures and applications (Abendrot, et al., 2020[Abendrot, M., Chęcińsk, L., Kusz, J., Lisowska, K., Zawadzka, K., Felczak, A. & Kalinowska-Lis, U. (2020). Molecules, 25, 951, 1-17.]; Brahma & Baruah, 2020[Brahma, R. & Baruah, J. B. (2020). ACS Omega, 5, 3774-3785.]; Chen et al., 2021[Chen, X., Hu, H., Wang, S., Li, B. & Wang, H. (2021). Chemistry Select, 69460, 13286-13290.]; Kseniya et al., 2022[Kseniya, V., Belyaeva, K. V., Nikitina, L. P., Gen, V. S., Tomilin, D. N., Sobenina, L. N., Afonin, A. V., Oparina, L. A. & Trofimov, B. A. (2022). Catalysts, 12:1604, 1-11.]; Loke et al., 2020[Loke, S. K., Pagadala, E., Devaraju, S., Srinivasadesikan, V. & Kottalanka, R. K. (2020). RSC Adv. 10, 36275-36286.]).

On the other hand, N-substituted imidazoles, or 1-substituted imidazoles, have emerged as highly attractive compounds due to a broad spectrum of applications (Chen et al., 2020[Chen, X., An, D.-L., Zhan, X.-Q. & Zhou, Z.-H. (2020). Molecules, 25, 1286, 1-12.]; Gu et al., 2014[Gu, Z.-S., Chen, W.-X. & Shao, L.-X. (2014). J. Org. Chem. 79, 5806-5811.]; Kanzaki et al., 2012[Kanzaki, R., Doi, H., Song, X., Hara, S., Ishiguro, S.-I. & Umebayashi, Y. (2012). J. Phys. Chem. B, 116, 14146-14152.]; Kseniya et al., 2022[Kseniya, V., Belyaeva, K. V., Nikitina, L. P., Gen, V. S., Tomilin, D. N., Sobenina, L. N., Afonin, A. V., Oparina, L. A. & Trofimov, B. A. (2022). Catalysts, 12:1604, 1-11.]; Liu et al., 2014[Liu, J., Wang, Z., Levin, A., Emge, T. J., Rablen, P. R., Floyd, D. M. & Knapp, S. (2014). J. Org. Chem. 79, 7593-7599.]; Bogdanov & Svinyarov, 2017[Bogdanov, M. G. & Svinyarov, I. (2017). Processes, 5, 52, 1-11.]; Park et al., 2020[Park, H. J., Chae, E. A., Seo, H. W., Jang, J.-H., Chnung, W. J., Lee, J. Y., Hwang, D.-H. & Yoon, U. C. (2020). Mater. Chem. C. 8, 13843-13851.]; Wang et al., 2013[Wang, P., Yang, J., Cai, J., Sun, C., Li, L. & Ji, M. (2013). J. Serb. Chem. Soc. 78, 917-920.]). This ligand set features a conjugated di­aza five-membered heterocyclic ring structure. One nitro­gen atom has an N-methyl substituent, and its lone pair is delocal­ized in the aromatic ring, while the other nitro­gen is sp2 hybridized and capable of coordinating Lewis acids, including metal ions. Numerous studies have been published on transition metal ion complexes involving imidazole and its derivatives (Erer et al., 2011[Erer, H., Yeşilel, O. Z., Darcan, C. & Büyükgüngör, O. (2011). Polyhedron, 30, 2406-2413.]; He et al., 2021[He, Q., Liu, S. & Xue, Z. (2021). Z. Kristallogr. New Cryst. Struct. 236, 847-849.]; Kühl et al., 2011[Kühl, O., Millinghaus, S. & Palm, G. J. (2011). Open Chem. J. 9, 706-711.]; Jawad & Al-Adilee 2022[Jawad, S. H. & Al-Adilee, K. J. (2022). Res. Chem. 4, 100573, 1-18.]; Konarev et al., 2018[Konarev, D. V., Kuzmin, A. V., Nakano, Y., Khasanov, S. S., Otsuka, A., Yamochi, H., Kitagawa, H. & Lyubovskaya, R. N. (2018). Dalton Trans. 47, 4661-4671.]; Neumüller & Dehnicke, 2010[Neumüller, B. & Dehnicke, K. Z. (2010). Z. Anorg. Allge Chem. 636, 1438-1440.]; Reedijk et al., 2012[Reedijk, J., Albada, G. A. van, Limburg, B., Mutikainen, I. & Turpeinen, U. (2012). Acta Cryst. E68, m90.]; Zhang et al., 2020[Zhang, G., Luan, J. & Wang, X.-J. (2020). Z. Kristallogr. New Cryst. Struct. 235, 1307-1309.]). The lack of N-methyl group tautomerization enhances the appeal of N-substituted imidazole for the synthesis of novel mol­ecules. The coordination of imidazole derivatives with metal centers has had a positive impact on the development of novel metal complexes with applications in the field of material science (Anjali et al., 2022[Anjali, K. G., Jibin, K. V., Aswathy, P. V., Shanty, A. A., Shijo, F., Dhanya, T. M., Savitha, D. P. & Mohanan, P. V. (2022). J. Photochem. Photobiol. Chem. 433, 114134.]; Bezvikonnyi et al., 2022[Bezvikonnyi, O., Bernard, R. S., Andruleviciene, V., Andruleviciene, V., Volyniuk, D., Keruckiene, R., Vaiciulaityte, K., Labanauskas, L. & Grazulevicius, J. V. (2022). Materials, 15, 8495.]; Kempegowda et al., 2021[Kempegowda, R. M., Malavalli, M. K., Malimath, G. H., Naik, L. & Manjappa, K. B. (2021). Chem. Sel, 6, 3033-3039.]; Rashamuse et al., 2023[Rashamuse, T. J., Mohlala, R. L., Coyanis, E. M. & Magwa, N. P. (2023). Molecules, 28, 5272.]; Yu et al., 2021[Yu, H. Yu. S., Yu, J., Chen, S., Guan, Y. & Li, L. (2021). J. Mater. Sci. Mater. Electron. 32, 22459-22471.]). In addition, the use of imidazole derivatives alongside zinc metal ions is an inter­esting technique to expand the complex repertoire in coordination chemistry. Therefore, our goal was to utilize the N-methyl­imidazole core in conjunction with a zinc metal ion in the presence of ammonia to generate unique complexes with different topologies.

[Scheme 1]

The utilization of 1-methyl­imidazole as a starting ligand for the synthesis of zinc complexes has been previously explored (Rashidi et al., 2021[Rashidi, N., Fard, M. J. S., Hayati, P., Janczak, J., Yazdian, F., Rouhani, S. & Msagati, T. A. M. (2021). J. Mol. Struct. 1231, 129947.]; Appleton & Sarkar, 1977[Appleton, D. W. & Sarkar, B. (1977). Bioinorg. Chem. 7, 211-224.]; Chen et al., 1996[Chen, X.-M., Huang, X.-C., Xu, Z.-T. & Huang, X.-Y. (1996). Acta Cryst. C52, 2482-2484.]; Steichen et al., 2014[Steichen, M., Brooks, N. R., Van Meervelt, L., Fransaer, J. & Binnemans, K. (2014). Dalton Trans. 43, 12329-12341.]). In this article, we report the synthesis of a new compound hexa­kis­(1-methyl-1H-imidazole-κN3)zinc(II) dinitrate, [Zn(C4H6N2)6](NO3)2, which is synthesized in the manner depicted in the scheme. The structure of the complex was confirmed via proton NMR, FTIR, and single-crystal X-ray diffraction.

2. Structural commentary

The title compound (Fig. 1[link]) crystallizes in the P[\overline{3}] space group with half of a formula unit in the asymmetric unit. There are two crystallographically distinct zinc atoms. One has 1/3 occupancy and is bound to two crystallographically unique 1-methyl­imidazole ligands and the other has 1/6 occupancy and is bound to one crystallographically unique 1-methyl­imidazole ligand. One full occupancy nitrate anion is also present in the asymmetric unit.

[Figure 1]
Figure 1
Displacement ellipsoid plot of [Zn(C4H6N2)6][NO3]2 showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) y − x, 1 − x, z; (ii) 1 − y, 1 + x − y, z; (iii) −y, x − y, z; (iv) y − x, −x, z; (v) −x, −y, −z; (vi) −y, x + x, −z; (vii) y, −x + y, −z.]

The full zinc complex ions {[Zn(N-Melm)6]2+, where N-Melm denotes N-methyl­imidazole} exhibit coordination by six N-Melm ligands. The ions are in a distorted octa­hedral coord­ination environment, demonstrated by N—Zn—N angles close to 90° or 180° depending on their cis or trans relationship. The Zn—N lengths are 2.182 (2) Å for N1—Zn1, 2.177 (2) Å for N3—Zn1, and 2.179 (2) Å for N5—Zn2. The complex mol­ecule also displays fifteen unique C—N bond lengths ranging from 1.308 (3) to 1.471 (4) Å. The nitrate counter-ion demonstrates O—N—O bond angles of 125.4 (4) ° for O2—N7—O3, 118.0 (4)° for O2—N7—O1, and 116.5 (4) ° for O3—N7—O1 and N—O bond lengths of 1.202 (5) Å for N7—O2, 1.209 (4) Å for N7—O3 and 1.234 (5) Å for N7—O1.

3. Supra­molecular features

The packing of the title compound is shown in Fig. 2[link] while Fig. 3[link] shows the inter­molecular inter­actions in the [Zn(C4H6N2)6][NO3]2 complex. In the crystal, the nitrate ions are situated within the cavities created by the [Zn(N-Melm)6]2+ cations, serving as counter-ions. The three oxygen atoms of the nitrate ion engage in weak C—H⋯O inter­actions (Table 1[link]) with two hydrogen atoms from the imidazole rings and one hydrogen atom from the methyl groups.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12B⋯O1i 0.98 2.44 3.339 (7) 152
C12—H12C⋯O3ii 0.98 2.36 3.333 (7) 169
C12—H12A⋯O2iii 0.98 2.62 3.596 (8) 174
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x+y, -x+1, z]; (iii) [-x+y, -x+1, z-1].
[Figure 2]
Figure 2
Packing diagram of the [Zn(C4H6N2)6][NO3]2 complex showing the nitrate cation lying in the void between the cationic complexes.
[Figure 3]
Figure 3
Diagram showing inter­action between the nitrate ions and N-methyl­imidazole ligands of the title compound with blue dashed lines representing the C—H⋯O close contacts.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.45, update of March 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for [Zn(C4H6N2)6] compounds with nitrate cations resulted in no hits. However, when the search was expanded to include other cationic salts, six relevant ones were found, including a discrete Zn complex with a sixfold coordination. These entries include [Zn(C4H6N2)6](I)2 (CCDC reference: 2347502; Rashidi et al., 2021[Rashidi, N., Fard, M. J. S., Hayati, P., Janczak, J., Yazdian, F., Rouhani, S. & Msagati, T. A. M. (2021). J. Mol. Struct. 1231, 129947.]), [Zn(MeIm)6](Tf2N)2, [Zn(EtIm)6](Tf2N)2, [Zn(MeIm)(EtIm)5](Tf2N)2, [Zn(MeIm)2(EtIm)4](Tf2N)2, and [Zn(MeIm)4.5(EtIm)1.5](Tf2N)2 (CCDC references: 978387, 978388, 978389, 978390, and 978391; Steichen et al., 2014[Steichen, M., Brooks, N. R., Van Meervelt, L., Fransaer, J. & Binnemans, K. (2014). Dalton Trans. 43, 12329-12341.]) where Melm is 1-methyl-1H-imidazole), EtIm is 1-ethyl-1H-imidazole, and (Tf2N)2 is bis­(tri­fluoro­methyl­sulfon­yl)imide. The cationic zinc complex paired with iodine anions, [Zn(C4H6N2)6](I)2, is particularly inter­esting as it exhibits a very similar structure, similar packing, similar cell parameters, and the same space group as the title compound. Although the zinc ions in the other five complexes had a similar sixfold coordination, the anion involved in these complexes was bis­(tri­fluoro­methyl­sulfon­yl)imide, and their crystals exhibited different structures and space groups.

5. Synthesis and crystallization

In a typical synthesis, 0.9 g of zinc nitrate hexa­hydrate, Zn(NO3)2·6H2O (3.0 mmol), was dissolved in 10 mL of ethanol. A second solution consisting of 0.52 g of N-methyl-1H-imidazole (6.0 mmol) in 30 mL of ethanol and 2.8 ml of ammonia solution (2.48 mmol) was prepared in parallel. The ZnII solution was poured rapidly into the second solution. The resultant mixture was stirred at room temperature for 10 minutes to complete crystallization. The crystals were collected by centrifugation, filtered, washed three times with ethanol, and dried overnight at room temperature to afford [Zn(C4H6N2)6][NO3]2 as light-blue crystals in 67% yield. Analysis calculated for C24H36N14O6Zn: C, 42.27%; H 5.32%; N, 28.75%; Found: C, 42.71%; H5.39%; N, 28.56%; 1H NMR δ/ppm (400 MHz, CDCl3): 3.77 (s, 3H), 7.06 (s, 2H), 8.13 (s, 1H); 13C NMR δ/ppm (101 MHz, CDCl3): 32.23, 127.99, 140.04; FTIR νmax/cm−1: 3121, 1643, 1528, 1516, 1327, 1288, 1231, 1088, 1026, 934, 826,768, 660, 621.

The overlaid 1H NMR spectra of the ligand and zinc complex are shown in Fig. 4[link]. In the proton NMR spectrum of the free N-methyl-1H-imidazole ligand, there are four sharp signals with the methyl group appearing at 3.47 ppm and the three protons of the imidazole motif appearing at 6.69. 6.84 and 7.21 ppm. However, upon complexation with the zinc ion, the methyl proton shifted to 3.77 ppm, while the imidazole signals are broadened with two protons merged at 7.06 ppm, and the third proton exhibiting a downfield shift to 8.13 ppm. Similar behavior can also be observed in the 13C NMR spectra, demonstrating complexation.

[Figure 4]
Figure 4
The superimposed 1H NMR spectra of (a) the free N-methyl­imidazole ligand (red) and (b) its corresponding [Zn(C4H6N2)6][NO3]2 complex (blue) in deuterated chloro­form.

The comparative FTIR spectra of the free ligand and the zinc complex are presented in Fig. 5[link]. In the spectrum of the zinc complex, a vibrational peak at 3476 cm−1 is observed, which is attributed to the O—H stretching of water mol­ecules as the complex is hygroscopic. The characteristic vibrational peak associated with C=C stretching appears at 1678 cm−1 in the free ligand, but in the complex spectrum, it is shifted to the vibrational frequency of 1630 cm−1. Furthermore, an intense band at around 1516 cm−1 is evident, which originates from the C=N stretching mode of the imidazole moiety of the free ligand. However, upon zinc coordination, two different vibrational frequencies are observed at 1545 and 1527 cm−1, corresponding to the C=N stretching mode. Notably, both asymmetric and symmetric NO3 stretching vibrations at 1330 and 958 cm−1 are clearly visible as intense vibrational peaks in the zinc complex spectrum, with both features absent in the free ligand spectrum. Furthermore, a stretching band of Zn—N is observed at a vibrational frequency of 467 cm−1, providing further evidence of the coordination of zinc ions with the nitro­gen atom of the N-methyl­imidazole group.

[Figure 5]
Figure 5
The superimposed FTIR spectra of the free ligand N-methyl­imidazole (orange) and its [Zn(C4H6N2)6][NO3]2 complex (blue) in the frequency range 3600–400 cm−1.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All C bound hydrogen atoms were placed at idealized positions and refined as riding atoms with isotropic parameters 1.2 or 1.5 times those of their parent atoms. The crystal studied was refined as a two-component twin. H atoms were positioned in idealized locations and refined using a riding model, with isotropic displacement parameters set to 1.2 or 1.5 times those of their respective parent atoms. A twin law was also applied.

Table 2
Experimental details

Crystal data
Chemical formula [Zn(C4H6N2)6](NO3)2
Mr 682.04
Crystal system, space group Trigonal, P[\overline{3}]
Temperature (K) 173
a, c (Å) 19.1227 (10), 7.4770 (5)
V3) 2367.9 (3)
Z 3
Radiation type Mo Kα
μ (mm−1) 0.84
Crystal size (mm) 0.45 × 0.34 × 0.23
 
Data collection
Diffractometer Bruker D8 Venture Photon CCD area detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.660, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 119969, 3247, 3073
Rint 0.040
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.090, 1.12
No. of reflections 3247
No. of parameters 208
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.51, −0.36
Computer programs: APEX3, SAINT-Plus and XPREP (Bruker 2016[Bruker (2016). APEX3 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Hexakis(1-methyl-1H-imidazole-κN3)zinc(II) dinitrate top
Crystal data top
[Zn(C4H6N2)6](NO3)2Dx = 1.435 Mg m3
Mr = 682.04Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3Cell parameters from 9720 reflections
a = 19.1227 (10) Åθ = 3.3–26.2°
c = 7.4770 (5) ŵ = 0.84 mm1
V = 2367.9 (3) Å3T = 173 K
Z = 3Block, colourless
F(000) = 10680.45 × 0.34 × 0.23 mm
Data collection top
Bruker D8 Venture Photon CCD area detector
diffractometer
3073 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2323
Tmin = 0.660, Tmax = 0.745k = 2323
119969 measured reflectionsl = 99
3247 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual - dual-space method e.g. SHELXD
Least-squares matrix: fullSecondary atom site location: dual - dual-space method e.g. SHELXD
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: mixed
wR(F2) = 0.090H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0449P)2 + 1.2961P]
where P = (Fo2 + 2Fc2)/3
3247 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.36 e Å3
0 constraints
Special details top

Experimental. Absorption corrections were made using the program SADABS (Sheldrick, 1996) Intensity data were determined on a Bruker Venture D8 Photon CMOS diffractometer with graphite-monochromated Mo Ka1 (λ = 0.71073 Å) radiation at 173 K using an Oxford Cryostream 600 cooler. Data reduction was carried out using the program SAINT+, version 6.02 (Bruker, 2016) and empirical absorption corrections were made using SADABS (Bruker 2016) Space group assignments was made using XPREP (Bruker, 2016). The structure was solved in the WinGX (Farrugia, 2012) Suite of programs, using intrinsic phasing through SHELXT (Sheldrick, 2015a) and refined using full-matrix least-squares/difference Fourier techniques on F2 using SHELXL2017 (Sheldrick, 2015b). Diagrams and publication material were generated using ORTEP-3 (Farrugia, 2012) and PLATON (Spek, 2020).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.35319 (17)0.56158 (16)0.8432 (4)0.0370 (5)
H10.3973480.6081950.8945450.044*
C20.32525 (18)0.48483 (17)0.8998 (4)0.0408 (6)
H20.3458520.4678570.9956980.049*
C30.25403 (19)0.48549 (16)0.6749 (4)0.0434 (6)
H30.2140480.4669440.5838820.052*
C40.2155 (3)0.3487 (2)0.7945 (6)0.0742 (12)
H4A0.2214780.3289110.9112280.111*
H4B0.2355740.3274550.7006030.111*
H4C0.1584220.3305630.7730110.111*
C50.31191 (18)0.77017 (19)0.2309 (4)0.0408 (6)
H50.266360.7235780.1833960.049*
C60.34153 (19)0.84611 (19)0.1679 (4)0.0451 (7)
H60.3211040.8627070.0710150.054*
C70.41433 (19)0.84552 (17)0.3924 (4)0.0479 (7)
H70.4559420.8640520.4796860.057*
C80.4553 (3)0.9812 (2)0.2607 (6)0.0860 (15)
H8A0.5103630.9982280.3002050.129*
H8B0.4319851.0057280.3378390.129*
H8C0.4564630.9985540.1368260.129*
N10.30848 (13)0.56202 (13)0.7012 (3)0.0321 (4)
N20.26215 (16)0.43720 (15)0.7926 (3)0.0437 (6)
N30.35725 (12)0.77013 (12)0.3735 (3)0.0330 (4)
N40.40615 (19)0.89350 (16)0.2712 (4)0.0510 (7)
Zn10.3333330.6666670.53840 (6)0.02973 (13)
C90.11565 (17)0.12401 (17)0.2960 (4)0.0397 (6)
H90.1296420.0861070.3407270.048*
C100.14947 (19)0.20166 (17)0.3498 (4)0.0472 (7)
H100.1929870.2278840.4314760.057*
C110.06016 (17)0.17677 (16)0.1425 (4)0.0394 (6)
H110.0272120.184470.0588450.047*
C120.1277 (3)0.31748 (19)0.2617 (6)0.0669 (10)
H12A0.1014490.3276010.1602830.1*
H12B0.1859310.35540.2574080.1*
H12C0.1055920.3248680.3737680.1*
N50.05952 (13)0.10858 (12)0.1642 (3)0.0353 (5)
N60.11268 (16)0.23427 (14)0.2519 (4)0.0453 (6)
Zn20000.03046 (17)
N70.65532 (18)0.6614 (2)0.7378 (5)0.0581 (7)
O10.6741 (2)0.6106 (2)0.6944 (6)0.1096 (13)
O20.6618 (3)0.6807 (3)0.8925 (5)0.1172 (14)
O30.6354 (3)0.6903 (2)0.6181 (6)0.1214 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0432 (14)0.0399 (13)0.0321 (13)0.0239 (11)0.0013 (11)0.0015 (11)
C20.0552 (16)0.0522 (15)0.0319 (12)0.0395 (14)0.0082 (12)0.0065 (11)
C30.0529 (16)0.0332 (13)0.0378 (14)0.0167 (12)0.0037 (12)0.0044 (11)
C40.099 (3)0.0314 (16)0.080 (3)0.0237 (18)0.013 (2)0.0114 (16)
C50.0464 (15)0.0511 (16)0.0335 (13)0.0309 (14)0.0040 (12)0.0000 (13)
C60.0587 (17)0.0621 (18)0.0342 (13)0.0449 (15)0.0066 (13)0.0111 (12)
C70.0596 (18)0.0318 (13)0.0474 (16)0.0192 (13)0.0115 (13)0.0062 (11)
C80.126 (4)0.043 (2)0.082 (3)0.037 (2)0.003 (3)0.0250 (19)
N10.0334 (10)0.0332 (11)0.0304 (10)0.0171 (9)0.0050 (8)0.0026 (8)
N20.0554 (15)0.0339 (12)0.0426 (13)0.0230 (11)0.0064 (11)0.0087 (10)
N30.0356 (10)0.0352 (11)0.0307 (10)0.0197 (9)0.0013 (8)0.0031 (8)
N40.0727 (19)0.0420 (14)0.0467 (14)0.0351 (14)0.0049 (13)0.0130 (11)
Zn10.02969 (16)0.02969 (16)0.0298 (2)0.01484 (8)00
C90.0411 (14)0.0366 (13)0.0371 (15)0.0160 (12)0.0034 (11)0.0042 (11)
C100.0530 (16)0.0423 (15)0.0385 (14)0.0179 (13)0.0033 (13)0.0024 (12)
C110.0407 (13)0.0328 (12)0.0433 (14)0.0173 (11)0.0000 (12)0.0068 (11)
C120.083 (3)0.0314 (16)0.081 (3)0.0242 (17)0.006 (2)0.0153 (16)
N50.0340 (11)0.0311 (10)0.0395 (12)0.0153 (9)0.0015 (9)0.0015 (9)
N60.0497 (14)0.0293 (12)0.0493 (14)0.0141 (11)0.0028 (11)0.0058 (10)
Zn20.0271 (2)0.0271 (2)0.0372 (4)0.01354 (10)00
N70.0479 (16)0.0584 (17)0.0692 (19)0.0275 (14)0.0088 (14)0.0225 (14)
O10.108 (3)0.088 (2)0.147 (4)0.059 (2)0.004 (3)0.018 (2)
O20.156 (4)0.150 (4)0.0653 (18)0.091 (3)0.029 (2)0.016 (2)
O30.131 (3)0.113 (3)0.133 (3)0.071 (3)0.051 (3)0.016 (3)
Geometric parameters (Å, º) top
C1—C21.355 (4)C8—H8A0.98
C1—N11.365 (3)C8—H8B0.98
C1—H10.95C8—H8C0.98
C2—N21.352 (4)N1—Zn12.182 (2)
C2—H20.95N3—Zn12.177 (2)
C3—N11.319 (3)C9—C101.351 (4)
C3—N21.339 (4)C9—N51.376 (4)
C3—H30.95C9—H90.95
C4—N21.467 (4)C10—N61.363 (4)
C4—H4A0.98C10—H100.9486
C4—H4B0.98C11—N51.308 (3)
C4—H4C0.98C11—N61.335 (4)
C5—C61.352 (4)C11—H110.95
C5—N31.375 (3)C12—N61.471 (4)
C5—H50.95C12—H12A0.98
C6—N41.351 (4)C12—H12B0.98
C6—H60.95C12—H12C0.98
C7—N31.310 (3)N5—Zn22.179 (2)
C7—N41.353 (4)N7—O21.202 (5)
C7—H70.95N7—O31.209 (4)
C8—N41.458 (4)N7—O11.234 (5)
C2—C1—N1109.9 (2)N3—Zn1—N1i88.74 (8)
C2—C1—H1125N3i—Zn1—N1i179.34 (8)
N1—C1—H1125N3ii—Zn1—N1i88.28 (8)
N2—C2—C1106.3 (2)N1ii—Zn1—N1i91.89 (8)
N2—C2—H2126.9N3—Zn1—N1179.34 (9)
C1—C2—H2126.9N3i—Zn1—N188.28 (8)
N1—C3—N2111.6 (3)N3ii—Zn1—N188.73 (8)
N1—C3—H3124.2N1ii—Zn1—N191.89 (8)
N2—C3—H3124.2N1i—Zn1—N191.89 (8)
N2—C4—H4A109.5C10—C9—N5110.0 (3)
N2—C4—H4B109.5C10—C9—H9124.8
H4A—C4—H4B109.5N5—C9—H9125.1
N2—C4—H4C109.5C9—C10—N6105.7 (3)
H4A—C4—H4C109.5C9—C10—H10125.7
H4B—C4—H4C109.5N6—C10—H10128.4
C6—C5—N3110.2 (3)N5—C11—N6111.9 (3)
C6—C5—H5124.9N5—C11—H11124
N3—C5—H5124.9N6—C11—H11124
N4—C6—C5105.8 (2)N6—C12—H12A109.5
N4—C6—H6127.1N6—C12—H12B109.5
C5—C6—H6127.1H12A—C12—H12B109.5
N3—C7—N4111.0 (3)N6—C12—H12C109.5
N3—C7—H7124.5H12A—C12—H12C109.5
N4—C7—H7124.5H12B—C12—H12C109.5
N4—C8—H8A109.5C11—N5—C9104.9 (2)
N4—C8—H8B109.5C11—N5—Zn2128.3 (2)
H8A—C8—H8B109.5C9—N5—Zn2125.97 (18)
N4—C8—H8C109.5C11—N6—C10107.5 (2)
H8A—C8—H8C109.5C11—N6—C12125.5 (3)
H8B—C8—H8C109.5C10—N6—C12127.1 (3)
C3—N1—C1105.0 (2)N5iii—Zn2—N5iv180.00 (9)
C3—N1—Zn1128.56 (18)N5iii—Zn2—N588.61 (8)
C1—N1—Zn1126.11 (18)N5iv—Zn2—N591.39 (8)
C3—N2—C2107.3 (2)N5iii—Zn2—N5v91.39 (8)
C3—N2—C4126.1 (3)N5iv—Zn2—N5v88.61 (8)
C2—N2—C4126.5 (3)N5—Zn2—N5v180
C7—N3—C5105.2 (2)N5iii—Zn2—N5vi88.61 (8)
C7—N3—Zn1128.32 (18)N5iv—Zn2—N5vi91.39 (8)
C5—N3—Zn1126.43 (19)N5—Zn2—N5vi91.39 (8)
C6—N4—C7107.8 (3)N5v—Zn2—N5vi88.61 (8)
C6—N4—C8126.0 (3)N5iii—Zn2—N5vii91.39 (8)
C7—N4—C8126.1 (3)N5iv—Zn2—N5vii88.61 (8)
N3—Zn1—N3i91.09 (8)N5—Zn2—N5vii88.61 (8)
N3—Zn1—N3ii91.09 (8)N5v—Zn2—N5vii91.39 (8)
N3i—Zn1—N3ii91.09 (8)N5vi—Zn2—N5vii180.00 (8)
N3—Zn1—N1ii88.28 (8)O2—N7—O3125.4 (4)
N3i—Zn1—N1ii88.73 (8)O2—N7—O1118.0 (4)
N3ii—Zn1—N1ii179.34 (8)O3—N7—O1116.5 (4)
N1—C1—C2—N20.4 (3)C5—C6—N4—C70.3 (3)
N3—C5—C6—N40.5 (3)C5—C6—N4—C8176.3 (4)
N2—C3—N1—C10.1 (3)N3—C7—N4—C61.1 (4)
N2—C3—N1—Zn1173.38 (18)N3—C7—N4—C8175.5 (4)
C2—C1—N1—C30.2 (3)N5—C9—C10—N61.0 (3)
C2—C1—N1—Zn1173.31 (17)N6—C11—N5—C90.2 (3)
N1—C3—N2—C20.3 (3)N6—C11—N5—Zn2170.42 (18)
N1—C3—N2—C4175.6 (3)C10—C9—N5—C110.6 (3)
C1—C2—N2—C30.4 (3)C10—C9—N5—Zn2170.0 (2)
C1—C2—N2—C4175.7 (3)N5—C11—N6—C100.8 (3)
N4—C7—N3—C51.4 (4)N5—C11—N6—C12179.7 (3)
N4—C7—N3—Zn1175.52 (19)C9—C10—N6—C111.1 (3)
C6—C5—N3—C71.2 (3)C9—C10—N6—C12179.4 (3)
C6—C5—N3—Zn1175.81 (18)
Symmetry codes: (i) y+1, xy+1, z; (ii) x+y, x+1, z; (iii) xy, x, z; (iv) x+y, x, z; (v) x, y, z; (vi) y, xy, z; (vii) y, x+y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12B···O1viii0.982.443.339 (7)152
C12—H12C···O3ii0.982.363.333 (7)169
C12—H12A···O2ix0.982.623.596 (8)174
Symmetry codes: (ii) x+y, x+1, z; (viii) x+1, y+1, z+1; (ix) x+y, x+1, z1.
 

Funding information

The authors gratefully acknowledge Mintek Science Vote Work Package AM27, the UNISA, and the South African National Research Foundation's NRF Thuthuka grant (grant Nos. UID: 138397 and 129744) for technical, material, and financial support.

References

First citationAbendrot, M., Chęcińsk, L., Kusz, J., Lisowska, K., Zawadzka, K., Felczak, A. & Kalinowska-Lis, U. (2020). Molecules, 25, 951, 1–17.  Google Scholar
First citationAnjali, K. G., Jibin, K. V., Aswathy, P. V., Shanty, A. A., Shijo, F., Dhanya, T. M., Savitha, D. P. & Mohanan, P. V. (2022). J. Photochem. Photobiol. Chem. 433, 114134.  CrossRef Google Scholar
First citationAppleton, D. W. & Sarkar, B. (1977). Bioinorg. Chem. 7, 211–224.  CrossRef PubMed CAS Google Scholar
First citationBabijczuk, K., Warżajtis, B., Starzyk, J., Mrówczyńska, L., Jasiewicz, B. & Rychlewska, U. (2023). Molecules, 28, 4132, 1–19.  Google Scholar
First citationBezvikonnyi, O., Bernard, R. S., Andruleviciene, V., Andruleviciene, V., Volyniuk, D., Keruckiene, R., Vaiciulaityte, K., Labanauskas, L. & Grazulevicius, J. V. (2022). Materials, 15, 8495.  CrossRef PubMed Google Scholar
First citationBogdanov, M. G. & Svinyarov, I. (2017). Processes, 5, 52, 1–11.  Google Scholar
First citationBrahma, R. & Baruah, J. B. (2020). ACS Omega, 5, 3774–3785.  CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2016). APEX3 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X., An, D.-L., Zhan, X.-Q. & Zhou, Z.-H. (2020). Molecules, 25, 1286, 1–12.  Google Scholar
First citationChen, X., Hu, H., Wang, S., Li, B. & Wang, H. (2021). Chemistry Select, 69460, 13286–13290.  Google Scholar
First citationChen, X.-M., Huang, X.-C., Xu, Z.-T. & Huang, X.-Y. (1996). Acta Cryst. C52, 2482–2484.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationErer, H., Yeşilel, O. Z., Darcan, C. & Büyükgüngör, O. (2011). Polyhedron, 30, 2406–2413.  CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGu, Z.-S., Chen, W.-X. & Shao, L.-X. (2014). J. Org. Chem. 79, 5806–5811.  CrossRef CAS PubMed Google Scholar
First citationGuo, J.-L., Liu, G.-Y., Wang, R.-Y. & Sun, S.-X. (2022). Molecules, 27, 1886.  CrossRef PubMed Google Scholar
First citationHaase, H. & Rink, L. (2014). Metallomics, 6, 1175–1180.  CrossRef CAS PubMed Google Scholar
First citationHäggman, L., Lindblad, C., Cassel, A. & Persson, I. (2020). J. Solution Chem. 49, 1279–1289.  Google Scholar
First citationHe, Q., Liu, S. & Xue, Z. (2021). Z. Kristallogr. New Cryst. Struct. 236, 847–849.  CSD CrossRef CAS Google Scholar
First citationJawad, S. H. & Al-Adilee, K. J. (2022). Res. Chem. 4, 100573, 1–18.  Google Scholar
First citationKanzaki, R., Doi, H., Song, X., Hara, S., Ishiguro, S.-I. & Umebayashi, Y. (2012). J. Phys. Chem. B, 116, 14146–14152.  CrossRef CAS PubMed Google Scholar
First citationKempegowda, R. M., Malavalli, M. K., Malimath, G. H., Naik, L. & Manjappa, K. B. (2021). Chem. Sel, 6, 3033–3039.  CAS Google Scholar
First citationKolenko, V., Teper, E., Kutikov, A. & Uzzo, R. (2013). Nat. Rev. Urol. 10, 219–226.  CrossRef CAS PubMed Google Scholar
First citationKonarev, D. V., Kuzmin, A. V., Nakano, Y., Khasanov, S. S., Otsuka, A., Yamochi, H., Kitagawa, H. & Lyubovskaya, R. N. (2018). Dalton Trans. 47, 4661–4671.  CSD CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKseniya, V., Belyaeva, K. V., Nikitina, L. P., Gen, V. S., Tomilin, D. N., Sobenina, L. N., Afonin, A. V., Oparina, L. A. & Trofimov, B. A. (2022). Catalysts, 12:1604, 1–11.  Google Scholar
First citationKühl, O., Millinghaus, S. & Palm, G. J. (2011). Open Chem. J. 9, 706–711.  Google Scholar
First citationLiu, J., Wang, Z., Levin, A., Emge, T. J., Rablen, P. R., Floyd, D. M. & Knapp, S. (2014). J. Org. Chem. 79, 7593–7599.  CSD CrossRef CAS PubMed Google Scholar
First citationLoke, S. K., Pagadala, E., Devaraju, S., Srinivasadesikan, V. & Kottalanka, R. K. (2020). RSC Adv. 10, 36275–36286.  CSD CrossRef CAS PubMed Google Scholar
First citationMcDevitt, C. A., Ogunniyi, A. D., Valkov, E., Lawrence, M. C., Kobe, B., McEwan, A. G. & Paton, J. C. (2011). PLoS Pathog. 7, e1002357.  Web of Science CrossRef PubMed Google Scholar
First citationNeumüller, B. & Dehnicke, K. Z. (2010). Z. Anorg. Allge Chem. 636, 1438–1440.  Google Scholar
First citationPark, H. J., Chae, E. A., Seo, H. W., Jang, J.-H., Chnung, W. J., Lee, J. Y., Hwang, D.-H. & Yoon, U. C. (2020). Mater. Chem. C. 8, 13843–13851.  CSD CrossRef CAS Google Scholar
First citationPorchia, M., Pellei, M., Del Bello, F. & Santini, C. (2020). Molecules, 25, 5814.  Web of Science CrossRef PubMed Google Scholar
First citationRashamuse, T. J., Mohlala, R. L., Coyanis, E. M. & Magwa, N. P. (2023). Molecules, 28, 5272.  CrossRef PubMed Google Scholar
First citationRashidi, N., Fard, M. J. S., Hayati, P., Janczak, J., Yazdian, F., Rouhani, S. & Msagati, T. A. M. (2021). J. Mol. Struct. 1231, 129947.  CSD CrossRef Google Scholar
First citationReedijk, J., Albada, G. A. van, Limburg, B., Mutikainen, I. & Turpeinen, U. (2012). Acta Cryst. E68, m90.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteichen, M., Brooks, N. R., Van Meervelt, L., Fransaer, J. & Binnemans, K. (2014). Dalton Trans. 43, 12329–12341.  CSD CrossRef CAS PubMed Google Scholar
First citationVelasco, E., Wang, S., Sanet, M., Fernández-Vázquez, J., Jové, D., Glaría, E., Valledor, A. F., O'Halloran, T. V. & Balsalobre, C. (2018). Sci. Rep. 8, 6535, 1–11.  Google Scholar
First citationVictor, E., Kim, S. & Lippard, S. J. (2014). Inorg. Chem. 53, 12809–12821.  CSD CrossRef CAS PubMed Google Scholar
First citationWang, P., Yang, J., Cai, J., Sun, C., Li, L. & Ji, M. (2013). J. Serb. Chem. Soc. 78, 917–920.  CrossRef CAS Google Scholar
First citationYu, H. Yu. S., Yu, J., Chen, S., Guan, Y. & Li, L. (2021). J. Mater. Sci. Mater. Electron. 32, 22459–22471.  CrossRef CAS Google Scholar
First citationZhang, G., Luan, J. & Wang, X.-J. (2020). Z. Kristallogr. New Cryst. Struct. 235, 1307–1309.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds