research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of {2-[bis­­(pyridin-2-ylmeth­yl)amino]­ethane-1-thiol­ato}­chlorido­cadmium(II)

crossmark logo

aDepartment of Chemistry, William & Mary, Williamsburg, VA 23187-8795, USA
*Correspondence e-mail: dcbebo@wm.edu

Edited by C. Schulzke, Universität Greifswald, Germany (Received 20 August 2024; accepted 19 September 2024; online 30 September 2024)

The title compound, [Cd(C14H16N3S)Cl] or [CdLCl] (1), where LH = 2-[bis­(pyridin-2-ylmeth­yl)amino]­ethane-1-thiol, was prepared and structurally characterized. The Cd2+ complex crystallizes in P21/c with a distorted trigonal–bipyramidal metal coordination geometry. Supra­molecular inter­actions in 1 include parallel offset face-to-face inter­actions between inversion-related pyridyl rings and potential hydrogen bonds with chlorine or sulfur as the acceptor. Additional cooperative pyrid­yl–pyridyl inter­actions with roughly 45° tilt angles and centroid–centroid distances of less than 5.5 Å likely also contribute to the overall solid-state stability. Hirshfeld surface analysis indicates that H⋯H (51.2%), Cl⋯H/H⋯Cl (13.9%), C⋯H/H⋯C (12.3%) and S⋯H/H⋯S (11.8%) inter­actions are dominant in the solid state.

1. Chemical context

The cambialistic ζ-class of carbonic anhydrases from marine diatoms relying on Cd2+ as their metal cofactor when Zn2+ is scarce were discovered in 2000 (Lane & Morel, 2000[Lane, T. W. & Morel, F. M. M. (2000). Proc. Natl Acad. Sci. USA, 97, 4627-4631.]). These proteins have His2Cys metal-binding environments like the prokaryotic β-class of Zn2+-dependent carbonic anhydrases (Xu et al., 2008[Xu, Y., Feng, L., Jeffrey, P. D., Shi, Y. & Morel, F. M. M. (2008). Nature, 452, 56-61.]). Despite the concurrence of histidine and cysteine in the active site of these proteins associated with the only known physiologically beneficial role for Cd2+, structurally characterized complexes of Cd2+ with chelating ligands containing a combination of aromatic amine and alkyl­thiol­ate donors remain rare (CSD, Version 5.45, update of June 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) and include only multinuclear complexes (Sturner et al., 2024[Sturner, M. A., Thomas, I. D., Owusu-Koramoah, J., Reynolds, T. M., Berry, S. M., Butcher, R. J. & Bebout, D. C. (2024). New J. Chem. 48, 2547-2557.]; Brennan et al. 2022[Brennan, H. M., Bunde, S. G., Kuang, Q., Palomino, T. V., Sacks, J. S., Berry, S. M., Butcher, R. J., Poutsma, J. C., Pike, R. D. & Bebout, D. C. (2022). Inorg. Chem. 61, 19857-19869.]; Lai et al. 2013[Lai, W., Berry, S. M., Kaplan, W. P., Hain, M. S., Poutsma, J. C., Butcher, R. J., Pike, R. D. & Bebout, D. C. (2013). Inorg. Chem. 52, 2286-2288.]). Herein, the preparation, crystal structure and Hirshfeld surface analysis of mononuclear {2-[bis­(pyridin-2-ylmeth­yl)amino]­ethane-1-thiol­ato}chlorido­cadmium(II) are reported.

[Scheme 1]

2. Structural commentary

Complex 1 crystallizes from methanol/n-butanol with NaOH as a base in the monoclinic space group P21/n as a monomer (Fig. 1[link]) instead of the dimer previously isolated from either methanol/benzene or methanol/ethyl acetate (Sturner et al., 2024[Sturner, M. A., Thomas, I. D., Owusu-Koramoah, J., Reynolds, T. M., Berry, S. M., Butcher, R. J. & Bebout, D. C. (2024). New J. Chem. 48, 2547-2557.]). The asymmetrically coordinated tetra­dentate organic ligand and one chloride provide a predominantly trigonal–bipyramidal coordination geometry (τ = 0.75; Table 1[link]) to the metal ion (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). The N1 and Cl1 atoms define the axial positions with a N1—Cd1—Cl1 bond angle of 161.29 (3)°. The cadmium atom is 0.6107 (6) Å above the mean N1A–N1B–S1 trigonal plane, away from the axial N1 atom, and closer to the axial Cl1 atom. The three chelate rings have envelope conformations with either N1, C6A or C1 in the flap positions.

Table 1
Selected geometric parameters (Å, °) for 1

Cd1—N1A 2.3313 (11) Cd1—S1 2.4710 (4)
Cd1—N1B 2.3151 (11) Cd1—Cl1 2.4674 (4)
Cd1—N1 2.4758 (11)    
       
N1A—Cd1—N1B 110.87 (4) N1B—Cd1—S1 116.16 (3)
N1A—Cd1—N1 71.91 (4) N1B—Cd1—Cl1 100.00 (3)
N1A—Cd1—S1 113.78 (3) S1—Cd1—N1 82.51 (3)
N1A—Cd1—Cl1 97.67 (3) Cl1—Cd1—N1 161.29 (3)
N1B—Cd1—N1 70.70 (4) Cl1—Cd1—S1 116.159 (13)
[Figure 1]
Figure 1
The mol­ecular structure of 1 with the atom-numbering scheme generated with ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]). Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

The packing of 1 is stabilized by ππ stacking inter­actions (Fig. 2[link]; Table 2[link]), hydrogen bonding (Fig. 3[link]; Table 3[link]) and van der Waals inter­actions (Table 4[link]). One face of each ligand pyridyl ring is stacked against an inversion-related equivalent with a small offset (Table 2[link]), creating one-dimensional strands of mol­ecules along the a-axis direction (Fig. 4[link]). Inter­estingly, the N1A pyridyl rings have roughly 45° tilt angles and centroid–centroid distances of less than 5.5 Å with both the N1B pyridyl rings within the strands and N1A pyridyl rings of adjacent strands. Stabilizing contributions from these hybrid offset face-to-face/edge-to-face inter­actions are supported by a quantum chemistry study of the benzene dimer associating a tilt angle of about 45° with a shallow minimum on the path inter­converting offset-parallel benzene dimers through a perpendicular saddle point (Jaffe & Smith, 1996[Jaffe, R. L. & Smith, G. D. (1996). J. Chem. Phys. 105, 2780-2788.]). Furthermore, structural analysis of aromatic ligands bound to proteins found an abundance of phenyl­alanine and tyrosine residues with comparable ring orientation metrics (Brylinski, 2018[Brylinski, M. (2018). Chem. Biol. Drug Des. 91, 380-390.]).

Table 2
Overview of pyrid­yl–pyridyl ring geometry inter­action metrics (Å, °) for 1

Cg1 and Cg2 are the centroids of the N1A/C1A–C5A and N1B/C1B–C5B rings, respectively.

Centroids Dihedral angle between rings Centroid–centroid distance Centroid–plane distance Slippage
Cg1⋯Cg1i 48.66 (7) 5.3780 (6) 1.9060 (6)
Cg1⋯Cg1ii 0 4.1803 (5) 3.6544 (6) 2.030
Cg2⋯Cg1ii 45.41 (4) 4.9435 (5) 2.0400 (5)
Cg2⋯Cg2iii 0 3.4649 (4) 3.3629 (5) 0.834
Symmetry codes: (i) 1 − x, [{1\over 2}] + y, [{3\over 2}] − z; (ii) 1 − x, 1 − y, 1 − z; (iii) 2 − x, 1 − y, 1 − z.

Table 3
Hydrogen-bond geometry (Å, °) for 1

D—H⋯A D—H H⋯A DA D—H⋯A
C2A—H2A⋯Cl1i 0.95 2.93 3.6784 (15) 137
C2B—H2B⋯S1ii 0.95 2.88 3.5459 (14) 128
C6B—H6BB⋯S1iii 0.99 2.97 3.9133 (13) 160
Symmetry codes: (i) [-x+1, -y, -z+1]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x, y+1, z].

Table 4
Short inter­molecular contacts (Å) for 1

S1⋯H6BBi 2.967 H4B⋯H3Biv 2.230
Cl1⋯H2Aii 2.928 H4B⋯H4Biv 2.395
C1B⋯C3Aiii 3.371 H1B⋯H1CAv 2.304
C1B⋯H3Aiii 2.820 H2B⋯S1v 2.877
H4B⋯C3Biv 2.851 C2B⋯H2CBvi 2.847
Symmetry codes: (i) x, −1 + y, z; (ii) 1 − x, −y, 1 − z; (iii) 1 − x, 1 − y, 1 − z; (iv) 2 − x, 2 − y, 1 − z; (v) x, [{1\over 2}] − y, −[{1\over 2}] + z; (vi) x, [{3\over 2}] − y, −[{1\over 2}] + z.
[Figure 2]
Figure 2
Centroid–centroid distances between nearby pyridyls in 1 viewed down the b axis illustrated using Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). Hydrogen atoms are omitted for clarity. Ring centroids are shown as red spheres. For additional numerical data, see Table 2[link]. Symmetry codes: (i) 1 − x, [{1\over 2}] + y, [{3\over 2}] − z; (ii) 1 − x, 1 − y, 1 − z; (iii) 1 − x, −[{1\over 2}] + y, [{3\over 2}] − z; (iv) 2 − x, 1 − y, 1 − z.
[Figure 3]
Figure 3
A view of the C—H⋯Cl and C—H⋯S hydrogen bonds in compound 1, shown as cyan dashed lines illustrated using Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). Only hydrogen atoms involved in hydrogen bonds are shown for clarity. Symmetry codes as in Table 3[link].
[Figure 4]
Figure 4
Offset parallel face-to-face ππ stacking inter­actions in 1 between the following ring centroids (Cg) shown as colored spheres: Cg1 (N1A/C1A–C5A, red sphere); Cg2 (N1B/C1B–C5B, blue sphere).

Both metal-bound chlorine (Aullón et al., 1998[Aullón, G., Bellamy, D., Guy Orpen, A., Brammer, L. & Bruton, E. A. (1998). Chem. Commun. pp. 653-654.]) and sulfur atoms (Chand et al., 2020[Chand, A., Sahoo, D. K., Rana, A., Jena, S. & Biswal, H. S. (2020). Acc. Chem. Res. 53, 1580-1592.]) serve as hydrogen-bond acceptors in 1. Pairs of inversion-related mol­ecules connected by C—H⋯Cl hydrogen bonds are stacked along the b axis. The C—H⋯S hydrogen bonds form sheets of mol­ecules in the bc plane.

4. Hirshfeld surface analysis

Inter­molecular inter­actions were investigated by qu­anti­tative analysis of the Hirshfeld surface and visualized with Crystal-Explorer 21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The Hirshfeld surface of 1 plotted over the shape-index has hourglass figures associated with parallel face-to-face aromatic inter­actions over the C2A–C3A edge of the N1A pyridyl ring (Fig. 5[link]a) and N1B atom (Fig. 5[link]b). A pair of arc-shaped blue bumps associated with the periphery of the N1B pyridyl ring have complementary inversion-related red hollows surrounding the Cd—N1A bond (Fig. 5[link]b). The blue-streaked dome associated with the chlorine atom nestles against the red hollow below the N1B—C5B bond (Fig. 5[link]b).

[Figure 5]
Figure 5
Hirshfeld surface of 1 plotted over the shape-index for two orientations generated with Crystal Explorer 21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) with the ethyl­thiol­ato group to the (a) front and (b) back. Red and blue areas represent hollow and bump regions, respectively, on the shape-index surface.

The Hirshfeld surface of 1 mapped with the function dnorm, the sum of the distances from a surface point to the nearest inter­ior (di) and exterior (de) atoms normalized by the van der Waals (vdW) radii of the corresponding atom (rvdW), is shown in Fig. 6[link]. Contacts shorter than the sums of vdW radii are shown in red, those longer in blue, and those approximately equal as white areas. The most intense red spots correspond to close contacts between C3B, H3B and H4B along the pyridyl edges of inversion-related mol­ecules (Fig. 6[link]a). Atoms H1B and H2B of the same pyridyl ring form close contacts with H1CA and S1 of a single neighboring mol­ecule (Fig. 6[link]b). Additional faint spots associated with a close contact between C1B and both C3A and H3A are also observed (Fig. 6[link]a). The remaining close contacts cause very faint red spots.

[Figure 6]
Figure 6
Views of the Hirshfeld surface of 1 plotted over normalized contact distance (dnorm) with the ethyl­thiol­ato group to the (a) back and (b) front. The plot was generated using Crystal Explorer 21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) with dnorm.

The overall 2D fingerprint plot for 1 is provided in Fig. 7[link]a. Breakdown by element indicated H⋯H (51.2%) are predominant, followed by comparable amounts of Cl⋯H/H⋯Cl (13.9%), C⋯H/H⋯C (12.3%) and S⋯H/H⋯S (11.8%) inter­actions (Fig. 6[link]be). Other minor contributions to the Hirshfeld surface are from N⋯C/C⋯N (3.8%), C⋯C (2.1%), Cl⋯C/C⋯Cl (2.0%), N⋯H/H⋯N (1.8%), Cd⋯H/H⋯Cd (0.7%), N⋯N (0.3%), and Cd⋯C/C⋯Cd (0.1%) contacts.

[Figure 7]
Figure 7
The full two-dimensional fingerprint plots for 1, showing (a) all inter­actions, and components delineated into (b) H⋯H, (c) Cl⋯H/H⋯Cl, (d) C⋯H/H⋯C and (e) S⋯H/H⋯S inter­actions generated with Crystal Explorer 21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The di and de values are closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.45, update of June 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for complexes of cadmium bound to a thiol­ate sulfur, three nitro­gen and one chlorine atoms yielded ten hits, all of which included μ2-Cl bridges between cadmium atoms. Three of the complexes are solvomorphs of the μ2-Cl2 bridged dimer [CdLCl]2 (refcodes BOJTIH, BOJTUT, BOJVAB: Sturner et al., 2024[Sturner, M. A., Thomas, I. D., Owusu-Koramoah, J., Reynolds, T. M., Berry, S. M., Butcher, R. J. & Bebout, D. C. (2024). New J. Chem. 48, 2547-2557.]). Other μ2-Cl2 bridged dimers included bis­(μ2-chlorido)­bis­(2,2′-bi­pyridine-N,N′)bis­(4,6-di­methyl­pyrimidine-2-thiol­ato-N,S)dicadmium(II) and bis­(μ2-chlorido)­bis­(4,6-di­methyl­pyrimidine-2-thiol­ato-N,S)bis­(1,10-phenanthroline-N,N′)dicadmium(II) with N3SCl2 metal coordination environments (refcodes LUMZOJ and LUMZUP, respectively: Lang et al., 2009[Lang, E. S., Stieler, R. & de Oliveira, G. M. (2009). Polyhedron, 28, 3844-3848.]). Four of the structurally characterized complexes were μ2-Cl bridged complexes of N-alkyl­ated hexa­aza­dithio­pheno­late dinucleating macrocycles (refcode FIMKOC: Lozan & Kersting, 2005[Lozan, V. & Kersting, B. (2005). Eur. J. Inorg. Chem. pp. 504-512.]; refcodes KEVXIT, KEVXOZ and KEVXUF: Gressenbuch & Kersting, 2007[Gressenbuch, M. & Kersting, B. (2007). Eur. J. Inorg. Chem. pp. 90-102.]). The final complex was the 1D polymer {[Cd3(deatrz)4Cl2(SCN)4]·2H2O}n (deatrz = 3,5-diethyl-4-amino-1,2,4-triazole) constructed of trinuclear cadmium units bridged by both triazole ligands and chloride (refcode EQUHAZ: Yi et al., 2004[Yi, L., Ding, B., Zhao, B., Cheng, P., Liao, D., Yan, S. & Jiang, Z. (2004). Inorg. Chem. 43, 33-43.]).

A further search of the CSD for complexes of Cd2+ bound to chelating ligands containing both an aromatic amine and an alkyl­thiol­ate yielded one binuclear complex (Sturner et al., 2024[Sturner, M. A., Thomas, I. D., Owusu-Koramoah, J., Reynolds, T. M., Berry, S. M., Butcher, R. J. & Bebout, D. C. (2024). New J. Chem. 48, 2547-2557.]) and multinuclear complexes [CdL]3(ClO4)3 (refcode BERXUV: Brennan et al., 2022[Brennan, H. M., Bunde, S. G., Kuang, Q., Palomino, T. V., Sacks, J. S., Berry, S. M., Butcher, R. J., Poutsma, J. C., Pike, R. D. & Bebout, D. C. (2022). Inorg. Chem. 61, 19857-19869.]) and bis­(μ3-carbonato)hexa­kis­{μ2-N-(2-pyridyl­meth­yl)-N-[2-(methyl­thio)­eth­yl]-N-(2-mer­captoeth­yl)amine}­hexa­cadmium(II) diperchlorate monohydrate (refcode DEZCUI: Lai et al., 2013[Lai, W., Berry, S. M., Kaplan, W. P., Hain, M. S., Poutsma, J. C., Butcher, R. J., Pike, R. D. & Bebout, D. C. (2013). Inorg. Chem. 52, 2286-2288.]). Additional reported Cd2+ complexes containing separate aromatic amine and alkyl thiol­ate ligands included bis­(3,5-di­methyl­pyridine)­bis­(tri­phenyl­methane­thiol­ato)cadmium(II) (refcode HABQEJ: Rheingold & Hampden-Smith, 2015[Rheingold, A. L. & Hampden-Smith, M. (2015). CSD Communication (refcode HABQEJ). CCDC, Cambridge, England.]), catena-[bis­(μ2-5,10,15,20-tetra­kis­(4-pyrid­yl)porphyrinato)bis­(μ2-2-mercapto­ethanol)dicadmium(II) di­methyl­formamide solvate] (refcode JITFEY: Zheng et al., 2007[Zheng, N., Zhang, J., Bu, X. & Feng, P. (2007). Cryst. Growth Des. 7, 2576-2581.]), bis­(μ2-oxo-2-eth­oxy­ethane­thiol­ato)bis­(2,2′-bi­pyridine)­diiodidodicadmium(II) (ref­code OJEPOK: Clegg & Fraser, 2016[Clegg, W. & Fraser, K. A. (2016). CSD Communication (refcode OJEPOK). CCDC, Cambridge, England.]) and bis­(μ2-oxo-2-eth­oxy­ethane­thiol­ato)bis­(2,2′-bi­pyridine)­dibromido­dicad­mium(II) (refcode OJEPUQ: Clegg & Fraser, 2016[Clegg, W. & Fraser, K. A. (2016). CSD Communication (refcode OJEPOK). CCDC, Cambridge, England.]).

6. Synthesis and crystallization

Literature procedures were used to prepare LH (Lai et al., 2013[Lai, W., Berry, S. M., Kaplan, W. P., Hain, M. S., Poutsma, J. C., Butcher, R. J., Pike, R. D. & Bebout, D. C. (2013). Inorg. Chem. 52, 2286-2288.]). One equivalent of 50 mM of CdCl2 in methanol was added dropwise with stirring to a 50 mM solution of LH in methanol containing one equivalent of NaOH. n-Butanol was added as a cosolvent. After four weeks of slow evaporation, colorless X-ray quality blocks of 1 were obtained.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The hydrogen atoms were placed in calculated positions with C—H distances of 0.95 Å (aromatic) and 0.99 Å (methyl­ene) and refined as riding atoms with Uiso(H) = 1.2Ueq(C).

Table 5
Experimental details

Crystal data
Chemical formula [Cd(C14H16N3S)Cl]
Mr 406.21
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 12.8451 (14), 7.4508 (7), 15.9284 (17)
β (°) 96.965 (3)
V3) 1513.2 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.75
Crystal size (mm) 0.37 × 0.31 × 0.24
 
Data collection
Diffractometer Bruker D8 Venture Photon 3
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.815, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 209395, 3747, 3658
Rint 0.039
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.035, 1.08
No. of reflections 3747
No. of parameters 181
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.40, −0.41
Computer programs: APEX5 (Bruker, 2023[Bruker (2023). APEX5. Bruker AXS Inc. Madison, Wisconsin, USA.]), SAINT-Plus (Bruker, 2012[Bruker (2012). SAINT-Plus. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/5 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

{2-[Bis(pyridin-2-ylmethyl)amino]ethane-1-thiolato}chloridocadmium(II) top
Crystal data top
[Cd(C14H16N3S)Cl]F(000) = 808
Mr = 406.21Dx = 1.783 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.8451 (14) ÅCell parameters from 9498 reflections
b = 7.4508 (7) Åθ = 2.6–28.3°
c = 15.9284 (17) ŵ = 1.75 mm1
β = 96.965 (3)°T = 100 K
V = 1513.2 (3) Å3Block, colourless
Z = 40.37 × 0.31 × 0.24 mm
Data collection top
Bruker D8 Venture Photon 3
diffractometer
3747 independent reflections
Radiation source: Imus3658 reflections with I > 2σ(I)
Multi-layer optics monochromatorRint = 0.039
ω and ψ scansθmax = 28.3°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1717
Tmin = 0.815, Tmax = 1.000k = 99
209395 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: other
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.015H-atom parameters constrained
wR(F2) = 0.035 w = 1/[σ2(Fo2) + (0.0072P)2 + 1.2877P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.003
3747 reflectionsΔρmax = 0.40 e Å3
181 parametersΔρmin = 0.41 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.74709 (2)0.31187 (2)0.58883 (2)0.01483 (3)
Cl10.70287 (3)0.08478 (4)0.47746 (2)0.02385 (7)
S10.84107 (3)0.20129 (4)0.72345 (2)0.02084 (7)
N10.75863 (8)0.60172 (14)0.66540 (6)0.0154 (2)
N1A0.57698 (8)0.41020 (15)0.59984 (7)0.0183 (2)
N1B0.83627 (8)0.51728 (14)0.51512 (6)0.01542 (19)
C1A0.49427 (11)0.29875 (19)0.58949 (9)0.0208 (3)
H1A0.5016460.1863150.5627020.025*
C1B0.86110 (10)0.48024 (17)0.43735 (8)0.0172 (2)
H1B0.8381550.3698210.4116080.021*
C1C0.85864 (10)0.41625 (18)0.77926 (8)0.0199 (2)
H1CA0.8636860.3931220.8408200.024*
H1CB0.9260670.4693760.7676300.024*
C2A0.39857 (11)0.3412 (2)0.61632 (9)0.0236 (3)
H2A0.3411470.2602320.6075300.028*
C2B0.91853 (10)0.59597 (18)0.39343 (8)0.0185 (2)
H2B0.9361900.5650330.3390520.022*
C2C0.77164 (10)0.55322 (18)0.75572 (8)0.0180 (2)
H2CA0.7046770.5036790.7704380.022*
H2CB0.7874010.6631830.7897890.022*
C3A0.38858 (10)0.5042 (2)0.65621 (9)0.0254 (3)
H3A0.3245870.5356680.6767140.030*
C3B0.94985 (10)0.75858 (19)0.43059 (8)0.0211 (2)
H3B0.9898270.8410140.4021600.025*
C4A0.47328 (10)0.6211 (2)0.66585 (9)0.0225 (3)
H4A0.4676190.7343690.6923430.027*
C4B0.92207 (10)0.79909 (17)0.50963 (8)0.0193 (2)
H4B0.9407260.9115050.5353050.023*
C5A0.56633 (10)0.57087 (18)0.63637 (8)0.0179 (2)
C5B0.86663 (9)0.67381 (16)0.55110 (8)0.0148 (2)
C6A0.65923 (10)0.69587 (17)0.64093 (8)0.0188 (2)
H6AA0.6611660.7531500.5850600.023*
H6AB0.6508710.7918630.6825660.023*
C6B0.84680 (10)0.70666 (17)0.64152 (8)0.0174 (2)
H6BA0.9108110.6757720.6798520.021*
H6BB0.8323710.8358460.6489300.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01714 (5)0.01179 (5)0.01600 (5)0.00086 (3)0.00376 (3)0.00072 (3)
Cl10.03070 (16)0.01655 (14)0.02427 (15)0.00161 (12)0.00322 (12)0.00640 (11)
S10.02707 (16)0.01780 (15)0.01783 (14)0.00230 (12)0.00344 (12)0.00358 (11)
N10.0162 (5)0.0151 (5)0.0152 (5)0.0013 (4)0.0032 (4)0.0003 (4)
N1A0.0181 (5)0.0178 (5)0.0191 (5)0.0005 (4)0.0028 (4)0.0011 (4)
N1B0.0163 (5)0.0145 (5)0.0154 (5)0.0001 (4)0.0015 (4)0.0000 (4)
C1A0.0200 (6)0.0215 (6)0.0209 (6)0.0024 (5)0.0019 (5)0.0014 (5)
C1B0.0176 (5)0.0172 (6)0.0163 (5)0.0012 (4)0.0001 (4)0.0018 (4)
C1C0.0220 (6)0.0219 (6)0.0157 (5)0.0015 (5)0.0019 (4)0.0012 (5)
C2A0.0172 (6)0.0301 (7)0.0231 (6)0.0033 (5)0.0007 (5)0.0014 (5)
C2B0.0176 (5)0.0229 (6)0.0153 (5)0.0027 (5)0.0026 (4)0.0005 (5)
C2C0.0201 (6)0.0206 (6)0.0140 (5)0.0028 (5)0.0044 (4)0.0020 (5)
C3A0.0158 (6)0.0361 (8)0.0243 (6)0.0033 (5)0.0023 (5)0.0002 (6)
C3B0.0215 (6)0.0218 (6)0.0206 (6)0.0025 (5)0.0050 (5)0.0044 (5)
C4A0.0199 (6)0.0246 (7)0.0226 (6)0.0056 (5)0.0015 (5)0.0031 (5)
C4B0.0220 (6)0.0157 (6)0.0206 (6)0.0027 (5)0.0035 (5)0.0001 (5)
C5A0.0178 (6)0.0189 (6)0.0168 (5)0.0016 (5)0.0011 (4)0.0000 (5)
C5B0.0141 (5)0.0145 (5)0.0158 (5)0.0011 (4)0.0015 (4)0.0004 (4)
C6A0.0196 (6)0.0148 (6)0.0222 (6)0.0016 (4)0.0031 (5)0.0013 (5)
C6B0.0210 (6)0.0156 (6)0.0163 (5)0.0051 (5)0.0045 (4)0.0022 (4)
Geometric parameters (Å, º) top
Cd1—N1A2.3313 (11)C2A—C3A1.384 (2)
Cd1—N1B2.3151 (11)C2A—H2A0.9500
Cd1—N12.4758 (11)C2B—C3B1.3865 (19)
Cd1—S12.4710 (4)C2B—H2B0.9500
Cd1—Cl12.4674 (4)C2C—H2CA0.9900
S1—C1C1.8324 (14)C2C—H2CB0.9900
N1—C6B1.4639 (15)C3A—C4A1.388 (2)
N1—C6A1.4676 (16)C3A—H3A0.9500
N1—C2C1.4730 (15)C3B—C4B1.3828 (18)
N1A—C1A1.3427 (17)C3B—H3B0.9500
N1A—C5A1.3452 (17)C4A—C5A1.3876 (18)
N1B—C5B1.3366 (16)C4A—H4A0.9500
N1B—C1B1.3447 (16)C4B—C5B1.3889 (17)
C1A—C2A1.3862 (19)C4B—H4B0.9500
C1A—H1A0.9500C5A—C6A1.5085 (18)
C1B—C2B1.3792 (18)C5B—C6B1.5126 (17)
C1B—H1B0.9500C6A—H6AA0.9900
C1C—C2C1.5261 (18)C6A—H6AB0.9900
C1C—H1CA0.9900C6B—H6BA0.9900
C1C—H1CB0.9900C6B—H6BB0.9900
N1A—Cd1—N1B110.87 (4)C1B—C2B—H2B120.8
N1A—Cd1—N171.91 (4)C3B—C2B—H2B120.8
N1A—Cd1—S1113.78 (3)N1—C2C—C1C113.39 (10)
N1A—Cd1—Cl197.67 (3)N1—C2C—H2CA108.9
N1B—Cd1—N170.70 (4)C1C—C2C—H2CA108.9
N1B—Cd1—S1116.16 (3)N1—C2C—H2CB108.9
N1B—Cd1—Cl1100.00 (3)C1C—C2C—H2CB108.9
S1—Cd1—N182.51 (3)H2CA—C2C—H2CB107.7
Cl1—Cd1—N1161.29 (3)C2A—C3A—C4A119.13 (13)
Cl1—Cd1—S1116.159 (13)C2A—C3A—H3A120.4
C1C—S1—Cd198.51 (4)C4A—C3A—H3A120.4
C6B—N1—C6A110.56 (10)C4B—C3B—C2B119.07 (12)
C6B—N1—C2C112.65 (10)C4B—C3B—H3B120.5
C6A—N1—C2C111.64 (10)C2B—C3B—H3B120.5
C6B—N1—Cd1109.87 (7)C5A—C4A—C3A119.27 (13)
C6A—N1—Cd1106.73 (7)C5A—C4A—H4A120.4
C2C—N1—Cd1105.07 (7)C3A—C4A—H4A120.4
C1A—N1A—C5A118.89 (11)C3B—C4B—C5B119.35 (12)
C1A—N1A—Cd1122.09 (9)C3B—C4B—H4B120.3
C5A—N1A—Cd1117.23 (8)C5B—C4B—H4B120.3
C5B—N1B—C1B118.99 (11)N1A—C5A—C4A121.57 (12)
C5B—N1B—Cd1119.73 (8)N1A—C5A—C6A116.68 (11)
C1B—N1B—Cd1121.25 (8)C4A—C5A—C6A121.72 (12)
N1A—C1A—C2A122.62 (13)N1B—C5B—C4B121.48 (11)
N1A—C1A—H1A118.7N1B—C5B—C6B118.39 (11)
C2A—C1A—H1A118.7C4B—C5B—C6B119.96 (11)
N1B—C1B—C2B122.69 (12)N1—C6A—C5A112.04 (10)
N1B—C1B—H1B118.7N1—C6A—H6AA109.2
C2B—C1B—H1B118.7C5A—C6A—H6AA109.2
C2C—C1C—S1114.95 (9)N1—C6A—H6AB109.2
C2C—C1C—H1CA108.5C5A—C6A—H6AB109.2
S1—C1C—H1CA108.5H6AA—C6A—H6AB107.9
C2C—C1C—H1CB108.5N1—C6B—C5B112.70 (10)
S1—C1C—H1CB108.5N1—C6B—H6BA109.1
H1CA—C1C—H1CB107.5C5B—C6B—H6BA109.1
C3A—C2A—C1A118.48 (13)N1—C6B—H6BB109.1
C3A—C2A—H2A120.8C5B—C6B—H6BB109.1
C1A—C2A—H2A120.8H6BA—C6B—H6BB107.8
C1B—C2B—C3B118.37 (12)
C5A—N1A—C1A—C2A1.2 (2)C3A—C4A—C5A—N1A1.1 (2)
Cd1—N1A—C1A—C2A163.14 (10)C3A—C4A—C5A—C6A176.77 (12)
C5B—N1B—C1B—C2B1.21 (18)C1B—N1B—C5B—C4B0.69 (18)
Cd1—N1B—C1B—C2B176.79 (9)Cd1—N1B—C5B—C4B178.72 (9)
Cd1—S1—C1C—C2C31.48 (9)C1B—N1B—C5B—C6B174.55 (11)
N1A—C1A—C2A—C3A0.8 (2)Cd1—N1B—C5B—C6B3.49 (14)
N1B—C1B—C2B—C3B1.37 (19)C3B—C4B—C5B—N1B2.37 (19)
C6B—N1—C2C—C1C69.38 (14)C3B—C4B—C5B—C6B172.79 (12)
C6A—N1—C2C—C1C165.53 (10)C6B—N1—C6A—C5A160.44 (10)
Cd1—N1—C2C—C1C50.21 (11)C2C—N1—C6A—C5A73.31 (13)
S1—C1C—C2C—N159.72 (13)Cd1—N1—C6A—C5A40.98 (11)
C1A—C2A—C3A—C4A1.8 (2)N1A—C5A—C6A—N142.59 (15)
C1B—C2B—C3B—C4B0.36 (19)C4A—C5A—C6A—N1139.47 (12)
C2A—C3A—C4A—C5A0.9 (2)C6A—N1—C6B—C5B85.38 (13)
C2B—C3B—C4B—C5B2.2 (2)C2C—N1—C6B—C5B148.94 (11)
C1A—N1A—C5A—C4A2.09 (19)Cd1—N1—C6B—C5B32.17 (12)
Cd1—N1A—C5A—C4A162.98 (10)N1B—C5B—C6B—N125.47 (16)
C1A—N1A—C5A—C6A175.86 (12)C4B—C5B—C6B—N1159.22 (11)
Cd1—N1A—C5A—C6A19.08 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2A—H2A···Cl1i0.952.933.6784 (15)137
C2B—H2B···S1ii0.952.883.5459 (14)128
C6B—H6BB···S1iii0.992.973.9133 (13)160
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z1/2; (iii) x, y+1, z.
Overview of pyridyl–pyridyl ring geometry interaction metrics (Å, °) for 1 top
Cg1 and Cg2 are the centroids of the N1A/C1A–C5A and N1B/C1B–C5B rings, respectively.
CentroidsDihedral angle between ringsCentroid–centroid distanceCentroid–plane distanceSlippage
Cg1···Cg1i48.66 (7)5.3780 (6)1.9060 (6)
Cg1···Cg1ii04.1803 (5)3.65442.030
Cg2···Cg1ii45.41 (4)4.9435 (5)2.0400 (5)
Cg2···Cg2iii03.4649 (4)3.3629 (5)0.834
Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 1 - x, -1/2 + y, 3/2 - z; (iii) 2 - x, 1 - y, 1 - z.
Short intermolecular contacts (Å) for 1 top
S1···H6BBi2.967H4B···H3Biv2.230
Cl1···H2Aii2.928H4B···H4Biv2.395
C1B···C3Aiii3.371H1B···H1CAv2.304
C1B···H3Aiii2.820H2B···S1v2.877
H4B···C3Biv2.851C2B···H2CBvi2.847
Symmetry codes: (i) x, -1 + y, z; (ii) 1 - x, -y, 1 - z; (iii) 1 - x, 1 - y, 1 - z; (iv) 2 - x, 2 - y, 1 - z; (v) x, 1/2 - y, -1/2 + z; (vi) x, 3/2 - y, -1/2 + z.
 

Footnotes

Current address: Department of Chemistry & Biochemistry, University of Minnesota - Duluth, Duluth, MN 55812, USA.

Acknowledgements

The authors thank the William & Mary Swem Library for providing open-access financial assistance.

Funding information

Funding for this research was provided by: William & Mary; The Camille & Henry Dreyfus Foundation (grant No. SF-02-006); US National Science Foundation (grant No. 0443345).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAullón, G., Bellamy, D., Guy Orpen, A., Brammer, L. & Bruton, E. A. (1998). Chem. Commun. pp. 653–654.  Google Scholar
First citationBrennan, H. M., Bunde, S. G., Kuang, Q., Palomino, T. V., Sacks, J. S., Berry, S. M., Butcher, R. J., Poutsma, J. C., Pike, R. D. & Bebout, D. C. (2022). Inorg. Chem. 61, 19857–19869.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2012). SAINT-Plus. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2023). APEX5. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBrylinski, M. (2018). Chem. Biol. Drug Des. 91, 380–390.  CrossRef CAS PubMed Google Scholar
First citationChand, A., Sahoo, D. K., Rana, A., Jena, S. & Biswal, H. S. (2020). Acc. Chem. Res. 53, 1580–1592.  CrossRef CAS PubMed Google Scholar
First citationClegg, W. & Fraser, K. A. (2016). CSD Communication (refcode OJEPOK). CCDC, Cambridge, England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGressenbuch, M. & Kersting, B. (2007). Eur. J. Inorg. Chem. pp. 90–102.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJaffe, R. L. & Smith, G. D. (1996). J. Chem. Phys. 105, 2780–2788.  CrossRef CAS Web of Science Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLai, W., Berry, S. M., Kaplan, W. P., Hain, M. S., Poutsma, J. C., Butcher, R. J., Pike, R. D. & Bebout, D. C. (2013). Inorg. Chem. 52, 2286–2288.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLane, T. W. & Morel, F. M. M. (2000). Proc. Natl Acad. Sci. USA, 97, 4627–4631.  CrossRef PubMed CAS Google Scholar
First citationLang, E. S., Stieler, R. & de Oliveira, G. M. (2009). Polyhedron, 28, 3844–3848.  Web of Science CSD CrossRef Google Scholar
First citationLozan, V. & Kersting, B. (2005). Eur. J. Inorg. Chem. pp. 504–512.  CrossRef Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRheingold, A. L. & Hampden-Smith, M. (2015). CSD Communication (refcode HABQEJ). CCDC, Cambridge, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSturner, M. A., Thomas, I. D., Owusu-Koramoah, J., Reynolds, T. M., Berry, S. M., Butcher, R. J. & Bebout, D. C. (2024). New J. Chem. 48, 2547–2557.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Y., Feng, L., Jeffrey, P. D., Shi, Y. & Morel, F. M. M. (2008). Nature, 452, 56–61.  CrossRef PubMed CAS Google Scholar
First citationYi, L., Ding, B., Zhao, B., Cheng, P., Liao, D., Yan, S. & Jiang, Z. (2004). Inorg. Chem. 43, 33–43.  CrossRef PubMed CAS Google Scholar
First citationZheng, N., Zhang, J., Bu, X. & Feng, P. (2007). Cryst. Growth Des. 7, 2576–2581.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds