research communications
and Hirshfeld surface analysis of {2-[bis(pyridin-2-ylmethyl)amino]ethane-1-thiolato}chloridocadmium(II)
aDepartment of Chemistry, William & Mary, Williamsburg, VA 23187-8795, USA
*Correspondence e-mail: dcbebo@wm.edu
The title compound, [Cd(C14H16N3S)Cl] or [CdLCl] (1), where LH = 2-[bis(pyridin-2-ylmethyl)amino]ethane-1-thiol, was prepared and structurally characterized. The Cd2+ complex crystallizes in P21/c with a distorted trigonal–bipyramidal metal coordination geometry. Supramolecular interactions in 1 include parallel offset face-to-face interactions between inversion-related pyridyl rings and potential hydrogen bonds with chlorine or sulfur as the acceptor. Additional cooperative pyridyl–pyridyl interactions with roughly 45° tilt angles and centroid–centroid distances of less than 5.5 Å likely also contribute to the overall solid-state stability. Hirshfeld surface analysis indicates that H⋯H (51.2%), Cl⋯H/H⋯Cl (13.9%), C⋯H/H⋯C (12.3%) and S⋯H/H⋯S (11.8%) interactions are dominant in the solid state.
CCDC reference: 2385270
1. Chemical context
The cambialistic ζ-class of carbonic anhydrases from marine diatoms relying on Cd2+ as their metal cofactor when Zn2+ is scarce were discovered in 2000 (Lane & Morel, 2000). These proteins have His2Cys metal-binding environments like the prokaryotic β-class of Zn2+-dependent carbonic anhydrases (Xu et al., 2008). Despite the concurrence of histidine and cysteine in the active site of these proteins associated with the only known physiologically beneficial role for Cd2+, structurally characterized complexes of Cd2+ with chelating ligands containing a combination of aromatic amine and alkylthiolate donors remain rare (CSD, Version 5.45, update of June 2024; Groom et al., 2016) and include only multinuclear complexes (Sturner et al., 2024; Brennan et al. 2022; Lai et al. 2013). Herein, the preparation, and Hirshfeld surface analysis of mononuclear {2-[bis(pyridin-2-ylmethyl)amino]ethane-1-thiolato}chloridocadmium(II) are reported.
2. Structural commentary
Complex 1 crystallizes from methanol/n-butanol with NaOH as a base in the monoclinic P21/n as a monomer (Fig. 1) instead of the dimer previously isolated from either methanol/benzene or methanol/ethyl acetate (Sturner et al., 2024). The asymmetrically coordinated tetradentate organic ligand and one chloride provide a predominantly trigonal–bipyramidal coordination geometry (τ = 0.75; Table 1) to the metal ion (Addison et al., 1984). The N1 and Cl1 atoms define the axial positions with a N1—Cd1—Cl1 bond angle of 161.29 (3)°. The cadmium atom is 0.6107 (6) Å above the mean N1A–N1B–S1 trigonal plane, away from the axial N1 atom, and closer to the axial Cl1 atom. The three chelate rings have envelope conformations with either N1, C6A or C1 in the flap positions.
|
3. Supramolecular features
The packing of 1 is stabilized by π–π stacking interactions (Fig. 2; Table 2), hydrogen bonding (Fig. 3; Table 3) and van der Waals interactions (Table 4). One face of each ligand pyridyl ring is stacked against an inversion-related equivalent with a small offset (Table 2), creating one-dimensional strands of molecules along the a-axis direction (Fig. 4). Interestingly, the N1A pyridyl rings have roughly 45° tilt angles and centroid–centroid distances of less than 5.5 Å with both the N1B pyridyl rings within the strands and N1A pyridyl rings of adjacent strands. Stabilizing contributions from these hybrid offset face-to-face/edge-to-face interactions are supported by a quantum chemistry study of the benzene dimer associating a tilt angle of about 45° with a shallow minimum on the path interconverting offset-parallel benzene dimers through a perpendicular saddle point (Jaffe & Smith, 1996). Furthermore, structural analysis of aromatic ligands bound to proteins found an abundance of phenylalanine and tyrosine residues with comparable ring orientation metrics (Brylinski, 2018).
|
|
Both metal-bound chlorine (Aullón et al., 1998) and sulfur atoms (Chand et al., 2020) serve as hydrogen-bond acceptors in 1. Pairs of inversion-related molecules connected by C—H⋯Cl hydrogen bonds are stacked along the b axis. The C—H⋯S hydrogen bonds form sheets of molecules in the bc plane.
4. Hirshfeld surface analysis
Intermolecular interactions were investigated by quantitative analysis of the Hirshfeld surface and visualized with Crystal-Explorer 21.5 (Spackman et al., 2021). The Hirshfeld surface of 1 plotted over the shape-index has hourglass figures associated with parallel face-to-face aromatic interactions over the C2A–C3A edge of the N1A pyridyl ring (Fig. 5a) and N1B atom (Fig. 5b). A pair of arc-shaped blue bumps associated with the periphery of the N1B pyridyl ring have complementary inversion-related red hollows surrounding the Cd—N1A bond (Fig. 5b). The blue-streaked dome associated with the chlorine atom nestles against the red hollow below the N1B—C5B bond (Fig. 5b).
The Hirshfeld surface of 1 mapped with the function dnorm, the sum of the distances from a surface point to the nearest interior (di) and exterior (de) atoms normalized by the van der Waals (vdW) radii of the corresponding atom (rvdW), is shown in Fig. 6. Contacts shorter than the sums of vdW radii are shown in red, those longer in blue, and those approximately equal as white areas. The most intense red spots correspond to close contacts between C3B, H3B and H4B along the pyridyl edges of inversion-related molecules (Fig. 6a). Atoms H1B and H2B of the same pyridyl ring form close contacts with H1CA and S1 of a single neighboring molecule (Fig. 6b). Additional faint spots associated with a close contact between C1B and both C3A and H3A are also observed (Fig. 6a). The remaining close contacts cause very faint red spots.
The overall 2D fingerprint plot for 1 is provided in Fig. 7a. Breakdown by element indicated H⋯H (51.2%) are predominant, followed by comparable amounts of Cl⋯H/H⋯Cl (13.9%), C⋯H/H⋯C (12.3%) and S⋯H/H⋯S (11.8%) interactions (Fig. 6b–e). Other minor contributions to the Hirshfeld surface are from N⋯C/C⋯N (3.8%), C⋯C (2.1%), Cl⋯C/C⋯Cl (2.0%), N⋯H/H⋯N (1.8%), Cd⋯H/H⋯Cd (0.7%), N⋯N (0.3%), and Cd⋯C/C⋯Cd (0.1%) contacts.
5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.45, update of June 2024; Groom et al., 2016) for complexes of cadmium bound to a thiolate sulfur, three nitrogen and one chlorine atoms yielded ten hits, all of which included μ2-Cl bridges between cadmium atoms. Three of the complexes are solvomorphs of the μ2-Cl2 bridged dimer [CdLCl]2 (refcodes BOJTIH, BOJTUT, BOJVAB: Sturner et al., 2024). Other μ2-Cl2 bridged dimers included bis(μ2-chlorido)bis(2,2′-bipyridine-N,N′)bis(4,6-dimethylpyrimidine-2-thiolato-N,S)dicadmium(II) and bis(μ2-chlorido)bis(4,6-dimethylpyrimidine-2-thiolato-N,S)bis(1,10-phenanthroline-N,N′)dicadmium(II) with N3SCl2 metal coordination environments (refcodes LUMZOJ and LUMZUP, respectively: Lang et al., 2009). Four of the structurally characterized complexes were μ2-Cl bridged complexes of N-alkylated hexaazadithiophenolate dinucleating macrocycles (refcode FIMKOC: Lozan & Kersting, 2005; refcodes KEVXIT, KEVXOZ and KEVXUF: Gressenbuch & Kersting, 2007). The final complex was the 1D polymer {[Cd3(deatrz)4Cl2(SCN)4]·2H2O}n (deatrz = 3,5-diethyl-4-amino-1,2,4-triazole) constructed of trinuclear cadmium units bridged by both triazole ligands and chloride (refcode EQUHAZ: Yi et al., 2004).
A further search of the CSD for complexes of Cd2+ bound to chelating ligands containing both an aromatic amine and an alkylthiolate yielded one binuclear complex (Sturner et al., 2024) and multinuclear complexes [CdL]3(ClO4)3 (refcode BERXUV: Brennan et al., 2022) and bis(μ3-carbonato)hexakis{μ2-N-(2-pyridylmethyl)-N-[2-(methylthio)ethyl]-N-(2-mercaptoethyl)amine}hexacadmium(II) diperchlorate monohydrate (refcode DEZCUI: Lai et al., 2013). Additional reported Cd2+ complexes containing separate aromatic amine and alkyl thiolate ligands included bis(3,5-dimethylpyridine)bis(triphenylmethanethiolato)cadmium(II) (refcode HABQEJ: Rheingold & Hampden-Smith, 2015), catena-[bis(μ2-5,10,15,20-tetrakis(4-pyridyl)porphyrinato)bis(μ2-2-mercaptoethanol)dicadmium(II) dimethylformamide solvate] (refcode JITFEY: Zheng et al., 2007), bis(μ2-oxo-2-ethoxyethanethiolato)bis(2,2′-bipyridine)diiodidodicadmium(II) (refcode OJEPOK: Clegg & Fraser, 2016) and bis(μ2-oxo-2-ethoxyethanethiolato)bis(2,2′-bipyridine)dibromidodicadmium(II) (refcode OJEPUQ: Clegg & Fraser, 2016).
6. Synthesis and crystallization
Literature procedures were used to prepare LH (Lai et al., 2013). One equivalent of 50 mM of CdCl2 in methanol was added dropwise with stirring to a 50 mM solution of LH in methanol containing one equivalent of NaOH. n-Butanol was added as a After four weeks of slow evaporation, colorless X-ray quality blocks of 1 were obtained.
7. Refinement
Crystal data, data collection and structure . The hydrogen atoms were placed in calculated positions with C—H distances of 0.95 Å (aromatic) and 0.99 Å (methylene) and refined as riding atoms with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 5
|
Supporting information
CCDC reference: 2385270
https://doi.org/10.1107/S2056989024009198/yz2058sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024009198/yz2058Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024009198/yz2058Isup3.cdx
[Cd(C14H16N3S)Cl] | F(000) = 808 |
Mr = 406.21 | Dx = 1.783 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.8451 (14) Å | Cell parameters from 9498 reflections |
b = 7.4508 (7) Å | θ = 2.6–28.3° |
c = 15.9284 (17) Å | µ = 1.75 mm−1 |
β = 96.965 (3)° | T = 100 K |
V = 1513.2 (3) Å3 | Block, colourless |
Z = 4 | 0.37 × 0.31 × 0.24 mm |
Bruker D8 Venture Photon 3 diffractometer | 3747 independent reflections |
Radiation source: Imus | 3658 reflections with I > 2σ(I) |
Multi-layer optics monochromator | Rint = 0.039 |
ω and ψ scans | θmax = 28.3°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −17→17 |
Tmin = 0.815, Tmax = 1.000 | k = −9→9 |
209395 measured reflections | l = −21→21 |
Refinement on F2 | Primary atom site location: other |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.015 | H-atom parameters constrained |
wR(F2) = 0.035 | w = 1/[σ2(Fo2) + (0.0072P)2 + 1.2877P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.003 |
3747 reflections | Δρmax = 0.40 e Å−3 |
181 parameters | Δρmin = −0.41 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cd1 | 0.74709 (2) | 0.31187 (2) | 0.58883 (2) | 0.01483 (3) | |
Cl1 | 0.70287 (3) | 0.08478 (4) | 0.47746 (2) | 0.02385 (7) | |
S1 | 0.84107 (3) | 0.20129 (4) | 0.72345 (2) | 0.02084 (7) | |
N1 | 0.75863 (8) | 0.60172 (14) | 0.66540 (6) | 0.0154 (2) | |
N1A | 0.57698 (8) | 0.41020 (15) | 0.59984 (7) | 0.0183 (2) | |
N1B | 0.83627 (8) | 0.51728 (14) | 0.51512 (6) | 0.01542 (19) | |
C1A | 0.49427 (11) | 0.29875 (19) | 0.58949 (9) | 0.0208 (3) | |
H1A | 0.501646 | 0.186315 | 0.562702 | 0.025* | |
C1B | 0.86110 (10) | 0.48024 (17) | 0.43735 (8) | 0.0172 (2) | |
H1B | 0.838155 | 0.369821 | 0.411608 | 0.021* | |
C1C | 0.85864 (10) | 0.41625 (18) | 0.77926 (8) | 0.0199 (2) | |
H1CA | 0.863686 | 0.393122 | 0.840820 | 0.024* | |
H1CB | 0.926067 | 0.469376 | 0.767630 | 0.024* | |
C2A | 0.39857 (11) | 0.3412 (2) | 0.61632 (9) | 0.0236 (3) | |
H2A | 0.341147 | 0.260232 | 0.607530 | 0.028* | |
C2B | 0.91853 (10) | 0.59597 (18) | 0.39343 (8) | 0.0185 (2) | |
H2B | 0.936190 | 0.565033 | 0.339052 | 0.022* | |
C2C | 0.77164 (10) | 0.55322 (18) | 0.75572 (8) | 0.0180 (2) | |
H2CA | 0.704677 | 0.503679 | 0.770438 | 0.022* | |
H2CB | 0.787401 | 0.663183 | 0.789789 | 0.022* | |
C3A | 0.38858 (10) | 0.5042 (2) | 0.65621 (9) | 0.0254 (3) | |
H3A | 0.324587 | 0.535668 | 0.676714 | 0.030* | |
C3B | 0.94985 (10) | 0.75858 (19) | 0.43059 (8) | 0.0211 (2) | |
H3B | 0.989827 | 0.841014 | 0.402160 | 0.025* | |
C4A | 0.47328 (10) | 0.6211 (2) | 0.66585 (9) | 0.0225 (3) | |
H4A | 0.467619 | 0.734369 | 0.692343 | 0.027* | |
C4B | 0.92207 (10) | 0.79909 (17) | 0.50963 (8) | 0.0193 (2) | |
H4B | 0.940726 | 0.911505 | 0.535305 | 0.023* | |
C5A | 0.56633 (10) | 0.57087 (18) | 0.63637 (8) | 0.0179 (2) | |
C5B | 0.86663 (9) | 0.67381 (16) | 0.55110 (8) | 0.0148 (2) | |
C6A | 0.65923 (10) | 0.69587 (17) | 0.64093 (8) | 0.0188 (2) | |
H6AA | 0.661166 | 0.753150 | 0.585060 | 0.023* | |
H6AB | 0.650871 | 0.791863 | 0.682566 | 0.023* | |
C6B | 0.84680 (10) | 0.70666 (17) | 0.64152 (8) | 0.0174 (2) | |
H6BA | 0.910811 | 0.675772 | 0.679852 | 0.021* | |
H6BB | 0.832371 | 0.835846 | 0.648930 | 0.021* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.01714 (5) | 0.01179 (5) | 0.01600 (5) | −0.00086 (3) | 0.00376 (3) | −0.00072 (3) |
Cl1 | 0.03070 (16) | 0.01655 (14) | 0.02427 (15) | −0.00161 (12) | 0.00322 (12) | −0.00640 (11) |
S1 | 0.02707 (16) | 0.01780 (15) | 0.01783 (14) | 0.00230 (12) | 0.00344 (12) | 0.00358 (11) |
N1 | 0.0162 (5) | 0.0151 (5) | 0.0152 (5) | −0.0013 (4) | 0.0032 (4) | −0.0003 (4) |
N1A | 0.0181 (5) | 0.0178 (5) | 0.0191 (5) | −0.0005 (4) | 0.0028 (4) | −0.0011 (4) |
N1B | 0.0163 (5) | 0.0145 (5) | 0.0154 (5) | −0.0001 (4) | 0.0015 (4) | 0.0000 (4) |
C1A | 0.0200 (6) | 0.0215 (6) | 0.0209 (6) | −0.0024 (5) | 0.0019 (5) | −0.0014 (5) |
C1B | 0.0176 (5) | 0.0172 (6) | 0.0163 (5) | 0.0012 (4) | 0.0001 (4) | −0.0018 (4) |
C1C | 0.0220 (6) | 0.0219 (6) | 0.0157 (5) | −0.0015 (5) | 0.0019 (4) | 0.0012 (5) |
C2A | 0.0172 (6) | 0.0301 (7) | 0.0231 (6) | −0.0033 (5) | 0.0007 (5) | 0.0014 (5) |
C2B | 0.0176 (5) | 0.0229 (6) | 0.0153 (5) | 0.0027 (5) | 0.0026 (4) | 0.0005 (5) |
C2C | 0.0201 (6) | 0.0206 (6) | 0.0140 (5) | −0.0028 (5) | 0.0044 (4) | −0.0020 (5) |
C3A | 0.0158 (6) | 0.0361 (8) | 0.0243 (6) | 0.0033 (5) | 0.0023 (5) | 0.0002 (6) |
C3B | 0.0215 (6) | 0.0218 (6) | 0.0206 (6) | −0.0025 (5) | 0.0050 (5) | 0.0044 (5) |
C4A | 0.0199 (6) | 0.0246 (7) | 0.0226 (6) | 0.0056 (5) | 0.0015 (5) | −0.0031 (5) |
C4B | 0.0220 (6) | 0.0157 (6) | 0.0206 (6) | −0.0027 (5) | 0.0035 (5) | 0.0001 (5) |
C5A | 0.0178 (6) | 0.0189 (6) | 0.0168 (5) | 0.0016 (5) | 0.0011 (4) | 0.0000 (5) |
C5B | 0.0141 (5) | 0.0145 (5) | 0.0158 (5) | 0.0011 (4) | 0.0015 (4) | 0.0004 (4) |
C6A | 0.0196 (6) | 0.0148 (6) | 0.0222 (6) | 0.0016 (4) | 0.0031 (5) | −0.0013 (5) |
C6B | 0.0210 (6) | 0.0156 (6) | 0.0163 (5) | −0.0051 (5) | 0.0045 (4) | −0.0022 (4) |
Cd1—N1A | 2.3313 (11) | C2A—C3A | 1.384 (2) |
Cd1—N1B | 2.3151 (11) | C2A—H2A | 0.9500 |
Cd1—N1 | 2.4758 (11) | C2B—C3B | 1.3865 (19) |
Cd1—S1 | 2.4710 (4) | C2B—H2B | 0.9500 |
Cd1—Cl1 | 2.4674 (4) | C2C—H2CA | 0.9900 |
S1—C1C | 1.8324 (14) | C2C—H2CB | 0.9900 |
N1—C6B | 1.4639 (15) | C3A—C4A | 1.388 (2) |
N1—C6A | 1.4676 (16) | C3A—H3A | 0.9500 |
N1—C2C | 1.4730 (15) | C3B—C4B | 1.3828 (18) |
N1A—C1A | 1.3427 (17) | C3B—H3B | 0.9500 |
N1A—C5A | 1.3452 (17) | C4A—C5A | 1.3876 (18) |
N1B—C5B | 1.3366 (16) | C4A—H4A | 0.9500 |
N1B—C1B | 1.3447 (16) | C4B—C5B | 1.3889 (17) |
C1A—C2A | 1.3862 (19) | C4B—H4B | 0.9500 |
C1A—H1A | 0.9500 | C5A—C6A | 1.5085 (18) |
C1B—C2B | 1.3792 (18) | C5B—C6B | 1.5126 (17) |
C1B—H1B | 0.9500 | C6A—H6AA | 0.9900 |
C1C—C2C | 1.5261 (18) | C6A—H6AB | 0.9900 |
C1C—H1CA | 0.9900 | C6B—H6BA | 0.9900 |
C1C—H1CB | 0.9900 | C6B—H6BB | 0.9900 |
N1A—Cd1—N1B | 110.87 (4) | C1B—C2B—H2B | 120.8 |
N1A—Cd1—N1 | 71.91 (4) | C3B—C2B—H2B | 120.8 |
N1A—Cd1—S1 | 113.78 (3) | N1—C2C—C1C | 113.39 (10) |
N1A—Cd1—Cl1 | 97.67 (3) | N1—C2C—H2CA | 108.9 |
N1B—Cd1—N1 | 70.70 (4) | C1C—C2C—H2CA | 108.9 |
N1B—Cd1—S1 | 116.16 (3) | N1—C2C—H2CB | 108.9 |
N1B—Cd1—Cl1 | 100.00 (3) | C1C—C2C—H2CB | 108.9 |
S1—Cd1—N1 | 82.51 (3) | H2CA—C2C—H2CB | 107.7 |
Cl1—Cd1—N1 | 161.29 (3) | C2A—C3A—C4A | 119.13 (13) |
Cl1—Cd1—S1 | 116.159 (13) | C2A—C3A—H3A | 120.4 |
C1C—S1—Cd1 | 98.51 (4) | C4A—C3A—H3A | 120.4 |
C6B—N1—C6A | 110.56 (10) | C4B—C3B—C2B | 119.07 (12) |
C6B—N1—C2C | 112.65 (10) | C4B—C3B—H3B | 120.5 |
C6A—N1—C2C | 111.64 (10) | C2B—C3B—H3B | 120.5 |
C6B—N1—Cd1 | 109.87 (7) | C5A—C4A—C3A | 119.27 (13) |
C6A—N1—Cd1 | 106.73 (7) | C5A—C4A—H4A | 120.4 |
C2C—N1—Cd1 | 105.07 (7) | C3A—C4A—H4A | 120.4 |
C1A—N1A—C5A | 118.89 (11) | C3B—C4B—C5B | 119.35 (12) |
C1A—N1A—Cd1 | 122.09 (9) | C3B—C4B—H4B | 120.3 |
C5A—N1A—Cd1 | 117.23 (8) | C5B—C4B—H4B | 120.3 |
C5B—N1B—C1B | 118.99 (11) | N1A—C5A—C4A | 121.57 (12) |
C5B—N1B—Cd1 | 119.73 (8) | N1A—C5A—C6A | 116.68 (11) |
C1B—N1B—Cd1 | 121.25 (8) | C4A—C5A—C6A | 121.72 (12) |
N1A—C1A—C2A | 122.62 (13) | N1B—C5B—C4B | 121.48 (11) |
N1A—C1A—H1A | 118.7 | N1B—C5B—C6B | 118.39 (11) |
C2A—C1A—H1A | 118.7 | C4B—C5B—C6B | 119.96 (11) |
N1B—C1B—C2B | 122.69 (12) | N1—C6A—C5A | 112.04 (10) |
N1B—C1B—H1B | 118.7 | N1—C6A—H6AA | 109.2 |
C2B—C1B—H1B | 118.7 | C5A—C6A—H6AA | 109.2 |
C2C—C1C—S1 | 114.95 (9) | N1—C6A—H6AB | 109.2 |
C2C—C1C—H1CA | 108.5 | C5A—C6A—H6AB | 109.2 |
S1—C1C—H1CA | 108.5 | H6AA—C6A—H6AB | 107.9 |
C2C—C1C—H1CB | 108.5 | N1—C6B—C5B | 112.70 (10) |
S1—C1C—H1CB | 108.5 | N1—C6B—H6BA | 109.1 |
H1CA—C1C—H1CB | 107.5 | C5B—C6B—H6BA | 109.1 |
C3A—C2A—C1A | 118.48 (13) | N1—C6B—H6BB | 109.1 |
C3A—C2A—H2A | 120.8 | C5B—C6B—H6BB | 109.1 |
C1A—C2A—H2A | 120.8 | H6BA—C6B—H6BB | 107.8 |
C1B—C2B—C3B | 118.37 (12) | ||
C5A—N1A—C1A—C2A | −1.2 (2) | C3A—C4A—C5A—N1A | −1.1 (2) |
Cd1—N1A—C1A—C2A | 163.14 (10) | C3A—C4A—C5A—C6A | 176.77 (12) |
C5B—N1B—C1B—C2B | 1.21 (18) | C1B—N1B—C5B—C4B | 0.69 (18) |
Cd1—N1B—C1B—C2B | −176.79 (9) | Cd1—N1B—C5B—C4B | 178.72 (9) |
Cd1—S1—C1C—C2C | 31.48 (9) | C1B—N1B—C5B—C6B | −174.55 (11) |
N1A—C1A—C2A—C3A | −0.8 (2) | Cd1—N1B—C5B—C6B | 3.49 (14) |
N1B—C1B—C2B—C3B | −1.37 (19) | C3B—C4B—C5B—N1B | −2.37 (19) |
C6B—N1—C2C—C1C | −69.38 (14) | C3B—C4B—C5B—C6B | 172.79 (12) |
C6A—N1—C2C—C1C | 165.53 (10) | C6B—N1—C6A—C5A | 160.44 (10) |
Cd1—N1—C2C—C1C | 50.21 (11) | C2C—N1—C6A—C5A | −73.31 (13) |
S1—C1C—C2C—N1 | −59.72 (13) | Cd1—N1—C6A—C5A | 40.98 (11) |
C1A—C2A—C3A—C4A | 1.8 (2) | N1A—C5A—C6A—N1 | −42.59 (15) |
C1B—C2B—C3B—C4B | −0.36 (19) | C4A—C5A—C6A—N1 | 139.47 (12) |
C2A—C3A—C4A—C5A | −0.9 (2) | C6A—N1—C6B—C5B | −85.38 (13) |
C2B—C3B—C4B—C5B | 2.2 (2) | C2C—N1—C6B—C5B | 148.94 (11) |
C1A—N1A—C5A—C4A | 2.09 (19) | Cd1—N1—C6B—C5B | 32.17 (12) |
Cd1—N1A—C5A—C4A | −162.98 (10) | N1B—C5B—C6B—N1 | −25.47 (16) |
C1A—N1A—C5A—C6A | −175.86 (12) | C4B—C5B—C6B—N1 | 159.22 (11) |
Cd1—N1A—C5A—C6A | 19.08 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2A—H2A···Cl1i | 0.95 | 2.93 | 3.6784 (15) | 137 |
C2B—H2B···S1ii | 0.95 | 2.88 | 3.5459 (14) | 128 |
C6B—H6BB···S1iii | 0.99 | 2.97 | 3.9133 (13) | 160 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, −y+1/2, z−1/2; (iii) x, y+1, z. |
Cg1 and Cg2 are the centroids of the N1A/C1A–C5A and N1B/C1B–C5B rings, respectively. |
Centroids | Dihedral angle between rings | Centroid–centroid distance | Centroid–plane distance | Slippage |
Cg1···Cg1i | 48.66 (7) | 5.3780 (6) | 1.9060 (6) | – |
Cg1···Cg1ii | 0 | 4.1803 (5) | 3.6544 | 2.030 |
Cg2···Cg1ii | 45.41 (4) | 4.9435 (5) | 2.0400 (5) | – |
Cg2···Cg2iii | 0 | 3.4649 (4) | 3.3629 (5) | 0.834 |
Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 1 - x, -1/2 + y, 3/2 - z; (iii) 2 - x, 1 - y, 1 - z. |
S1···H6BBi | 2.967 | H4B···H3Biv | 2.230 |
Cl1···H2Aii | 2.928 | H4B···H4Biv | 2.395 |
C1B···C3Aiii | 3.371 | H1B···H1CAv | 2.304 |
C1B···H3Aiii | 2.820 | H2B···S1v | 2.877 |
H4B···C3Biv | 2.851 | C2B···H2CBvi | 2.847 |
Symmetry codes: (i) x, -1 + y, z; (ii) 1 - x, -y, 1 - z; (iii) 1 - x, 1 - y, 1 - z; (iv) 2 - x, 2 - y, 1 - z; (v) x, 1/2 - y, -1/2 + z; (vi) x, 3/2 - y, -1/2 + z. |
Footnotes
‡Current address: Department of Chemistry & Biochemistry, University of Minnesota - Duluth, Duluth, MN 55812, USA.
Acknowledgements
The authors thank the William & Mary Swem Library for providing open-access financial assistance.
Funding information
Funding for this research was provided by: William & Mary; The Camille & Henry Dreyfus Foundation (grant No. SF-02-006); US National Science Foundation (grant No. 0443345).
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Aullón, G., Bellamy, D., Guy Orpen, A., Brammer, L. & Bruton, E. A. (1998). Chem. Commun. pp. 653–654. Google Scholar
Brennan, H. M., Bunde, S. G., Kuang, Q., Palomino, T. V., Sacks, J. S., Berry, S. M., Butcher, R. J., Poutsma, J. C., Pike, R. D. & Bebout, D. C. (2022). Inorg. Chem. 61, 19857–19869. Web of Science CSD CrossRef CAS PubMed Google Scholar
Bruker (2012). SAINT-Plus. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Bruker (2023). APEX5. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Brylinski, M. (2018). Chem. Biol. Drug Des. 91, 380–390. CrossRef CAS PubMed Google Scholar
Chand, A., Sahoo, D. K., Rana, A., Jena, S. & Biswal, H. S. (2020). Acc. Chem. Res. 53, 1580–1592. CrossRef CAS PubMed Google Scholar
Clegg, W. & Fraser, K. A. (2016). CSD Communication (refcode OJEPOK). CCDC, Cambridge, England. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gressenbuch, M. & Kersting, B. (2007). Eur. J. Inorg. Chem. pp. 90–102. CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Jaffe, R. L. & Smith, G. D. (1996). J. Chem. Phys. 105, 2780–2788. CrossRef CAS Web of Science Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lai, W., Berry, S. M., Kaplan, W. P., Hain, M. S., Poutsma, J. C., Butcher, R. J., Pike, R. D. & Bebout, D. C. (2013). Inorg. Chem. 52, 2286–2288. Web of Science CSD CrossRef CAS PubMed Google Scholar
Lane, T. W. & Morel, F. M. M. (2000). Proc. Natl Acad. Sci. USA, 97, 4627–4631. CrossRef PubMed CAS Google Scholar
Lang, E. S., Stieler, R. & de Oliveira, G. M. (2009). Polyhedron, 28, 3844–3848. Web of Science CSD CrossRef Google Scholar
Lozan, V. & Kersting, B. (2005). Eur. J. Inorg. Chem. pp. 504–512. CrossRef Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rheingold, A. L. & Hampden-Smith, M. (2015). CSD Communication (refcode HABQEJ). CCDC, Cambridge, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Sturner, M. A., Thomas, I. D., Owusu-Koramoah, J., Reynolds, T. M., Berry, S. M., Butcher, R. J. & Bebout, D. C. (2024). New J. Chem. 48, 2547–2557. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xu, Y., Feng, L., Jeffrey, P. D., Shi, Y. & Morel, F. M. M. (2008). Nature, 452, 56–61. CrossRef PubMed CAS Google Scholar
Yi, L., Ding, B., Zhao, B., Cheng, P., Liao, D., Yan, S. & Jiang, Z. (2004). Inorg. Chem. 43, 33–43. CrossRef PubMed CAS Google Scholar
Zheng, N., Zhang, J., Bu, X. & Feng, P. (2007). Cryst. Growth Des. 7, 2576–2581. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.