research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of tri­chlorido­(1,10-phenanthroline-κ2N,N′)phenyltin(IV)

crossmark logo

aEnvironmental and Structural Molecular Chemistry Research Unit, URCHEMS, Faculty of Exact Sciences, University of Constantine 1-Mentouri Brothers, 25000, Algeria, bNational Higher School for Hydraulics, Abdellah Arbaoui, Blida, Algeria, cLaboratory of Solid State Chemistry and Mössbauer Spectroscopy, Chemistry and Biochemistry Department, Concordia University, Montreal, Canada, and dCNRS, Rennes Institute of Chemical Sciences – UMR 6226, University of Rennes, France
*Correspondence e-mail: t.benlatreche@ensh.dz

Edited by A. Briceno, Venezuelan Institute of Scientific Research, Venezuela (Received 18 July 2024; accepted 18 September 2024; online 24 September 2024)

The title compound, [Sn(C6H5)Cl3(C12H8N2)], which was obtained by the reaction between 1,10-phenanthroline and phenyl­tin trichloride in methanol, exhibits intra­molecular hydrogen-bonding inter­actions involving the chlorine and hydrogen atoms. Crystal cohesion is ensured by inter­molecular C—H⋯Cl hydrogen bonds, as well as YXπ and π-stacking inter­actions involving three different aromatic rings with centroid–centroid distances of 3.6605 (13), 3.9327 (14) and 3.6938 (12) Å]. Hirshfeld surface analysis and the associated two-dimensional fingerprint plots reveal significant contributions from H⋯H (30.7%), Cl⋯H/H⋯Cl (32.4%), and C⋯H/H⋯C (24.0%) contacts to the crystal packing while the C⋯C (6.2%), C⋯Cl/Cl⋯C (4.1%), and N⋯H/H⋯N (1.7%) inter­actions make smaller contributions.

1. Chemical context

Complexes of 1,10-phenanthroline (Phen) with d-metals have attracted much inter­est because of the adaptability and chemical properties of Phen (Sammes & Yahioglu, 1994[Sammes, P. G. & Yahioglu, G. (1994). Chem. Soc. Rev. 23, 327-334.]), that confers additional properties upon coordination with other metals and thus opens up new areas of investigation. Tin(IV) complexes are widespread in chemistry and play a significant role in biology, industry, and agriculture (Syed Annuar et al., 2021[Syed Annuar, S. N., Kamaludin, N. F., Awang, N. & Chan, K. M. (2021). Front. Chem. 9, 657599.]; Ross, 2006[Ross, A. (2006). Ann. N. Y. Acad. Sci. 125, 107-123.]) as theis class of compounds has shown efficacy against a wide range of diseases and they have strong biological activities such as anti­fungal (Rebolledo et al., 2003[Rebolledo, A. P., de Lima, G. M., Gambi, L. N., Speziali, N. L., Maia, D. F., Pinheiro, C. B., Ardisson, J. D., Cortés, M. E. & Beraldo, H. (2003). Appl. Organomet. Chem. 17, 945-951.]), anti­bacterial (Al-Allaf et al., 2003[Al-Allaf, T. A. K., Rashan, L. J., Stelzner, A. & Powell, D. R. (2003). Appl. Organomet. Chem. 17, 891-897.]), anti-proliferative and anti­tumor (Banti et al., 2019[Banti, C. N., Hadjikakou, S. K., Sismanoglu, T. & Hadjiliadis, N. (2019). J. Inorg. Biochem. 194, 114-152.]) properties.

[Scheme 1]

The synthesis of the title compound along with the crystal structure and spectroscopic characterization, as well the results of a Hirshfeld surface analysis are all reported here.

2. Structural commentary

The title complex (Fig. 1[link]) crystallizes in the monoclinic space group P21/n. Bond lengths and angles are comparable with those previously reported for related structures (Hall et al., 1996[Hall, V. J. & Tiekink, E. R. T. (1996). Z. Kristallogr. 211, 247-250.]). The tin atom is six-coordinate, being chelated by two nitro­gen atoms (N1 and N2) of the 1,10-phenanthroline ligand and coordinated by a carbon atom of the phenyl ligand (C1), and three chlorine atoms (Table 1[link]). The geometry of the tin atom is distorted octa­hedral with angles ranging from 72.77 (7) to 168.92 (8)°, the smallest being between the tin atom and the two nitro­gen atoms and the largest is between the tin and carbon atom of the phenyl and the nitro­gen atom of the ligand. The dihedral angle between the planes through the phenyl ring and the phenanthroline ligand is 69.73 (9)°. Intra­molecular C—H⋯Cl hydrogen bonds are observed (Table 2[link]), characterized by DA distances of 2.75, 2.86 and 2.97 Å. These interactions play a vital role in maintaining the specific conformation of the mol­ecule, thus enhancing its overall rigidity (Fig. 2[link]).

Table 1
Selected geometric parameters (Å, °)

Sn1—Cl3 2.4530 (6) Sn1—N2 2.2728 (19)
Sn1—Cl1 2.4419 (6) Sn1—N1 2.2802 (19)
Sn1—Cl2 2.4067 (6) Sn1—C1 2.145 (2)
       
Cl1—Sn1—Cl3 165.07 (2) N2—Sn1—N1 72.77 (7)
Cl2—Sn1—Cl3 91.82 (2) N1—Sn1—Cl3 85.10 (5)
Cl2—Sn1—Cl1 93.08 (2) N1—Sn1—Cl1 86.12 (5)
N2—Sn1—Cl3 82.62 (5) N1—Sn1—Cl2 163.04 (5)
N2—Sn1—Cl1 83.27 (5) C1—Sn1—N2 168.92 (8)
N2—Sn1—Cl2 90.30 (5)    

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯Cl3i 0.95 2.94 3.851 (1) 139
C5—H5⋯Cl3ii 0.95 2.84 3.773 (2) 166
C9—H9⋯Cl1iii 0.95 2.87 3.683 (2) 144
C2—H2⋯Cl1 0.95 2.75 3.392 (2) 126
C6—H6⋯Cl3 0.95 2.86 3.411 (1) 124
C16—H16⋯Cl2 0.95 2.97 3.328 (3) 126
C7—H7⋯Cl2iv 0.95 2.85 3.654 (1) 143
C12—H12⋯Cl2v 0.95 2.97 3.693 (4) 133
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, -y+1, -z+2]; (iii) [-x+1, -y+1, -z+1]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2]
Figure 2
Intra­molecular hydrogen bonds directing the conformation of the structure.

3. Supra­molecular features

The crystal structure is intricately organized, primarily upheld by weak inter­molecular C—H⋯Cl hydrogen bonds (Table 3[link]), YXπ and π-stacking inter­actions. These inter­actions act as the framework for structural cohesion, effectively connecting individual mol­ecules.

Table 3
Experimental details

Crystal data
Chemical formula [Sn(C6H5)Cl3(C12H8N2)]
Mr 482.34
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 9.1085 (9), 13.1958 (13), 14.9869 (14)
β (°) 102.261 (3)
V3) 1760.2 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.91
Crystal size (mm) 0.4 × 0.3 × 0.2
 
Data collection
Diffractometer Bruker D8 VENTURE
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
No. of measured, independent and observed [I > 2σ(I)] reflections 23358, 4356, 3974
Rint 0.033
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.055, 1.14
No. of reflections 3974
No. of parameters 217
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.44, −0.77
Computer programs: APEX4 and SAINT (Bruker, 2014[Bruker (2014). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Within this framework, the inter­molecular C15—H15⋯Cl3, C5—H5⋯Cl3 and C12—H12⋯Cl2 hydrogen bonds, with the H⋯A distances of 2.94, 2.84 and 2.97 Å, respectively, create bridges between adjacent mol­ecules. These hydrogen bonds generate rings with an R22(12) motif and C(11) chains (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]), which align along the b-axis direction, creating hydrogen-bonded planes parallel to the ab plane (Fig. 3[link]) (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). These planes, in turn, are linked along the c-axis by C9—H9⋯Cl1 hydrogen bonds generating R22(14) hydrogen-bonded rings (Fig. 4[link]); this bonding mechanism facilitates cohesion and contributes to the consolidation of the crystal structure.

[Figure 3]
Figure 3
Inter­molecular hydrogen bonds: C15—H15⋯Cl3i, C5—H5⋯Cl3ii, and C12—H12⋯Cl2v and hydrogen-bonded planes in the title compound. [Symmetry codes: (i) −x + [{3\over 2}], y + [{1\over 2}], −z + [{3\over 2}]; (ii) −x + 1, −y + 1, −z + 2; (v) x + [{1\over 2}], −y + [{3\over 2}], z − [{1\over 2}].]
[Figure 4]
Figure 4
Linkage of planes along the c axis by C9—H9⋯Cl1iii hydrogen bonds, forming R22(14) rings. [Symmetry code: (iii) −x + 1, −y + 1, −z + 1.]

The three-dimensional architecture is further consolidated by π-stacking inter­actions between 1,10-phenanthroline units, with centroid–centroid distances Cg2⋯Cg2(1 − x, 1 − y, 1 − z) = 3.9327 (14) Å and Cg1⋯Cg2(1 − x, 1 − y, 1 − z) = 3.6605 (13) Å where Cg2 and Cg1 are the centroids of the N1/C7–C10/C18 and C10–C13/C17/C18 rings, respectively. Additionally, YXπ inter­actions, Sn1—Cl2⋯Cg3([{1\over 2}] − x, [{1\over 2}] + y, [{3\over 2}] − z), where Cg3 is the centroid of the C1–C6 ring, with a Cl⋯Cg distance of 3.6938 (12) Å, create extra connections within the crystal (Fig. 5[link]).

[Figure 5]
Figure 5
π-stacking and Y—Xπ inter­actions between 1,10-phenanthroline rings, reinforcing the structure.

Remarkably, despite the intricate network of inter­actions, no classical hydrogen bonds or voids are detected within the structure, underscoring the efficiency of the aforementioned mechanisms in maintaining structural cohesion.

4. Database survey

A search of the Cambridge structural Database (CSD, version 2024.2.0, update of September 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for similar compounds was undertaken. The compound CEXMIC (Su et al., 2007[Su, Z.-H., Zhou, B.-B., Zhao, Z.-F. & Ng, S. W. (2007). Acta Cryst. E63, m394-m395.]) crystallizes with the same arrangement, differing only in the substitution of the phenyl ligand with a chloro substituent. This is also observed in TECMUJ (Hall & Tiekink, 1996[Hall, V. J. & Tiekink, E. R. T. (1996). Z. Kristallogr. 211, 247-250.]), but with a different arrangement in the P[\overline{1}] space group of the triclinic crystal system. Similarly, in ARAWOF (Casas et al., 2003[Casas, J. S., Castellano, E. E., Ellena, J., Garcia-Tasende, M. S., Sanchez, A., Sordo, J., Taboada, C. & Vidarte, M. J. (2003). Appl. Organomet. Chem. 17, 940-944.]), with space group P21/n, an ethyl group replaces the Cl atom in the coordination sphere while maintaining the same crystalline structure. CIHQUI (Klösener et al., 2018[Klösener, J., Wiesemann, M., Neumann, B., Stammler, H. G. & Hoge, B. (2018). Eur. J. Inorg. Chem. pp. 3960-3970.]) crystallizes with an identical crystal structure but exhibits halogen inter­actions and hydrogen bonding with a fluorine atom as the generator atom. AYAFEL (Ma et al., 2004[Ma, C., Han, Y. & Li, D. (2004). Polyhedron, 23, 1207-1216.]) crystallizes with space group Pca21, featuring two chelations, one with the same ligand and another with a sulfur ligand, while the chloro substituents are substituted with methyls. Compound BOVHUQ (Tan et al., 2009[Tan, C. L., Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m717.]) crystallizes in the same space group, with both chloro and phenyl ligands substituted with halogenated ligands. CASVOH (Ganis et al., 1983[Ganis, P., Peruzzo, V. & Valle, G. (1983). J. Organomet. Chem. 256, 245-250.]), in ortho­rhom­bic space group P212121, features chloro and phenyl ligands substituted with n-butyl. Similarly, in DUKTAH (Lo et al., 2020[Lo, K. M., Lee, S. M. & Tiekink, E. R. T. (2020). Z. Kristallogr. New Cryst. Struct. 235, 695-697.]), the substitution ligand is 4-chloro­phenyl. In EDUNEY (Najafi et al., 2012[Najafi, E., Amini, M. M. & Ng, S. W. (2012). Acta Cryst. E68, m1544.]) the chloro ligands are replaced by methyl and SCN ligands. FEDYIW (Archer et al., 1987[Archer, S. J., Koch, K. R. & Schmidt, S. (1987). Inorg. Chim. Acta, 126, 209-218.]) exhibits a coordination of 4. RORMIU (Lange et al., 1997[Lange, I., Moers, O., Blaschette, A. & Jones, P. G. (1997). Z. Anorg. Allg. Chem. 623, 1665-1671.]) is a polymeric compound while SIZBIO (Najafi et al., 2014[Najafi, E., Amini, M. M., Khavasi, H. R. & Ng, S. W. (2014). J. Organomet. Chem. 749, 370-378.]), NEMTAB (Davis et al., 2006[Davis, M. F., Clarke, M., Levason, W., Reid, G. & Webster, M. (2006). Eur. J. Inorg. Chem. pp. 2773-2782.]), POYZAE (Kircher et al., 1998[Kircher, P., Huttner, G., Heinze, K., Schiemenz, B., Zsolnai, L., Büchner, M. & Driess, A. (1998). Eur. J. Inorg. Chem. 1998, 703-720.]) and TECMUJ (Hall et al., 1996[Hall, V. J. & Tiekink, E. R. T. (1996). Z. Kristallogr. 211, 247-250.]) include organic co-crystals in their crystal structures. Similar structures are observed for PAPTOS, PAPTUY, PAPVAG, and PAPVEK (Mo et al., 2017[Mo, C. J., Li, Z. Q., Que, C. J., Zhang, G. L., Zhu, Q. Y. & Dai, J. (2017). Dyes Pigments, 141, 66-73.]), but with different halogen–halogen inter­actions.

5. Hirshfeld surface analysis

To investigate the nature of inter­molecular inter­actions and their importance in the crystal packing, a Hirshfeld surface (HS) analysis was undertaken and associated two-dimensional fingerprint plots (FP) (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) were generated using Crystal Explorer 21.5 (Turner et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The Hirshfeld surfaces were generated with high (standard) surface resolution and the 3-D dnorm surfaces were mapped using a fixed color scale ranging from 0.76 (red) to 2.4 (blue) from −0.0947 to 1.3214 Å. The 2D fingerprint plots were displayed using the expanded 1.0–2.8 Å view with distance scales de and di depicted on the graph axes.

In Fig. 6[link]a, the red spots indicate close H⋯Cl contacts, which can be attributed to the C—H⋯Cl hydrogen bonds. The white and red areas represent regions where the distance between neighboring atoms closely matches the sum of their van der Waals radii, suggesting H⋯Cl contacts. Blue areas indicate instances where neighboring atoms are too distant to inter­act. The 2D FP plot displayed in Fig. 6[link]a illustrates the H⋯Cl/Cl⋯H contacts, which make the most significant contribution to the total Hirshfeld surface area (32.4%). It is characterized by two symmetrical peaks at the top left and bottom right with de + di = 2.7 Å (labeled 1 and 2).

[Figure 6]
Figure 6
Hirshfeld surface analysis and two-dimensional fingerprints. (a) Hirshfeld surface showing Cl⋯H/H⋯Cl inter­actions with red spots indicating close H⋯Cl contacts; white areas match van der Waals radii distances. (b) Hirshfeld surface showing H⋯H contacts. (c) two-dimensional fingerprint of C⋯H/H⋯C contacts in dnorm mode. (d) Curvedness HS indicating contacts between carbon atoms, showing the π-stacking inter­actions. (e) Shape-index plot indicating C⋯Cl/Cl⋯C inter­actions; (f) shape-index plot indicating H⋯N/N⋯H inter­actions.

Fig. 6[link]b and 6c illustrate the H⋯H contacts and C⋯H/H⋯C contacts respectively, represented by red dots. The 2D FP shown in Fig. 6[link]b shows the two-dimensional (di, de) points associated with hydrogen atoms (rvdW = 1.20 Å). It features an endpoint towards the origin with di = de = 1.1 Å (labeled 3), revealing the presence of close H⋯H contacts, accounting for 30.7% of all inter­molecular contacts. The FP plot in Fig. 6[link]c has symmetrical peaks at the top left and bottom right with de + di = 2.6 Å (labeled 4 and 5), characteristic of C—H⋯π inter­actions (24.0%).

In the HS plotted over curvedness shown in Fig. 6[link]d, the presence of flat regions indicates the existence of π-stacking inter­actions. Fig. 6[link]e and 6f illustrate the C⋯Cl/Cl⋯C and N⋯H/H⋯N contacts, respectively. The other contacts shown in the two-dimensional fingerprint plots are C⋯C (6.2%), C⋯Cl/Cl⋯C (4.1%) and N⋯H/H⋯N (1.7%). The minimal contributions of the Cl⋯Cl (0.7%) and N⋯C/C⋯N (0.2%) inter­molecular contacts mean they have a negligible impact on the packing.

6. Synthesis and crystallization

To prepare the title compound, a solution of 1,10-phenanthroline (0.090 g, 0.5 mmol) in ethanol (25 ml) and phenyl­tin trichloride (0.151 g, 0.5 mmol) in ethanol (25 ml) was refluxed for 24 h. The white precipitate that formed was removed by filtration. Colorless crystals were obtained after leaving a di­chloro­ethane solution to stand for 7 d at room temperature. Yield: 85%. IR (KBr, cm−1): 3054 (Ar—H), 3055 (=C—H), 1628 (C=N), 1430–1627 (C=C), 851 (=C—H), 448 (Sn—C), 423 (Sn—N).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The C-bound H atoms were placed geometrically and refined as riding atoms [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)].

Supporting information


Computing details top

Trichlorido(1,10-phenanthroline-κ2N,N')phenyltin(IV) top
Crystal data top
[Sn(C6H5)Cl3(C12H8N2)]F(000) = 944
Mr = 482.34Dx = 1.820 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.1085 (9) ÅCell parameters from 9933 reflections
b = 13.1958 (13) Åθ = 2.6–27.5°
c = 14.9869 (14) ŵ = 1.91 mm1
β = 102.261 (3)°T = 150 K
V = 1760.2 (3) Å3Prism, clear yellowish colourless
Z = 40.4 × 0.3 × 0.2 mm
Data collection top
Bruker D8 VENTURE
diffractometer
3974 reflections with I > 2σ(I)
rotation images scansRint = 0.033
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 28.3°, θmin = 2.4°
h = 1212
23358 measured reflectionsk = 1717
4356 independent reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.055 w = 1/[σ2(Fo2) + (0.0068P)2 + 2.7739P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max = 0.001
3974 reflectionsΔρmax = 0.44 e Å3
217 parametersΔρmin = 0.77 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Data collection was done using MoKα radiation with a D8 VENTURE Bruker-AXS diffractometer. Cell refinement and data reduction were performed using the SAINT program. The structure was solved using Olex2 (Dolomanov et al., 2009) and the SHELXT (Sheldrick, 2018) program with intrinsic phasing. It was refined with the SHELXL (Sheldrick, 2015) package using least squares minimization.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.43722 (2)0.69190 (2)0.74892 (2)0.01266 (5)
Cl30.65056 (6)0.64521 (5)0.87156 (4)0.02106 (12)
Cl10.27434 (6)0.73650 (4)0.60281 (4)0.01988 (11)
Cl20.42982 (7)0.86043 (4)0.80920 (4)0.02232 (12)
N20.6229 (2)0.73932 (15)0.67755 (13)0.0159 (4)
N10.5013 (2)0.55247 (14)0.67579 (13)0.0152 (4)
C10.2682 (2)0.61864 (17)0.80618 (15)0.0150 (4)
C170.6782 (2)0.66479 (18)0.63117 (15)0.0161 (4)
C180.6156 (2)0.56548 (18)0.63148 (15)0.0159 (4)
C70.4377 (3)0.46156 (18)0.67603 (16)0.0201 (5)
H70.3569760.4530270.7064150.024*
C20.1193 (3)0.64428 (19)0.77293 (17)0.0212 (5)
H20.0931140.6877430.7214700.025*
C30.0071 (3)0.6065 (2)0.81476 (18)0.0263 (5)
H30.0947310.6253590.7924080.032*
C100.6716 (3)0.48507 (19)0.58645 (16)0.0195 (5)
C80.4872 (3)0.37828 (19)0.63242 (17)0.0247 (5)
H80.4398140.3142450.6331250.030*
C160.6795 (3)0.83217 (19)0.67801 (17)0.0218 (5)
H160.6414900.8840580.7107960.026*
C130.7940 (2)0.6826 (2)0.58379 (16)0.0199 (5)
C60.3047 (3)0.55157 (19)0.87977 (16)0.0209 (5)
H60.4064330.5328760.9025770.025*
C150.7934 (3)0.8560 (2)0.63175 (18)0.0265 (5)
H150.8310830.9232820.6330770.032*
C50.1922 (3)0.5121 (2)0.91977 (17)0.0246 (5)
H50.2168710.4647590.9684380.030*
C110.7900 (3)0.5055 (2)0.53918 (17)0.0253 (5)
H110.8284440.4518870.5084890.030*
C40.0444 (3)0.5419 (2)0.88845 (17)0.0256 (5)
H40.0315680.5177320.9178100.031*
C90.6043 (3)0.38929 (19)0.58869 (17)0.0249 (5)
H90.6395710.3327050.5601400.030*
C120.8478 (3)0.5997 (2)0.53763 (17)0.0259 (6)
H120.9254320.6112680.5053720.031*
C140.8503 (3)0.7819 (2)0.58447 (18)0.0261 (5)
H140.9270370.7974560.5525140.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01200 (7)0.01385 (8)0.01264 (8)0.00132 (5)0.00377 (5)0.00003 (5)
Cl30.0157 (2)0.0260 (3)0.0195 (3)0.0018 (2)0.0009 (2)0.0031 (2)
Cl10.0206 (3)0.0237 (3)0.0144 (2)0.0032 (2)0.0017 (2)0.0026 (2)
Cl20.0275 (3)0.0174 (3)0.0234 (3)0.0021 (2)0.0084 (2)0.0055 (2)
N20.0141 (9)0.0171 (9)0.0163 (9)0.0006 (7)0.0030 (7)0.0007 (7)
N10.0159 (9)0.0154 (9)0.0149 (9)0.0003 (7)0.0045 (7)0.0011 (7)
C10.0152 (10)0.0154 (10)0.0150 (10)0.0009 (8)0.0047 (8)0.0013 (8)
C170.0140 (10)0.0211 (11)0.0129 (10)0.0018 (8)0.0023 (8)0.0012 (8)
C180.0151 (10)0.0201 (11)0.0125 (10)0.0042 (8)0.0029 (8)0.0004 (8)
C70.0210 (11)0.0177 (11)0.0215 (12)0.0017 (9)0.0041 (9)0.0006 (9)
C20.0163 (11)0.0258 (13)0.0219 (12)0.0025 (9)0.0048 (9)0.0037 (10)
C30.0150 (11)0.0359 (15)0.0301 (14)0.0020 (10)0.0092 (10)0.0010 (11)
C100.0199 (11)0.0225 (12)0.0149 (11)0.0089 (9)0.0012 (9)0.0015 (9)
C80.0323 (14)0.0166 (11)0.0238 (12)0.0008 (10)0.0027 (10)0.0016 (9)
C160.0204 (11)0.0194 (12)0.0245 (12)0.0003 (9)0.0026 (9)0.0030 (9)
C130.0123 (10)0.0324 (13)0.0153 (11)0.0037 (9)0.0035 (8)0.0064 (9)
C60.0218 (11)0.0234 (12)0.0176 (11)0.0031 (9)0.0044 (9)0.0028 (9)
C150.0242 (12)0.0261 (13)0.0287 (14)0.0061 (10)0.0046 (10)0.0091 (11)
C50.0320 (13)0.0254 (13)0.0171 (11)0.0062 (10)0.0069 (10)0.0053 (10)
C110.0217 (12)0.0361 (15)0.0192 (12)0.0135 (11)0.0071 (9)0.0016 (10)
C40.0262 (13)0.0345 (14)0.0195 (12)0.0106 (11)0.0120 (10)0.0030 (10)
C90.0312 (13)0.0212 (12)0.0203 (12)0.0118 (10)0.0008 (10)0.0035 (9)
C120.0171 (11)0.0440 (16)0.0187 (12)0.0082 (11)0.0086 (9)0.0027 (11)
C140.0165 (11)0.0380 (15)0.0244 (13)0.0031 (10)0.0058 (9)0.0114 (11)
Geometric parameters (Å, º) top
Sn1—Cl32.4530 (6)C10—C111.436 (3)
Sn1—Cl12.4419 (6)C10—C91.409 (4)
Sn1—Cl22.4067 (6)C8—H80.9500
Sn1—N22.2728 (19)C8—C91.373 (4)
Sn1—N12.2802 (19)C16—H160.9500
Sn1—C12.145 (2)C16—C151.400 (3)
N2—C171.361 (3)C13—C121.434 (4)
N2—C161.329 (3)C13—C141.406 (4)
N1—C181.359 (3)C6—H60.9500
N1—C71.333 (3)C6—C51.393 (3)
C1—C21.384 (3)C15—H150.9500
C1—C61.398 (3)C15—C141.373 (4)
C17—C181.429 (3)C5—H50.9500
C17—C131.411 (3)C5—C41.386 (4)
C18—C101.410 (3)C11—H110.9500
C7—H70.9500C11—C121.352 (4)
C7—C81.401 (3)C4—H40.9500
C2—H20.9500C9—H90.9500
C2—C31.399 (3)C12—H120.9500
C3—H30.9500C14—H140.9500
C3—C41.379 (4)
Cl1—Sn1—Cl3165.07 (2)C4—C3—H3120.0
Cl2—Sn1—Cl391.82 (2)C18—C10—C11118.8 (2)
Cl2—Sn1—Cl193.08 (2)C9—C10—C18117.4 (2)
N2—Sn1—Cl382.62 (5)C9—C10—C11123.8 (2)
N2—Sn1—Cl183.27 (5)C7—C8—H8120.0
N2—Sn1—Cl290.30 (5)C9—C8—C7120.0 (2)
N2—Sn1—N172.77 (7)C9—C8—H8120.0
N1—Sn1—Cl385.10 (5)N2—C16—H16118.9
N1—Sn1—Cl186.12 (5)N2—C16—C15122.2 (2)
N1—Sn1—Cl2163.04 (5)C15—C16—H16118.9
C1—Sn1—Cl396.23 (6)C17—C13—C12119.0 (2)
C1—Sn1—Cl196.68 (6)C14—C13—C17117.5 (2)
C1—Sn1—Cl2100.76 (6)C14—C13—C12123.5 (2)
C1—Sn1—N2168.92 (8)C1—C6—H6119.9
C1—Sn1—N196.16 (8)C5—C6—C1120.2 (2)
C17—N2—Sn1115.73 (15)C5—C6—H6119.9
C16—N2—Sn1125.32 (16)C16—C15—H15120.1
C16—N2—C17118.9 (2)C14—C15—C16119.7 (2)
C18—N1—Sn1115.71 (15)C14—C15—H15120.1
C7—N1—Sn1124.69 (15)C6—C5—H5120.1
C7—N1—C18119.6 (2)C4—C5—C6119.9 (2)
C2—C1—Sn1118.52 (17)C4—C5—H5120.1
C2—C1—C6119.3 (2)C10—C11—H11119.4
C6—C1—Sn1122.04 (17)C12—C11—C10121.1 (2)
N2—C17—C18118.0 (2)C12—C11—H11119.4
N2—C17—C13122.3 (2)C3—C4—C5120.2 (2)
C13—C17—C18119.7 (2)C3—C4—H4119.9
N1—C18—C17117.7 (2)C5—C4—H4119.9
N1—C18—C10122.1 (2)C10—C9—H9120.2
C10—C18—C17120.2 (2)C8—C9—C10119.5 (2)
N1—C7—H7119.3C8—C9—H9120.2
N1—C7—C8121.4 (2)C13—C12—H12119.4
C8—C7—H7119.3C11—C12—C13121.2 (2)
C1—C2—H2119.8C11—C12—H12119.4
C1—C2—C3120.3 (2)C13—C14—H14120.3
C3—C2—H2119.8C15—C14—C13119.4 (2)
C2—C3—H3120.0C15—C14—H14120.3
C4—C3—C2120.0 (2)
Sn1—N2—C17—C180.0 (3)C18—N1—C7—C80.8 (3)
Sn1—N2—C17—C13179.75 (16)C18—C17—C13—C120.7 (3)
Sn1—N2—C16—C15179.48 (18)C18—C17—C13—C14179.1 (2)
Sn1—N1—C18—C173.1 (3)C18—C10—C11—C120.1 (4)
Sn1—N1—C18—C10177.34 (17)C18—C10—C9—C81.1 (3)
Sn1—N1—C7—C8177.42 (18)C7—N1—C18—C17178.6 (2)
Sn1—C1—C2—C3173.21 (19)C7—N1—C18—C101.0 (3)
Sn1—C1—C6—C5174.69 (18)C7—C8—C9—C101.3 (4)
N2—C17—C18—N12.1 (3)C2—C1—C6—C50.8 (4)
N2—C17—C18—C10178.3 (2)C2—C3—C4—C51.7 (4)
N2—C17—C13—C12179.1 (2)C10—C11—C12—C130.6 (4)
N2—C17—C13—C141.1 (3)C16—N2—C17—C18179.9 (2)
N2—C16—C15—C140.4 (4)C16—N2—C17—C130.3 (3)
N1—C18—C10—C11178.4 (2)C16—C15—C14—C130.5 (4)
N1—C18—C10—C90.1 (3)C13—C17—C18—N1178.2 (2)
N1—C7—C8—C90.4 (4)C13—C17—C18—C101.4 (3)
C1—C2—C3—C41.2 (4)C6—C1—C2—C32.4 (4)
C1—C6—C5—C42.1 (4)C6—C5—C4—C33.3 (4)
C17—N2—C16—C150.5 (3)C11—C10—C9—C8177.2 (2)
C17—C18—C10—C111.2 (3)C9—C10—C11—C12178.4 (2)
C17—C18—C10—C9179.5 (2)C12—C13—C14—C15179.0 (2)
C17—C13—C12—C110.3 (4)C14—C13—C12—C11179.9 (2)
C17—C13—C14—C151.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···Cl3i0.952.943.851 (1)139
C5—H5···Cl3ii0.952.843.773 (2)166
C9—H9···Cl1iii0.952.873.683 (2)144
C2—H2···Cl10.952.753.392 (2)126
C6—H6···Cl30.952.863.411 (1)124
C16—H16···Cl20.952.973.328 (3)126
C7—H7···Cl2iv0.952.853.654 (1)143
C12—H12···Cl2v0.952.973.693 (4)133
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+1, y+1, z+2; (iii) x+1, y+1, z+1; (iv) x+1/2, y1/2, z+3/2; (v) x+1/2, y+3/2, z1/2.
 

Acknowledgements

We would like to thank the Ministry of Higher Education and Scientific Research of Algeria (MESRS Ministére de l'Enseignement Supérieur et de la Recherche Scientifique) and DGRSDT (Direction Generale de la Recherche Scientifique et du Developpement Technologique, Algérie) for financial support. We would like to thank team OMC of the University of Rennes1, CNRS, Institut des Sciences Chimiques de Rennes (ISCR)–UMR 6226, F-35000 Rennes, France for all their help during BT's internship and for the data collection.

References

First citationAl-Allaf, T. A. K., Rashan, L. J., Stelzner, A. & Powell, D. R. (2003). Appl. Organomet. Chem. 17, 891–897.  Web of Science CSD CrossRef CAS Google Scholar
First citationArcher, S. J., Koch, K. R. & Schmidt, S. (1987). Inorg. Chim. Acta, 126, 209–218.  CSD CrossRef CAS Web of Science Google Scholar
First citationBanti, C. N., Hadjikakou, S. K., Sismanoglu, T. & Hadjiliadis, N. (2019). J. Inorg. Biochem. 194, 114–152.  CrossRef CAS PubMed Google Scholar
First citationBruker (2014). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasas, J. S., Castellano, E. E., Ellena, J., Garcia-Tasende, M. S., Sanchez, A., Sordo, J., Taboada, C. & Vidarte, M. J. (2003). Appl. Organomet. Chem. 17, 940–944.  CSD CrossRef CAS Google Scholar
First citationDavis, M. F., Clarke, M., Levason, W., Reid, G. & Webster, M. (2006). Eur. J. Inorg. Chem. pp. 2773–2782.  Web of Science CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationGanis, P., Peruzzo, V. & Valle, G. (1983). J. Organomet. Chem. 256, 245–250.  CSD CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHall, V. J. & Tiekink, E. R. T. (1996). Z. Kristallogr. 211, 247–250.  CSD CrossRef CAS Web of Science Google Scholar
First citationKircher, P., Huttner, G., Heinze, K., Schiemenz, B., Zsolnai, L., Büchner, M. & Driess, A. (1998). Eur. J. Inorg. Chem. 1998, 703–720.  CrossRef Google Scholar
First citationKlösener, J., Wiesemann, M., Neumann, B., Stammler, H. G. & Hoge, B. (2018). Eur. J. Inorg. Chem. pp. 3960–3970.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLange, I., Moers, O., Blaschette, A. & Jones, P. G. (1997). Z. Anorg. Allg. Chem. 623, 1665–1671.  CSD CrossRef CAS Google Scholar
First citationLo, K. M., Lee, S. M. & Tiekink, E. R. T. (2020). Z. Kristallogr. New Cryst. Struct. 235, 695–697.  CSD CrossRef CAS Google Scholar
First citationMa, C., Han, Y. & Li, D. (2004). Polyhedron, 23, 1207–1216.  Web of Science CSD CrossRef CAS Google Scholar
First citationMo, C. J., Li, Z. Q., Que, C. J., Zhang, G. L., Zhu, Q. Y. & Dai, J. (2017). Dyes Pigments, 141, 66–73.  CSD CrossRef CAS Google Scholar
First citationNajafi, E., Amini, M. M., Khavasi, H. R. & Ng, S. W. (2014). J. Organomet. Chem. 749, 370–378.  CSD CrossRef CAS Google Scholar
First citationNajafi, E., Amini, M. M. & Ng, S. W. (2012). Acta Cryst. E68, m1544.  CSD CrossRef IUCr Journals Google Scholar
First citationRebolledo, A. P., de Lima, G. M., Gambi, L. N., Speziali, N. L., Maia, D. F., Pinheiro, C. B., Ardisson, J. D., Cortés, M. E. & Beraldo, H. (2003). Appl. Organomet. Chem. 17, 945–951.  Web of Science CSD CrossRef CAS Google Scholar
First citationRoss, A. (2006). Ann. N. Y. Acad. Sci. 125, 107–123.  CrossRef Google Scholar
First citationSammes, P. G. & Yahioglu, G. (1994). Chem. Soc. Rev. 23, 327–334.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, Z.-H., Zhou, B.-B., Zhao, Z.-F. & Ng, S. W. (2007). Acta Cryst. E63, m394–m395.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSyed Annuar, S. N., Kamaludin, N. F., Awang, N. & Chan, K. M. (2021). Front. Chem. 9, 657599.  CrossRef PubMed Google Scholar
First citationTan, C. L., Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m717.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds