research communications
κ2N,N′)phenyltin(IV)
and Hirshfeld surface analysis of trichlorido(1,10-phenanthroline-aEnvironmental and Structural Molecular Chemistry Research Unit, URCHEMS, Faculty of Exact Sciences, University of Constantine 1-Mentouri Brothers, 25000, Algeria, bNational Higher School for Hydraulics, Abdellah Arbaoui, Blida, Algeria, cLaboratory of Solid State Chemistry and Mössbauer Spectroscopy, Chemistry and Biochemistry Department, Concordia University, Montreal, Canada, and dCNRS, Rennes Institute of Chemical Sciences – UMR 6226, University of Rennes, France
*Correspondence e-mail: t.benlatreche@ensh.dz
The title compound, [Sn(C6H5)Cl3(C12H8N2)], which was obtained by the reaction between 1,10-phenanthroline and phenyltin trichloride in methanol, exhibits intramolecular hydrogen-bonding interactions involving the chlorine and hydrogen atoms. Crystal cohesion is ensured by intermolecular C—H⋯Cl hydrogen bonds, as well as Y—X⋯π and π-stacking interactions involving three different aromatic rings with centroid–centroid distances of 3.6605 (13), 3.9327 (14) and 3.6938 (12) Å]. Hirshfeld surface analysis and the associated two-dimensional fingerprint plots reveal significant contributions from H⋯H (30.7%), Cl⋯H/H⋯Cl (32.4%), and C⋯H/H⋯C (24.0%) contacts to the crystal packing while the C⋯C (6.2%), C⋯Cl/Cl⋯C (4.1%), and N⋯H/H⋯N (1.7%) interactions make smaller contributions.
Keywords: crystal structure; Hirshfeld surface analysis; C—H⋯Cl hydrogen bond; phenanthroline; tin(IV).
CCDC reference: 2370790
1. Chemical context
Complexes of 1,10-phenanthroline (Phen) with d-metals have attracted much interest because of the adaptability and chemical properties of Phen (Sammes & Yahioglu, 1994), that confers additional properties upon coordination with other metals and thus opens up new areas of investigation. Tin(IV) complexes are widespread in chemistry and play a significant role in biology, industry, and agriculture (Syed Annuar et al., 2021; Ross, 2006) as theis class of compounds has shown efficacy against a wide range of diseases and they have strong biological activities such as antifungal (Rebolledo et al., 2003), antibacterial (Al-Allaf et al., 2003), anti-proliferative and antitumor (Banti et al., 2019) properties.
The synthesis of the title compound along with the
and spectroscopic characterization, as well the results of a Hirshfeld surface analysis are all reported here.2. Structural commentary
The title complex (Fig. 1) crystallizes in the monoclinic P21/n. Bond lengths and angles are comparable with those previously reported for related structures (Hall et al., 1996). The tin atom is six-coordinate, being chelated by two nitrogen atoms (N1 and N2) of the 1,10-phenanthroline ligand and coordinated by a carbon atom of the phenyl ligand (C1), and three chlorine atoms (Table 1). The geometry of the tin atom is distorted octahedral with angles ranging from 72.77 (7) to 168.92 (8)°, the smallest being between the tin atom and the two nitrogen atoms and the largest is between the tin and carbon atom of the phenyl and the nitrogen atom of the ligand. The dihedral angle between the planes through the phenyl ring and the phenanthroline ligand is 69.73 (9)°. Intramolecular C—H⋯Cl hydrogen bonds are observed (Table 2), characterized by D⋯A distances of 2.75, 2.86 and 2.97 Å. These interactions play a vital role in maintaining the specific conformation of the molecule, thus enhancing its overall rigidity (Fig. 2).
|
3. Supramolecular features
The ), Y—X⋯π and π-stacking interactions. These interactions act as the framework for structural cohesion, effectively connecting individual molecules.
is intricately organized, primarily upheld by weak intermolecular C—H⋯Cl hydrogen bonds (Table 3
|
Within this framework, the intermolecular C15—H15⋯Cl3, C5—H5⋯Cl3 and C12—H12⋯Cl2 hydrogen bonds, with the H⋯A distances of 2.94, 2.84 and 2.97 Å, respectively, create bridges between adjacent molecules. These hydrogen bonds generate rings with an R22(12) motif and C(11) chains (Etter et al., 1990), which align along the b-axis direction, creating hydrogen-bonded planes parallel to the ab plane (Fig. 3) (Etter et al., 1990). These planes, in turn, are linked along the c-axis by C9—H9⋯Cl1 hydrogen bonds generating R22(14) hydrogen-bonded rings (Fig. 4); this bonding mechanism facilitates cohesion and contributes to the consolidation of the crystal structure.
The three-dimensional architecture is further consolidated by π-stacking interactions between 1,10-phenanthroline units, with centroid–centroid distances Cg2⋯Cg2(1 − x, 1 − y, 1 − z) = 3.9327 (14) Å and Cg1⋯Cg2(1 − x, 1 − y, 1 − z) = 3.6605 (13) Å where Cg2 and Cg1 are the centroids of the N1/C7–C10/C18 and C10–C13/C17/C18 rings, respectively. Additionally, Y—X⋯π interactions, Sn1—Cl2⋯Cg3( − x, + y, − z), where Cg3 is the centroid of the C1–C6 ring, with a Cl⋯Cg distance of 3.6938 (12) Å, create extra connections within the crystal (Fig. 5).
Remarkably, despite the intricate network of interactions, no classical hydrogen bonds or voids are detected within the structure, underscoring the efficiency of the aforementioned mechanisms in maintaining structural cohesion.
4. Database survey
A search of the Cambridge structural Database (CSD, version 2024.2.0, update of September 2024; Groom et al., 2016) for similar compounds was undertaken. The compound CEXMIC (Su et al., 2007) crystallizes with the same arrangement, differing only in the substitution of the phenyl ligand with a chloro substituent. This is also observed in TECMUJ (Hall & Tiekink, 1996), but with a different arrangement in the P of the triclinic Similarly, in ARAWOF (Casas et al., 2003), with P21/n, an ethyl group replaces the Cl atom in the coordination sphere while maintaining the same crystalline structure. CIHQUI (Klösener et al., 2018) crystallizes with an identical but exhibits halogen interactions and hydrogen bonding with a fluorine atom as the generator atom. AYAFEL (Ma et al., 2004) crystallizes with Pca21, featuring two chelations, one with the same ligand and another with a sulfur ligand, while the chloro substituents are substituted with methyls. Compound BOVHUQ (Tan et al., 2009) crystallizes in the same with both chloro and phenyl ligands substituted with halogenated ligands. CASVOH (Ganis et al., 1983), in orthorhombic P212121, features chloro and phenyl ligands substituted with n-butyl. Similarly, in DUKTAH (Lo et al., 2020), the substitution ligand is 4-chlorophenyl. In EDUNEY (Najafi et al., 2012) the chloro ligands are replaced by methyl and SCN ligands. FEDYIW (Archer et al., 1987) exhibits a coordination of 4. RORMIU (Lange et al., 1997) is a polymeric compound while SIZBIO (Najafi et al., 2014), NEMTAB (Davis et al., 2006), POYZAE (Kircher et al., 1998) and TECMUJ (Hall et al., 1996) include organic co-crystals in their crystal structures. Similar structures are observed for PAPTOS, PAPTUY, PAPVAG, and PAPVEK (Mo et al., 2017), but with different halogen–halogen interactions.
5. Hirshfeld surface analysis
To investigate the nature of intermolecular interactions and their importance in the crystal packing, a Hirshfeld surface (HS) analysis was undertaken and associated two-dimensional fingerprint plots (FP) (Spackman & Jayatilaka, 2009) were generated using Crystal Explorer 21.5 (Turner et al., 2021). The Hirshfeld surfaces were generated with high (standard) surface resolution and the 3-D dnorm surfaces were mapped using a fixed color scale ranging from 0.76 (red) to 2.4 (blue) from −0.0947 to 1.3214 Å. The 2D fingerprint plots were displayed using the expanded 1.0–2.8 Å view with distance scales de and di depicted on the graph axes.
In Fig. 6a, the red spots indicate close H⋯Cl contacts, which can be attributed to the C—H⋯Cl hydrogen bonds. The white and red areas represent regions where the distance between neighboring atoms closely matches the sum of their van der Waals radii, suggesting H⋯Cl contacts. Blue areas indicate instances where neighboring atoms are too distant to interact. The 2D FP plot displayed in Fig. 6a illustrates the H⋯Cl/Cl⋯H contacts, which make the most significant contribution to the total Hirshfeld surface area (32.4%). It is characterized by two symmetrical peaks at the top left and bottom right with de + di = 2.7 Å (labeled 1 and 2).
Fig. 6b and 6c illustrate the H⋯H contacts and C⋯H/H⋯C contacts respectively, represented by red dots. The 2D FP shown in Fig. 6b shows the two-dimensional (di, de) points associated with hydrogen atoms (rvdW = 1.20 Å). It features an endpoint towards the origin with di = de = 1.1 Å (labeled 3), revealing the presence of close H⋯H contacts, accounting for 30.7% of all intermolecular contacts. The FP plot in Fig. 6c has symmetrical peaks at the top left and bottom right with de + di = 2.6 Å (labeled 4 and 5), characteristic of C—H⋯π interactions (24.0%).
In the HS plotted over curvedness shown in Fig. 6d, the presence of flat regions indicates the existence of π-stacking interactions. Fig. 6e and 6f illustrate the C⋯Cl/Cl⋯C and N⋯H/H⋯N contacts, respectively. The other contacts shown in the two-dimensional fingerprint plots are C⋯C (6.2%), C⋯Cl/Cl⋯C (4.1%) and N⋯H/H⋯N (1.7%). The minimal contributions of the Cl⋯Cl (0.7%) and N⋯C/C⋯N (0.2%) intermolecular contacts mean they have a negligible impact on the packing.
6. Synthesis and crystallization
To prepare the title compound, a solution of 1,10-phenanthroline (0.090 g, 0.5 mmol) in ethanol (25 ml) and phenyltin trichloride (0.151 g, 0.5 mmol) in ethanol (25 ml) was refluxed for 24 h. The white precipitate that formed was removed by filtration. Colorless crystals were obtained after leaving a dichloroethane solution to stand for 7 d at room temperature. Yield: 85%. IR (KBr, cm−1): 3054 (Ar—H), 3055 (=C—H), 1628 (C=N), 1430–1627 (C=C), 851 (=C—H), 448 (Sn—C), 423 (Sn—N).
7. Refinement
Crystal data, data collection and structure . The C-bound H atoms were placed geometrically and refined as riding atoms [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)].
details are summarized in Table 3Supporting information
CCDC reference: 2370790
https://doi.org/10.1107/S2056989024009150/zn2038sup1.cif
contains datablocks import, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024009150/zn2038Isup2.hkl
FT-IR Spectra (figure S1). DOI: https://doi.org/10.1107/S2056989024009150/zn2038sup3.png
[Sn(C6H5)Cl3(C12H8N2)] | F(000) = 944 |
Mr = 482.34 | Dx = 1.820 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 9.1085 (9) Å | Cell parameters from 9933 reflections |
b = 13.1958 (13) Å | θ = 2.6–27.5° |
c = 14.9869 (14) Å | µ = 1.91 mm−1 |
β = 102.261 (3)° | T = 150 K |
V = 1760.2 (3) Å3 | Prism, clear yellowish colourless |
Z = 4 | 0.4 × 0.3 × 0.2 mm |
Bruker D8 VENTURE diffractometer | 3974 reflections with I > 2σ(I) |
rotation images scans | Rint = 0.033 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 28.3°, θmin = 2.4° |
h = −12→12 | |
23358 measured reflections | k = −17→17 |
4356 independent reflections | l = −19→18 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.025 | H-atom parameters constrained |
wR(F2) = 0.055 | w = 1/[σ2(Fo2) + (0.0068P)2 + 2.7739P] where P = (Fo2 + 2Fc2)/3 |
S = 1.14 | (Δ/σ)max = 0.001 |
3974 reflections | Δρmax = 0.44 e Å−3 |
217 parameters | Δρmin = −0.77 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Data collection was done using MoKα radiation with a D8 VENTURE Bruker-AXS diffractometer. Cell refinement and data reduction were performed using the SAINT program. The structure was solved using Olex2 (Dolomanov et al., 2009) and the SHELXT (Sheldrick, 2018) program with intrinsic phasing. It was refined with the SHELXL (Sheldrick, 2015) package using least squares minimization. |
x | y | z | Uiso*/Ueq | ||
Sn1 | 0.43722 (2) | 0.69190 (2) | 0.74892 (2) | 0.01266 (5) | |
Cl3 | 0.65056 (6) | 0.64521 (5) | 0.87156 (4) | 0.02106 (12) | |
Cl1 | 0.27434 (6) | 0.73650 (4) | 0.60281 (4) | 0.01988 (11) | |
Cl2 | 0.42982 (7) | 0.86043 (4) | 0.80920 (4) | 0.02232 (12) | |
N2 | 0.6229 (2) | 0.73932 (15) | 0.67755 (13) | 0.0159 (4) | |
N1 | 0.5013 (2) | 0.55247 (14) | 0.67579 (13) | 0.0152 (4) | |
C1 | 0.2682 (2) | 0.61864 (17) | 0.80618 (15) | 0.0150 (4) | |
C17 | 0.6782 (2) | 0.66479 (18) | 0.63117 (15) | 0.0161 (4) | |
C18 | 0.6156 (2) | 0.56548 (18) | 0.63148 (15) | 0.0159 (4) | |
C7 | 0.4377 (3) | 0.46156 (18) | 0.67603 (16) | 0.0201 (5) | |
H7 | 0.356976 | 0.453027 | 0.706415 | 0.024* | |
C2 | 0.1193 (3) | 0.64428 (19) | 0.77293 (17) | 0.0212 (5) | |
H2 | 0.093114 | 0.687743 | 0.721470 | 0.025* | |
C3 | 0.0071 (3) | 0.6065 (2) | 0.81476 (18) | 0.0263 (5) | |
H3 | −0.094731 | 0.625359 | 0.792408 | 0.032* | |
C10 | 0.6716 (3) | 0.48507 (19) | 0.58645 (16) | 0.0195 (5) | |
C8 | 0.4872 (3) | 0.37828 (19) | 0.63242 (17) | 0.0247 (5) | |
H8 | 0.439814 | 0.314245 | 0.633125 | 0.030* | |
C16 | 0.6795 (3) | 0.83217 (19) | 0.67801 (17) | 0.0218 (5) | |
H16 | 0.641490 | 0.884058 | 0.710796 | 0.026* | |
C13 | 0.7940 (2) | 0.6826 (2) | 0.58379 (16) | 0.0199 (5) | |
C6 | 0.3047 (3) | 0.55157 (19) | 0.87977 (16) | 0.0209 (5) | |
H6 | 0.406433 | 0.532876 | 0.902577 | 0.025* | |
C15 | 0.7934 (3) | 0.8560 (2) | 0.63175 (18) | 0.0265 (5) | |
H15 | 0.831083 | 0.923282 | 0.633077 | 0.032* | |
C5 | 0.1922 (3) | 0.5121 (2) | 0.91977 (17) | 0.0246 (5) | |
H5 | 0.216871 | 0.464759 | 0.968438 | 0.030* | |
C11 | 0.7900 (3) | 0.5055 (2) | 0.53918 (17) | 0.0253 (5) | |
H11 | 0.828444 | 0.451887 | 0.508489 | 0.030* | |
C4 | 0.0444 (3) | 0.5419 (2) | 0.88845 (17) | 0.0256 (5) | |
H4 | −0.031568 | 0.517732 | 0.917810 | 0.031* | |
C9 | 0.6043 (3) | 0.38929 (19) | 0.58869 (17) | 0.0249 (5) | |
H9 | 0.639571 | 0.332705 | 0.560140 | 0.030* | |
C12 | 0.8478 (3) | 0.5997 (2) | 0.53763 (17) | 0.0259 (6) | |
H12 | 0.925432 | 0.611268 | 0.505372 | 0.031* | |
C14 | 0.8503 (3) | 0.7819 (2) | 0.58447 (18) | 0.0261 (5) | |
H14 | 0.927037 | 0.797456 | 0.552514 | 0.031* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn1 | 0.01200 (7) | 0.01385 (8) | 0.01264 (8) | 0.00132 (5) | 0.00377 (5) | −0.00003 (5) |
Cl3 | 0.0157 (2) | 0.0260 (3) | 0.0195 (3) | 0.0018 (2) | −0.0009 (2) | 0.0031 (2) |
Cl1 | 0.0206 (3) | 0.0237 (3) | 0.0144 (2) | 0.0032 (2) | 0.0017 (2) | 0.0026 (2) |
Cl2 | 0.0275 (3) | 0.0174 (3) | 0.0234 (3) | 0.0021 (2) | 0.0084 (2) | −0.0055 (2) |
N2 | 0.0141 (9) | 0.0171 (9) | 0.0163 (9) | 0.0006 (7) | 0.0030 (7) | 0.0007 (7) |
N1 | 0.0159 (9) | 0.0154 (9) | 0.0149 (9) | 0.0003 (7) | 0.0045 (7) | −0.0011 (7) |
C1 | 0.0152 (10) | 0.0154 (10) | 0.0150 (10) | −0.0009 (8) | 0.0047 (8) | −0.0013 (8) |
C17 | 0.0140 (10) | 0.0211 (11) | 0.0129 (10) | 0.0018 (8) | 0.0023 (8) | 0.0012 (8) |
C18 | 0.0151 (10) | 0.0201 (11) | 0.0125 (10) | 0.0042 (8) | 0.0029 (8) | 0.0004 (8) |
C7 | 0.0210 (11) | 0.0177 (11) | 0.0215 (12) | −0.0017 (9) | 0.0041 (9) | 0.0006 (9) |
C2 | 0.0163 (11) | 0.0258 (13) | 0.0219 (12) | 0.0025 (9) | 0.0048 (9) | 0.0037 (10) |
C3 | 0.0150 (11) | 0.0359 (15) | 0.0301 (14) | −0.0020 (10) | 0.0092 (10) | 0.0010 (11) |
C10 | 0.0199 (11) | 0.0225 (12) | 0.0149 (11) | 0.0089 (9) | 0.0012 (9) | −0.0015 (9) |
C8 | 0.0323 (14) | 0.0166 (11) | 0.0238 (12) | 0.0008 (10) | 0.0027 (10) | −0.0016 (9) |
C16 | 0.0204 (11) | 0.0194 (12) | 0.0245 (12) | −0.0003 (9) | 0.0026 (9) | 0.0030 (9) |
C13 | 0.0123 (10) | 0.0324 (13) | 0.0153 (11) | 0.0037 (9) | 0.0035 (8) | 0.0064 (9) |
C6 | 0.0218 (11) | 0.0234 (12) | 0.0176 (11) | 0.0031 (9) | 0.0044 (9) | 0.0028 (9) |
C15 | 0.0242 (12) | 0.0261 (13) | 0.0287 (14) | −0.0061 (10) | 0.0046 (10) | 0.0091 (11) |
C5 | 0.0320 (13) | 0.0254 (13) | 0.0171 (11) | −0.0062 (10) | 0.0069 (10) | 0.0053 (10) |
C11 | 0.0217 (12) | 0.0361 (15) | 0.0192 (12) | 0.0135 (11) | 0.0071 (9) | −0.0016 (10) |
C4 | 0.0262 (13) | 0.0345 (14) | 0.0195 (12) | −0.0106 (11) | 0.0120 (10) | −0.0030 (10) |
C9 | 0.0312 (13) | 0.0212 (12) | 0.0203 (12) | 0.0118 (10) | 0.0008 (10) | −0.0035 (9) |
C12 | 0.0171 (11) | 0.0440 (16) | 0.0187 (12) | 0.0082 (11) | 0.0086 (9) | 0.0027 (11) |
C14 | 0.0165 (11) | 0.0380 (15) | 0.0244 (13) | −0.0031 (10) | 0.0058 (9) | 0.0114 (11) |
Sn1—Cl3 | 2.4530 (6) | C10—C11 | 1.436 (3) |
Sn1—Cl1 | 2.4419 (6) | C10—C9 | 1.409 (4) |
Sn1—Cl2 | 2.4067 (6) | C8—H8 | 0.9500 |
Sn1—N2 | 2.2728 (19) | C8—C9 | 1.373 (4) |
Sn1—N1 | 2.2802 (19) | C16—H16 | 0.9500 |
Sn1—C1 | 2.145 (2) | C16—C15 | 1.400 (3) |
N2—C17 | 1.361 (3) | C13—C12 | 1.434 (4) |
N2—C16 | 1.329 (3) | C13—C14 | 1.406 (4) |
N1—C18 | 1.359 (3) | C6—H6 | 0.9500 |
N1—C7 | 1.333 (3) | C6—C5 | 1.393 (3) |
C1—C2 | 1.384 (3) | C15—H15 | 0.9500 |
C1—C6 | 1.398 (3) | C15—C14 | 1.373 (4) |
C17—C18 | 1.429 (3) | C5—H5 | 0.9500 |
C17—C13 | 1.411 (3) | C5—C4 | 1.386 (4) |
C18—C10 | 1.410 (3) | C11—H11 | 0.9500 |
C7—H7 | 0.9500 | C11—C12 | 1.352 (4) |
C7—C8 | 1.401 (3) | C4—H4 | 0.9500 |
C2—H2 | 0.9500 | C9—H9 | 0.9500 |
C2—C3 | 1.399 (3) | C12—H12 | 0.9500 |
C3—H3 | 0.9500 | C14—H14 | 0.9500 |
C3—C4 | 1.379 (4) | ||
Cl1—Sn1—Cl3 | 165.07 (2) | C4—C3—H3 | 120.0 |
Cl2—Sn1—Cl3 | 91.82 (2) | C18—C10—C11 | 118.8 (2) |
Cl2—Sn1—Cl1 | 93.08 (2) | C9—C10—C18 | 117.4 (2) |
N2—Sn1—Cl3 | 82.62 (5) | C9—C10—C11 | 123.8 (2) |
N2—Sn1—Cl1 | 83.27 (5) | C7—C8—H8 | 120.0 |
N2—Sn1—Cl2 | 90.30 (5) | C9—C8—C7 | 120.0 (2) |
N2—Sn1—N1 | 72.77 (7) | C9—C8—H8 | 120.0 |
N1—Sn1—Cl3 | 85.10 (5) | N2—C16—H16 | 118.9 |
N1—Sn1—Cl1 | 86.12 (5) | N2—C16—C15 | 122.2 (2) |
N1—Sn1—Cl2 | 163.04 (5) | C15—C16—H16 | 118.9 |
C1—Sn1—Cl3 | 96.23 (6) | C17—C13—C12 | 119.0 (2) |
C1—Sn1—Cl1 | 96.68 (6) | C14—C13—C17 | 117.5 (2) |
C1—Sn1—Cl2 | 100.76 (6) | C14—C13—C12 | 123.5 (2) |
C1—Sn1—N2 | 168.92 (8) | C1—C6—H6 | 119.9 |
C1—Sn1—N1 | 96.16 (8) | C5—C6—C1 | 120.2 (2) |
C17—N2—Sn1 | 115.73 (15) | C5—C6—H6 | 119.9 |
C16—N2—Sn1 | 125.32 (16) | C16—C15—H15 | 120.1 |
C16—N2—C17 | 118.9 (2) | C14—C15—C16 | 119.7 (2) |
C18—N1—Sn1 | 115.71 (15) | C14—C15—H15 | 120.1 |
C7—N1—Sn1 | 124.69 (15) | C6—C5—H5 | 120.1 |
C7—N1—C18 | 119.6 (2) | C4—C5—C6 | 119.9 (2) |
C2—C1—Sn1 | 118.52 (17) | C4—C5—H5 | 120.1 |
C2—C1—C6 | 119.3 (2) | C10—C11—H11 | 119.4 |
C6—C1—Sn1 | 122.04 (17) | C12—C11—C10 | 121.1 (2) |
N2—C17—C18 | 118.0 (2) | C12—C11—H11 | 119.4 |
N2—C17—C13 | 122.3 (2) | C3—C4—C5 | 120.2 (2) |
C13—C17—C18 | 119.7 (2) | C3—C4—H4 | 119.9 |
N1—C18—C17 | 117.7 (2) | C5—C4—H4 | 119.9 |
N1—C18—C10 | 122.1 (2) | C10—C9—H9 | 120.2 |
C10—C18—C17 | 120.2 (2) | C8—C9—C10 | 119.5 (2) |
N1—C7—H7 | 119.3 | C8—C9—H9 | 120.2 |
N1—C7—C8 | 121.4 (2) | C13—C12—H12 | 119.4 |
C8—C7—H7 | 119.3 | C11—C12—C13 | 121.2 (2) |
C1—C2—H2 | 119.8 | C11—C12—H12 | 119.4 |
C1—C2—C3 | 120.3 (2) | C13—C14—H14 | 120.3 |
C3—C2—H2 | 119.8 | C15—C14—C13 | 119.4 (2) |
C2—C3—H3 | 120.0 | C15—C14—H14 | 120.3 |
C4—C3—C2 | 120.0 (2) | ||
Sn1—N2—C17—C18 | 0.0 (3) | C18—N1—C7—C8 | 0.8 (3) |
Sn1—N2—C17—C13 | −179.75 (16) | C18—C17—C13—C12 | −0.7 (3) |
Sn1—N2—C16—C15 | −179.48 (18) | C18—C17—C13—C14 | 179.1 (2) |
Sn1—N1—C18—C17 | −3.1 (3) | C18—C10—C11—C12 | 0.1 (4) |
Sn1—N1—C18—C10 | 177.34 (17) | C18—C10—C9—C8 | 1.1 (3) |
Sn1—N1—C7—C8 | −177.42 (18) | C7—N1—C18—C17 | 178.6 (2) |
Sn1—C1—C2—C3 | −173.21 (19) | C7—N1—C18—C10 | −1.0 (3) |
Sn1—C1—C6—C5 | 174.69 (18) | C7—C8—C9—C10 | −1.3 (4) |
N2—C17—C18—N1 | 2.1 (3) | C2—C1—C6—C5 | −0.8 (4) |
N2—C17—C18—C10 | −178.3 (2) | C2—C3—C4—C5 | −1.7 (4) |
N2—C17—C13—C12 | 179.1 (2) | C10—C11—C12—C13 | 0.6 (4) |
N2—C17—C13—C14 | −1.1 (3) | C16—N2—C17—C18 | −179.9 (2) |
N2—C16—C15—C14 | −0.4 (4) | C16—N2—C17—C13 | 0.3 (3) |
N1—C18—C10—C11 | 178.4 (2) | C16—C15—C14—C13 | −0.5 (4) |
N1—C18—C10—C9 | 0.1 (3) | C13—C17—C18—N1 | −178.2 (2) |
N1—C7—C8—C9 | 0.4 (4) | C13—C17—C18—C10 | 1.4 (3) |
C1—C2—C3—C4 | −1.2 (4) | C6—C1—C2—C3 | 2.4 (4) |
C1—C6—C5—C4 | −2.1 (4) | C6—C5—C4—C3 | 3.3 (4) |
C17—N2—C16—C15 | 0.5 (3) | C11—C10—C9—C8 | −177.2 (2) |
C17—C18—C10—C11 | −1.2 (3) | C9—C10—C11—C12 | 178.4 (2) |
C17—C18—C10—C9 | −179.5 (2) | C12—C13—C14—C15 | −179.0 (2) |
C17—C13—C12—C11 | −0.3 (4) | C14—C13—C12—C11 | 179.9 (2) |
C17—C13—C14—C15 | 1.2 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C15—H15···Cl3i | 0.95 | 2.94 | 3.851 (1) | 139 |
C5—H5···Cl3ii | 0.95 | 2.84 | 3.773 (2) | 166 |
C9—H9···Cl1iii | 0.95 | 2.87 | 3.683 (2) | 144 |
C2—H2···Cl1 | 0.95 | 2.75 | 3.392 (2) | 126 |
C6—H6···Cl3 | 0.95 | 2.86 | 3.411 (1) | 124 |
C16—H16···Cl2 | 0.95 | 2.97 | 3.328 (3) | 126 |
C7—H7···Cl2iv | 0.95 | 2.85 | 3.654 (1) | 143 |
C12—H12···Cl2v | 0.95 | 2.97 | 3.693 (4) | 133 |
Symmetry codes: (i) −x+3/2, y+1/2, −z+3/2; (ii) −x+1, −y+1, −z+2; (iii) −x+1, −y+1, −z+1; (iv) −x+1/2, y−1/2, −z+3/2; (v) x+1/2, −y+3/2, z−1/2. |
Acknowledgements
We would like to thank the Ministry of Higher Education and Scientific Research of Algeria (MESRS Ministére de l'Enseignement Supérieur et de la Recherche Scientifique) and DGRSDT (Direction Generale de la Recherche Scientifique et du Developpement Technologique, Algérie) for financial support. We would like to thank team OMC of the University of Rennes1, CNRS, Institut des Sciences Chimiques de Rennes (ISCR)–UMR 6226, F-35000 Rennes, France for all their help during BT's internship and for the data collection.
References
Al-Allaf, T. A. K., Rashan, L. J., Stelzner, A. & Powell, D. R. (2003). Appl. Organomet. Chem. 17, 891–897. Web of Science CSD CrossRef CAS Google Scholar
Archer, S. J., Koch, K. R. & Schmidt, S. (1987). Inorg. Chim. Acta, 126, 209–218. CSD CrossRef CAS Web of Science Google Scholar
Banti, C. N., Hadjikakou, S. K., Sismanoglu, T. & Hadjiliadis, N. (2019). J. Inorg. Biochem. 194, 114–152. CrossRef CAS PubMed Google Scholar
Bruker (2014). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Casas, J. S., Castellano, E. E., Ellena, J., Garcia-Tasende, M. S., Sanchez, A., Sordo, J., Taboada, C. & Vidarte, M. J. (2003). Appl. Organomet. Chem. 17, 940–944. CSD CrossRef CAS Google Scholar
Davis, M. F., Clarke, M., Levason, W., Reid, G. & Webster, M. (2006). Eur. J. Inorg. Chem. pp. 2773–2782. Web of Science CSD CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Ganis, P., Peruzzo, V. & Valle, G. (1983). J. Organomet. Chem. 256, 245–250. CSD CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hall, V. J. & Tiekink, E. R. T. (1996). Z. Kristallogr. 211, 247–250. CSD CrossRef CAS Web of Science Google Scholar
Kircher, P., Huttner, G., Heinze, K., Schiemenz, B., Zsolnai, L., Büchner, M. & Driess, A. (1998). Eur. J. Inorg. Chem. 1998, 703–720. CrossRef Google Scholar
Klösener, J., Wiesemann, M., Neumann, B., Stammler, H. G. & Hoge, B. (2018). Eur. J. Inorg. Chem. pp. 3960–3970. Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lange, I., Moers, O., Blaschette, A. & Jones, P. G. (1997). Z. Anorg. Allg. Chem. 623, 1665–1671. CSD CrossRef CAS Google Scholar
Lo, K. M., Lee, S. M. & Tiekink, E. R. T. (2020). Z. Kristallogr. New Cryst. Struct. 235, 695–697. CSD CrossRef CAS Google Scholar
Ma, C., Han, Y. & Li, D. (2004). Polyhedron, 23, 1207–1216. Web of Science CSD CrossRef CAS Google Scholar
Mo, C. J., Li, Z. Q., Que, C. J., Zhang, G. L., Zhu, Q. Y. & Dai, J. (2017). Dyes Pigments, 141, 66–73. CSD CrossRef CAS Google Scholar
Najafi, E., Amini, M. M., Khavasi, H. R. & Ng, S. W. (2014). J. Organomet. Chem. 749, 370–378. CSD CrossRef CAS Google Scholar
Najafi, E., Amini, M. M. & Ng, S. W. (2012). Acta Cryst. E68, m1544. CSD CrossRef IUCr Journals Google Scholar
Rebolledo, A. P., de Lima, G. M., Gambi, L. N., Speziali, N. L., Maia, D. F., Pinheiro, C. B., Ardisson, J. D., Cortés, M. E. & Beraldo, H. (2003). Appl. Organomet. Chem. 17, 945–951. Web of Science CSD CrossRef CAS Google Scholar
Ross, A. (2006). Ann. N. Y. Acad. Sci. 125, 107–123. CrossRef Google Scholar
Sammes, P. G. & Yahioglu, G. (1994). Chem. Soc. Rev. 23, 327–334. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Su, Z.-H., Zhou, B.-B., Zhao, Z.-F. & Ng, S. W. (2007). Acta Cryst. E63, m394–m395. Web of Science CSD CrossRef IUCr Journals Google Scholar
Syed Annuar, S. N., Kamaludin, N. F., Awang, N. & Chan, K. M. (2021). Front. Chem. 9, 657599. CrossRef PubMed Google Scholar
Tan, C. L., Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m717. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.