research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of 1H-1,2,4-triazole-3,5-di­amine monohydrate

crossmark logo

aGraduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa, 240-8501 , Japan, and bFaculty of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama-shi, Kanagawa, 240-8501, Japan
*Correspondence e-mail: kumasaki@ynu.ac.jp

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India (Received 3 July 2024; accepted 21 September 2024; online 11 October 2024)

The title compound, a hydrate of 3,5-di­amino-1,2,4-triazole (DATA), C2H5N5·H2O, was synthesized in the presence of sodium perchlorate. The evaporation of H2O from its aqueous solution resulted in anhydrous DATA, suggesting that sodium perchlorate was required to precipitate the DATA hydrate. The DATA hydrate crystallizes in the P21/c space group in the form of needle-shaped crystals with one DATA and one water mol­ecule in the asymmetric unit. The water mol­ecules form a three-dimensional network in the crystal structure. Hirshfeld surface analysis revealed that 8.5% of the inter­molecular inter­actions originate from H⋯O contacts derived from the incorporation of the water mol­ecules.

1. Chemical context

Researchers have focused on the development of less sensitive and highly energetic materials. The sensitivity of energetic materials is related to their crystal structures and inter­molecular inter­actions (Kuklja & Rashkeev, 2007[Kuklja, M. M. & Rashkeev, S. N. (2007). Appl. Phys. Lett. 90, 15, 151913.]). Additionally, the density, which strongly influences the detonation performance, can be calculated from the crystal structure. Hence, the determination of the crystal structure can elucidate the characteristics of energetic materials.

Azole derivatives have been recognized as promising frameworks for energetic materials because of their high heats of formation (Fisher et al., 2012[Fischer, N., Fischer, D., Klapötke, T. M., Piercey, D. G. & Stierstorfer, J. (2012). J. Mater. Chem. 22, 20418-20422.]; Kumasaki et al., 2021[Kumasaki, M., Gontani, S., Mori, K., Matsumoto, S. & Inoue, K. (2021). Acta Cryst. C77, 197-201.]; Inoue et al., 2022a[Inoue, K., Okada, K., Kumasaki, M. & Usuki, K. (2022a). J. Energ. Mater. 42, 578-590.]). Tetra­zoles, triazoles, and imidazoles are N-rich heterocyclic azole derivatives. Several energetic materials, including organic explosives, energetic salts, and co-crystals, have been synthesized using azole compounds (Kumasaki et al., 2011[Kumasaki, M., Gontani, S., Mori, K., Matsumoto, S. & Inoue, K. (2021). Acta Cryst. C77, 197-201.]; Mori et al., 2021[Mori, K., Kumasaki, M. & Atobe, M. (2021). Sci. Technol. Energ. Mater. 82, 2, 44-49, doi: 10.34571/stem. 82.2_44.]; Inoue et al., 2022b[Inoue, K., Matsumoto, S. & Kumasaki, M. (2022b). Acta Cryst. B78, 876-883.]).

[Scheme 1]

In our previous study, 1H-tetra­zole was co-crystallized with NaClO4; NaClO4 is an oxidizer that is sometimes used in pyrotechnics (Inoue et al., 2022b[Inoue, K., Matsumoto, S. & Kumasaki, M. (2022b). Acta Cryst. B78, 876-883.]). The co-crystal exhibited high sensitivity, which was comparable to that of typical primary explosives (Inoue et al., 2022a[Inoue, K., Okada, K., Kumasaki, M. & Usuki, K. (2022a). J. Energ. Mater. 42, 578-590.]). Subsequently, 3,5-di­amino-1,2,4-triazole (guanazole, DATA) was selected as the target material for co-crystallization with NaClO4. However, our attempt to prepare a co-crystal of DATA and NaClO4 resulted instead in crystals of DATA hydrate, which has not been previously been reported. Although DATA is used as a raw material in the synthesis of various energetic compounds (Khan et al., 2024[Khan, R. A., AlFawaz, A., Alhamed, A. A., AlMuryyi, N. A., Hasan, I., Paul, A., Alshammari, S. G., Abdulwahab, A. R. A., Arman, H. D. & Alsalme, A. (2024). Appl. Organom Chem. 38, e7426.]; Zhang et al., 2010[Zhang, Y., Guo, Y., Joo, Y. H., Parrish, D. A. & Shreeve, J. M. (2010). Chem. Eur. J. 16, 10778-10784.]; Yin et al., 2015[Yin, P., Parrish, D. A. & Shreeve, J. M. (2015). J. Am. Chem. Soc. 137, 4778-4786.]), understanding its hydration is valuable for its treatment.

2. Structural commentary

DATA hydrate (Fig. 1[link]) crystallizes in the P21/c space group with one DATA mol­ecule and one water mol­ecule in the asymmetric unit. The two N atoms of the amino groups are not coplanar with the mean plane of the ring structure, the distances between the mean plane of the ring structure and N5 and N6 being 0.0719 (19) and 0.1038 (19) Å, respectively. The N4—N3 bond [1.3943 (13) Å] is longer than all of the C—N bonds [the range is 1.3797 (15) for C7—N6 to 1.3185 (15) Å for N3—C7]. Furthermore, the N2—C8 double bond [1.3400 (15) Å] is longer than C8—N4 [1.3337 (15) Å], which is a single bond. Table 1[link] compares the bond lengths of hydrated and non-hydrated DATA (Klapötke et al., 2010[Klapötke, T. M., Martin, F., Mayr, N. T. & Stierstorfer, J. (2010). Z. Anorg. Allg. Chem. 636, 2555-2564.]). Evidently, the N2—C8 and N2—C7 bonds in DATA hydrate are longer than those of non-hydrated DATA. The differences between all of the bond lengths are statistically significant.

Table 1
Bond lengths (Å) in hydrated and non-hydrated DATA

Bond DATA DATA hydrate
C7—N2 1.3544 (16) 1.3670 (15)
N2—C8 1.3339 (16) 1.3400 (15)
C8—N4 1.3356 (16) 1.3337 (15)
N4—N3 1.3951 (15) 1.3943 (13)
N3—C7 1.3238 (16) 1.3185 (15)
C7—N6 1.3747 (17) 1.3797 (15)
C8—N5 1.3502 (17) 1.3547 (15)
[Figure 1]
Figure 1
Displacement ellipsoid plot (probability level of 50%) of DATA hydrate showing the atom-numbering scheme. The hydrogen bond is represented by a dashed blue line.

3. Supra­molecular features

In the crystal, the DATA and H2O mol­ecules form a layered structure (Fig. 2[link]), with layers parallel to the (102) plane and an inter­layer distance of 3.26969 (4) Å. The O1—H1A⋯N3 and O1⋯H5A—N5 hydrogen bonds form the layers while the O1—H1B⋯N2 and N4—H4⋯N3 hydrogen bonds connect adjacent layers (Table 2[link], Fig. 3[link]). The water mol­ecules produce a 3D network within the crystal. A water mol­ecule forms two hydrogen bonds with two DATA mol­ecules from the same layer [O1—H1A⋯N3(1 − x, [{1\over 2}] + y, [{1\over 2}] − z) and O1⋯H5A—N5(x, [{1\over 2}] − y, [{1\over 2}] + z)] and one with that from an adjacent layer (O1—H1B⋯N2). Atoms N5 of the amino group and N2 from the ring form hydrogen bonds with each water mol­ecule; however, N6 is not involved in hydrogen bonding. Two DATA mol­ecules in two adjacent layers are mutually connected by two N4—H4⋯N3(−x, −y, −z) hydrogen bonds.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯O1i 0.895 (17) 2.080 (17) 2.9173 (14) 155.4 (14)
O1—H1A⋯N3ii 0.871 (19) 1.988 (19) 2.8558 (13) 174.1 (16)
O1—H1B⋯N2 0.90 (2) 1.95 (2) 2.8410 (13) 171.5 (18)
N4—H4⋯N3iii 0.883 (17) 2.306 (16) 2.9947 (14) 134.9 (13)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+2, -y+1, -z+1].
[Figure 2]
Figure 2
(a) The crystal structure viewed along the b axis. The intra- and inter­layer hydrogen bonds are indicated by blue and red lines, respectively, and the layer structure is shown in blue. (b) The intra- and inter­layer hydrogen bonds with atom numbers.
[Figure 3]
Figure 3
Hydrogen bonding in DATA hydrate viewed along the a axis. Symmetry codes: (i) x, [{1\over 2}] − y, [{1\over 2}] + z; (ii) 1 − x, [{1\over 2}] + y, [{1\over 2}] − z; (iii) −x, −y, −z.

The supra­molecular inter­actions in DATA hydrate were further investigated through Hirshfeld surface analysis using Crystal Explorer 21 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). Fig. 4[link] shows the fingerprint plots for a mol­ecule of DATA non-hydrate (Klapötke et al., 2010[Klapötke, T. M., Martin, F., Mayr, N. T. & Stierstorfer, J. (2010). Z. Anorg. Allg. Chem. 636, 2555-2564.]) and DATA hydrate. The third spike concerning the H⋯O inter­action was observed upon hydration, whereas the DATA non-hydrate exhibited two spikes of N⋯H and H⋯N. The dominant inter­action of DATA non-hydrate was N⋯H/H⋯N of 53.0%, which decreased to 39.3% with the incorporation of water mol­ecules, and the H⋯O inter­action contributes 8.5% to the crystal packing. The contribution of H⋯H inter­actions in DATA hydrate is 37.9%, which is higher than that of DATA non-hydrate (34.2%).

[Figure 4]
Figure 4
Fingerprint plots for (a) DATA hydrate and (b) anhydrous DATA.

4. Database survey

Previous studies on DATA were explored in the Cambridge Structural Database (CSD, June 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The search resulted in four reports: DAMTRZ11 (Klapötke et al., 2010[Klapötke, T. M., Martin, F., Mayr, N. T. & Stierstorfer, J. (2010). Z. Anorg. Allg. Chem. 636, 2555-2564.]), DAMTRZ22 (Ivanova & Spiteller, 2017[Ivanova, B. & Spiteller, M. (2017). CSD Communication (refcode DAMTRZ21). CCDC, Cambridge, England.]), DAMTRZ10 (Starova et al., 1979[Starova, G. L., Frank-Kamenetskaya, O. V., Shibanova, E. F., Lopirev, V. A., Voronkov, M. G. & Makarskii, V. V. (1979). Khim. Geterotsikl. Soedin. p. 1422.]) and DAMTRZ20 (Starova et al., 1980[Starova, G. L., Frank-Kamenetskaya, O. V., Makarskii, V. V. & Lopirev, V. A. (1980). Kristallografiya, 25, 1292.]). The title DATA hydrate forms a layered structure in a monoclinic space group, whereas anhydrous DATA was reported to form a herringbone structure.

5. Synthesis and crystallization

DATA was purchased from Tokyo Chemical Industry Co., Ltd. Sodium perchlorate was obtained from Kanto Chemical Co., Inc. DATA (1 mmol) and sodium perchlorate (1 mmol) were dissolved in deionized water, and the solvent was removed in a silica gel desiccator. After one week, needle-shaped crystals were precipitated (yield: 40.81%). Inter­estingly, the evaporation of water from an aqueous solution of DATA generated block-shaped non-hydrated DATA crystals. Therefore, sodium perchlorate was required to precipitate the DATA hydrate. The mass proportion of H2O in the crystals was measured using thermogravimetry. A Thermoplus TG8120 (Rigaku) was used with an Al2O3 open cell. The heating rate was set to 10 K min−1. Flow gas was not used to prevent dehydration under the dried flow gas. The measured mass proportion of H2O in the crystal was 14.51%, which was slightly lower than the theoretical mass content of H2O (15.38%).

6. Dehydration behavior

After the storage of DATA hydrate over one night at 33% RH (saturated salt method (Greenspan, 1977[Greenspan, L. (1977). J. Res. Natl. Bur. Stan. Sect. A. 81A, 89-96.]); MgCl, 295 K), the water in the hydrate was removed and DATA hydrate turned into DATA. In contrast, after the storage at room temperature (approximately 295 K) and 60% RH for one night, the crystals remained as hydrates.

7. Refinement

The crystal data, data collection, and structural refinement details are summarized in Table 3[link]. The H atoms were identified using difference-Fourier maps and all H-atom parameters were refined.

Table 3
Experimental details

Crystal data
Chemical formula C2H5N5·H2O
Mr 117.13
Crystal system, space group Monoclinic, P21/c
Temperature (K) 123
a, b, c (Å) 3.80560 (5), 9.49424 (11), 14.01599 (15)
β (°) 92.9639 (11)
V3) 505.74 (1)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.07
Crystal size (mm) 0.2 × 0.1 × 0.1
 
Data collection
Diffractometer XtaLAB AFC12 (RINC): Kappa dual home/near
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.883, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 2894, 989, 956
Rint 0.019
(sin θ/λ)max−1) 0.619
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.081, 1.11
No. of reflections 989
No. of parameters 102
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.19, −0.22
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

1H-1,2,4-Triazole-3,5-diamine monohydrate top
Crystal data top
C2H5N5·H2OF(000) = 248
Mr = 117.13Dx = 1.538 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 3.80560 (5) ÅCell parameters from 2506 reflections
b = 9.49424 (11) Åθ = 6.3–72.5°
c = 14.01599 (15) ŵ = 1.07 mm1
β = 92.9639 (11)°T = 123 K
V = 505.74 (1) Å3Block, clear light colourless
Z = 40.2 × 0.1 × 0.1 mm
Data collection top
XtaLAB AFC12 (RINC): Kappa dual home/near
diffractometer
989 independent reflections
Radiation source: micro-focus sealed X-ray tube, Rigaku (Cu) X-ray Source956 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.019
Detector resolution: 5.8140 pixels mm-1θmax = 72.7°, θmin = 5.6°
ω scansh = 44
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2019)
k = 611
Tmin = 0.883, Tmax = 1.000l = 1716
2894 measured reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0403P)2 + 0.1848P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.081(Δ/σ)max < 0.001
S = 1.11Δρmax = 0.19 e Å3
989 reflectionsΔρmin = 0.22 e Å3
102 parametersExtinction correction: SHELXL2019/2 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0108 (15)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3849 (2)0.75354 (9)0.11841 (6)0.0209 (3)
N20.7285 (2)0.72150 (10)0.30194 (7)0.0148 (3)
N40.7684 (2)0.62922 (10)0.44551 (7)0.0157 (3)
N30.9151 (3)0.52932 (10)0.38648 (7)0.0164 (3)
N60.9638 (3)0.52599 (11)0.21830 (7)0.0172 (3)
N50.5282 (3)0.86004 (11)0.43097 (8)0.0186 (3)
C80.6633 (3)0.74110 (12)0.39403 (8)0.0145 (3)
C70.8788 (3)0.59072 (12)0.30217 (8)0.0141 (3)
H40.765 (4)0.6124 (16)0.5074 (12)0.021 (4)*
H5A0.454 (4)0.8506 (17)0.4902 (12)0.023 (4)*
H6A1.064 (4)0.5847 (19)0.1783 (12)0.032 (4)*
H6B1.085 (4)0.448 (2)0.2284 (12)0.031 (4)*
H5B0.402 (4)0.9142 (19)0.3880 (12)0.032 (4)*
H1A0.280 (5)0.835 (2)0.1149 (13)0.041 (5)*
H1B0.495 (5)0.753 (2)0.1769 (16)0.045 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0267 (5)0.0192 (5)0.0162 (5)0.0054 (4)0.0036 (4)0.0011 (3)
N20.0157 (5)0.0133 (5)0.0150 (5)0.0000 (4)0.0010 (4)0.0002 (4)
N40.0199 (5)0.0147 (5)0.0123 (5)0.0009 (4)0.0014 (4)0.0003 (4)
N30.0181 (5)0.0142 (5)0.0165 (5)0.0011 (4)0.0018 (4)0.0009 (4)
N60.0211 (5)0.0136 (5)0.0169 (5)0.0012 (4)0.0003 (4)0.0005 (4)
N50.0239 (5)0.0164 (5)0.0156 (5)0.0037 (4)0.0011 (4)0.0001 (4)
C80.0130 (5)0.0144 (6)0.0157 (5)0.0021 (4)0.0022 (4)0.0002 (4)
C70.0128 (5)0.0128 (5)0.0165 (6)0.0018 (4)0.0018 (4)0.0001 (4)
Geometric parameters (Å, º) top
O1—H1A0.87 (2)N3—C71.3185 (15)
O1—H1B0.90 (2)N6—C71.3797 (15)
N2—C81.3400 (15)N6—H6A0.891 (19)
N2—C71.3670 (15)N6—H6B0.884 (19)
N4—N31.3943 (13)N5—C81.3547 (15)
N4—C81.3337 (15)N5—H5A0.896 (17)
N4—H40.883 (16)N5—H5B0.910 (18)
H1A—O1—H1B104.3 (17)C8—N5—H5A114.5 (10)
C8—N2—C7102.83 (9)C8—N5—H5B114.6 (10)
N3—N4—H4119.2 (10)H5A—N5—H5B119.2 (14)
C8—N4—N3109.80 (9)N2—C8—N5125.22 (10)
C8—N4—H4131.0 (10)N4—C8—N2110.20 (10)
C7—N3—N4101.79 (9)N4—C8—N5124.49 (11)
C7—N6—H6A112.7 (11)N2—C7—N6121.27 (10)
C7—N6—H6B112.5 (11)N3—C7—N2115.36 (10)
H6A—N6—H6B112.9 (15)N3—C7—N6123.25 (11)
N4—N3—C7—N21.14 (12)C8—N2—C7—N6175.30 (10)
N4—N3—C7—N6174.87 (10)C8—N4—N3—C71.05 (12)
N3—N4—C8—N20.66 (13)C7—N2—C8—N40.04 (12)
N3—N4—C8—N5176.03 (10)C7—N2—C8—N5176.69 (11)
C8—N2—C7—N30.79 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O1i0.895 (17)2.080 (17)2.9173 (14)155.4 (14)
O1—H1A···N3ii0.871 (19)1.988 (19)2.8558 (13)174.1 (16)
O1—H1B···N20.90 (2)1.95 (2)2.8410 (13)171.5 (18)
N4—H4···N3iii0.883 (17)2.306 (16)2.9947 (14)134.9 (13)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+2, y+1, z+1.
Bond lengths (Å) in hydrated and non-hydrated DATA top
BondDATADATA hydrate
C7—N21.3544 (16)1.3670 (15)
N2—C81.3339 (16)1.3400 (15)
C8—N41.3356 (16)1.3337 (15)
N4—N31.3951 (15)1.3943 (13)
N3—C71.3238 (16)1.3185 (15)
C7—N61.3747 (17)1.3797 (15)
C8—N51.3502 (17)1.3547 (15)
 

Acknowledgements

The authors are grateful to the Instrument Analysis Center of Yokohama National University for the use of single-crystal X-ray diffraction.

Funding information

Funding for this research was provided by: Japan Explosives Industry Association.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFischer, N., Fischer, D., Klapötke, T. M., Piercey, D. G. & Stierstorfer, J. (2012). J. Mater. Chem. 22, 20418–20422.  Web of Science CSD CrossRef CAS Google Scholar
First citationGreenspan, L. (1977). J. Res. Natl. Bur. Stan. Sect. A. 81A, 89–96.  CrossRef Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationInoue, K., Matsumoto, S. & Kumasaki, M. (2022b). Acta Cryst. B78, 876–883.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationInoue, K., Okada, K., Kumasaki, M. & Usuki, K. (2022a). J. Energ. Mater. 42, 578–590.  Google Scholar
First citationIvanova, B. & Spiteller, M. (2017). CSD Communication (refcode DAMTRZ21). CCDC, Cambridge, England.  Google Scholar
First citationKhan, R. A., AlFawaz, A., Alhamed, A. A., AlMuryyi, N. A., Hasan, I., Paul, A., Alshammari, S. G., Abdulwahab, A. R. A., Arman, H. D. & Alsalme, A. (2024). Appl. Organom Chem. 38, e7426.  Web of Science CSD CrossRef Google Scholar
First citationKlapötke, T. M., Martin, F., Mayr, N. T. & Stierstorfer, J. (2010). Z. Anorg. Allg. Chem. 636, 2555–2564.  Google Scholar
First citationKuklja, M. M. & Rashkeev, S. N. (2007). Appl. Phys. Lett. 90, 15, 151913.  Google Scholar
First citationKumasaki, M., Gontani, S., Mori, K., Matsumoto, S. & Inoue, K. (2021). Acta Cryst. C77, 197–201.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMori, K., Kumasaki, M. & Atobe, M. (2021). Sci. Technol. Energ. Mater. 82, 2, 44–49, doi: 10.34571/stem. 82.2_44.  Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarova, G. L., Frank-Kamenetskaya, O. V., Makarskii, V. V. & Lopirev, V. A. (1980). Kristallografiya, 25, 1292.  Google Scholar
First citationStarova, G. L., Frank-Kamenetskaya, O. V., Shibanova, E. F., Lopirev, V. A., Voronkov, M. G. & Makarskii, V. V. (1979). Khim. Geterotsikl. Soedin. p. 1422.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYin, P., Parrish, D. A. & Shreeve, J. M. (2015). J. Am. Chem. Soc. 137, 4778–4786.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhang, Y., Guo, Y., Joo, Y. H., Parrish, D. A. & Shreeve, J. M. (2010). Chem. Eur. J. 16, 10778–10784.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds