research communications
Triclinic polymorph of bis[2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium] tetrachloridocadmium(II)
aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine, and bDepartment of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
*Correspondence e-mail: vassilyeva@univ.kiev.ua
The 13H12N3)2[CdCl4], (I), has been reported with four molecules in the in a monoclinic cell [Vassilyeva et al. (2021). RSC Advances, 11, 7713–7722]. While using two different in the oxidative cyclization–condensation involving CH3NH2·HCl to prepare a new monovalent cation with the imidazo[1,5-a]pyridinium skeleton, a new polymorph was obtained for (I) in P1 and a with approximately half the volume of the monoclinic form. The structural configurations of the two crystallographically non-equivalent organic cations as well as the geometry of the moderately distorted tetrahedral CdCl42– dianion show minor changes. In the crystal, identically stacked cations and tetrachlorocadmate anions form separate columns parallel to the a axis. The loose packing of the anions leads to a minimal separation of approximately 9.53 Å between the metal atoms in the triclinic form versus 7.51 Å in the monoclinic one, indicating that the latter is packed slightly more densely. The two forms also differ by aromatic stacking motifs. Similar to the monoclinic polymorph, the triclinic one excited at 364 nm shows an intense unsymmetrical photoluminescent band with maximum at 403 nm and a full width at half maximum of 51 nm in the solid state.
of the title organic–inorganic hybrid salt, (CKeywords: crystal structure; CdII; organic–inorganic hybrid; tetrahalometallate; π–π stacking; photoluminescence..
CCDC reference: 2388010
1. Chemical context
et al., 2021; Cai et al., 2023; Cruz-Cabeza et al., 2020). The control of the molecular assemblies during the crystallization process of a polymorphic cyclometalated IrIII ethylenediamine complex was demonstrated as an efficient tool to modulate emission and limit the aggregation-quenching phenomenum in the solid crystalline state (Talarico et al., 2010). The intermolecular interactions in two polymorphic modifications of a platinum emitter with 3-(benzen-2-idyl)-1-methyl-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-ylidene ligand have been shown to strongly affect its photophysical properties and even make the polymorphs separable (Pinter et al., 2021).
– the existence of more than one for a given material – is of interest in many research areas and applications ranging from crystallography and solid-state chemistry, materials science, and pharmaceuticals, to agricultural chemistry and food industry. Understanding differences in polymorphs properties is essential for selecting the right form for specific applications, optimizing material performance, and providing better predictive models for crystal formation (BergeronIn a previous study, we used organic–inorganic hybrid salts made of imidazo[1,5-a]pyridinium-based cations and tetrachlorocadmate anions as fluorescent agents to modify cross-linked polyurethane (CPU; Vassilyeva et al., 2021). The use of ionic compounds immobilized in situ in the CPU in low content (1 wt%) ensured excellent dispersion of components in the polymer matrix so that uniformly luminescent films were fabricated. In [L]2[CdCl4], 2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridinium cations (L+) resulted from the oxidative cyclization–condensation involving CH3NH2·HCl and 2-pyridinecarbaldehyde (2-PCA) in methanol. The developed synthetic approach enables the systematic modification of the photoluminescent properties of imidazo[1,5-a]pyridine species through varying substituents on the polyheterocyclic core as well as through introduction of different metal ions (Vassilyeva et al., 2020). In the present work, an attempt to prepare another electron-deficient monovalent cation with the imidazo[1,5-a]pyridinium skeleton by replacing half the amount of 2-PCA with 2-hydroxy-3-methoxybenzaldehyde in the reaction with CH3NH2·HCl appeared unsuccessful due to presumably insufficient reaction time. The isolated compound was crystallographically identified as a new triclinic polymorph of [L]2[CdCl4], (I), which was reported previously in P21/c [Cambridge Structural Database (CSD) refcode GOSYUL; Vassilyeva et al., 2021]. The photoluminescent properties of the monoclinic and triclinic polymorphs in the solid state were found to be very similar, suggesting that structural differences of the two modifications of the organic–inorganic hybrid material are not significant enough to affect their photophysical properties.
2. Structural commentary
Triclinic crystals of [L]2[CdCl4], which crystallize in the P, contain discrete organic cations and tetrachlorocadmate anions (Fig. 1). The structural configurations of two crystallographically non-equivalent L1(N1, N2) and L2(N4, N5) cations are similar with small differences in bond distances and angles. The pyridinium rings in the flattened fused cores have expected bond lengths; the bond distances in the imidazolium entities are in the range 1.341 (3)–1.399 (3) Å. The five- and six-membered rings in the cores are almost coplanar showing dihedral angles between them of approximately 2.46 (L1) and 2.08° (L2). The geometric parameters of the cations are highly comparable to those found in monoclinic GOSYUL except for the dihedral angles between the pendant pyridyl rings and the planes of the remainder of the cation. The dihedral angles are about 43.35 and 40.04° for L1 and L2, respectively, in (I) and 36.4 (2), and 35.9 (2)° for the two crystallographically non-equivalent cations in GOSYUL. The tetrahedral CdCl42– anion is more distorted compared with the anion geometry in the monoclinic polymorph. The Cd—Cl distances vary from 2.4436 (7) to 2.4895 (6) Å and the Cl—Cd—Cl angles fall in the range 100.36 (2)–115.56 (2)° (Table 1). The maximum differences in the lengths and angles are 0.0459 (7) Å and 15.2 (2)°, respectively, while those in GOSYUL amount to 0.048 Å and 4.94°.
|
3. Supramolecular features
In the crystal, identically stacked L1, L2 cations and CdCl42– anions form separate columns parallel to the a axis (Fig. 2). The cations from neighbouring columns are involved in aromatic stacking between the offset pyridinium and imidazolium entities of the fused cores with ring–centroid distances of 3.607 (1) and 3.683 (1) Å. The π–π stacking between the adjacent pendant pyridyl rings of L1 and L2, which are twisted to each other by approximately 43.81°, is negligible [the ring-centroid separation is 4.344 (1) Å]. The loose packing of the tetrachlorocadmate anions leads to a closest separation of approximately 9.53 Å between the metal atoms in the crystal. This separation in GOSYUL is equal to 7.51 Å, indicating that the latter is packed slightly more densely, while the spatial organization of both polymorphs remains rather similar (Figs. 2, 3). The title compound lacks classical hydrogen-bonding interactions. Additional structure consolidation is provided by several C—H⋯Cl—Cd hydrogen bonds between organic and inorganic counterparts (Table 2) at H⋯Cl distances below the van der Waals contact limit of 2.85 Å (Mantina et al., 2009). The longer contacts are considered a result of the crystal packing.
4. Database survey
More than 50 structures of salts with imidazo[1,5-a]pyridinium-based cations have been deposited in the CSD (Version 5.45, update March 2024; Groom et al., 2016) with above half of them being a contribution from our research group. These span Mn, Co, Fe, Ni, Cu, Zn, Cd, Pb and Sn halometalates (Cl, Br, I) with 2-methylimidazo[1,5-a]pyridin-2-ium, 2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium (L+), 2-hydroxyethylimidazo[1,5-a]pyridin-2-ium and 2,2′-(ethane-1,2-diyl)bis(imidazo[1,5-a]pyridin-2-ium) cations. Most of them either are built of cations and anions arranged in separate columns similar to (I) or show pseudo-layered structures with alternating sheets of organic cations and of halometalate anions (Buvaylo et al., 2015; Vassilyeva et al., 2019, 2021). Lead halide hybrid perovskites from the series are distinguished by their one-dimensional architecture (Vassilyeva et al., 2020, 2023).
Organic salts with imidazo[1,5-a]pyridinium cations having varying substituents on the imidazolium ring and inorganic anions such as hexafluorophosphate or perchlorate constitute another large group. The structures similar to (I) are 2-(2-pyridyl)-N3-(4-chlorophenyl)imidazo[1,5-a]pyridinium perchlorate (YIHFEB; Mitra et al., 2007) and 2-(2-(1H-imidazol-3-ium-5-yl)ethyl)-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium diperchlorate (UREYIA; Türkyılmaz et al., 2011) with chlorophenyl and ethylimidazolium substituents in place of the methyl group in L+, respectively. 3-(Pyridin-2-yl)imidazo[1,5-a]pyridine, a neutral L molecule lacking the methyl group, was reported to crystallize in orthorhombic P212121 (PRIMPY; Golic et al., 1980). It acts as a κ2(N,N) chelator to form an MnII complex (Álvarez et al., 2012) but can be easily released from the complex by boiling its suspension in water.
The ubiquitous Cd tetrachloride anion is found in more than 300 CSD structures. The mean Cd—Cl bond length of 2.46 Å in (I) is comparable to distances found in the database for other salts containing isolated CdCl42– tetrahedral anions (Cd—Cl distances for this anion vary from 2.38 to 2.57 Å with the average lengths falling in the narrow range 2.43–2.48 Å).
5. measurements
The excited at 364 nm (spectrofluorophotometer RF-6000, Shimadzu) shows a broad intense unsymmetrical band with maximum at 403 nm and a full width at half maximum of 51 nm (Fig. 4). The spectroscopic data are strictly comparable to those of the monoclinic form of (I) (Vassilyeva et al., 2021), indicating that the structural variations of the two polymorphs of (I) are insufficient to result in different photophysical properties.
spectrum of the crystalline powder sample of (I)6. Synthesis and crystallization
2-PCA (0.19 ml, 2.0 mmol) was added dropwise to CH3NH2·HCl (0.27 g, 4.0 mmol) and 2-hydroxy-3-methoxybenzaldehyde (0.30 g, 2.0 mmol) dissolved in 10 ml of methanol in a 50 ml conical flask. The solution was stirred magnetically for half an hour at 323 K. Then, solid CdCl2·2.5H2O (0.23 g, 1.0 mmol) was added to the flask and the reaction mixture was stirred for another half an hour at 323 K, filtered and left to evaporate. Colourless shiny blocks of (I) suitable for X-ray crystallography formed in several hours. The crystals were filtered off, washed with diethyl ether and dried in air. Yield: 0.16 g, 23% (based on cadmium). 1H NMR (400 MHz, DMSO-d6): δ (ppm) 8.93 (d, 1H, J = 3.9 Hz, H3), 8.70 (d, 1H, J = 9.3 Hz, H8), 8.56 (s, 1H, H3), 8.25–8.19 (m, 2H, H10+H11), 8.03 (d, 1H, J = 9.3 Hz, H5), 7.76–7.73 (m, 1H, H2), 7.37 (t, 1H, J = 8.1 Hz, H6), 7.23 (t, 1H, J = 7.1 Hz, H7), 4.31 (s, 3H, CH3). Analysis calculated for C26H24Cl4N6Cd (674.73): C 46.28; H 3.59; N 12.46%. Found: C 45.78; H 3.68; N 12.28%.
7. Refinement
Crystal data, data collection and structure . Anisotropic displacement parameters were employed for the non-hydrogen atoms. All hydrogen atoms were added at calculated positions and refined by use of a riding model with isotropic displacement parameters based on those of the parent atom (C—H = 0.95 Å, Uiso(H) = 1.2UeqC for CH, C—H = 0.98 Å, Uiso(H) = 1.5UeqC for CH3). Idealized methyl groups were refined as rotating groups.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2388010
https://doi.org/10.1107/S2056989024009654/ej2007sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024009654/ej2007Isup2.hkl
(C13H12N3)2[CdCl4] | Z = 2 |
Mr = 674.71 | F(000) = 676 |
Triclinic, P1 | Dx = 1.630 Mg m−3 |
a = 9.6288 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.5103 (4) Å | Cell parameters from 12802 reflections |
c = 13.0302 (5) Å | θ = 2.5–28.5° |
α = 78.734 (3)° | µ = 1.21 mm−1 |
β = 81.153 (3)° | T = 150 K |
γ = 77.708 (3)° | Irregular, yellow |
V = 1374.33 (9) Å3 | 0.44 × 0.27 × 0.20 mm |
New Gemini, Dual, Cu at home/near, Atlas diffractometer | 6206 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 5235 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.050 |
Detector resolution: 10.6426 pixels mm-1 | θmax = 28.9°, θmin = 2.2° |
ω scans | h = −13→12 |
Absorption correction: analytical (CrysAlisPro; Rigaku OD, 2023) | k = −14→15 |
Tmin = 0.713, Tmax = 0.852 | l = −17→16 |
23842 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.031 | H-atom parameters constrained |
wR(F2) = 0.065 | w = 1/[σ2(Fo2) + (0.0175P)2 + 0.519P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max = 0.001 |
6206 reflections | Δρmax = 0.67 e Å−3 |
336 parameters | Δρmin = −0.54 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. 1. Fixed Uiso At 1.2 times of: All C(H) groups At 1.5 times of: All C(H,H,H) groups 2.a Aromatic/amide H refined with riding coordinates: C3(H3), C5(H5), C6(H6), C7(H7), C8(H8), C10(H10), C11(H11), C12(H12), C13(H13), C15(H15), C18(H18), C19(H19), C20(H20), C21(H21), C23(H23), C24(H24), C25(H25), C26(H26) 2.b Idealised Me refined as rotating group: C4(H4A,H4B,H4C), C17(H17A,H17B,H17C) |
x | y | z | Uiso*/Ueq | ||
Cd1 | 0.55171 (2) | 0.71231 (2) | 0.76703 (2) | 0.01848 (6) | |
Cl1 | 0.46428 (8) | 0.71615 (6) | 0.59977 (5) | 0.03304 (17) | |
Cl2 | 0.63522 (6) | 0.50197 (5) | 0.84357 (5) | 0.02149 (13) | |
Cl3 | 0.37442 (6) | 0.81359 (5) | 0.89287 (5) | 0.02465 (14) | |
Cl4 | 0.73342 (7) | 0.84425 (5) | 0.73399 (5) | 0.02646 (15) | |
N1 | 0.2818 (2) | 0.23733 (16) | 0.94071 (16) | 0.0168 (4) | |
N2 | 0.1226 (2) | 0.39279 (17) | 0.88997 (16) | 0.0181 (4) | |
N3 | 0.1461 (2) | 0.09936 (16) | 0.83280 (16) | 0.0187 (4) | |
C1 | 0.1543 (2) | 0.2704 (2) | 0.90398 (19) | 0.0169 (5) | |
C2 | 0.2345 (3) | 0.4354 (2) | 0.9184 (2) | 0.0196 (5) | |
C3 | 0.3324 (3) | 0.3361 (2) | 0.95090 (19) | 0.0188 (5) | |
H3 | 0.420091 | 0.335580 | 0.976096 | 0.023* | |
C4 | 0.3592 (3) | 0.1135 (2) | 0.9694 (2) | 0.0238 (6) | |
H4A | 0.404112 | 0.081565 | 0.905313 | 0.036* | |
H4B | 0.292051 | 0.062933 | 1.008614 | 0.036* | |
H4C | 0.433169 | 0.113245 | 1.013424 | 0.036* | |
C5 | 0.2286 (3) | 0.5618 (2) | 0.9053 (2) | 0.0223 (6) | |
H5 | 0.303810 | 0.592783 | 0.923318 | 0.027* | |
C6 | 0.1138 (3) | 0.6367 (2) | 0.8666 (2) | 0.0262 (6) | |
H6 | 0.108142 | 0.721477 | 0.857448 | 0.031* | |
C7 | 0.0009 (3) | 0.5911 (2) | 0.8392 (2) | 0.0256 (6) | |
H7 | −0.079016 | 0.645928 | 0.812363 | 0.031* | |
C8 | 0.0050 (3) | 0.4727 (2) | 0.8504 (2) | 0.0251 (6) | |
H8 | −0.071002 | 0.443354 | 0.831666 | 0.030* | |
C9 | 0.0679 (2) | 0.1897 (2) | 0.87987 (19) | 0.0167 (5) | |
C10 | −0.0786 (3) | 0.2061 (2) | 0.9062 (2) | 0.0232 (6) | |
H10 | −0.128823 | 0.270389 | 0.941296 | 0.028* | |
C11 | −0.1499 (3) | 0.1252 (2) | 0.8796 (2) | 0.0284 (6) | |
H11 | −0.250913 | 0.134240 | 0.894811 | 0.034* | |
C12 | −0.0721 (3) | 0.0318 (2) | 0.8310 (2) | 0.0297 (6) | |
H12 | −0.118633 | −0.024474 | 0.811981 | 0.036* | |
C13 | 0.0742 (3) | 0.0213 (2) | 0.8105 (2) | 0.0242 (6) | |
H13 | 0.127099 | −0.044787 | 0.778788 | 0.029* | |
N4 | 0.2726 (2) | 0.08422 (17) | 0.58031 (17) | 0.0225 (5) | |
N5 | 0.3173 (2) | 0.23872 (17) | 0.63174 (16) | 0.0183 (4) | |
N6 | 0.0130 (2) | 0.34248 (19) | 0.63388 (17) | 0.0285 (5) | |
C14 | 0.2197 (3) | 0.2002 (2) | 0.5887 (2) | 0.0210 (5) | |
C15 | 0.4022 (3) | 0.0479 (2) | 0.6177 (2) | 0.0240 (6) | |
H15 | 0.460532 | −0.030079 | 0.620321 | 0.029* | |
C16 | 0.4329 (3) | 0.1443 (2) | 0.65074 (19) | 0.0203 (5) | |
C17 | 0.2027 (3) | 0.0022 (2) | 0.5410 (2) | 0.0327 (7) | |
H17A | 0.214666 | 0.017799 | 0.463828 | 0.049* | |
H17B | 0.100473 | 0.015804 | 0.567009 | 0.049* | |
H17C | 0.246445 | −0.081565 | 0.566185 | 0.049* | |
C18 | 0.5494 (3) | 0.1647 (2) | 0.6946 (2) | 0.0262 (6) | |
H18 | 0.628307 | 0.101148 | 0.709293 | 0.031* | |
C19 | 0.5467 (3) | 0.2756 (2) | 0.7152 (2) | 0.0275 (6) | |
H19 | 0.624016 | 0.289983 | 0.745308 | 0.033* | |
C20 | 0.4292 (3) | 0.3712 (2) | 0.6923 (2) | 0.0258 (6) | |
H20 | 0.430482 | 0.449280 | 0.705267 | 0.031* | |
C21 | 0.3161 (3) | 0.3527 (2) | 0.6525 (2) | 0.0217 (5) | |
H21 | 0.237135 | 0.416540 | 0.638813 | 0.026* | |
C22 | 0.0784 (3) | 0.2703 (2) | 0.5643 (2) | 0.0222 (5) | |
C23 | 0.0180 (3) | 0.2607 (2) | 0.4770 (2) | 0.0317 (6) | |
H23 | 0.069903 | 0.212218 | 0.427328 | 0.038* | |
C24 | −0.1193 (3) | 0.3230 (3) | 0.4639 (2) | 0.0376 (7) | |
H24 | −0.164382 | 0.316423 | 0.405925 | 0.045* | |
C25 | −0.1891 (3) | 0.3942 (3) | 0.5354 (2) | 0.0367 (7) | |
H25 | −0.284419 | 0.436304 | 0.529123 | 0.044* | |
C26 | −0.1179 (3) | 0.4039 (3) | 0.6174 (2) | 0.0369 (7) | |
H26 | −0.165158 | 0.457220 | 0.664470 | 0.044* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.01851 (10) | 0.01593 (10) | 0.02228 (11) | −0.00275 (7) | −0.00489 (7) | −0.00489 (7) |
Cl1 | 0.0463 (4) | 0.0322 (4) | 0.0245 (4) | −0.0092 (3) | −0.0153 (3) | −0.0035 (3) |
Cl2 | 0.0204 (3) | 0.0156 (3) | 0.0287 (4) | −0.0012 (2) | −0.0057 (3) | −0.0044 (3) |
Cl3 | 0.0189 (3) | 0.0210 (3) | 0.0350 (4) | 0.0002 (2) | −0.0018 (3) | −0.0122 (3) |
Cl4 | 0.0227 (3) | 0.0189 (3) | 0.0393 (4) | −0.0075 (2) | −0.0048 (3) | −0.0040 (3) |
N1 | 0.0156 (11) | 0.0138 (9) | 0.0216 (11) | −0.0020 (8) | −0.0046 (8) | −0.0037 (8) |
N2 | 0.0142 (10) | 0.0168 (10) | 0.0255 (12) | −0.0008 (8) | −0.0058 (9) | −0.0079 (9) |
N3 | 0.0222 (11) | 0.0131 (10) | 0.0214 (12) | −0.0042 (8) | −0.0026 (9) | −0.0036 (9) |
C1 | 0.0153 (13) | 0.0165 (11) | 0.0203 (13) | −0.0031 (9) | −0.0019 (10) | −0.0063 (10) |
C2 | 0.0176 (13) | 0.0195 (12) | 0.0255 (14) | −0.0041 (10) | −0.0053 (10) | −0.0097 (11) |
C3 | 0.0175 (13) | 0.0157 (12) | 0.0260 (14) | −0.0053 (10) | −0.0075 (10) | −0.0040 (11) |
C4 | 0.0248 (14) | 0.0130 (11) | 0.0331 (16) | 0.0000 (10) | −0.0101 (12) | −0.0011 (11) |
C5 | 0.0265 (14) | 0.0181 (12) | 0.0253 (15) | −0.0093 (11) | −0.0030 (11) | −0.0051 (11) |
C6 | 0.0342 (16) | 0.0144 (12) | 0.0304 (16) | −0.0003 (11) | −0.0064 (12) | −0.0068 (11) |
C7 | 0.0240 (14) | 0.0220 (13) | 0.0285 (15) | 0.0053 (11) | −0.0078 (11) | −0.0058 (11) |
C8 | 0.0199 (14) | 0.0255 (14) | 0.0321 (16) | −0.0016 (11) | −0.0103 (11) | −0.0077 (12) |
C9 | 0.0192 (13) | 0.0172 (12) | 0.0152 (13) | −0.0077 (10) | −0.0037 (10) | −0.0003 (10) |
C10 | 0.0194 (14) | 0.0278 (14) | 0.0250 (15) | −0.0070 (11) | −0.0013 (11) | −0.0091 (12) |
C11 | 0.0197 (14) | 0.0370 (16) | 0.0322 (16) | −0.0156 (12) | −0.0021 (12) | −0.0044 (13) |
C12 | 0.0358 (17) | 0.0301 (15) | 0.0313 (16) | −0.0214 (13) | −0.0083 (13) | −0.0050 (13) |
C13 | 0.0356 (16) | 0.0161 (12) | 0.0242 (15) | −0.0082 (11) | −0.0054 (12) | −0.0059 (11) |
N4 | 0.0279 (12) | 0.0167 (10) | 0.0235 (12) | −0.0037 (9) | −0.0035 (9) | −0.0051 (9) |
N5 | 0.0217 (11) | 0.0153 (10) | 0.0168 (11) | −0.0033 (8) | 0.0008 (8) | −0.0021 (8) |
N6 | 0.0257 (13) | 0.0306 (12) | 0.0241 (13) | 0.0019 (10) | −0.0006 (10) | −0.0026 (10) |
C14 | 0.0237 (14) | 0.0206 (12) | 0.0182 (14) | −0.0035 (10) | −0.0023 (10) | −0.0029 (11) |
C15 | 0.0253 (15) | 0.0188 (12) | 0.0246 (15) | 0.0017 (10) | −0.0019 (11) | −0.0031 (11) |
C16 | 0.0236 (14) | 0.0160 (12) | 0.0184 (13) | −0.0007 (10) | 0.0007 (10) | −0.0012 (10) |
C17 | 0.0463 (18) | 0.0232 (14) | 0.0331 (17) | −0.0091 (12) | −0.0103 (14) | −0.0090 (12) |
C18 | 0.0233 (14) | 0.0266 (14) | 0.0266 (15) | −0.0001 (11) | −0.0022 (11) | −0.0053 (12) |
C19 | 0.0257 (15) | 0.0318 (15) | 0.0267 (15) | −0.0109 (12) | −0.0018 (11) | −0.0039 (12) |
C20 | 0.0300 (15) | 0.0211 (13) | 0.0271 (15) | −0.0090 (11) | 0.0031 (12) | −0.0066 (11) |
C21 | 0.0259 (14) | 0.0133 (12) | 0.0236 (14) | −0.0019 (10) | 0.0017 (11) | −0.0028 (10) |
C22 | 0.0232 (14) | 0.0192 (12) | 0.0219 (14) | −0.0038 (10) | −0.0020 (11) | 0.0010 (11) |
C23 | 0.0366 (17) | 0.0300 (15) | 0.0280 (16) | −0.0036 (12) | −0.0081 (13) | −0.0033 (13) |
C24 | 0.0360 (18) | 0.0420 (17) | 0.0339 (18) | −0.0085 (14) | −0.0133 (14) | 0.0042 (14) |
C25 | 0.0230 (15) | 0.0453 (18) | 0.0331 (18) | −0.0020 (13) | −0.0030 (13) | 0.0095 (14) |
C26 | 0.0288 (16) | 0.0429 (17) | 0.0296 (17) | 0.0052 (13) | 0.0033 (13) | −0.0018 (14) |
Cd1—Cl1 | 2.4436 (7) | C12—C13 | 1.376 (4) |
Cd1—Cl2 | 2.4448 (6) | C13—H13 | 0.9500 |
Cd1—Cl3 | 2.4496 (7) | N4—C14 | 1.343 (3) |
Cd1—Cl4 | 2.4895 (6) | N4—C15 | 1.361 (3) |
N1—C1 | 1.339 (3) | N4—C17 | 1.474 (3) |
N1—C3 | 1.365 (3) | N5—C14 | 1.353 (3) |
N1—C4 | 1.467 (3) | N5—C16 | 1.395 (3) |
N2—C1 | 1.359 (3) | N5—C21 | 1.388 (3) |
N2—C2 | 1.400 (3) | N6—C22 | 1.344 (3) |
N2—C8 | 1.395 (3) | N6—C26 | 1.333 (3) |
N3—C9 | 1.341 (3) | C14—C22 | 1.473 (3) |
N3—C13 | 1.341 (3) | C15—H15 | 0.9500 |
C1—C9 | 1.475 (3) | C15—C16 | 1.367 (3) |
C2—C3 | 1.360 (3) | C16—C18 | 1.414 (3) |
C2—C5 | 1.421 (3) | C17—H17A | 0.9800 |
C3—H3 | 0.9500 | C17—H17B | 0.9800 |
C4—H4A | 0.9800 | C17—H17C | 0.9800 |
C4—H4B | 0.9800 | C18—H18 | 0.9500 |
C4—H4C | 0.9800 | C18—C19 | 1.350 (4) |
C5—H5 | 0.9500 | C19—H19 | 0.9500 |
C5—C6 | 1.348 (3) | C19—C20 | 1.424 (4) |
C6—H6 | 0.9500 | C20—H20 | 0.9500 |
C6—C7 | 1.421 (4) | C20—C21 | 1.347 (3) |
C7—H7 | 0.9500 | C21—H21 | 0.9500 |
C7—C8 | 1.334 (3) | C22—C23 | 1.387 (4) |
C8—H8 | 0.9500 | C23—H23 | 0.9500 |
C9—C10 | 1.381 (3) | C23—C24 | 1.382 (4) |
C10—H10 | 0.9500 | C24—H24 | 0.9500 |
C10—C11 | 1.389 (3) | C24—C25 | 1.364 (4) |
C11—H11 | 0.9500 | C25—H25 | 0.9500 |
C11—C12 | 1.377 (4) | C25—C26 | 1.389 (4) |
C12—H12 | 0.9500 | C26—H26 | 0.9500 |
Cl1—Cd1—Cl2 | 108.30 (2) | N3—C13—C12 | 123.6 (2) |
Cl1—Cd1—Cl3 | 113.98 (2) | N3—C13—H13 | 118.2 |
Cl1—Cd1—Cl4 | 108.24 (2) | C12—C13—H13 | 118.2 |
Cl2—Cd1—Cl3 | 110.40 (2) | C14—N4—C15 | 110.5 (2) |
Cl2—Cd1—Cl4 | 115.56 (2) | C14—N4—C17 | 126.9 (2) |
Cl3—Cd1—Cl4 | 100.36 (2) | C15—N4—C17 | 122.6 (2) |
C1—N1—C3 | 110.67 (19) | C14—N5—C16 | 109.32 (19) |
C1—N1—C4 | 126.46 (19) | C14—N5—C21 | 129.3 (2) |
C3—N1—C4 | 122.86 (19) | C21—N5—C16 | 121.3 (2) |
C1—N2—C2 | 109.13 (19) | C26—N6—C22 | 116.7 (2) |
C1—N2—C8 | 130.01 (19) | N4—C14—N5 | 106.7 (2) |
C8—N2—C2 | 120.81 (19) | N4—C14—C22 | 127.3 (2) |
C9—N3—C13 | 116.4 (2) | N5—C14—C22 | 125.9 (2) |
N1—C1—N2 | 106.48 (18) | N4—C15—H15 | 126.3 |
N1—C1—C9 | 126.6 (2) | N4—C15—C16 | 107.5 (2) |
N2—C1—C9 | 126.9 (2) | C16—C15—H15 | 126.3 |
N2—C2—C5 | 119.3 (2) | N5—C16—C18 | 119.2 (2) |
C3—C2—N2 | 106.19 (19) | C15—C16—N5 | 106.1 (2) |
C3—C2—C5 | 134.5 (2) | C15—C16—C18 | 134.8 (2) |
N1—C3—H3 | 126.2 | N4—C17—H17A | 109.5 |
C2—C3—N1 | 107.5 (2) | N4—C17—H17B | 109.5 |
C2—C3—H3 | 126.2 | N4—C17—H17C | 109.5 |
N1—C4—H4A | 109.5 | H17A—C17—H17B | 109.5 |
N1—C4—H4B | 109.5 | H17A—C17—H17C | 109.5 |
N1—C4—H4C | 109.5 | H17B—C17—H17C | 109.5 |
H4A—C4—H4B | 109.5 | C16—C18—H18 | 120.5 |
H4A—C4—H4C | 109.5 | C19—C18—C16 | 119.1 (2) |
H4B—C4—H4C | 109.5 | C19—C18—H18 | 120.5 |
C2—C5—H5 | 120.8 | C18—C19—H19 | 119.7 |
C6—C5—C2 | 118.5 (2) | C18—C19—C20 | 120.6 (2) |
C6—C5—H5 | 120.8 | C20—C19—H19 | 119.7 |
C5—C6—H6 | 119.5 | C19—C20—H20 | 119.4 |
C5—C6—C7 | 121.1 (2) | C21—C20—C19 | 121.1 (2) |
C7—C6—H6 | 119.5 | C21—C20—H20 | 119.4 |
C6—C7—H7 | 119.4 | N5—C21—H21 | 120.6 |
C8—C7—C6 | 121.3 (2) | C20—C21—N5 | 118.7 (2) |
C8—C7—H7 | 119.4 | C20—C21—H21 | 120.6 |
N2—C8—H8 | 120.5 | N6—C22—C14 | 114.6 (2) |
C7—C8—N2 | 119.0 (2) | N6—C22—C23 | 123.2 (2) |
C7—C8—H8 | 120.5 | C23—C22—C14 | 122.3 (2) |
N3—C9—C1 | 113.4 (2) | C22—C23—H23 | 120.7 |
N3—C9—C10 | 124.4 (2) | C24—C23—C22 | 118.6 (3) |
C10—C9—C1 | 122.2 (2) | C24—C23—H23 | 120.7 |
C9—C10—H10 | 121.2 | C23—C24—H24 | 120.5 |
C9—C10—C11 | 117.6 (2) | C25—C24—C23 | 119.1 (3) |
C11—C10—H10 | 121.2 | C25—C24—H24 | 120.5 |
C10—C11—H11 | 120.4 | C24—C25—H25 | 120.7 |
C12—C11—C10 | 119.1 (2) | C24—C25—C26 | 118.7 (3) |
C12—C11—H11 | 120.4 | C26—C25—H25 | 120.7 |
C11—C12—H12 | 120.6 | N6—C26—C25 | 123.7 (3) |
C13—C12—C11 | 118.9 (2) | N6—C26—H26 | 118.1 |
C13—C12—H12 | 120.6 | C25—C26—H26 | 118.1 |
N1—C1—C9—N3 | −40.5 (3) | N4—C14—C22—N6 | 138.5 (3) |
N1—C1—C9—C10 | 138.2 (3) | N4—C14—C22—C23 | −40.7 (4) |
N2—C1—C9—N3 | 137.1 (2) | N4—C15—C16—N5 | 0.0 (3) |
N2—C1—C9—C10 | −44.3 (4) | N4—C15—C16—C18 | −178.8 (3) |
N2—C2—C3—N1 | 0.9 (3) | N5—C14—C22—N6 | −36.2 (4) |
N2—C2—C5—C6 | 0.7 (4) | N5—C14—C22—C23 | 144.6 (3) |
N3—C9—C10—C11 | −1.7 (4) | N5—C16—C18—C19 | −1.1 (4) |
C1—N1—C3—C2 | −0.7 (3) | N6—C22—C23—C24 | −3.7 (4) |
C1—N2—C2—C3 | −0.8 (3) | C14—N4—C15—C16 | −0.2 (3) |
C1—N2—C2—C5 | 176.8 (2) | C14—N5—C16—C15 | 0.1 (3) |
C1—N2—C8—C7 | −176.7 (3) | C14—N5—C16—C18 | 179.2 (2) |
C1—C9—C10—C11 | 179.8 (2) | C14—N5—C21—C20 | −177.3 (2) |
C2—N2—C1—N1 | 0.4 (3) | C14—C22—C23—C24 | 175.4 (2) |
C2—N2—C1—C9 | −177.6 (2) | C15—N4—C14—N5 | 0.2 (3) |
C2—N2—C8—C7 | 0.5 (4) | C15—N4—C14—C22 | −175.3 (2) |
C2—C5—C6—C7 | −0.1 (4) | C15—C16—C18—C19 | 177.6 (3) |
C3—N1—C1—N2 | 0.2 (3) | C16—N5—C14—N4 | −0.2 (3) |
C3—N1—C1—C9 | 178.2 (2) | C16—N5—C14—C22 | 175.4 (2) |
C3—C2—C5—C6 | 177.5 (3) | C16—N5—C21—C20 | −0.4 (4) |
C4—N1—C1—N2 | 178.9 (2) | C16—C18—C19—C20 | −0.6 (4) |
C4—N1—C1—C9 | −3.1 (4) | C17—N4—C14—N5 | 177.9 (2) |
C4—N1—C3—C2 | −179.5 (2) | C17—N4—C14—C22 | 2.3 (4) |
C5—C2—C3—N1 | −176.2 (3) | C17—N4—C15—C16 | −177.9 (2) |
C5—C6—C7—C8 | −0.3 (4) | C18—C19—C20—C21 | 2.0 (4) |
C6—C7—C8—N2 | 0.1 (4) | C19—C20—C21—N5 | −1.4 (4) |
C8—N2—C1—N1 | 177.8 (2) | C21—N5—C14—N4 | 177.0 (2) |
C8—N2—C1—C9 | −0.2 (4) | C21—N5—C14—C22 | −7.4 (4) |
C8—N2—C2—C3 | −178.5 (2) | C21—N5—C16—C15 | −177.4 (2) |
C8—N2—C2—C5 | −0.9 (4) | C21—N5—C16—C18 | 1.7 (3) |
C9—N3—C13—C12 | 1.6 (4) | C22—N6—C26—C25 | 1.8 (4) |
C9—C10—C11—C12 | 1.5 (4) | C22—C23—C24—C25 | 1.7 (4) |
C10—C11—C12—C13 | 0.2 (4) | C23—C24—C25—C26 | 1.7 (4) |
C11—C12—C13—N3 | −1.8 (4) | C24—C25—C26—N6 | −3.6 (5) |
C13—N3—C9—C1 | 178.8 (2) | C26—N6—C22—C14 | −177.2 (2) |
C13—N3—C9—C10 | 0.2 (4) | C26—N6—C22—C23 | 1.9 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4C···Cl3i | 0.98 | 2.72 | 3.664 (3) | 162 |
C5—H5···Cl3 | 0.95 | 2.71 | 3.446 (2) | 135 |
C7—H7···Cl4ii | 0.95 | 2.72 | 3.651 (3) | 166 |
C8—H8···Cl2ii | 0.95 | 2.75 | 3.518 (3) | 138 |
C12—H12···Cl4iii | 0.95 | 2.70 | 3.644 (2) | 171 |
C17—H17A···Cl4iv | 0.98 | 2.79 | 3.695 (3) | 155 |
C17—H17C···Cl1v | 0.98 | 2.80 | 3.721 (3) | 158 |
C23—H23···Cl4iv | 0.95 | 2.69 | 3.576 (3) | 156 |
C26—H26···Cl2ii | 0.95 | 2.84 | 3.689 (3) | 149 |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x−1, y, z; (iii) x−1, y−1, z; (iv) −x+1, −y+1, −z+1; (v) x, y−1, z. |
Funding information
Funding for this research was provided by: Ministry of Education and Science of Ukraine (grant for the perspective development of the scientific direction ‘Mathematical Sciences and Natural Sciences’ at the Taras Shevchenko National University of Kyiv).
References
Álvarez, C. M., Álvarez-Miguel, L., García-Rodríguez, R. & Miguel, D. (2012). Dalton Trans. 41, 7041–7046. Web of Science PubMed Google Scholar
Bergeron, H., Lebedev, D. & Hersam, M. C. (2021). Chem. Rev. 121, 2713–2775. Web of Science CrossRef CAS PubMed Google Scholar
Buvaylo, E. A., Kokozay, V. N., Linnik, R. P., Vassilyeva, O. Y. & Skelton, B. W. (2015). Dalton Trans. 44, 13735–13744. Web of Science CSD CrossRef CAS PubMed Google Scholar
Cai, X. M., Lin, Y., Tang, Z., Zhang, X., Mu, T., Huang, S., Zhao, Z. & Tang, B. Z. (2023). Chem. Eng. J. 451, 138627. Web of Science CSD CrossRef Google Scholar
Cruz-Cabeza, A. J., Feeder, N. & Davey, R. J. (2020). Commun. Chem. 3, 142. Web of Science PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Golic, L., Leban, I., Stanovnik, B., Tisler, M. & Tomazic, A. (1980). Croat. Chem. Acta, 53, 435–440. CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mantina, M., Chamberlin, A. C., Valero, R., Cramer, C. J. & Truhlar, D. G. (2009). J. Phys. Chem. A, 113, 5806–5812. Web of Science CrossRef PubMed CAS Google Scholar
Mitra, K., Biswas, S., Chattopadhyay, S. K., Lucas, C. R. & Adhikary, B. (2007). J. Chem. Crystallogr. 37, 567–571. Web of Science CSD CrossRef CAS Google Scholar
Pinter, P., Hennersdorf, F., Weigand, J. J. & Strassner, T. (2021). Chem. Eur. J. 27, 13135–13138. Web of Science CSD CrossRef CAS PubMed Google Scholar
Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Talarico, A. M., Aiello, I., Bellusci, A., Crispini, A., Ghedini, M., Godbert, N., Pugliese, T. & Szerb, E. (2010). Dalton Trans. 39, 1709–1712. Web of Science CSD CrossRef CAS PubMed Google Scholar
Türkyılmaz, M., Baran, Y. & Özdemir, N. (2011). Acta Cryst. E67, o1282. Web of Science CSD CrossRef IUCr Journals Google Scholar
Vassilyeva, O. Y., Buvaylo, E. A., Kokozay, V. N., Skelton, B. W., Rajnák, C., Titiš, Y. & Boča, R. (2019). Dalton Trans. 48, 11278–11284. Web of Science CSD CrossRef CAS PubMed Google Scholar
Vassilyeva, O. Y., Buvaylo, E. A., Linnik, R. P., Nesterov, D. S., Trachevsky, V. V. & Skelton, B. W. (2020). CrystEngComm, 22, 5096–5105. Web of Science CSD CrossRef CAS Google Scholar
Vassilyeva, O. Y., Buvaylo, E. A., Lobko, Y. V., Linnik, R. P., Kokozay, V. N. & Skelton, B. W. (2021). RSC Adv. 11, 7713–7722. Web of Science CSD CrossRef CAS PubMed Google Scholar
Vassilyeva, O. Y., Buvaylo, E. A., Nesterova, O. V., Sobolev, A. N. & Nesterov, D. S. (2023). Crystals, 13, 307. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.