research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Triclinic polymorph of bis­­[2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium] tetra­chloridocadmium(II)

crossmark logo

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine, and bDepartment of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
*Correspondence e-mail: vassilyeva@univ.kiev.ua

Edited by G. Ferrence, Illinois State University, USA (Received 11 July 2024; accepted 30 September 2024; online 4 October 2024)

The crystal structure of the title organic–inorganic hybrid salt, (C13H12N3)2[CdCl4], (I), has been reported with four mol­ecules in the asymmetric unit in a monoclinic cell [Vassilyeva et al. (2021[Vassilyeva, O. Y., Buvaylo, E. A., Lobko, Y. V., Linnik, R. P., Kokozay, V. N. & Skelton, B. W. (2021). RSC Adv. 11, 7713-7722.]). RSC Advances, 11, 7713–7722]. While using two different aldehydes in the oxidative cyclization–condensation involving CH3NH2·HCl to prepare a new monovalent cation with the imidazo[1,5-a]pyridinium skeleton, a new polymorph was obtained for (I) in space group P1 and a unit cell with approximately half the volume of the monoclinic form. The structural configurations of the two crystallographically non-equivalent organic cations as well as the geometry of the moderately distorted tetra­hedral CdCl42– dianion show minor changes. In the crystal, identically stacked cations and tetra­chloro­cadmate anions form separate columns parallel to the a axis. The loose packing of the anions leads to a minimal separation of approximately 9.53 Å between the metal atoms in the triclinic form versus 7.51 Å in the monoclinic one, indicating that the latter is packed slightly more densely. The two forms also differ by aromatic stacking motifs. Similar to the monoclinic polymorph, the triclinic one excited at 364 nm shows an intense unsymmetrical photoluminescent band with maximum at 403 nm and a full width at half maximum of 51 nm in the solid state.

1. Chemical context

Polymorphism – the existence of more than one crystal structure for a given material – is of inter­est in many research areas and applications ranging from crystallography and solid-state chemistry, materials science, and pharmaceuticals, to agricultural chemistry and food industry. Understanding differences in polymorphs properties is essential for selecting the right form for specific applications, optimizing material performance, and providing better predictive models for crystal formation (Bergeron et al., 2021[Bergeron, H., Lebedev, D. & Hersam, M. C. (2021). Chem. Rev. 121, 2713-2775.]; Cai et al., 2023[Cai, X. M., Lin, Y., Tang, Z., Zhang, X., Mu, T., Huang, S., Zhao, Z. & Tang, B. Z. (2023). Chem. Eng. J. 451, 138627.]; Cruz-Cabeza et al., 2020[Cruz-Cabeza, A. J., Feeder, N. & Davey, R. J. (2020). Commun. Chem. 3, 142.]). The control of the mol­ecular assemblies during the crystallization process of a polymorphic cyclo­metalated IrIII ethyl­enedi­amine complex was demonstrated as an efficient tool to modulate emission and limit the aggregation-quenching phenomenum in the solid crystalline state (Talarico et al., 2010[Talarico, A. M., Aiello, I., Bellusci, A., Crispini, A., Ghedini, M., Godbert, N., Pugliese, T. & Szerb, E. (2010). Dalton Trans. 39, 1709-1712.]). The inter­molecular inter­actions in two polymorphic modifications of a platinum emitter with 3-(benzen-2-id­yl)-1-methyl-1,3-di­hydro-2H-imidazo[4,5-b]pyridin-2-yl­idene ligand have been shown to strongly affect its photophysical properties and even make the polymorphs separable (Pinter et al., 2021[Pinter, P., Hennersdorf, F., Weigand, J. J. & Strassner, T. (2021). Chem. Eur. J. 27, 13135-13138.]).

In a previous study, we used organic–inorganic hybrid salts made of imidazo[1,5-a]pyridinium-based cations and tetra­chloro­cadmate anions as fluorescent agents to modify cross-linked polyurethane (CPU; Vassilyeva et al., 2021[Vassilyeva, O. Y., Buvaylo, E. A., Lobko, Y. V., Linnik, R. P., Kokozay, V. N. & Skelton, B. W. (2021). RSC Adv. 11, 7713-7722.]). The use of ionic compounds immobilized in situ in the CPU in low content (1 wt%) ensured excellent dispersion of components in the polymer matrix so that uniformly luminescent films were fabricated. In [L]2[CdCl4], 2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridinium cations (L+) resulted from the oxidative cyclization–condensation involving CH3NH2·HCl and 2-pyridine­carbaldehyde (2-PCA) in methanol. The developed synthetic approach enables the systematic modification of the photoluminescent properties of imidazo[1,5-a]pyridine species through varying substituents on the polyheterocyclic core as well as through introduction of different metal ions (Vassilyeva et al., 2020[Vassilyeva, O. Y., Buvaylo, E. A., Linnik, R. P., Nesterov, D. S., Trachevsky, V. V. & Skelton, B. W. (2020). CrystEngComm, 22, 5096-5105.]). In the present work, an attempt to prepare another electron-deficient monovalent cation with the imidazo[1,5-a]pyridinium skeleton by replacing half the amount of 2-PCA with 2-hy­droxy-3-meth­oxy­benzaldehyde in the reaction with CH3NH2·HCl appeared unsuccessful due to presumably insufficient reaction time. The isolated compound was crystallographically identified as a new triclinic polymorph of [L]2[CdCl4], (I)[link], which was reported previously in space group P21/c [Cambridge Structural Database (CSD) refcode GOSYUL; Vassilyeva et al., 2021[Vassilyeva, O. Y., Buvaylo, E. A., Lobko, Y. V., Linnik, R. P., Kokozay, V. N. & Skelton, B. W. (2021). RSC Adv. 11, 7713-7722.]]. The photoluminescent properties of the monoclinic and triclinic polymorphs in the solid state were found to be very similar, suggesting that structural differences of the two modifications of the organic–inorganic hybrid material are not significant enough to affect their photophysical properties.

[Scheme 1]

2. Structural commentary

Triclinic crystals of [L]2[CdCl4], which crystallize in the space group P[\overline{1}], contain discrete organic cations and tetra­chloro­cadmate anions (Fig. 1[link]). The structural configurations of two crystallographically non-equivalent L1(N1, N2) and L2(N4, N5) cations are similar with small differences in bond distances and angles. The pyridinium rings in the flattened fused cores have expected bond lengths; the bond distances in the imidazolium entities are in the range 1.341 (3)–1.399 (3) Å. The five- and six-membered rings in the cores are almost coplanar showing dihedral angles between them of approximately 2.46 (L1) and 2.08° (L2). The geometric parameters of the cations are highly comparable to those found in monoclinic GOSYUL except for the dihedral angles between the pendant pyridyl rings and the planes of the remainder of the cation. The dihedral angles are about 43.35 and 40.04° for L1 and L2, respectively, in (I)[link] and 36.4 (2), and 35.9 (2)° for the two crystallographically non-equivalent cations in GOSYUL. The tetra­hedral CdCl42– anion is more distorted compared with the anion geometry in the monoclinic polymorph. The Cd—Cl distances vary from 2.4436 (7) to 2.4895 (6) Å and the Cl—Cd—Cl angles fall in the range 100.36 (2)–115.56 (2)° (Table 1[link]). The maximum differences in the lengths and angles are 0.0459 (7) Å and 15.2 (2)°, respectively, while those in GOSYUL amount to 0.048 Å and 4.94°.

Table 1
Selected geometric parameters (Å, °)

Cd1—Cl1 2.4436 (7) Cd1—Cl3 2.4496 (7)
Cd1—Cl2 2.4448 (6) Cd1—Cl4 2.4895 (6)
       
Cl1—Cd1—Cl2 108.30 (2) Cl2—Cd1—Cl3 110.40 (2)
Cl1—Cd1—Cl3 113.98 (2) Cl2—Cd1—Cl4 115.56 (2)
Cl1—Cd1—Cl4 108.24 (2) Cl3—Cd1—Cl4 100.36 (2)
[Figure 1]
Figure 1
Mol­ecular structure and labelling of the triclinic polymorph of [L]2[CdCl4] with ellipsoids at the 50% probability level.

3. Supra­molecular features

In the crystal, identically stacked L1, L2 cations and CdCl42– anions form separate columns parallel to the a axis (Fig. 2[link]). The cations from neighbouring columns are involved in aromatic stacking between the offset pyridinium and imidazolium entities of the fused cores with ring–centroid distances of 3.607 (1) and 3.683 (1) Å. The ππ stacking between the adjacent pendant pyridyl rings of L1 and L2, which are twisted to each other by approximately 43.81°, is negligible [the ring-centroid separation is 4.344 (1) Å]. The loose packing of the tetra­chloro­cadmate anions leads to a closest separation of approximately 9.53 Å between the metal atoms in the crystal. This separation in GOSYUL is equal to 7.51 Å, indicating that the latter is packed slightly more densely, while the spatial organization of both polymorphs remains rather similar (Figs. 2[link], 3[link]). The title compound lacks classical hydrogen-bonding inter­actions. Additional structure consolidation is provided by several C—H⋯Cl—Cd hydrogen bonds between organic and inorganic counterparts (Table 2[link]) at H⋯Cl distances below the van der Waals contact limit of 2.85 Å (Mantina et al., 2009[Mantina, M., Chamberlin, A. C., Valero, R., Cramer, C. J. & Truhlar, D. G. (2009). J. Phys. Chem. A, 113, 5806-5812.]). The longer contacts are considered a result of the crystal packing.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4C⋯Cl3i 0.98 2.72 3.664 (3) 162
C5—H5⋯Cl3 0.95 2.71 3.446 (2) 135
C7—H7⋯Cl4ii 0.95 2.72 3.651 (3) 166
C8—H8⋯Cl2ii 0.95 2.75 3.518 (3) 138
C12—H12⋯Cl4iii 0.95 2.70 3.644 (2) 171
C17—H17A⋯Cl4iv 0.98 2.79 3.695 (3) 155
C17—H17C⋯Cl1v 0.98 2.80 3.721 (3) 158
C23—H23⋯Cl4iv 0.95 2.69 3.576 (3) 156
C26—H26⋯Cl2ii 0.95 2.84 3.689 (3) 149
Symmetry codes: (i) [-x+1, -y+1, -z+2]; (ii) [x-1, y, z]; (iii) [x-1, y-1, z]; (iv) [-x+1, -y+1, -z+1]; (v) [x, y-1, z].
[Figure 2]
Figure 2
Fragment of the crystal packing of the triclinic polymorph of [L]2[CdCl4] viewed along the a axis and showing the L1 and L2 independent cations (green and blue) joined by aromatic stacking and the inter­molecular C—H⋯Cl contacts given as blue dashed lines.
[Figure 3]
Figure 3
Fragment of the crystal packing of the monoclinic polymorph of [L]2[CdCl4], GOSYUL, viewed along the a axis with the independent cations shown in green and blue.

4. Database survey

More than 50 structures of salts with imidazo[1,5-a]pyridin­ium-based cations have been deposited in the CSD (Version 5.45, update March 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) with above half of them being a contribution from our research group. These span Mn, Co, Fe, Ni, Cu, Zn, Cd, Pb and Sn halometalates (Cl, Br, I) with 2-methyl­imidazo[1,5-a]pyridin-2-ium, 2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium (L+), 2-hy­droxy­ethyl­imidazo[1,5-a]pyridin-2-ium and 2,2′-(ethane-1,2-di­yl)bis­(imidazo[1,5-a]pyridin-2-ium) cations. Most of them either are built of cations and anions arranged in separate columns similar to (I)[link] or show pseudo-layered structures with alternating sheets of organic cations and of halometalate anions (Buvaylo et al., 2015[Buvaylo, E. A., Kokozay, V. N., Linnik, R. P., Vassilyeva, O. Y. & Skelton, B. W. (2015). Dalton Trans. 44, 13735-13744.]; Vassilyeva et al., 2019[Vassilyeva, O. Y., Buvaylo, E. A., Kokozay, V. N., Skelton, B. W., Rajnák, C., Titiš, Y. & Boča, R. (2019). Dalton Trans. 48, 11278-11284.], 2021[Vassilyeva, O. Y., Buvaylo, E. A., Lobko, Y. V., Linnik, R. P., Kokozay, V. N. & Skelton, B. W. (2021). RSC Adv. 11, 7713-7722.]). Lead halide hybrid perovskites from the series are distinguished by their one-dimensional architecture (Vassilyeva et al., 2020[Vassilyeva, O. Y., Buvaylo, E. A., Linnik, R. P., Nesterov, D. S., Trachevsky, V. V. & Skelton, B. W. (2020). CrystEngComm, 22, 5096-5105.], 2023[Vassilyeva, O. Y., Buvaylo, E. A., Nesterova, O. V., Sobolev, A. N. & Nesterov, D. S. (2023). Crystals, 13, 307.]).

Organic salts with imidazo[1,5-a]pyridinium cations having varying substituents on the imidazolium ring and inorganic anions such as hexa­fluoro­phosphate or perchlorate constitute another large group. The structures similar to (I)[link] are 2-(2-pyrid­yl)-N3-(4-chloro­phen­yl)imidazo[1,5-a]pyridinium per­chlorate (YIHFEB; Mitra et al., 2007[Mitra, K., Biswas, S., Chattopadhyay, S. K., Lucas, C. R. & Adhikary, B. (2007). J. Chem. Crystallogr. 37, 567-571.]) and 2-(2-(1H-imidazol-3-ium-5-yl)eth­yl)-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium diperchlorate (UREYIA; Türkyılmaz et al., 2011[Türkyılmaz, M., Baran, Y. & Özdemir, N. (2011). Acta Cryst. E67, o1282.]) with chloro­phenyl and ethyl­imidazolium substituents in place of the methyl group in L+, respectively. 3-(Pyridin-2-yl)imidazo[1,5-a]pyridine, a neutral L mol­ecule lacking the methyl group, was reported to crystallize in ortho­rhom­bic space group P212121 (PRIMPY; Golic et al., 1980[Golic, L., Leban, I., Stanovnik, B., Tisler, M. & Tomazic, A. (1980). Croat. Chem. Acta, 53, 435-440.]). It acts as a κ2(N,N) chelator to form an MnII complex (Álvarez et al., 2012[Álvarez, C. M., Álvarez-Miguel, L., García-Rodríguez, R. & Miguel, D. (2012). Dalton Trans. 41, 7041-7046.]) but can be easily released from the complex by boiling its suspension in water.

The ubiquitous Cd tetra­chloride anion is found in more than 300 CSD structures. The mean Cd—Cl bond length of 2.46 Å in (I)[link] is comparable to distances found in the database for other salts containing isolated CdCl42– tetra­hedral anions (Cd—Cl distances for this anion vary from 2.38 to 2.57 Å with the average lengths falling in the narrow range 2.43–2.48 Å).

5. Photoluminescence measurements

The photoluminescence spectrum of the crystalline powder sample of (I)[link] excited at 364 nm (spectro­fluoro­photometer RF-6000, Shimadzu) shows a broad intense unsymmetrical band with maximum at 403 nm and a full width at half maximum of 51 nm (Fig. 4[link]). The spectroscopic data are strictly comparable to those of the monoclinic form of (I)[link] (Vassilyeva et al., 2021[Vassilyeva, O. Y., Buvaylo, E. A., Lobko, Y. V., Linnik, R. P., Kokozay, V. N. & Skelton, B. W. (2021). RSC Adv. 11, 7713-7722.]), indicating that the structural variations of the two polymorphs of (I)[link] are insufficient to result in different photophysical properties.

[Figure 4]
Figure 4
The excitation (dotted) and emission spectra (solid) of a powdered sample of the triclinic polymorph of [L]2[CdCl4] at room temperature.

6. Synthesis and crystallization

2-PCA (0.19 ml, 2.0 mmol) was added dropwise to CH3NH2·HCl (0.27 g, 4.0 mmol) and 2-hy­droxy-3-meth­oxy­benzaldehyde (0.30 g, 2.0 mmol) dissolved in 10 ml of methanol in a 50 ml conical flask. The solution was stirred magnetically for half an hour at 323 K. Then, solid CdCl2·2.5H2O (0.23 g, 1.0 mmol) was added to the flask and the reaction mixture was stirred for another half an hour at 323 K, filtered and left to evaporate. Colourless shiny blocks of (I)[link] suitable for X-ray crystallography formed in several hours. The crystals were filtered off, washed with diethyl ether and dried in air. Yield: 0.16 g, 23% (based on cadmium). 1H NMR (400 MHz, DMSO-d6): δ (ppm) 8.93 (d, 1H, J = 3.9 Hz, H3), 8.70 (d, 1H, J = 9.3 Hz, H8), 8.56 (s, 1H, H3), 8.25–8.19 (m, 2H, H10+H11), 8.03 (d, 1H, J = 9.3 Hz, H5), 7.76–7.73 (m, 1H, H2), 7.37 (t, 1H, J = 8.1 Hz, H6), 7.23 (t, 1H, J = 7.1 Hz, H7), 4.31 (s, 3H, CH3). Analysis calculated for C26H24Cl4N6Cd (674.73): C 46.28; H 3.59; N 12.46%. Found: C 45.78; H 3.68; N 12.28%.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Anisotropic displacement parameters were employed for the non-hydrogen atoms. All hydrogen atoms were added at calculated positions and refined by use of a riding model with isotropic displacement parameters based on those of the parent atom (C—H = 0.95 Å, Uiso(H) = 1.2UeqC for CH, C—H = 0.98 Å, Uiso(H) = 1.5UeqC for CH3). Idealized methyl groups were refined as rotating groups.

Table 3
Experimental details

Crystal data
Chemical formula (C13H12N3)2[CdCl4]
Mr 674.71
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 9.6288 (3), 11.5103 (4), 13.0302 (5)
α, β, γ (°) 78.734 (3), 81.153 (3), 77.708 (3)
V3) 1374.33 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.21
Crystal size (mm) 0.44 × 0.27 × 0.20
 
Data collection
Diffractometer New Gemini, Dual, Cu at home/near, Atlas
Absorption correction Analytical (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.713, 0.852
No. of measured, independent and observed [I > 2σ(I)] reflections 23842, 6206, 5235
Rint 0.050
(sin θ/λ)max−1) 0.679
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.065, 1.09
No. of reflections 6206
No. of parameters 336
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.67, −0.54
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT2014/4 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Bis[2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium] tetrachloridocadmium(II) top
Crystal data top
(C13H12N3)2[CdCl4]Z = 2
Mr = 674.71F(000) = 676
Triclinic, P1Dx = 1.630 Mg m3
a = 9.6288 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.5103 (4) ÅCell parameters from 12802 reflections
c = 13.0302 (5) Åθ = 2.5–28.5°
α = 78.734 (3)°µ = 1.21 mm1
β = 81.153 (3)°T = 150 K
γ = 77.708 (3)°Irregular, yellow
V = 1374.33 (9) Å30.44 × 0.27 × 0.20 mm
Data collection top
New Gemini, Dual, Cu at home/near, Atlas
diffractometer
6206 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source5235 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 10.6426 pixels mm-1θmax = 28.9°, θmin = 2.2°
ω scansh = 1312
Absorption correction: analytical
(CrysAlisPro; Rigaku OD, 2023)
k = 1415
Tmin = 0.713, Tmax = 0.852l = 1716
23842 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0175P)2 + 0.519P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
6206 reflectionsΔρmax = 0.67 e Å3
336 parametersΔρmin = 0.54 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. 1. Fixed Uiso At 1.2 times of: All C(H) groups At 1.5 times of: All C(H,H,H) groups 2.a Aromatic/amide H refined with riding coordinates: C3(H3), C5(H5), C6(H6), C7(H7), C8(H8), C10(H10), C11(H11), C12(H12), C13(H13), C15(H15), C18(H18), C19(H19), C20(H20), C21(H21), C23(H23), C24(H24), C25(H25), C26(H26) 2.b Idealised Me refined as rotating group: C4(H4A,H4B,H4C), C17(H17A,H17B,H17C)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.55171 (2)0.71231 (2)0.76703 (2)0.01848 (6)
Cl10.46428 (8)0.71615 (6)0.59977 (5)0.03304 (17)
Cl20.63522 (6)0.50197 (5)0.84357 (5)0.02149 (13)
Cl30.37442 (6)0.81359 (5)0.89287 (5)0.02465 (14)
Cl40.73342 (7)0.84425 (5)0.73399 (5)0.02646 (15)
N10.2818 (2)0.23733 (16)0.94071 (16)0.0168 (4)
N20.1226 (2)0.39279 (17)0.88997 (16)0.0181 (4)
N30.1461 (2)0.09936 (16)0.83280 (16)0.0187 (4)
C10.1543 (2)0.2704 (2)0.90398 (19)0.0169 (5)
C20.2345 (3)0.4354 (2)0.9184 (2)0.0196 (5)
C30.3324 (3)0.3361 (2)0.95090 (19)0.0188 (5)
H30.4200910.3355800.9760960.023*
C40.3592 (3)0.1135 (2)0.9694 (2)0.0238 (6)
H4A0.4041120.0815650.9053130.036*
H4B0.2920510.0629331.0086140.036*
H4C0.4331690.1132451.0134240.036*
C50.2286 (3)0.5618 (2)0.9053 (2)0.0223 (6)
H50.3038100.5927830.9233180.027*
C60.1138 (3)0.6367 (2)0.8666 (2)0.0262 (6)
H60.1081420.7214770.8574480.031*
C70.0009 (3)0.5911 (2)0.8392 (2)0.0256 (6)
H70.0790160.6459280.8123630.031*
C80.0050 (3)0.4727 (2)0.8504 (2)0.0251 (6)
H80.0710020.4433540.8316660.030*
C90.0679 (2)0.1897 (2)0.87987 (19)0.0167 (5)
C100.0786 (3)0.2061 (2)0.9062 (2)0.0232 (6)
H100.1288230.2703890.9412960.028*
C110.1499 (3)0.1252 (2)0.8796 (2)0.0284 (6)
H110.2509130.1342400.8948110.034*
C120.0721 (3)0.0318 (2)0.8310 (2)0.0297 (6)
H120.1186330.0244740.8119810.036*
C130.0742 (3)0.0213 (2)0.8105 (2)0.0242 (6)
H130.1270990.0447870.7787880.029*
N40.2726 (2)0.08422 (17)0.58031 (17)0.0225 (5)
N50.3173 (2)0.23872 (17)0.63174 (16)0.0183 (4)
N60.0130 (2)0.34248 (19)0.63388 (17)0.0285 (5)
C140.2197 (3)0.2002 (2)0.5887 (2)0.0210 (5)
C150.4022 (3)0.0479 (2)0.6177 (2)0.0240 (6)
H150.4605320.0300790.6203210.029*
C160.4329 (3)0.1443 (2)0.65074 (19)0.0203 (5)
C170.2027 (3)0.0022 (2)0.5410 (2)0.0327 (7)
H17A0.2146660.0177990.4638280.049*
H17B0.1004730.0158040.5670090.049*
H17C0.2464450.0815650.5661850.049*
C180.5494 (3)0.1647 (2)0.6946 (2)0.0262 (6)
H180.6283070.1011480.7092930.031*
C190.5467 (3)0.2756 (2)0.7152 (2)0.0275 (6)
H190.6240160.2899830.7453080.033*
C200.4292 (3)0.3712 (2)0.6923 (2)0.0258 (6)
H200.4304820.4492800.7052670.031*
C210.3161 (3)0.3527 (2)0.6525 (2)0.0217 (5)
H210.2371350.4165400.6388130.026*
C220.0784 (3)0.2703 (2)0.5643 (2)0.0222 (5)
C230.0180 (3)0.2607 (2)0.4770 (2)0.0317 (6)
H230.0699030.2122180.4273280.038*
C240.1193 (3)0.3230 (3)0.4639 (2)0.0376 (7)
H240.1643820.3164230.4059250.045*
C250.1891 (3)0.3942 (3)0.5354 (2)0.0367 (7)
H250.2844190.4363040.5291230.044*
C260.1179 (3)0.4039 (3)0.6174 (2)0.0369 (7)
H260.1651580.4572200.6644700.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01851 (10)0.01593 (10)0.02228 (11)0.00275 (7)0.00489 (7)0.00489 (7)
Cl10.0463 (4)0.0322 (4)0.0245 (4)0.0092 (3)0.0153 (3)0.0035 (3)
Cl20.0204 (3)0.0156 (3)0.0287 (4)0.0012 (2)0.0057 (3)0.0044 (3)
Cl30.0189 (3)0.0210 (3)0.0350 (4)0.0002 (2)0.0018 (3)0.0122 (3)
Cl40.0227 (3)0.0189 (3)0.0393 (4)0.0075 (2)0.0048 (3)0.0040 (3)
N10.0156 (11)0.0138 (9)0.0216 (11)0.0020 (8)0.0046 (8)0.0037 (8)
N20.0142 (10)0.0168 (10)0.0255 (12)0.0008 (8)0.0058 (9)0.0079 (9)
N30.0222 (11)0.0131 (10)0.0214 (12)0.0042 (8)0.0026 (9)0.0036 (9)
C10.0153 (13)0.0165 (11)0.0203 (13)0.0031 (9)0.0019 (10)0.0063 (10)
C20.0176 (13)0.0195 (12)0.0255 (14)0.0041 (10)0.0053 (10)0.0097 (11)
C30.0175 (13)0.0157 (12)0.0260 (14)0.0053 (10)0.0075 (10)0.0040 (11)
C40.0248 (14)0.0130 (11)0.0331 (16)0.0000 (10)0.0101 (12)0.0011 (11)
C50.0265 (14)0.0181 (12)0.0253 (15)0.0093 (11)0.0030 (11)0.0051 (11)
C60.0342 (16)0.0144 (12)0.0304 (16)0.0003 (11)0.0064 (12)0.0068 (11)
C70.0240 (14)0.0220 (13)0.0285 (15)0.0053 (11)0.0078 (11)0.0058 (11)
C80.0199 (14)0.0255 (14)0.0321 (16)0.0016 (11)0.0103 (11)0.0077 (12)
C90.0192 (13)0.0172 (12)0.0152 (13)0.0077 (10)0.0037 (10)0.0003 (10)
C100.0194 (14)0.0278 (14)0.0250 (15)0.0070 (11)0.0013 (11)0.0091 (12)
C110.0197 (14)0.0370 (16)0.0322 (16)0.0156 (12)0.0021 (12)0.0044 (13)
C120.0358 (17)0.0301 (15)0.0313 (16)0.0214 (13)0.0083 (13)0.0050 (13)
C130.0356 (16)0.0161 (12)0.0242 (15)0.0082 (11)0.0054 (12)0.0059 (11)
N40.0279 (12)0.0167 (10)0.0235 (12)0.0037 (9)0.0035 (9)0.0051 (9)
N50.0217 (11)0.0153 (10)0.0168 (11)0.0033 (8)0.0008 (8)0.0021 (8)
N60.0257 (13)0.0306 (12)0.0241 (13)0.0019 (10)0.0006 (10)0.0026 (10)
C140.0237 (14)0.0206 (12)0.0182 (14)0.0035 (10)0.0023 (10)0.0029 (11)
C150.0253 (15)0.0188 (12)0.0246 (15)0.0017 (10)0.0019 (11)0.0031 (11)
C160.0236 (14)0.0160 (12)0.0184 (13)0.0007 (10)0.0007 (10)0.0012 (10)
C170.0463 (18)0.0232 (14)0.0331 (17)0.0091 (12)0.0103 (14)0.0090 (12)
C180.0233 (14)0.0266 (14)0.0266 (15)0.0001 (11)0.0022 (11)0.0053 (12)
C190.0257 (15)0.0318 (15)0.0267 (15)0.0109 (12)0.0018 (11)0.0039 (12)
C200.0300 (15)0.0211 (13)0.0271 (15)0.0090 (11)0.0031 (12)0.0066 (11)
C210.0259 (14)0.0133 (12)0.0236 (14)0.0019 (10)0.0017 (11)0.0028 (10)
C220.0232 (14)0.0192 (12)0.0219 (14)0.0038 (10)0.0020 (11)0.0010 (11)
C230.0366 (17)0.0300 (15)0.0280 (16)0.0036 (12)0.0081 (13)0.0033 (13)
C240.0360 (18)0.0420 (17)0.0339 (18)0.0085 (14)0.0133 (14)0.0042 (14)
C250.0230 (15)0.0453 (18)0.0331 (18)0.0020 (13)0.0030 (13)0.0095 (14)
C260.0288 (16)0.0429 (17)0.0296 (17)0.0052 (13)0.0033 (13)0.0018 (14)
Geometric parameters (Å, º) top
Cd1—Cl12.4436 (7)C12—C131.376 (4)
Cd1—Cl22.4448 (6)C13—H130.9500
Cd1—Cl32.4496 (7)N4—C141.343 (3)
Cd1—Cl42.4895 (6)N4—C151.361 (3)
N1—C11.339 (3)N4—C171.474 (3)
N1—C31.365 (3)N5—C141.353 (3)
N1—C41.467 (3)N5—C161.395 (3)
N2—C11.359 (3)N5—C211.388 (3)
N2—C21.400 (3)N6—C221.344 (3)
N2—C81.395 (3)N6—C261.333 (3)
N3—C91.341 (3)C14—C221.473 (3)
N3—C131.341 (3)C15—H150.9500
C1—C91.475 (3)C15—C161.367 (3)
C2—C31.360 (3)C16—C181.414 (3)
C2—C51.421 (3)C17—H17A0.9800
C3—H30.9500C17—H17B0.9800
C4—H4A0.9800C17—H17C0.9800
C4—H4B0.9800C18—H180.9500
C4—H4C0.9800C18—C191.350 (4)
C5—H50.9500C19—H190.9500
C5—C61.348 (3)C19—C201.424 (4)
C6—H60.9500C20—H200.9500
C6—C71.421 (4)C20—C211.347 (3)
C7—H70.9500C21—H210.9500
C7—C81.334 (3)C22—C231.387 (4)
C8—H80.9500C23—H230.9500
C9—C101.381 (3)C23—C241.382 (4)
C10—H100.9500C24—H240.9500
C10—C111.389 (3)C24—C251.364 (4)
C11—H110.9500C25—H250.9500
C11—C121.377 (4)C25—C261.389 (4)
C12—H120.9500C26—H260.9500
Cl1—Cd1—Cl2108.30 (2)N3—C13—C12123.6 (2)
Cl1—Cd1—Cl3113.98 (2)N3—C13—H13118.2
Cl1—Cd1—Cl4108.24 (2)C12—C13—H13118.2
Cl2—Cd1—Cl3110.40 (2)C14—N4—C15110.5 (2)
Cl2—Cd1—Cl4115.56 (2)C14—N4—C17126.9 (2)
Cl3—Cd1—Cl4100.36 (2)C15—N4—C17122.6 (2)
C1—N1—C3110.67 (19)C14—N5—C16109.32 (19)
C1—N1—C4126.46 (19)C14—N5—C21129.3 (2)
C3—N1—C4122.86 (19)C21—N5—C16121.3 (2)
C1—N2—C2109.13 (19)C26—N6—C22116.7 (2)
C1—N2—C8130.01 (19)N4—C14—N5106.7 (2)
C8—N2—C2120.81 (19)N4—C14—C22127.3 (2)
C9—N3—C13116.4 (2)N5—C14—C22125.9 (2)
N1—C1—N2106.48 (18)N4—C15—H15126.3
N1—C1—C9126.6 (2)N4—C15—C16107.5 (2)
N2—C1—C9126.9 (2)C16—C15—H15126.3
N2—C2—C5119.3 (2)N5—C16—C18119.2 (2)
C3—C2—N2106.19 (19)C15—C16—N5106.1 (2)
C3—C2—C5134.5 (2)C15—C16—C18134.8 (2)
N1—C3—H3126.2N4—C17—H17A109.5
C2—C3—N1107.5 (2)N4—C17—H17B109.5
C2—C3—H3126.2N4—C17—H17C109.5
N1—C4—H4A109.5H17A—C17—H17B109.5
N1—C4—H4B109.5H17A—C17—H17C109.5
N1—C4—H4C109.5H17B—C17—H17C109.5
H4A—C4—H4B109.5C16—C18—H18120.5
H4A—C4—H4C109.5C19—C18—C16119.1 (2)
H4B—C4—H4C109.5C19—C18—H18120.5
C2—C5—H5120.8C18—C19—H19119.7
C6—C5—C2118.5 (2)C18—C19—C20120.6 (2)
C6—C5—H5120.8C20—C19—H19119.7
C5—C6—H6119.5C19—C20—H20119.4
C5—C6—C7121.1 (2)C21—C20—C19121.1 (2)
C7—C6—H6119.5C21—C20—H20119.4
C6—C7—H7119.4N5—C21—H21120.6
C8—C7—C6121.3 (2)C20—C21—N5118.7 (2)
C8—C7—H7119.4C20—C21—H21120.6
N2—C8—H8120.5N6—C22—C14114.6 (2)
C7—C8—N2119.0 (2)N6—C22—C23123.2 (2)
C7—C8—H8120.5C23—C22—C14122.3 (2)
N3—C9—C1113.4 (2)C22—C23—H23120.7
N3—C9—C10124.4 (2)C24—C23—C22118.6 (3)
C10—C9—C1122.2 (2)C24—C23—H23120.7
C9—C10—H10121.2C23—C24—H24120.5
C9—C10—C11117.6 (2)C25—C24—C23119.1 (3)
C11—C10—H10121.2C25—C24—H24120.5
C10—C11—H11120.4C24—C25—H25120.7
C12—C11—C10119.1 (2)C24—C25—C26118.7 (3)
C12—C11—H11120.4C26—C25—H25120.7
C11—C12—H12120.6N6—C26—C25123.7 (3)
C13—C12—C11118.9 (2)N6—C26—H26118.1
C13—C12—H12120.6C25—C26—H26118.1
N1—C1—C9—N340.5 (3)N4—C14—C22—N6138.5 (3)
N1—C1—C9—C10138.2 (3)N4—C14—C22—C2340.7 (4)
N2—C1—C9—N3137.1 (2)N4—C15—C16—N50.0 (3)
N2—C1—C9—C1044.3 (4)N4—C15—C16—C18178.8 (3)
N2—C2—C3—N10.9 (3)N5—C14—C22—N636.2 (4)
N2—C2—C5—C60.7 (4)N5—C14—C22—C23144.6 (3)
N3—C9—C10—C111.7 (4)N5—C16—C18—C191.1 (4)
C1—N1—C3—C20.7 (3)N6—C22—C23—C243.7 (4)
C1—N2—C2—C30.8 (3)C14—N4—C15—C160.2 (3)
C1—N2—C2—C5176.8 (2)C14—N5—C16—C150.1 (3)
C1—N2—C8—C7176.7 (3)C14—N5—C16—C18179.2 (2)
C1—C9—C10—C11179.8 (2)C14—N5—C21—C20177.3 (2)
C2—N2—C1—N10.4 (3)C14—C22—C23—C24175.4 (2)
C2—N2—C1—C9177.6 (2)C15—N4—C14—N50.2 (3)
C2—N2—C8—C70.5 (4)C15—N4—C14—C22175.3 (2)
C2—C5—C6—C70.1 (4)C15—C16—C18—C19177.6 (3)
C3—N1—C1—N20.2 (3)C16—N5—C14—N40.2 (3)
C3—N1—C1—C9178.2 (2)C16—N5—C14—C22175.4 (2)
C3—C2—C5—C6177.5 (3)C16—N5—C21—C200.4 (4)
C4—N1—C1—N2178.9 (2)C16—C18—C19—C200.6 (4)
C4—N1—C1—C93.1 (4)C17—N4—C14—N5177.9 (2)
C4—N1—C3—C2179.5 (2)C17—N4—C14—C222.3 (4)
C5—C2—C3—N1176.2 (3)C17—N4—C15—C16177.9 (2)
C5—C6—C7—C80.3 (4)C18—C19—C20—C212.0 (4)
C6—C7—C8—N20.1 (4)C19—C20—C21—N51.4 (4)
C8—N2—C1—N1177.8 (2)C21—N5—C14—N4177.0 (2)
C8—N2—C1—C90.2 (4)C21—N5—C14—C227.4 (4)
C8—N2—C2—C3178.5 (2)C21—N5—C16—C15177.4 (2)
C8—N2—C2—C50.9 (4)C21—N5—C16—C181.7 (3)
C9—N3—C13—C121.6 (4)C22—N6—C26—C251.8 (4)
C9—C10—C11—C121.5 (4)C22—C23—C24—C251.7 (4)
C10—C11—C12—C130.2 (4)C23—C24—C25—C261.7 (4)
C11—C12—C13—N31.8 (4)C24—C25—C26—N63.6 (5)
C13—N3—C9—C1178.8 (2)C26—N6—C22—C14177.2 (2)
C13—N3—C9—C100.2 (4)C26—N6—C22—C231.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4C···Cl3i0.982.723.664 (3)162
C5—H5···Cl30.952.713.446 (2)135
C7—H7···Cl4ii0.952.723.651 (3)166
C8—H8···Cl2ii0.952.753.518 (3)138
C12—H12···Cl4iii0.952.703.644 (2)171
C17—H17A···Cl4iv0.982.793.695 (3)155
C17—H17C···Cl1v0.982.803.721 (3)158
C23—H23···Cl4iv0.952.693.576 (3)156
C26—H26···Cl2ii0.952.843.689 (3)149
Symmetry codes: (i) x+1, y+1, z+2; (ii) x1, y, z; (iii) x1, y1, z; (iv) x+1, y+1, z+1; (v) x, y1, z.
 

Funding information

Funding for this research was provided by: Ministry of Education and Science of Ukraine (grant for the perspective development of the scientific direction ‘Mathematical Sciences and Natural Sciences’ at the Taras Shevchenko National University of Kyiv).

References

First citationÁlvarez, C. M., Álvarez-Miguel, L., García-Rodríguez, R. & Miguel, D. (2012). Dalton Trans. 41, 7041–7046.  Web of Science PubMed Google Scholar
First citationBergeron, H., Lebedev, D. & Hersam, M. C. (2021). Chem. Rev. 121, 2713–2775.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBuvaylo, E. A., Kokozay, V. N., Linnik, R. P., Vassilyeva, O. Y. & Skelton, B. W. (2015). Dalton Trans. 44, 13735–13744.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationCai, X. M., Lin, Y., Tang, Z., Zhang, X., Mu, T., Huang, S., Zhao, Z. & Tang, B. Z. (2023). Chem. Eng. J. 451, 138627.  Web of Science CSD CrossRef Google Scholar
First citationCruz-Cabeza, A. J., Feeder, N. & Davey, R. J. (2020). Commun. Chem. 3, 142.  Web of Science PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGolic, L., Leban, I., Stanovnik, B., Tisler, M. & Tomazic, A. (1980). Croat. Chem. Acta, 53, 435–440.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMantina, M., Chamberlin, A. C., Valero, R., Cramer, C. J. & Truhlar, D. G. (2009). J. Phys. Chem. A, 113, 5806–5812.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMitra, K., Biswas, S., Chattopadhyay, S. K., Lucas, C. R. & Adhikary, B. (2007). J. Chem. Crystallogr. 37, 567–571.  Web of Science CSD CrossRef CAS Google Scholar
First citationPinter, P., Hennersdorf, F., Weigand, J. J. & Strassner, T. (2021). Chem. Eur. J. 27, 13135–13138.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTalarico, A. M., Aiello, I., Bellusci, A., Crispini, A., Ghedini, M., Godbert, N., Pugliese, T. & Szerb, E. (2010). Dalton Trans. 39, 1709–1712.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationTürkyılmaz, M., Baran, Y. & Özdemir, N. (2011). Acta Cryst. E67, o1282.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVassilyeva, O. Y., Buvaylo, E. A., Kokozay, V. N., Skelton, B. W., Rajnák, C., Titiš, Y. & Boča, R. (2019). Dalton Trans. 48, 11278–11284.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationVassilyeva, O. Y., Buvaylo, E. A., Linnik, R. P., Nesterov, D. S., Trachevsky, V. V. & Skelton, B. W. (2020). CrystEngComm, 22, 5096–5105.  Web of Science CSD CrossRef CAS Google Scholar
First citationVassilyeva, O. Y., Buvaylo, E. A., Lobko, Y. V., Linnik, R. P., Kokozay, V. N. & Skelton, B. W. (2021). RSC Adv. 11, 7713–7722.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationVassilyeva, O. Y., Buvaylo, E. A., Nesterova, O. V., Sobolev, A. N. & Nesterov, D. S. (2023). Crystals, 13, 307.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds