research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of sodium (ethane-1,2-di­yl)bis­­[(3-meth­­oxy­prop­yl)phosphinodi­thiol­ate] octa­hydrate

crossmark logo

aDepartment of Chemistry, Ripon College, Ripon, WI 54971, USA, bDepartment of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA, and cDepartment of Chemistry, Otterbein University, Westerville, OH 43081, USA
*Correspondence e-mail: nellb@ripon.edu, djohnston@otterbein.edu

Edited by S. P. Kelley, University of Missouri-Columbia, USA (Received 5 August 2024; accepted 30 September 2024; online 8 October 2024)

The title compound, catena-poly[[tri­aqua­sodium]-di-μ-aqua-[tri­aqua­sodium]-μ-(ethane-1,2-di­yl)bis­[(3-meth­oxy­prop­yl)phosphinodi­thiol­ato]], [Na2(C10H22O2P2S4)(H2O)8]n, crystallizes in the triclinic space group P1. The dianionic [CH3O(CH2)3P(=S)(S—)CH2CH2P(=S)(S—)(CH2)3OCH3]2− ligand fragments are joined by a dicationic [Na2(H2O)8]2+ cluster that includes the oxygen of the meth­oxy­propyl unit of the ligand to form infinite chains.

1. Chemical context

Complexes of the type Fe(P2)2X2 have been shown to react with di­nitro­gen at high pressure to form [Fe(P2)2(N2)X]+ (Miller et al., 2002[Miller, W. K., Gilbertson, J. D., Leiva-Paredes, C., Bernatis, P. R., Weakley, T. J. R., Lyon, D. K. & Tyler, D. R. (2002). Inorg. Chem. 41, 5453-5465.]). This reaction can potentially be used to scrub di­nitro­gen-contaminated natural gas. Unfortunately, the phosphine ligands in these di­nitro­gen-scrubbing complexes slowly dissociate in aqueous solution leading to degradation of the complexes, preventing a practical pressure-swing process from being developed. One potential method to develop complexes that are more robust is to use a phosphine macrocycle in place of the two bidentate ligands. For background on phosphine macrocycles, see: Caminade & Majoral (1994[Caminade, A.-M. & Majoral, J. P. (1994). Chem. Rev. 94, 1183-1213.]); Swor & Tyler (2011[Swor, C. D. & Tyler, D. R. (2011). Coord. Chem. Rev. 255, 2860-2881.]). The ‘macrocycle effect’ predicts that the binding constant for a macrocyclic ligand is orders of magnitude higher than the binding constant for two bidentate ligands (Melson, 1979[Melson, G. A. (1979). Coordination chemistry of macrocyclic compounds. New York, NY: Plenum Press.]).

In addition to their usefulness in the N2-scrubbing scheme described above, macrocyclic phosphine compounds are sought after in general as ligands for transition-metal complexes because of their strong binding properties. However, the synthesis of phosphine macrocycles is a relatively underdeveloped area. One approach to macrocyclic phosphines is a template synthesis in which two secondary bidentate phosphines are coordinated to a common metal center and then covalently linked (Lambert & Desreux, 2000[Lambert, B. & Desreux, J. F. (2000). Synthesis, pp. 1668-1670.]; Nell & Tyler, 2014[Nell, B. P. & Tyler, D. R. (2014). Coord. Chem. Rev. 279, 23-42.]). Previously, we showed that complexes of the [Cu(P2)2]+ type (where P2 is a bidentate secondary phosphine) can react under basic conditions with various dihalides to form macrocyclic tetra­phosphine Cu complexes (Nell et al., 2016[Nell, B. P., Swor, C. D., Henle, E. A., Zakharov, L. N., Rinehart, N. I., Nathan, A. & Tyler, D. R. (2016). Dalton Trans. 45, 8253-8264.]). The title mol­ecule is an unexpected side-product of the process of removing the Cu metal center using aqueous NaSH to react with the Cu metal (Costantino et al., 2008[Costantino, F., Ienco, A., Midollini, S., Orlandini, A., Sorace, L. & Vacca, A. (2008). Eur. J. Inorg. Chem. pp. 3046-3055.]). Inter­estingly in this case, the P2 ligand was 1,2-bis­(meth­oxy­prop­yl)phosphino­ethane (MeOPrPE), which has been oxidized to the di­thio­phosphinate species, a reaction commonly encountered between secondary phosphines and elemental sulfur.

[Scheme 1]

2. Structural commentary

The title compound is a P,S,Na-complex in which there are two P(=S)(—S) groups consisting of two terminal sulfur atoms bonded to each phospho­rus atom, providing a −2 charge. Two sodium cations and eight water mol­ecules form [Na2(H2O)8]2+ bridges between the anions. The oxygen of the meth­oxy­propyl unit of the ligand is also bonded to the [Na2(H2O)8]2+ cluster, completing a pseudo-octa­hedral coordination environment around each sodium cation and linking the cations and anions to form an infinite chain. The asymmetric unit (see Fig. 1[link]) contains half of one dianionic bis­(phosphinodi­thiol­ate) chain, one sodium cation, and four water mol­ecules, one of which is disordered over two positions with 50:50 occupancy.

[Figure 1]
Figure 1
Displacement ellipsoid (50%) diagram and atom-numbering scheme for the asymmetric unit of the title compound.

Inter­estingly the lengths of the two P—S bonds for the phospho­rus atom P1 differ by 0.0206 (6) Å. While the structure can formally be described as having one phospho­rus–sulfur single bond and one double bond, clearly these should be equivalent by resonance. Indeed, comparison to seven similar di­alkyl­phosphinodi­thiol­ate structures (Pinkerton, 1990[Pinkerton, A. A. (1990). Acta Cryst. C46, 2255-2257.]; Ebels et al., 1997[Ebels, J., Pietschnig, R., Nieger, M., Niecke, E. & Kotila, S. (1997). Heteroat. Chem. 8, 521-525.]; Klevtsova et al., 2003[Klevtsova, R. F., Glinskaya, L. A., Kokina, T. E. & Larionov, S. V. (2003). J. Struct. Chem. 44, 256-267.]; Kokina et al., 2008[Kokina, T. E., Sankova, E. A., Klevtsova, R. F., Glinskaya, L. A. & Larionov, S. V. (2008). Russ. J. Coord. Chem. 34, 811-818.], 2010[Kokina, T. E., Klevtsova, R. F., Glinskaya, L. A., Boguslavskii, E. G. & Larionov, S. V. (2010). Russ. J. Coord. Chem. 36, 53-59.]; Marc et al., 2012[Marc, P., Custelcean, R., Groenewold, G. S., Klaehn, J. R., Peterman, D. R. & Delmau, L. H. (2012). Ind. Eng. Chem. Res. 51, 13238-13244.]; Guo et al., 2022[Guo, Q., Fang, T., Liu, Q., Zhu, L., Yang, S. & Tian, G. (2022). Dalton Trans. 51, 7416-7419.]) shows that the average difference in phospho­rus–sulfur bonds in these compounds is only 0.006 Å. A closer look at the hydrogen bonding in the structure shows that the asymmetry is likely due to the fact that sulfur S1 has two hydrogen-bonding contacts (see Fig. 2[link], Table 1[link]) compared to the three contacts for S2. A similar asymmetry in phospho­rus–sulfur bond lengths is observed in the structure of sodium di­ethyl­dithio­phosphinate dihydrate (Svensson & Albertsson, 1989[Svensson, G. & Albertsson, J. (1989). Acta Cryst. C45, 395-397.]), though the hydrogen-bonding network is quite symmetrical in that structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2C⋯S1i 0.78 (1) 2.52 (1) 3.2920 (13) 167 (2)
O52—H52⋯S1i 0.79 (2) 2.42 (2) 3.193 (3) 167 (4)
O3—H3AA⋯S2ii 0.79 (1) 2.50 (1) 3.2840 (13) 177 (2)
O4—H4C⋯S2iii 0.78 (1) 2.49 (2) 3.2535 (14) 169 (2)
O51—H51⋯S2iv 0.78 (1) 2.52 (1) 3.117 (2) 134 (2)
O52—H51⋯S2iv 0.83 (1) 2.52 (1) 3.314 (2) 162 (2)
O2—H2D⋯O4v 0.77 (1) 2.05 (1) 2.8069 (19) 170 (2)
O3—H3BB⋯O3ii 0.79 (2) 2.02 (2) 2.801 (2) 171 (4)
O3—H3C⋯O52vi 0.71 (4) 2.04 (4) 2.748 (3) 174 (5)
O4—H4D⋯O51vii 0.75 (1) 2.07 (2) 2.731 (3) 147 (3)
O51—H51A⋯O3vi 0.79 (2) 2.05 (2) 2.825 (3) 173 (5)
Symmetry codes: (i) [x, y-1, z]; (ii) [-x+1, -y+1, -z+1]; (iii) [x-1, y, z]; (iv) [x-1, y-1, z]; (v) [x+1, y, z]; (vi) [-x+1, -y, -z+1]; (vii) [-x, -y, -z+1].
[Figure 2]
Figure 2
Displacement ellipsoid (50%) diagram showing O—H⋯S contacts in orange with selected atom labels. Only one position of the disordered water mol­ecule is shown for clarity. See Table 1[link] for donor–acceptor distances and angles.

The sodium ion and water mol­ecules form [Na2(H2O)8]2+ dimers around an inversion center. The coordination sphere of the sodium ion is filled by two bridging water mol­ecules (O2), three terminal water mol­ecules (O3, O4, and O51/O52), and one ether oxygen of the ligand mol­ecule (O1). As shown in Fig. 3[link], there is one intra-dimer hydrogen bond (O3—H3C⋯O52). A similar contact, O51—H51A⋯O3, is present in the second component of the disorder but is not shown in Fig. 3[link]. The dimers are linked by additional hydrogen-bond contacts between atoms O2 and O4 of neighboring dimers (O2—H2D⋯O4). An additional intra­dimer contact, O4—H4D⋯O51, is present but not shown in Fig. 3[link].

[Figure 3]
Figure 3
Displacement ellipsoid (50%) diagram showing O—H⋯O contacts in orange with selected atom labels. Only one position of the disordered water mol­ecule is shown for clarity. See Table 1[link] for donor–acceptor distances and angles.

3. Supra­molecular features

The sodium ion–water dimers can be visualized as edge-sharing octa­hedra (see Fig. 4[link]) with two of the outer oxygen positions occupied by equivalent ether oxygen atoms from one end of the bis­(phosphinodi­thiol­ate) ligand. The ligands then link successive sodium ion dimers, forming infinite zigzag chains running parallel to the (0[\overline{1}]1) plane. The hydrogen-bonding inter­actions between the water mol­ecules and the sulfur atoms (Table 1[link]) create additional inter­actions linking the chains in all directions.

[Figure 4]
Figure 4
Polyhedral representation showing [Na2(H2O)8]2+ dimers (purple) linked by bis­(phosphinodi­thiol­ate) chains. The O—H⋯S contacts are shown in orange. Only one position of the disordered water mol­ecule is shown and hydrogen atoms omitted for clarity.

4. Database survey

A search of the CSD (version 2024.2.0; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) demonstrates that there are relatively few structurally characterized di­alkyl­dithio­phosphinates and no existing examples of structures with di­thio­phosphinate groups linked by an alkyl chain.

A number of structures contain di­phenyl­dithio­phosphinates as bidentate ligands coordinated to late transition metals such as platinum and palladium (Alison & Stephenson, 1971[Alison, M. C., Stephenson, A. & Gould, R. O. (1971). J. Chem. Soc. A, pp. 3690-3696.]; Fackler et al., 1982[Fackler, J. P., Thompson, L. D., Lin, I. J. B., Stephenson, T. A., Gould, R. O., Alison, J. M. C. & Fraser, A. J. F. (1982). Inorg. Chem. 21, 2397-2403.]; Landtiser et al., 1995[Landtiser, R., Mague, J. T., Fink, M. J., Silvestru, C. & Haiduc, I. (1995). Inorg. Chem. 34, 6141-6144.]). In some cases, the di­alkyl­dithio­phosphinate ends up serving as a counter-ion instead of coordinating to the metal center (Kokina et al., 2008[Kokina, T. E., Sankova, E. A., Klevtsova, R. F., Glinskaya, L. A. & Larionov, S. V. (2008). Russ. J. Coord. Chem. 34, 811-818.]). Di­ethyl­dithio­phosphinates have also been used to form molybdenum(IV)sulfur clusters, Mo3S4(Et2PS2)4 (Keck et al., 1981[Keck, H., Kuclhen, W., Mathow, J., Meyer, B., Mootz, D. & Wunderlich, H. (1981). Angew. Chem. Int. Ed. Engl. 20, 975-976.]).

The structure most closely related to the title compound is that of sodium di­ethyl­dithio­phosphinate dihydrate (CSD refcode SAGWUS; Svensson & Albertsson, 1989[Svensson, G. & Albertsson, J. (1989). Acta Cryst. C45, 395-397.]). Each sulfur atom is hydrogen bonded to two water mol­ecules, forming an extended network in the ab plane, with successive layers separated by sodium cations. The sodium ions are found in a similar distorted octa­hedral environment, but with two of the six coordination sites occupied by sulfur instead of water. The octa­hedra are linked by edge sharing within the layer with every third octa­hedron missing.

5. Synthesis and crystallization

The title mol­ecule was prepared serendipitously while attempt­ing to remove the CuI template of a [Cu(P2)2]+ complex. 1,2-Bis(meth­oxy­propyl)phosphino­ethane (MeOPrPE) (2 eq.) was reacted with Cu(MeCN)4PF6 (1 eq.) in aceto­nitrile to yield the corresponding Cu(MeOPrPE)2PF6 complex. As a proof-of-concept, an attempt to remove the copper and yield the free phosphine back was performed. The copper complex was dissolved in 10 mL of THF and added to a solution of 10 eq. NaSH-hydrate in 30 mL of absolute EtOH. The mixture was refluxed for 24 h, forming Cu2S as a black precipitate. The reaction mixture was cooled to RT, filtered through a celite plug, then the solvent was allowed to slowly evaporate at RT in air, yielding crystals of the title mol­ecule.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were located in the difference maps. Carbon-bonded hydrogen atoms were freely refined. For the water mol­ecules the O—H distances were restrained (SADI) to have similar distances. The displacement parameters for the water hydrogen atoms were constrained to be Uiso(H) = 1.5Ueq(O). The occupancy of the disordered water mol­ecule (O51/O52) was fixed at 0.50 since free refinement gave an occupancy of 0.486 (8).

Table 2
Experimental details

Crystal data
Chemical formula [Na2(C10H22O2P2S4)(H2O)8]
Mr 277.28
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 6.7412 (8), 8.2961 (8), 11.8621 (17)
α, β, γ (°) 79.608 (2), 89.207 (2), 87.030 (1)
V3) 651.63 (14)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.56
Crystal size (mm) 0.19 × 0.12 × 0.06
 
Data collection
Diffractometer Bruker SMART APEX CCD area detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.838, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7596, 3007, 2736
Rint 0.014
(sin θ/λ)max−1) 0.666
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.068, 1.02
No. of reflections 3007
No. of parameters 210
No. of restraints 45
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.43, −0.20
Computer programs: SMART and SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

catena-Poly[[triaquasodium]-di-µ-aqua-[triaquasodium]-µ-(ethane-1,2-diyl)bis[(3-methoxypropyl)phosphinodithiolato]] top
Crystal data top
[Na2(C10H22O2P2S4)(H2O)8]Z = 2
Mr = 277.28F(000) = 294
Triclinic, P1Dx = 1.413 Mg m3
a = 6.7412 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.2961 (8) ÅCell parameters from 4713 reflections
c = 11.8621 (17) Åθ = 2.5–28.3°
α = 79.608 (2)°µ = 0.56 mm1
β = 89.207 (2)°T = 173 K
γ = 87.030 (1)°Block, colorless
V = 651.63 (14) Å30.19 × 0.12 × 0.06 mm
Data collection top
Bruker SMART APEX CCD area detector
diffractometer
3007 independent reflections
Radiation source: sealed tube2736 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
phi and ω scansθmax = 28.3°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 88
Tmin = 0.838, Tmax = 1.000k = 1010
7596 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: difference Fourier map
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0357P)2 + 0.2159P]
where P = (Fo2 + 2Fc2)/3
3007 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 0.43 e Å3
45 restraintsΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.65743 (5)0.71747 (4)0.84910 (3)0.02676 (10)
S20.95943 (5)0.52147 (4)0.67995 (3)0.02722 (10)
P10.83354 (5)0.52284 (4)0.83414 (3)0.01867 (9)
C10.1587 (3)0.0034 (2)0.84426 (17)0.0374 (4)
H1A0.050 (3)0.019 (2)0.7965 (17)0.045 (5)*
H1B0.234 (3)0.108 (3)0.8699 (17)0.050 (6)*
H1C0.101 (3)0.035 (3)0.906 (2)0.060 (7)*
C20.4380 (2)0.15096 (17)0.85447 (12)0.0257 (3)
H2A0.529 (3)0.058 (2)0.8688 (15)0.032 (4)*
H2B0.381 (3)0.164 (2)0.9249 (16)0.032 (4)*
C30.5383 (2)0.30505 (17)0.79961 (12)0.0254 (3)
H3A0.589 (3)0.293 (2)0.7283 (16)0.034 (5)*
H3B0.443 (3)0.396 (2)0.7870 (15)0.032 (4)*
C40.7036 (2)0.33531 (17)0.87807 (12)0.0258 (3)
H4A0.650 (3)0.341 (2)0.9483 (16)0.035 (5)*
H4B0.801 (3)0.250 (2)0.8855 (16)0.041 (5)*
C51.0347 (2)0.50194 (19)0.93811 (11)0.0243 (3)
H5A1.110 (3)0.409 (2)0.9306 (15)0.035 (5)*
H5B1.112 (3)0.591 (2)0.9135 (15)0.033 (5)*
Na10.33236 (8)0.08688 (6)0.58806 (5)0.02448 (13)
O10.28216 (15)0.11749 (12)0.78382 (8)0.0281 (2)
O20.66857 (17)0.02101 (15)0.60507 (10)0.0331 (3)
H2C0.683 (3)0.089 (2)0.6599 (14)0.050*
H2D0.754 (3)0.037 (2)0.6050 (18)0.050*
O30.42969 (18)0.35106 (14)0.48142 (10)0.0309 (2)
H3AA0.339 (3)0.382 (2)0.4406 (16)0.046*
H3BB0.480 (6)0.432 (3)0.488 (4)0.046*0.5
H3C0.501 (7)0.313 (5)0.448 (4)0.046*0.5
O40.00709 (18)0.18169 (19)0.57874 (12)0.0445 (3)
H4C0.020 (4)0.255 (2)0.6113 (19)0.067*
H4D0.047 (4)0.215 (3)0.5202 (15)0.067*
O510.2410 (4)0.1906 (3)0.6086 (2)0.0316 (5)0.5
H510.209 (3)0.259 (2)0.6588 (15)0.047*
H51A0.332 (5)0.242 (5)0.589 (4)0.047*0.5
O520.3145 (4)0.2131 (3)0.6610 (2)0.0279 (5)0.5
H520.391 (5)0.245 (5)0.711 (3)0.042*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0338 (2)0.02347 (17)0.02226 (18)0.00774 (14)0.00349 (14)0.00436 (13)
S20.03110 (19)0.02942 (19)0.01979 (17)0.00183 (14)0.00272 (13)0.00193 (13)
P10.02118 (17)0.01825 (16)0.01566 (16)0.00006 (12)0.00169 (12)0.00069 (12)
C10.0294 (8)0.0350 (9)0.0437 (10)0.0088 (7)0.0076 (7)0.0057 (7)
C20.0362 (8)0.0205 (7)0.0205 (7)0.0040 (6)0.0011 (6)0.0036 (5)
C30.0343 (8)0.0221 (7)0.0195 (7)0.0055 (6)0.0003 (6)0.0017 (5)
C40.0368 (8)0.0207 (7)0.0194 (7)0.0054 (6)0.0027 (6)0.0007 (5)
C50.0223 (7)0.0291 (7)0.0199 (7)0.0009 (6)0.0020 (5)0.0009 (5)
Na10.0237 (3)0.0255 (3)0.0249 (3)0.0031 (2)0.0013 (2)0.0055 (2)
O10.0341 (6)0.0263 (5)0.0237 (5)0.0114 (4)0.0028 (4)0.0017 (4)
O20.0330 (6)0.0364 (6)0.0307 (6)0.0025 (5)0.0107 (5)0.0089 (5)
O30.0313 (6)0.0240 (5)0.0379 (7)0.0031 (4)0.0060 (5)0.0061 (5)
O40.0266 (6)0.0632 (9)0.0524 (8)0.0012 (6)0.0069 (5)0.0341 (7)
O510.0327 (13)0.0287 (12)0.0326 (13)0.0039 (10)0.0035 (11)0.0027 (10)
O520.0267 (12)0.0293 (12)0.0274 (13)0.0076 (9)0.0047 (10)0.0017 (10)
Geometric parameters (Å, º) top
S1—P11.9867 (5)Na1—Na1ii3.4885 (11)
S2—P12.0073 (5)Na1—O12.3986 (12)
P1—C41.8155 (14)Na1—O2ii2.4494 (13)
P1—C51.8262 (14)Na1—O22.3908 (13)
C1—H1A0.96 (2)Na1—O32.4413 (13)
C1—H1B0.99 (2)Na1—H3C2.57 (4)
C1—H1C0.93 (2)Na1—O42.3783 (13)
C1—O11.4219 (18)Na1—O512.383 (2)
C2—H2A0.951 (18)Na1—O522.491 (2)
C2—H2B0.937 (18)O2—H2C0.783 (13)
C2—C31.5141 (19)O2—H2D0.768 (14)
C2—O11.4218 (18)O3—H3AA0.788 (14)
C3—H3A0.929 (19)O3—H3BB0.786 (16)
C3—H3B0.959 (18)O3—H3C0.71 (4)
C3—C41.521 (2)O4—H4C0.775 (14)
C4—H4A0.911 (19)O4—H4D0.748 (14)
C4—H4B0.93 (2)O51—H510.782 (14)
C5—C5i1.530 (3)O51—H51A0.785 (16)
C5—H5A0.918 (19)O52—H510.826 (14)
C5—H5B0.928 (18)O52—H520.789 (16)
S1—P1—S2116.51 (2)O2—Na1—O392.52 (4)
C4—P1—S1110.54 (6)O2—Na1—H3C80.5 (10)
C4—P1—S2109.33 (5)O2ii—Na1—H3C70.7 (10)
C4—P1—C5102.98 (7)O2—Na1—O5274.03 (7)
C5—P1—S1109.49 (5)O2ii—Na1—O5286.90 (7)
C5—P1—S2107.08 (5)O3—Na1—Na1ii85.84 (4)
H1A—C1—H1B110.3 (16)O3—Na1—O2ii81.58 (4)
H1A—C1—H1C105.4 (18)O3—Na1—H3C16.1 (10)
H1B—C1—H1C110.3 (18)O3—Na1—O52162.66 (7)
O1—C1—H1A109.7 (12)O4—Na1—Na1ii136.49 (4)
O1—C1—H1B111.5 (12)O4—Na1—O180.67 (4)
O1—C1—H1C109.5 (14)O4—Na1—O2ii93.34 (5)
H2A—C2—H2B107.4 (14)O4—Na1—O2176.86 (6)
C3—C2—H2A111.9 (11)O4—Na1—O390.54 (5)
C3—C2—H2B110.5 (10)O4—Na1—H3C102.6 (10)
O1—C2—H2A109.2 (10)O4—Na1—O5191.08 (8)
O1—C2—H2B107.1 (11)O4—Na1—O52103.10 (7)
O1—C2—C3110.62 (11)O51—Na1—Na1ii75.92 (6)
C2—C3—H3A109.8 (11)O51—Na1—O197.55 (7)
C2—C3—H3B109.9 (10)O51—Na1—O2ii73.40 (7)
C2—C3—C4108.62 (12)O51—Na1—O286.43 (7)
H3A—C3—H3B107.0 (14)O51—Na1—O3154.98 (8)
C4—C3—H3A110.6 (11)O52—Na1—H3C146.6 (10)
C4—C3—H3B110.9 (10)C1—O1—Na1112.06 (10)
P1—C4—H4A106.5 (11)C2—O1—C1111.26 (12)
P1—C4—H4B105.7 (12)C2—O1—Na1122.95 (9)
C3—C4—P1116.31 (10)Na1—O2—Na1ii92.22 (4)
C3—C4—H4A108.2 (11)Na1—O2—H2C111.4 (16)
C3—C4—H4B110.7 (12)Na1ii—O2—H2C122.1 (16)
H4A—C4—H4B109.2 (16)Na1—O2—H2D120.1 (16)
P1—C5—H5A107.2 (11)Na1ii—O2—H2D105.4 (16)
P1—C5—H5B105.3 (11)H2C—O2—H2D106 (2)
C5i—C5—P1114.30 (13)Na1—O3—H3AA104.3 (15)
C5i—C5—H5A111.7 (11)Na1—O3—H3BB143 (3)
C5i—C5—H5B110.9 (11)Na1—O3—H3C92 (4)
H5A—C5—H5B107.1 (15)H3AA—O3—H3BB104 (3)
Na1ii—Na1—H3C69.8 (10)H3AA—O3—H3C106 (4)
O1—Na1—Na1ii141.45 (4)Na1—O4—H4C108.4 (19)
O1—Na1—O2ii169.16 (4)Na1—O4—H4D116 (2)
O1—Na1—O3107.34 (4)H4C—O4—H4D104 (3)
O1—Na1—H3C119.4 (10)Na1—O51—H51136.6 (15)
O1—Na1—O5285.69 (6)Na1—O51—H51A108 (3)
O2ii—Na1—Na1ii43.22 (3)H51—O51—H51A95 (3)
O2—Na1—Na1ii44.56 (3)Na1—O52—H51120.9 (13)
O2—Na1—O197.76 (4)Na1—O52—H52112 (3)
O2—Na1—O2ii87.78 (4)H51—O52—H52120 (3)
S1—P1—C4—C369.75 (12)C3—C2—O1—C1166.90 (13)
S1—P1—C5—C5i53.71 (16)C3—C2—O1—Na156.02 (14)
S2—P1—C4—C359.78 (13)C4—P1—C5—C5i63.91 (16)
S2—P1—C5—C5i179.14 (13)C5—P1—C4—C3173.38 (12)
C2—C3—C4—P1175.75 (10)O1—C2—C3—C4179.89 (12)
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2C···S1iii0.78 (1)2.52 (1)3.2920 (13)167 (2)
O52—H52···S1iii0.79 (2)2.42 (2)3.193 (3)167 (4)
O3—H3AA···S2iv0.79 (1)2.50 (1)3.2840 (13)177 (2)
O4—H4C···S2v0.78 (1)2.49 (2)3.2535 (14)169 (2)
O51—H51···S2vi0.78 (1)2.52 (1)3.117 (2)134 (2)
O52—H51···S2vi0.83 (1)2.52 (1)3.314 (2)162 (2)
O2—H2D···O4vii0.77 (1)2.05 (1)2.8069 (19)170 (2)
O3—H3BB···O3iv0.79 (2)2.02 (2)2.801 (2)171 (4)
O3—H3C···O52ii0.71 (4)2.04 (4)2.748 (3)174 (5)
O4—H4D···O51viii0.75 (1)2.07 (2)2.731 (3)147 (3)
O51—H51A···O3ii0.79 (2)2.05 (2)2.825 (3)173 (5)
Symmetry codes: (ii) x+1, y, z+1; (iii) x, y1, z; (iv) x+1, y+1, z+1; (v) x1, y, z; (vi) x1, y1, z; (vii) x+1, y, z; (viii) x, y, z+1.
 

Acknowledgements

DHJ thanks the National Science Foundation for funding to support the diffraction facilities at Otterbein University and BPN thanks Ripon College for funding.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences; Ripon College.

References

First citationAlison, M. C., Stephenson, A. & Gould, R. O. (1971). J. Chem. Soc. A, pp. 3690–3696.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaminade, A.-M. & Majoral, J. P. (1994). Chem. Rev. 94, 1183–1213.  CrossRef CAS Web of Science Google Scholar
First citationCostantino, F., Ienco, A., Midollini, S., Orlandini, A., Sorace, L. & Vacca, A. (2008). Eur. J. Inorg. Chem. pp. 3046–3055.  Web of Science CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEbels, J., Pietschnig, R., Nieger, M., Niecke, E. & Kotila, S. (1997). Heteroat. Chem. 8, 521–525.  CSD CrossRef Web of Science Google Scholar
First citationFackler, J. P., Thompson, L. D., Lin, I. J. B., Stephenson, T. A., Gould, R. O., Alison, J. M. C. & Fraser, A. J. F. (1982). Inorg. Chem. 21, 2397–2403.  CSD CrossRef Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuo, Q., Fang, T., Liu, Q., Zhu, L., Yang, S. & Tian, G. (2022). Dalton Trans. 51, 7416–7419.  Web of Science CSD CrossRef PubMed Google Scholar
First citationKeck, H., Kuclhen, W., Mathow, J., Meyer, B., Mootz, D. & Wunderlich, H. (1981). Angew. Chem. Int. Ed. Engl. 20, 975–976.  CSD CrossRef Web of Science Google Scholar
First citationKlevtsova, R. F., Glinskaya, L. A., Kokina, T. E. & Larionov, S. V. (2003). J. Struct. Chem. 44, 256–267.  Web of Science CrossRef Google Scholar
First citationKokina, T. E., Klevtsova, R. F., Glinskaya, L. A., Boguslavskii, E. G. & Larionov, S. V. (2010). Russ. J. Coord. Chem. 36, 53–59.  Web of Science CrossRef Google Scholar
First citationKokina, T. E., Sankova, E. A., Klevtsova, R. F., Glinskaya, L. A. & Larionov, S. V. (2008). Russ. J. Coord. Chem. 34, 811–818.  Web of Science CSD CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLambert, B. & Desreux, J. F. (2000). Synthesis, pp. 1668–1670.  CrossRef Google Scholar
First citationLandtiser, R., Mague, J. T., Fink, M. J., Silvestru, C. & Haiduc, I. (1995). Inorg. Chem. 34, 6141–6144.  CSD CrossRef Web of Science Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarc, P., Custelcean, R., Groenewold, G. S., Klaehn, J. R., Peterman, D. R. & Delmau, L. H. (2012). Ind. Eng. Chem. Res. 51, 13238–13244.  Web of Science CSD CrossRef Google Scholar
First citationMelson, G. A. (1979). Coordination chemistry of macrocyclic compounds. New York, NY: Plenum Press.  Google Scholar
First citationMiller, W. K., Gilbertson, J. D., Leiva-Paredes, C., Bernatis, P. R., Weakley, T. J. R., Lyon, D. K. & Tyler, D. R. (2002). Inorg. Chem. 41, 5453–5465.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNell, B. P., Swor, C. D., Henle, E. A., Zakharov, L. N., Rinehart, N. I., Nathan, A. & Tyler, D. R. (2016). Dalton Trans. 45, 8253–8264.  Web of Science CSD CrossRef PubMed Google Scholar
First citationNell, B. P. & Tyler, D. R. (2014). Coord. Chem. Rev. 279, 23–42.  Web of Science CrossRef Google Scholar
First citationPinkerton, A. A. (1990). Acta Cryst. C46, 2255–2257.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSvensson, G. & Albertsson, J. (1989). Acta Cryst. C45, 395–397.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationSwor, C. D. & Tyler, D. R. (2011). Coord. Chem. Rev. 255, 2860–2881.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds