research communications
Synthesis and
of sodium (ethane-1,2-diyl)bis[(3-methoxypropyl)phosphinodithiolate] octahydrateaDepartment of Chemistry, Ripon College, Ripon, WI 54971, USA, bDepartment of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA, and cDepartment of Chemistry, Otterbein University, Westerville, OH 43081, USA
*Correspondence e-mail: nellb@ripon.edu, djohnston@otterbein.edu
The title compound, catena-poly[[triaquasodium]-di-μ-aqua-[triaquasodium]-μ-(ethane-1,2-diyl)bis[(3-methoxypropyl)phosphinodithiolato]], [Na2(C10H22O2P2S4)(H2O)8]n, crystallizes in the triclinic P1. The dianionic [CH3O(CH2)3P(=S)(S—)CH2CH2P(=S)(S—)(CH2)3OCH3]2− ligand fragments are joined by a dicationic [Na2(H2O)8]2+ cluster that includes the oxygen of the methoxypropyl unit of the ligand to form infinite chains.
Keywords: dithiophosphinate; phosphinodithiolate; crystal structure.
CCDC reference: 2388007
1. Chemical context
Complexes of the type Fe(P2)2X2 have been shown to react with dinitrogen at high pressure to form [Fe(P2)2(N2)X]+ (Miller et al., 2002). This reaction can potentially be used to scrub dinitrogen-contaminated natural gas. Unfortunately, the phosphine ligands in these dinitrogen-scrubbing complexes slowly dissociate in aqueous solution leading to degradation of the complexes, preventing a practical pressure-swing process from being developed. One potential method to develop complexes that are more robust is to use a phosphine macrocycle in place of the two bidentate ligands. For background on phosphine macrocycles, see: Caminade & Majoral (1994); Swor & Tyler (2011). The ‘macrocycle effect’ predicts that the binding constant for a macrocyclic ligand is orders of magnitude higher than the binding constant for two bidentate ligands (Melson, 1979).
In addition to their usefulness in the N2-scrubbing scheme described above, macrocyclic phosphine compounds are sought after in general as ligands for transition-metal complexes because of their strong binding properties. However, the synthesis of phosphine macrocycles is a relatively underdeveloped area. One approach to macrocyclic is a template synthesis in which two secondary bidentate are coordinated to a common metal center and then covalently linked (Lambert & Desreux, 2000; Nell & Tyler, 2014). Previously, we showed that complexes of the [Cu(P2)2]+ type (where P2 is a bidentate secondary phosphine) can react under basic conditions with various dihalides to form macrocyclic tetraphosphine Cu complexes (Nell et al., 2016). The title molecule is an unexpected side-product of the process of removing the Cu metal center using aqueous NaSH to react with the Cu metal (Costantino et al., 2008). Interestingly in this case, the P2 ligand was 1,2-bis(methoxypropyl)phosphinoethane (MeOPrPE), which has been oxidized to the dithiophosphinate species, a reaction commonly encountered between secondary and elemental sulfur.
2. Structural commentary
The title compound is a P,S,Na-complex in which there are two P(=S)(—S) groups consisting of two terminal sulfur atoms bonded to each phosphorus atom, providing a −2 charge. Two sodium cations and eight water molecules form [Na2(H2O)8]2+ bridges between the anions. The oxygen of the methoxypropyl unit of the ligand is also bonded to the [Na2(H2O)8]2+ cluster, completing a pseudo-octahedral coordination environment around each sodium cation and linking the cations and anions to form an infinite chain. The (see Fig. 1) contains half of one dianionic bis(phosphinodithiolate) chain, one sodium cation, and four water molecules, one of which is disordered over two positions with 50:50 occupancy.
Interestingly the lengths of the two P—S bonds for the phosphorus atom P1 differ by 0.0206 (6) Å. While the structure can formally be described as having one phosphorus–sulfur single bond and one double bond, clearly these should be equivalent by resonance. Indeed, comparison to seven similar dialkylphosphinodithiolate structures (Pinkerton, 1990; Ebels et al., 1997; Klevtsova et al., 2003; Kokina et al., 2008, 2010; Marc et al., 2012; Guo et al., 2022) shows that the average difference in phosphorus–sulfur bonds in these compounds is only 0.006 Å. A closer look at the hydrogen bonding in the structure shows that the asymmetry is likely due to the fact that sulfur S1 has two hydrogen-bonding contacts (see Fig. 2, Table 1) compared to the three contacts for S2. A similar asymmetry in phosphorus–sulfur bond lengths is observed in the structure of sodium diethyldithiophosphinate dihydrate (Svensson & Albertsson, 1989), though the hydrogen-bonding network is quite symmetrical in that structure.
The sodium ion and water molecules form [Na2(H2O)8]2+ dimers around an inversion center. The coordination sphere of the sodium ion is filled by two bridging water molecules (O2), three terminal water molecules (O3, O4, and O51/O52), and one ether oxygen of the ligand molecule (O1). As shown in Fig. 3, there is one intra-dimer hydrogen bond (O3—H3C⋯O52). A similar contact, O51—H51A⋯O3, is present in the second component of the disorder but is not shown in Fig. 3. The dimers are linked by additional hydrogen-bond contacts between atoms O2 and O4 of neighboring dimers (O2—H2D⋯O4). An additional intradimer contact, O4—H4D⋯O51, is present but not shown in Fig. 3.
3. Supramolecular features
The sodium ion–water dimers can be visualized as edge-sharing octahedra (see Fig. 4) with two of the outer oxygen positions occupied by equivalent ether oxygen atoms from one end of the bis(phosphinodithiolate) ligand. The ligands then link successive sodium ion dimers, forming infinite zigzag chains running parallel to the (01) plane. The hydrogen-bonding interactions between the water molecules and the sulfur atoms (Table 1) create additional interactions linking the chains in all directions.
4. Database survey
A search of the CSD (version 2024.2.0; Groom et al., 2016) demonstrates that there are relatively few structurally characterized dialkyldithiophosphinates and no existing examples of structures with dithiophosphinate groups linked by an alkyl chain.
A number of structures contain diphenyldithiophosphinates as bidentate ligands coordinated to late transition metals such as platinum and palladium (Alison & Stephenson, 1971; Fackler et al., 1982; Landtiser et al., 1995). In some cases, the dialkyldithiophosphinate ends up serving as a counter-ion instead of coordinating to the metal center (Kokina et al., 2008). Diethyldithiophosphinates have also been used to form molybdenum(IV)sulfur clusters, Mo3S4(Et2PS2)4 (Keck et al., 1981).
The structure most closely related to the title compound is that of sodium diethyldithiophosphinate dihydrate (CSD refcode SAGWUS; Svensson & Albertsson, 1989). Each sulfur atom is hydrogen bonded to two water molecules, forming an extended network in the ab plane, with successive layers separated by sodium cations. The sodium ions are found in a similar distorted octahedral environment, but with two of the six coordination sites occupied by sulfur instead of water. The octahedra are linked by edge sharing within the layer with every third octahedron missing.
5. Synthesis and crystallization
The title molecule was prepared serendipitously while attempting to remove the CuI template of a [Cu(P2)2]+ complex. 1,2-Bis(methoxypropyl)phosphinoethane (MeOPrPE) (2 eq.) was reacted with Cu(MeCN)4PF6 (1 eq.) in acetonitrile to yield the corresponding Cu(MeOPrPE)2PF6 complex. As a proof-of-concept, an attempt to remove the copper and yield the free phosphine back was performed. The copper complex was dissolved in 10 mL of THF and added to a solution of 10 eq. NaSH-hydrate in 30 mL of absolute EtOH. The mixture was refluxed for 24 h, forming Cu2S as a black precipitate. The reaction mixture was cooled to RT, filtered through a celite plug, then the solvent was allowed to slowly evaporate at RT in air, yielding crystals of the title molecule.
6. Refinement
Crystal data, data collection and structure . All hydrogen atoms were located in the difference maps. Carbon-bonded hydrogen atoms were freely refined. For the water molecules the O—H distances were restrained (SADI) to have similar distances. The displacement parameters for the water hydrogen atoms were constrained to be Uiso(H) = 1.5Ueq(O). The occupancy of the disordered water molecule (O51/O52) was fixed at 0.50 since free gave an occupancy of 0.486 (8).
details are summarized in Table 2
|
Supporting information
CCDC reference: 2388007
https://doi.org/10.1107/S2056989024009642/ev2010sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024009642/ev2010Isup2.hkl
[Na2(C10H22O2P2S4)(H2O)8] | Z = 2 |
Mr = 277.28 | F(000) = 294 |
Triclinic, P1 | Dx = 1.413 Mg m−3 |
a = 6.7412 (8) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.2961 (8) Å | Cell parameters from 4713 reflections |
c = 11.8621 (17) Å | θ = 2.5–28.3° |
α = 79.608 (2)° | µ = 0.56 mm−1 |
β = 89.207 (2)° | T = 173 K |
γ = 87.030 (1)° | Block, colorless |
V = 651.63 (14) Å3 | 0.19 × 0.12 × 0.06 mm |
Bruker SMART APEX CCD area detector diffractometer | 3007 independent reflections |
Radiation source: sealed tube | 2736 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.014 |
phi and ω scans | θmax = 28.3°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −8→8 |
Tmin = 0.838, Tmax = 1.000 | k = −10→10 |
7596 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.026 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.068 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0357P)2 + 0.2159P] where P = (Fo2 + 2Fc2)/3 |
3007 reflections | (Δ/σ)max = 0.001 |
210 parameters | Δρmax = 0.43 e Å−3 |
45 restraints | Δρmin = −0.20 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1 | 0.65743 (5) | 0.71747 (4) | 0.84910 (3) | 0.02676 (10) | |
S2 | 0.95943 (5) | 0.52147 (4) | 0.67995 (3) | 0.02722 (10) | |
P1 | 0.83354 (5) | 0.52284 (4) | 0.83414 (3) | 0.01867 (9) | |
C1 | 0.1587 (3) | −0.0034 (2) | 0.84426 (17) | 0.0374 (4) | |
H1A | 0.050 (3) | −0.019 (2) | 0.7965 (17) | 0.045 (5)* | |
H1B | 0.234 (3) | −0.108 (3) | 0.8699 (17) | 0.050 (6)* | |
H1C | 0.101 (3) | 0.035 (3) | 0.906 (2) | 0.060 (7)* | |
C2 | 0.4380 (2) | 0.15096 (17) | 0.85447 (12) | 0.0257 (3) | |
H2A | 0.529 (3) | 0.058 (2) | 0.8688 (15) | 0.032 (4)* | |
H2B | 0.381 (3) | 0.164 (2) | 0.9249 (16) | 0.032 (4)* | |
C3 | 0.5383 (2) | 0.30505 (17) | 0.79961 (12) | 0.0254 (3) | |
H3A | 0.589 (3) | 0.293 (2) | 0.7283 (16) | 0.034 (5)* | |
H3B | 0.443 (3) | 0.396 (2) | 0.7870 (15) | 0.032 (4)* | |
C4 | 0.7036 (2) | 0.33531 (17) | 0.87807 (12) | 0.0258 (3) | |
H4A | 0.650 (3) | 0.341 (2) | 0.9483 (16) | 0.035 (5)* | |
H4B | 0.801 (3) | 0.250 (2) | 0.8855 (16) | 0.041 (5)* | |
C5 | 1.0347 (2) | 0.50194 (19) | 0.93811 (11) | 0.0243 (3) | |
H5A | 1.110 (3) | 0.409 (2) | 0.9306 (15) | 0.035 (5)* | |
H5B | 1.112 (3) | 0.591 (2) | 0.9135 (15) | 0.033 (5)* | |
Na1 | 0.33236 (8) | 0.08688 (6) | 0.58806 (5) | 0.02448 (13) | |
O1 | 0.28216 (15) | 0.11749 (12) | 0.78382 (8) | 0.0281 (2) | |
O2 | 0.66857 (17) | −0.02101 (15) | 0.60507 (10) | 0.0331 (3) | |
H2C | 0.683 (3) | −0.089 (2) | 0.6599 (14) | 0.050* | |
H2D | 0.754 (3) | 0.037 (2) | 0.6050 (18) | 0.050* | |
O3 | 0.42969 (18) | 0.35106 (14) | 0.48142 (10) | 0.0309 (2) | |
H3AA | 0.339 (3) | 0.382 (2) | 0.4406 (16) | 0.046* | |
H3BB | 0.480 (6) | 0.432 (3) | 0.488 (4) | 0.046* | 0.5 |
H3C | 0.501 (7) | 0.313 (5) | 0.448 (4) | 0.046* | 0.5 |
O4 | −0.00709 (18) | 0.18169 (19) | 0.57874 (12) | 0.0445 (3) | |
H4C | −0.020 (4) | 0.255 (2) | 0.6113 (19) | 0.067* | |
H4D | −0.047 (4) | 0.215 (3) | 0.5202 (15) | 0.067* | |
O51 | 0.2410 (4) | −0.1906 (3) | 0.6086 (2) | 0.0316 (5) | 0.5 |
H51 | 0.209 (3) | −0.259 (2) | 0.6588 (15) | 0.047* | |
H51A | 0.332 (5) | −0.242 (5) | 0.589 (4) | 0.047* | 0.5 |
O52 | 0.3145 (4) | −0.2131 (3) | 0.6610 (2) | 0.0279 (5) | 0.5 |
H52 | 0.391 (5) | −0.245 (5) | 0.711 (3) | 0.042* | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0338 (2) | 0.02347 (17) | 0.02226 (18) | 0.00774 (14) | −0.00349 (14) | −0.00436 (13) |
S2 | 0.03110 (19) | 0.02942 (19) | 0.01979 (17) | 0.00183 (14) | 0.00272 (13) | −0.00193 (13) |
P1 | 0.02118 (17) | 0.01825 (16) | 0.01566 (16) | −0.00006 (12) | −0.00169 (12) | −0.00069 (12) |
C1 | 0.0294 (8) | 0.0350 (9) | 0.0437 (10) | −0.0088 (7) | 0.0076 (7) | 0.0057 (7) |
C2 | 0.0362 (8) | 0.0205 (7) | 0.0205 (7) | −0.0040 (6) | 0.0011 (6) | −0.0036 (5) |
C3 | 0.0343 (8) | 0.0221 (7) | 0.0195 (7) | −0.0055 (6) | −0.0003 (6) | −0.0017 (5) |
C4 | 0.0368 (8) | 0.0207 (7) | 0.0194 (7) | −0.0054 (6) | −0.0027 (6) | −0.0007 (5) |
C5 | 0.0223 (7) | 0.0291 (7) | 0.0199 (7) | 0.0009 (6) | −0.0020 (5) | −0.0009 (5) |
Na1 | 0.0237 (3) | 0.0255 (3) | 0.0249 (3) | −0.0031 (2) | −0.0013 (2) | −0.0055 (2) |
O1 | 0.0341 (6) | 0.0263 (5) | 0.0237 (5) | −0.0114 (4) | 0.0028 (4) | −0.0017 (4) |
O2 | 0.0330 (6) | 0.0364 (6) | 0.0307 (6) | 0.0025 (5) | −0.0107 (5) | −0.0089 (5) |
O3 | 0.0313 (6) | 0.0240 (5) | 0.0379 (7) | −0.0031 (4) | −0.0060 (5) | −0.0061 (5) |
O4 | 0.0266 (6) | 0.0632 (9) | 0.0524 (8) | 0.0012 (6) | −0.0069 (5) | −0.0341 (7) |
O51 | 0.0327 (13) | 0.0287 (12) | 0.0326 (13) | −0.0039 (10) | 0.0035 (11) | −0.0027 (10) |
O52 | 0.0267 (12) | 0.0293 (12) | 0.0274 (13) | −0.0076 (9) | −0.0047 (10) | −0.0017 (10) |
S1—P1 | 1.9867 (5) | Na1—Na1ii | 3.4885 (11) |
S2—P1 | 2.0073 (5) | Na1—O1 | 2.3986 (12) |
P1—C4 | 1.8155 (14) | Na1—O2ii | 2.4494 (13) |
P1—C5 | 1.8262 (14) | Na1—O2 | 2.3908 (13) |
C1—H1A | 0.96 (2) | Na1—O3 | 2.4413 (13) |
C1—H1B | 0.99 (2) | Na1—H3C | 2.57 (4) |
C1—H1C | 0.93 (2) | Na1—O4 | 2.3783 (13) |
C1—O1 | 1.4219 (18) | Na1—O51 | 2.383 (2) |
C2—H2A | 0.951 (18) | Na1—O52 | 2.491 (2) |
C2—H2B | 0.937 (18) | O2—H2C | 0.783 (13) |
C2—C3 | 1.5141 (19) | O2—H2D | 0.768 (14) |
C2—O1 | 1.4218 (18) | O3—H3AA | 0.788 (14) |
C3—H3A | 0.929 (19) | O3—H3BB | 0.786 (16) |
C3—H3B | 0.959 (18) | O3—H3C | 0.71 (4) |
C3—C4 | 1.521 (2) | O4—H4C | 0.775 (14) |
C4—H4A | 0.911 (19) | O4—H4D | 0.748 (14) |
C4—H4B | 0.93 (2) | O51—H51 | 0.782 (14) |
C5—C5i | 1.530 (3) | O51—H51A | 0.785 (16) |
C5—H5A | 0.918 (19) | O52—H51 | 0.826 (14) |
C5—H5B | 0.928 (18) | O52—H52 | 0.789 (16) |
S1—P1—S2 | 116.51 (2) | O2—Na1—O3 | 92.52 (4) |
C4—P1—S1 | 110.54 (6) | O2—Na1—H3C | 80.5 (10) |
C4—P1—S2 | 109.33 (5) | O2ii—Na1—H3C | 70.7 (10) |
C4—P1—C5 | 102.98 (7) | O2—Na1—O52 | 74.03 (7) |
C5—P1—S1 | 109.49 (5) | O2ii—Na1—O52 | 86.90 (7) |
C5—P1—S2 | 107.08 (5) | O3—Na1—Na1ii | 85.84 (4) |
H1A—C1—H1B | 110.3 (16) | O3—Na1—O2ii | 81.58 (4) |
H1A—C1—H1C | 105.4 (18) | O3—Na1—H3C | 16.1 (10) |
H1B—C1—H1C | 110.3 (18) | O3—Na1—O52 | 162.66 (7) |
O1—C1—H1A | 109.7 (12) | O4—Na1—Na1ii | 136.49 (4) |
O1—C1—H1B | 111.5 (12) | O4—Na1—O1 | 80.67 (4) |
O1—C1—H1C | 109.5 (14) | O4—Na1—O2ii | 93.34 (5) |
H2A—C2—H2B | 107.4 (14) | O4—Na1—O2 | 176.86 (6) |
C3—C2—H2A | 111.9 (11) | O4—Na1—O3 | 90.54 (5) |
C3—C2—H2B | 110.5 (10) | O4—Na1—H3C | 102.6 (10) |
O1—C2—H2A | 109.2 (10) | O4—Na1—O51 | 91.08 (8) |
O1—C2—H2B | 107.1 (11) | O4—Na1—O52 | 103.10 (7) |
O1—C2—C3 | 110.62 (11) | O51—Na1—Na1ii | 75.92 (6) |
C2—C3—H3A | 109.8 (11) | O51—Na1—O1 | 97.55 (7) |
C2—C3—H3B | 109.9 (10) | O51—Na1—O2ii | 73.40 (7) |
C2—C3—C4 | 108.62 (12) | O51—Na1—O2 | 86.43 (7) |
H3A—C3—H3B | 107.0 (14) | O51—Na1—O3 | 154.98 (8) |
C4—C3—H3A | 110.6 (11) | O52—Na1—H3C | 146.6 (10) |
C4—C3—H3B | 110.9 (10) | C1—O1—Na1 | 112.06 (10) |
P1—C4—H4A | 106.5 (11) | C2—O1—C1 | 111.26 (12) |
P1—C4—H4B | 105.7 (12) | C2—O1—Na1 | 122.95 (9) |
C3—C4—P1 | 116.31 (10) | Na1—O2—Na1ii | 92.22 (4) |
C3—C4—H4A | 108.2 (11) | Na1—O2—H2C | 111.4 (16) |
C3—C4—H4B | 110.7 (12) | Na1ii—O2—H2C | 122.1 (16) |
H4A—C4—H4B | 109.2 (16) | Na1—O2—H2D | 120.1 (16) |
P1—C5—H5A | 107.2 (11) | Na1ii—O2—H2D | 105.4 (16) |
P1—C5—H5B | 105.3 (11) | H2C—O2—H2D | 106 (2) |
C5i—C5—P1 | 114.30 (13) | Na1—O3—H3AA | 104.3 (15) |
C5i—C5—H5A | 111.7 (11) | Na1—O3—H3BB | 143 (3) |
C5i—C5—H5B | 110.9 (11) | Na1—O3—H3C | 92 (4) |
H5A—C5—H5B | 107.1 (15) | H3AA—O3—H3BB | 104 (3) |
Na1ii—Na1—H3C | 69.8 (10) | H3AA—O3—H3C | 106 (4) |
O1—Na1—Na1ii | 141.45 (4) | Na1—O4—H4C | 108.4 (19) |
O1—Na1—O2ii | 169.16 (4) | Na1—O4—H4D | 116 (2) |
O1—Na1—O3 | 107.34 (4) | H4C—O4—H4D | 104 (3) |
O1—Na1—H3C | 119.4 (10) | Na1—O51—H51 | 136.6 (15) |
O1—Na1—O52 | 85.69 (6) | Na1—O51—H51A | 108 (3) |
O2ii—Na1—Na1ii | 43.22 (3) | H51—O51—H51A | 95 (3) |
O2—Na1—Na1ii | 44.56 (3) | Na1—O52—H51 | 120.9 (13) |
O2—Na1—O1 | 97.76 (4) | Na1—O52—H52 | 112 (3) |
O2—Na1—O2ii | 87.78 (4) | H51—O52—H52 | 120 (3) |
S1—P1—C4—C3 | 69.75 (12) | C3—C2—O1—C1 | −166.90 (13) |
S1—P1—C5—C5i | 53.71 (16) | C3—C2—O1—Na1 | 56.02 (14) |
S2—P1—C4—C3 | −59.78 (13) | C4—P1—C5—C5i | −63.91 (16) |
S2—P1—C5—C5i | −179.14 (13) | C5—P1—C4—C3 | −173.38 (12) |
C2—C3—C4—P1 | −175.75 (10) | O1—C2—C3—C4 | −179.89 (12) |
Symmetry codes: (i) −x+2, −y+1, −z+2; (ii) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2C···S1iii | 0.78 (1) | 2.52 (1) | 3.2920 (13) | 167 (2) |
O52—H52···S1iii | 0.79 (2) | 2.42 (2) | 3.193 (3) | 167 (4) |
O3—H3AA···S2iv | 0.79 (1) | 2.50 (1) | 3.2840 (13) | 177 (2) |
O4—H4C···S2v | 0.78 (1) | 2.49 (2) | 3.2535 (14) | 169 (2) |
O51—H51···S2vi | 0.78 (1) | 2.52 (1) | 3.117 (2) | 134 (2) |
O52—H51···S2vi | 0.83 (1) | 2.52 (1) | 3.314 (2) | 162 (2) |
O2—H2D···O4vii | 0.77 (1) | 2.05 (1) | 2.8069 (19) | 170 (2) |
O3—H3BB···O3iv | 0.79 (2) | 2.02 (2) | 2.801 (2) | 171 (4) |
O3—H3C···O52ii | 0.71 (4) | 2.04 (4) | 2.748 (3) | 174 (5) |
O4—H4D···O51viii | 0.75 (1) | 2.07 (2) | 2.731 (3) | 147 (3) |
O51—H51A···O3ii | 0.79 (2) | 2.05 (2) | 2.825 (3) | 173 (5) |
Symmetry codes: (ii) −x+1, −y, −z+1; (iii) x, y−1, z; (iv) −x+1, −y+1, −z+1; (v) x−1, y, z; (vi) x−1, y−1, z; (vii) x+1, y, z; (viii) −x, −y, −z+1. |
Acknowledgements
DHJ thanks the National Science Foundation for funding to support the diffraction facilities at Otterbein University and BPN thanks Ripon College for funding.
Funding information
Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences; Ripon College.
References
Alison, M. C., Stephenson, A. & Gould, R. O. (1971). J. Chem. Soc. A, pp. 3690–3696. CSD CrossRef Web of Science Google Scholar
Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Caminade, A.-M. & Majoral, J. P. (1994). Chem. Rev. 94, 1183–1213. CrossRef CAS Web of Science Google Scholar
Costantino, F., Ienco, A., Midollini, S., Orlandini, A., Sorace, L. & Vacca, A. (2008). Eur. J. Inorg. Chem. pp. 3046–3055. Web of Science CSD CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ebels, J., Pietschnig, R., Nieger, M., Niecke, E. & Kotila, S. (1997). Heteroat. Chem. 8, 521–525. CSD CrossRef Web of Science Google Scholar
Fackler, J. P., Thompson, L. D., Lin, I. J. B., Stephenson, T. A., Gould, R. O., Alison, J. M. C. & Fraser, A. J. F. (1982). Inorg. Chem. 21, 2397–2403. CSD CrossRef Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Guo, Q., Fang, T., Liu, Q., Zhu, L., Yang, S. & Tian, G. (2022). Dalton Trans. 51, 7416–7419. Web of Science CSD CrossRef PubMed Google Scholar
Keck, H., Kuclhen, W., Mathow, J., Meyer, B., Mootz, D. & Wunderlich, H. (1981). Angew. Chem. Int. Ed. Engl. 20, 975–976. CSD CrossRef Web of Science Google Scholar
Klevtsova, R. F., Glinskaya, L. A., Kokina, T. E. & Larionov, S. V. (2003). J. Struct. Chem. 44, 256–267. Web of Science CrossRef Google Scholar
Kokina, T. E., Klevtsova, R. F., Glinskaya, L. A., Boguslavskii, E. G. & Larionov, S. V. (2010). Russ. J. Coord. Chem. 36, 53–59. Web of Science CrossRef Google Scholar
Kokina, T. E., Sankova, E. A., Klevtsova, R. F., Glinskaya, L. A. & Larionov, S. V. (2008). Russ. J. Coord. Chem. 34, 811–818. Web of Science CSD CrossRef Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lambert, B. & Desreux, J. F. (2000). Synthesis, pp. 1668–1670. CrossRef Google Scholar
Landtiser, R., Mague, J. T., Fink, M. J., Silvestru, C. & Haiduc, I. (1995). Inorg. Chem. 34, 6141–6144. CSD CrossRef Web of Science Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Marc, P., Custelcean, R., Groenewold, G. S., Klaehn, J. R., Peterman, D. R. & Delmau, L. H. (2012). Ind. Eng. Chem. Res. 51, 13238–13244. Web of Science CSD CrossRef Google Scholar
Melson, G. A. (1979). Coordination chemistry of macrocyclic compounds. New York, NY: Plenum Press. Google Scholar
Miller, W. K., Gilbertson, J. D., Leiva-Paredes, C., Bernatis, P. R., Weakley, T. J. R., Lyon, D. K. & Tyler, D. R. (2002). Inorg. Chem. 41, 5453–5465. Web of Science CSD CrossRef PubMed CAS Google Scholar
Nell, B. P., Swor, C. D., Henle, E. A., Zakharov, L. N., Rinehart, N. I., Nathan, A. & Tyler, D. R. (2016). Dalton Trans. 45, 8253–8264. Web of Science CSD CrossRef PubMed Google Scholar
Nell, B. P. & Tyler, D. R. (2014). Coord. Chem. Rev. 279, 23–42. Web of Science CrossRef Google Scholar
Pinkerton, A. A. (1990). Acta Cryst. C46, 2255–2257. CSD CrossRef Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Svensson, G. & Albertsson, J. (1989). Acta Cryst. C45, 395–397. CSD CrossRef Web of Science IUCr Journals Google Scholar
Swor, C. D. & Tyler, D. R. (2011). Coord. Chem. Rev. 255, 2860–2881. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.