research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N,N′,N′′-tri­cyclo­prop­ylbenzene-1,3,5-tricarboxamide

crossmark logo

aInstitut für Organische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, 09596 Freiberg/Sachsen, Germany, and bClinical Research Products Management Center (CRPMC) Bioservices, Thermo Fisher Scientific, 1055 First Street, Rockville/Maryland 20850, USA
*Correspondence e-mail: Monika.Mazik@chemie.tu-freiberg.de

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 9 August 2024; accepted 7 October 2024; online 24 October 2024)

The title compound, C18H21N3O3, was prepared from 1,3,5-benzene­tricarbonyl trichloride and cyclo­propyl­amine. Its crystal structure was solved in the monoclinic space group P21/c. In the crystal, the three amide groups of the mol­ecule are inclined at angles of 26.5 (1), 36.9 (1) and 37.8 (1)° with respect to the plane of the benzene ring. The mol­ecules are linked by N—H⋯O hydrogen bonds, forming two-dimensional supra­molecular aggregates that extend parallel to the crystallographic ab plane and are further connected by C—H⋯O contacts. As a result of the supra­molecular inter­actions, a propeller-like conformation of the title mol­ecule can be observed.

1. Chemical context

The cyclo­propane ring represents a building block of numerous natural products and has also been recognized as a valuable structural motif in drug design (Reissig & Zimmer, 2003[Reissig, H.-U. & Zimmer, R. (2003). Chem. Rev. 103, 1151-1196.]; Chen et al., 2012[Chen, D. Y.-K., Pouwer, R. H. & Richard, J.-A. (2012). Chem. Soc. Rev. 41, 4631-4642.]; Talele, 2016[Talele, T. T. (2016). J. Med. Chem. 59, 8712-8756.]; Wu et al., 2018[Wu, W., Lin, Z. & Jiang, H. (2018). Org. Biomol. Chem. 16, 7315-7329.]; Bauer et al., 2021[Bauer, M. R., Di Fruscia, P., Lucas, S. C. C., Michaelides, I. N., Nelson, J. E., Storer, R. I. & Whitehurst, B. C. (2021). RSC Med. Chem. 12, 448-471.]). Moreover, the cyclo­propyl group has also been used in supra­molecular chemistry, for example in the construction of artificial receptors (Stapf et al., 2020[Stapf, M., Seichter, W. & Mazik, M. (2020). Eur. J. Org. Chem. pp. 4900-4915.]). In this paper, we describe the crystal structure of a compound bearing N-cyclo­propyl­carbamoyl groups, which belongs to the class of benzene-1,3,5-tricarboxamides. Other representatives of this class of compounds, e.g. those with N-(pyridin-2-yl)carbamoyl or N-(1,8-naphthyridin-2-yl)carbamoyl groups, were found to have inter­esting binding properties towards carbohydrates (Mazik et al., 2000[Mazik, M., Bandmann, H. & Sicking, W. (2000). Angew. Chem. Int. Ed. 39, 551-554.], 2004[Mazik, M., Radunz, W. & Boese, R. (2004). J. Org. Chem. 69, 7448-7462.], 2006[Mazik, M., Kuschel, M. & Sicking, W. (2006). Org. Lett. 8, 855-858.]; Mazik & Sicking, 2001[Mazik, M. & Sicking, W. (2001). Chem. Eur. J. 7, 664-670.], 2004[Mazik, M. & Sicking, W. (2004). Tetrahedron Lett. 45, 3117-3121.]; Mazik & Cavga, 2007[Mazik, M. & Cavga, H. (2007). J. Org. Chem. 72, 831-838.]). It is worth noting that various supra­molecular architectures based on benzene-1,3,5-tricarboxamide have been the subject of intensive research (Cantekin et al., 2012[Cantekin, S., de Greef, T. F. A. & Palmans, A. R. A. (2012). Chem. Soc. Rev. 41, 6125-6137.]). The self-aggregation processes of benzene-1,3,5-tricarboxamides have been studied particularly intensively and have led to the development of new hydro­gels, hydrogen-bonded organic frameworks (HOFs) and other systems with favourable properties (Stals et al., 2009[Stals, P. J. M., Haveman, J. F., Palmans, A. R. A. & Schenning, A. P. H. J. (2009). J. Chem. Educ. 86, 230-233.]; Veld et al., 2011[Veld, M. A. J., Haveman, D., Palmans, A. R. A. & Meijer, E. W. (2011). Soft Matter, 7, 524-531.]; Howe et al., 2013[Howe, R. C. T., Smalley, A. P., Guttenplan, A. P. M., Doggett, M. W. R., Eddleston, M. D., Tan, J. C. & Lloyd, G. O. (2013). Chem. Commun. 49, 4268-4270.]; Kulkarni et al., 2017[Kulkarni, C., Meijer, E. W. & Palmans, A. R. A. (2017). Acc. Chem. Res. 50, 1928-1936.]; Li et al., 2024[Li, B., Qiu, W., Yap, G. P. A., Dory, Y. L. & Claverie, J. P. (2024). Adv. Funct. Mater. 34, 2311964.]).

[Scheme 1]

2. Structural commentary

The crystal structure of the title compound, C18H21N3O3, was solved in the monoclinic space group P21/c with the asymmetric unit containing one mol­ecule. One of the cyclo­propyl groups is disordered over two positions (s. o. f. 0.70/0.30). The three amide units of the mol­ecule are inclined at angles of 26.5 (1), 36.9 (1) and 37.8 (1)° with respect to the plane of the central benzene ring. This twisting, which is due to supra­molecular inter­actions, gives the threefold-substituted benzene derivative a propeller-like conformation (Fig. 1[link]).

[Figure 1]
Figure 1
Perspective view of the title mol­ecule including atom labelling. Anisotropic displacement ellipsoids are drawn at the 50% probability level. For the sake of clarity, only the major component of the disordered cyclo­propyl ring is shown.

3. Supra­molecular features

In the crystal structure of the title compound, the mol­ecules are connected by N—H⋯O bonds [d(H⋯O) 1.96 (1)–2.04 (1) Å, 159 (1)–168 (1)°; Table 1[link]] to form two-dimensional supra­molecular networks extending parallel to the crystallographic ab plane (Figs. 2[link] and 3[link]). Within these aggregates, the oxygen atom O3 participates in the formation of a C—H⋯O bond [d(H⋯O) 2.58 Å, 139°; for other examples of C—H⋯O bonds, see: Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond. Oxford University Press.]; Desiraju, 2005[Desiraju, G. R. (2005). Chem. Commun. pp. 2995-3001.]; Mazik et al., 1999[Mazik, M., Bläser, D. & Boese, R. (1999). Tetrahedron, 55, 12771-12782.], 2005[Mazik, M., Bläser, D. & Boese, R. (2005). J. Org. Chem. 70, 9115-9122.], 2010[Mazik, M., Hartmann, A. & Jones, P. G. (2010). Eur. J. Org. Chem. 2010, 458-463.]; Ebersbach et al., 2023[Ebersbach, B., Seichter, W., Schwarzer, A. & Mazik, M. (2023). CrystEngComm, 25, 137-153.]] to the arene hydrogen H2 of an adjacent mol­ecule. Association of the 2D networks is accomplished by C—H⋯O bonds involving methyl­ene hydrogen H14A and the oxygen O1 [d(H⋯O) 2.55 Å, 131°].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3i 0.90 (1) 1.96 (1) 2.8471 (15) 168 (1)
N2—H2A⋯O2ii 0.89 (1) 1.96 (1) 2.8253 (13) 165 (2)
N3—H3A⋯O1ii 0.89 (1) 2.04 (1) 2.8937 (14) 159 (1)
C2—H2⋯O3i 0.95 2.58 3.3485 (17) 139
C14—H14A⋯O1iii 0.99 2.55 3.2839 (17) 131
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+1, y, z]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Packing diagram of the title compound viewed along the a axis. The N—H⋯O hydrogen bonds are visualized as dashed lines.
[Figure 3]
Figure 3
Packing diagram of the title compound showing the two-dimensional supra­molecular network. Dashed lines indicate N—H⋯O hydrogen bonds.

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.45, update June 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for benzene derivatives containing at least one N-cyclo­alkyl­carbamoyl group with a cyclo­propyl, cyclo­butyl, cyclo­pentyl or cyclo­hexyl ring gave nineteen hits. Among these are fifteen N-cyclo­alkyl­benzamides, which also have other substituents on the benzene ring, such as hy­droxy, meth­oxy or halogeno groups, making comparison difficult. For example, compounds bearing both hy­droxy and meth­oxy groups and differing in ring size comprise N-cyclo­propyl-3-hy­droxy-4-meth­oxy­benzamide (HOBGOY; Tong et al., 2023[Tong, H., Xu, X., Zhu, Z. & Liu, B. (2023). Z. Kristallogr. New Cryst. Struct. 238, 1175-1176.]), N-cyclo­pentyl-3-hy­droxy-4-meth­oxy­benzamide (DELLUF; Zhang et al., 2022a[Zhang, J., Guo, S., Guo, Y. & Yang, Y. (2022a). Z. Kristallogr. New Cryst. Struct. 237, 551-553.]) and N-cyclo­hexyl-3-hy­droxy-4-meth­oxy­benzamide (DELCUW; Zhang et al., 2022b[Zhang, J., Zhao, X. & Cai, C. (2022b). Z. Kristallogr. New Cryst. Struct. 237, 543-545.]). The crystal structure of the compound lacking further substituents on the benzene ring is only known in the case of the cyclo­hexyl unit (QUZJAX; Khan et al., 2010[Khan, I. U., Javaid, R., Sharif, S. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1687.]). The same applies to compounds that have two or three carboxamide units on the benzene ring; these include N,N′-di(cyclo­hex­yl)benzene-1,4-dicarboxamide (DAVQUP01; Wang et al., 2017[Wang, Z., Yang, W., Liu, G., Müller, A. J., Zhao, Y., Dong, X., Wang, K. & Wang, D. (2017). J. Polym. Sci. B Polym. Phys. 55, 418-424.]) and N,N′,N′′-tris­(cyclo­hex­yl)benzene-1,3,5-tricarboxamide (CIYYAO; Li et al., 2024[Li, B., Qiu, W., Yap, G. P. A., Dory, Y. L. & Claverie, J. P. (2024). Adv. Funct. Mater. 34, 2311964.]). The latter, tripodal mol­ecule is an analogue of the title compound, but has a markedly different crystal structure. It consists of columnar domains extending in the direction of the crystallographic b axis, in which the mol­ecules are arranged in layers with a stacking of the central benzene rings. Neighbouring mol­ecules are mainly linked by three N—H⋯O=C hydrogen bonds. The periphery of the domains is formed by the cyclo­hexyl moieties, so that they are only connected to each other via van der Waals inter­actions.

5. Synthesis and crystallization

A solution of 1,3,5-benzene­tricarbonyl trichloride (0.20 g, 0.75 mmol) in CH2Cl2 (10 mL) was added dropwise to a mixture of cyclo­propyl­amine (0.18 mL, 0.15 g, 2.59 mmol) and tri­ethyl­amine (0.34 mL, 0.25 g, 2.45 mmol) in CH2Cl2 (15 mL). After stirring at room temperature for 12 h, the solvent was evaporated under reduced pressure. The remaining white solid was washed several times with water, again suspended in CH2Cl2, filtered off and dried. Yield: 0.19 g (77%). 1H NMR (500 MHz, DMSO-d6, ppm): δ = 0.58–0.61 (m, 6H, CH2), 0.70–0.74 (m, 6H, CH2), 2.85–2.91 (m, 3H, CH), 8.31 (s, 3H, ar­yl), 8.65 (d, 3H, J = 4.1 Hz, NH). 13C NMR (125 MHz, DMSO-d6, ppm): δ = 5.7 (CH2), 23.2 (CH), 128.4 (ar­yl), 134.8 (ar­yl), 166.8 (C=O). MS (ESI): m/z calculated for C18H22N3O3: 328.2 [M + H]+, found 328.1. Single crystals suitable for X-ray diffraction were obtained by crystallization of the title compound from DMSO.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The non-hydrogen atoms were refined anisotropically. All C-bound hydrogen atoms were positioned geometrically and refined isotropically using the riding model with C—H = 0.99–1.00 Å (cyclo­alk­yl), 0.95 Å (ar­yl); Uiso(H) = 1.2–1.5Ueq(C). The positions of the N—H hydrogens could be located in difference-Fourier maps and were refined to a target value of 0.90 Å [Uiso(H) = 1.2Ueq(N)].

Table 2
Experimental details

Crystal data
Chemical formula C18H21N3O3
Mr 327.38
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 4.9435 (2), 14.2798 (5), 23.1247 (9)
β (°) 95.512 (2)
V3) 1624.87 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.47 × 0.11 × 0.08
 
Data collection
Diffractometer Bruker CCD area detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.958, 0.993
No. of measured, independent and observed [I > 2σ(I)] reflections 15717, 3779, 3059
Rint 0.028
(sin θ/λ)max−1) 0.652
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.101, 1.02
No. of reflections 3779
No. of parameters 257
No. of restraints 63
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.36, −0.22
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

N,N',N''-Tricyclopropylbenzene-1,3,5-tricarboxamide top
Crystal data top
C18H21N3O3F(000) = 696
Mr = 327.38Dx = 1.338 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 4.9435 (2) ÅCell parameters from 4588 reflections
b = 14.2798 (5) Åθ = 2.9–28.5°
c = 23.1247 (9) ŵ = 0.09 mm1
β = 95.512 (2)°T = 100 K
V = 1624.87 (11) Å3Needle, colourless
Z = 40.47 × 0.11 × 0.08 mm
Data collection top
Bruker CCD area detector
diffractometer
3059 reflections with I > 2σ(I)
phi and ω scansRint = 0.028
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 27.6°, θmin = 1.7°
Tmin = 0.958, Tmax = 0.993h = 66
15717 measured reflectionsk = 1818
3779 independent reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.043P)2 + 0.8263P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3779 reflectionsΔρmax = 0.36 e Å3
257 parametersΔρmin = 0.22 e Å3
63 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.31098 (19)0.74373 (6)0.39186 (4)0.0168 (2)
O20.36865 (18)0.74689 (7)0.12301 (4)0.0208 (2)
O30.4118 (2)0.48708 (7)0.26455 (4)0.0226 (2)
N10.4171 (2)0.86911 (8)0.33459 (5)0.0159 (2)
H1A0.396 (3)0.9006 (11)0.3017 (5)0.027 (4)*
N20.0624 (2)0.72544 (8)0.10159 (5)0.0156 (2)
H2A0.238 (2)0.7278 (12)0.1146 (7)0.024 (4)*
N30.5354 (2)0.55827 (8)0.35031 (5)0.0198 (3)
H3A0.550 (3)0.6129 (8)0.3690 (7)0.029 (5)*
C10.1216 (3)0.74915 (9)0.30131 (6)0.0138 (3)
C20.1799 (3)0.76665 (9)0.24228 (6)0.0144 (3)
H20.31830.81010.22940.017*
C30.0353 (3)0.72041 (9)0.20210 (5)0.0138 (3)
C40.1643 (3)0.65575 (9)0.22084 (6)0.0145 (3)
H40.26300.62460.19330.017*
C50.2204 (3)0.63643 (9)0.27977 (6)0.0140 (3)
C60.0787 (3)0.68403 (9)0.31969 (6)0.0142 (3)
H60.11870.67210.36000.017*
C70.2892 (3)0.78815 (9)0.34647 (6)0.0141 (3)
C80.6025 (3)0.90605 (9)0.37302 (6)0.0172 (3)
H80.69570.85850.39590.021*
C90.5473 (3)0.99839 (11)0.40248 (7)0.0257 (3)
H9A0.60111.00600.44240.031*
H9B0.38031.03240.39460.031*
C100.7684 (3)0.98916 (11)0.35391 (7)0.0242 (3)
H10A0.95870.99130.36380.029*
H10B0.73801.01770.31610.029*
C110.1271 (3)0.73253 (9)0.13884 (6)0.0145 (3)
C120.0096 (3)0.73106 (10)0.03993 (5)0.0157 (3)
H120.14480.78040.02660.019*
C130.2084 (3)0.71258 (10)0.00118 (6)0.0198 (3)
H13A0.39070.69550.01960.024*
H13B0.20870.75050.03460.024*
C140.0184 (3)0.64273 (10)0.00452 (6)0.0194 (3)
H14A0.15730.63810.02920.023*
H14B0.02480.58300.02510.023*
C150.4014 (3)0.55474 (9)0.29743 (6)0.0157 (3)
C160.7030 (9)0.4825 (4)0.37374 (17)0.0243 (9)0.700 (7)
H160.74080.43190.34570.029*0.700 (7)
C170.6653 (7)0.4516 (3)0.43355 (16)0.0279 (7)0.700 (7)
H17A0.53440.48670.45510.034*0.700 (7)
H17B0.67480.38360.44180.034*0.700 (7)
C180.9190 (7)0.4996 (3)0.42163 (18)0.0384 (8)0.700 (7)
H18A1.08680.46160.42250.046*0.700 (7)
H18B0.94640.56470.43570.046*0.700 (7)
C16A0.6466 (18)0.4719 (12)0.3775 (4)0.0234 (15)0.300 (7)
H16A0.56880.41170.36130.028*0.300 (7)
C17A0.7441 (19)0.4723 (7)0.4401 (3)0.0296 (14)0.300 (7)
H17C0.72220.53080.46210.036*0.300 (7)
H17D0.72390.41390.46230.036*0.300 (7)
C18A0.9421 (12)0.4725 (5)0.3963 (4)0.0313 (13)0.300 (7)
H18C1.04560.41420.39110.038*0.300 (7)
H18D1.04380.53110.39100.038*0.300 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0226 (5)0.0171 (5)0.0109 (4)0.0015 (4)0.0031 (4)0.0008 (4)
O20.0123 (5)0.0349 (6)0.0150 (5)0.0026 (4)0.0010 (4)0.0009 (4)
O30.0308 (6)0.0183 (5)0.0184 (5)0.0057 (4)0.0001 (4)0.0049 (4)
N10.0197 (6)0.0160 (5)0.0129 (5)0.0025 (4)0.0056 (4)0.0011 (4)
N20.0113 (5)0.0254 (6)0.0102 (5)0.0005 (4)0.0008 (4)0.0002 (4)
N30.0256 (6)0.0165 (6)0.0161 (6)0.0064 (5)0.0035 (5)0.0024 (5)
C10.0147 (6)0.0131 (6)0.0138 (6)0.0020 (5)0.0027 (5)0.0017 (5)
C20.0137 (6)0.0150 (6)0.0144 (6)0.0000 (5)0.0006 (5)0.0006 (5)
C30.0132 (6)0.0168 (6)0.0114 (6)0.0028 (5)0.0011 (5)0.0005 (5)
C40.0132 (6)0.0170 (6)0.0133 (6)0.0008 (5)0.0023 (5)0.0026 (5)
C50.0139 (6)0.0138 (6)0.0139 (6)0.0008 (5)0.0001 (5)0.0006 (5)
C60.0165 (6)0.0152 (6)0.0107 (6)0.0017 (5)0.0001 (5)0.0002 (5)
C70.0151 (6)0.0152 (6)0.0119 (6)0.0013 (5)0.0004 (5)0.0021 (5)
C80.0181 (6)0.0176 (7)0.0168 (7)0.0019 (5)0.0070 (5)0.0003 (5)
C90.0220 (7)0.0275 (8)0.0287 (8)0.0001 (6)0.0075 (6)0.0113 (6)
C100.0227 (7)0.0253 (7)0.0255 (8)0.0083 (6)0.0068 (6)0.0026 (6)
C110.0148 (6)0.0166 (6)0.0120 (6)0.0005 (5)0.0013 (5)0.0002 (5)
C120.0157 (6)0.0212 (7)0.0103 (6)0.0015 (5)0.0013 (5)0.0009 (5)
C130.0192 (7)0.0273 (7)0.0132 (6)0.0021 (5)0.0039 (5)0.0022 (5)
C140.0227 (7)0.0209 (7)0.0143 (6)0.0018 (5)0.0004 (5)0.0005 (5)
C150.0176 (6)0.0148 (6)0.0150 (6)0.0009 (5)0.0031 (5)0.0003 (5)
C160.0310 (18)0.0239 (19)0.0174 (11)0.0150 (16)0.0016 (12)0.0002 (10)
C170.0242 (15)0.0277 (15)0.0317 (14)0.0028 (11)0.0015 (11)0.0114 (11)
C180.0327 (14)0.0422 (17)0.0365 (17)0.0049 (12)0.0162 (13)0.0200 (13)
C16A0.022 (3)0.019 (3)0.028 (3)0.003 (2)0.003 (2)0.002 (2)
C17A0.032 (3)0.029 (3)0.027 (2)0.010 (2)0.002 (2)0.007 (2)
C18A0.022 (2)0.027 (2)0.044 (3)0.0003 (19)0.001 (2)0.015 (2)
Geometric parameters (Å, º) top
O1—C71.2400 (16)C9—H9A0.9900
O2—C111.2321 (16)C9—H9B0.9900
O3—C151.2337 (16)C10—H10A0.9900
N1—C71.3334 (17)C10—H10B0.9900
N1—C81.4369 (16)C12—C131.4896 (18)
N1—H1A0.897 (9)C12—C141.5023 (19)
N2—C111.3361 (16)C12—H121.0000
N2—C121.4381 (16)C13—C141.5080 (19)
N2—H2A0.893 (9)C13—H13A0.9900
N3—C151.3346 (17)C13—H13B0.9900
N3—C161.437 (6)C14—H14A0.9900
N3—C16A1.467 (15)C14—H14B0.9900
N3—H3A0.891 (9)C16—C171.481 (5)
C1—C21.3903 (18)C16—C181.483 (4)
C1—C61.3948 (18)C16—H161.0000
C1—C71.5010 (17)C17—C181.479 (4)
C2—C31.3921 (18)C17—H17A0.9900
C2—H20.9500C17—H17B0.9900
C3—C41.3899 (18)C18—H18A0.9900
C3—C111.4996 (18)C18—H18B0.9900
C4—C51.3921 (18)C16A—C17A1.481 (9)
C4—H40.9500C16A—C18A1.483 (8)
C5—C61.3889 (18)C16A—H16A1.0000
C5—C151.5026 (18)C17A—C18A1.474 (8)
C6—H60.9500C17A—H17C0.9900
C8—C101.4854 (19)C17A—H17D0.9900
C8—C91.497 (2)C18A—H18C0.9900
C8—H81.0000C18A—H18D0.9900
C9—C101.496 (2)
C7—N1—C8120.59 (11)C13—C12—C1460.53 (9)
C7—N1—H1A121.2 (11)N2—C12—H12116.1
C8—N1—H1A118.2 (11)C13—C12—H12116.1
C11—N2—C12120.85 (11)C14—C12—H12116.1
C11—N2—H2A120.0 (11)C12—C13—C1460.15 (9)
C12—N2—H2A118.2 (11)C12—C13—H13A117.8
C15—N3—C16122.3 (2)C14—C13—H13A117.8
C15—N3—C16A119.6 (5)C12—C13—H13B117.8
C15—N3—H3A119.2 (12)C14—C13—H13B117.8
C16—N3—H3A117.3 (12)H13A—C13—H13B114.9
C16A—N3—H3A121.2 (13)C12—C14—C1359.32 (9)
C2—C1—C6119.55 (12)C12—C14—H14A117.8
C2—C1—C7122.69 (12)C13—C14—H14A117.8
C6—C1—C7117.28 (11)C12—C14—H14B117.8
C1—C2—C3119.91 (12)C13—C14—H14B117.8
C1—C2—H2120.0H14A—C14—H14B115.0
C3—C2—H2120.0O3—C15—N3123.22 (13)
C4—C3—C2120.12 (12)O3—C15—C5119.98 (12)
C4—C3—C11121.33 (11)N3—C15—C5116.73 (11)
C2—C3—C11118.02 (12)N3—C16—C17117.2 (4)
C3—C4—C5120.37 (12)N3—C16—C18120.4 (4)
C3—C4—H4119.8C17—C16—C1859.9 (2)
C5—C4—H4119.8N3—C16—H16115.9
C6—C5—C4119.21 (12)C17—C16—H16115.9
C6—C5—C15121.63 (12)C18—C16—H16115.9
C4—C5—C15118.51 (11)C18—C17—C1660.1 (2)
C5—C6—C1120.82 (12)C18—C17—H17A117.8
C5—C6—H6119.6C16—C17—H17A117.8
C1—C6—H6119.6C18—C17—H17B117.8
O1—C7—N1122.67 (12)C16—C17—H17B117.8
O1—C7—C1119.86 (12)H17A—C17—H17B114.9
N1—C7—C1117.43 (11)C17—C18—C1660.0 (2)
N1—C8—C10118.44 (12)C17—C18—H18A117.8
N1—C8—C9120.37 (12)C16—C18—H18A117.8
C10—C8—C960.20 (10)C17—C18—H18B117.8
N1—C8—H8115.5C16—C18—H18B117.8
C10—C8—H8115.5H18A—C18—H18B114.9
C9—C8—H8115.5N3—C16A—C17A119.3 (12)
C10—C9—C859.51 (10)N3—C16A—C18A116.1 (9)
C10—C9—H9A117.8C17A—C16A—C18A59.6 (4)
C8—C9—H9A117.8N3—C16A—H16A116.6
C10—C9—H9B117.8C17A—C16A—H16A116.6
C8—C9—H9B117.8C18A—C16A—H16A116.6
H9A—C9—H9B115.0C18A—C17A—C16A60.3 (4)
C8—C10—C960.29 (10)C18A—C17A—H17C117.7
C8—C10—H10A117.7C16A—C17A—H17C117.7
C9—C10—H10A117.7C18A—C17A—H17D117.7
C8—C10—H10B117.7C16A—C17A—H17D117.7
C9—C10—H10B117.7H17C—C17A—H17D114.9
H10A—C10—H10B114.9C17A—C18A—C16A60.1 (4)
O2—C11—N2122.73 (12)C17A—C18A—H18C117.8
O2—C11—C3120.18 (11)C16A—C18A—H18C117.8
N2—C11—C3117.07 (11)C17A—C18A—H18D117.8
N2—C12—C13117.52 (11)C16A—C18A—H18D117.8
N2—C12—C14119.02 (11)H18C—C18A—H18D114.9
C6—C1—C2—C31.09 (19)C4—C3—C11—O2141.84 (13)
C7—C1—C2—C3173.04 (12)C2—C3—C11—O229.81 (18)
C1—C2—C3—C40.99 (19)C4—C3—C11—N237.08 (18)
C1—C2—C3—C11172.74 (11)C2—C3—C11—N2151.28 (12)
C2—C3—C4—C50.26 (19)C11—N2—C12—C13173.74 (12)
C11—C3—C4—C5171.21 (12)C11—N2—C12—C14103.94 (15)
C3—C4—C5—C61.40 (19)N2—C12—C13—C14109.50 (13)
C3—C4—C5—C15169.51 (12)N2—C12—C14—C13107.07 (13)
C4—C5—C6—C11.30 (19)C16—N3—C15—O30.5 (3)
C15—C5—C6—C1169.32 (12)C16A—N3—C15—O315.6 (5)
C2—C1—C6—C50.06 (19)C16—N3—C15—C5176.5 (2)
C7—C1—C6—C5172.32 (12)C16A—N3—C15—C5161.4 (5)
C8—N1—C7—O14.0 (2)C6—C5—C15—O3142.42 (13)
C8—N1—C7—C1173.74 (11)C4—C5—C15—O328.26 (18)
C2—C1—C7—O1149.28 (13)C6—C5—C15—N334.62 (18)
C6—C1—C7—O122.83 (18)C4—C5—C15—N3154.70 (12)
C2—C1—C7—N128.51 (18)C15—N3—C16—C17132.1 (4)
C6—C1—C7—N1159.38 (12)C15—N3—C16—C18158.6 (3)
C7—N1—C8—C10171.59 (13)N3—C16—C17—C18111.1 (4)
C7—N1—C8—C9118.15 (15)N3—C16—C18—C17105.8 (4)
N1—C8—C9—C10107.48 (14)C15—N3—C16A—C17A167.5 (7)
N1—C8—C10—C9110.63 (14)C15—N3—C16A—C18A124.3 (8)
C12—N2—C11—O22.3 (2)N3—C16A—C17A—C18A104.8 (9)
C12—N2—C11—C3176.63 (12)N3—C16A—C18A—C17A110.2 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.90 (1)1.96 (1)2.8471 (15)168 (1)
N2—H2A···O2ii0.89 (1)1.96 (1)2.8253 (13)165 (2)
N3—H3A···O1ii0.89 (1)2.04 (1)2.8937 (14)159 (1)
C2—H2···O3i0.952.583.3485 (17)139
C14—H14A···O1iii0.992.553.2839 (17)131
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x, y+3/2, z1/2.
 

Acknowledgements

Open Access Funding by the Publication Fund of the Technische Universität Bergakademie Freiberg is gratefully acknowledged.

References

First citationBauer, M. R., Di Fruscia, P., Lucas, S. C. C., Michaelides, I. N., Nelson, J. E., Storer, R. I. & Whitehurst, B. C. (2021). RSC Med. Chem. 12, 448–471.  CrossRef CAS PubMed Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCantekin, S., de Greef, T. F. A. & Palmans, A. R. A. (2012). Chem. Soc. Rev. 41, 6125–6137.  CrossRef CAS PubMed Google Scholar
First citationChen, D. Y.-K., Pouwer, R. H. & Richard, J.-A. (2012). Chem. Soc. Rev. 41, 4631–4642.  CrossRef CAS PubMed Google Scholar
First citationDesiraju, G. R. (2005). Chem. Commun. pp. 2995–3001.  Web of Science CrossRef Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond. Oxford University Press.  Google Scholar
First citationEbersbach, B., Seichter, W., Schwarzer, A. & Mazik, M. (2023). CrystEngComm, 25, 137–153.  CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHowe, R. C. T., Smalley, A. P., Guttenplan, A. P. M., Doggett, M. W. R., Eddleston, M. D., Tan, J. C. & Lloyd, G. O. (2013). Chem. Commun. 49, 4268–4270.  CrossRef CAS Google Scholar
First citationKhan, I. U., Javaid, R., Sharif, S. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1687.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKulkarni, C., Meijer, E. W. & Palmans, A. R. A. (2017). Acc. Chem. Res. 50, 1928–1936.  CrossRef CAS PubMed Google Scholar
First citationLi, B., Qiu, W., Yap, G. P. A., Dory, Y. L. & Claverie, J. P. (2024). Adv. Funct. Mater. 34, 2311964.  CSD CrossRef Google Scholar
First citationMazik, M., Bandmann, H. & Sicking, W. (2000). Angew. Chem. Int. Ed. 39, 551–554.  CrossRef CAS Google Scholar
First citationMazik, M., Bläser, D. & Boese, R. (1999). Tetrahedron, 55, 12771–12782.  Web of Science CSD CrossRef CAS Google Scholar
First citationMazik, M., Bläser, D. & Boese, R. (2005). J. Org. Chem. 70, 9115–9122.  CSD CrossRef PubMed CAS Google Scholar
First citationMazik, M. & Cavga, H. (2007). J. Org. Chem. 72, 831–838.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMazik, M., Hartmann, A. & Jones, P. G. (2010). Eur. J. Org. Chem. 2010, 458–463.  CSD CrossRef Google Scholar
First citationMazik, M., Kuschel, M. & Sicking, W. (2006). Org. Lett. 8, 855–858.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMazik, M., Radunz, W. & Boese, R. (2004). J. Org. Chem. 69, 7448–7462.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMazik, M. & Sicking, W. (2001). Chem. Eur. J. 7, 664–670.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMazik, M. & Sicking, W. (2004). Tetrahedron Lett. 45, 3117–3121.  Web of Science CSD CrossRef CAS Google Scholar
First citationReissig, H.-U. & Zimmer, R. (2003). Chem. Rev. 103, 1151–1196.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStals, P. J. M., Haveman, J. F., Palmans, A. R. A. & Schenning, A. P. H. J. (2009). J. Chem. Educ. 86, 230–233.  CrossRef CAS Google Scholar
First citationStapf, M., Seichter, W. & Mazik, M. (2020). Eur. J. Org. Chem. pp. 4900–4915.  Web of Science CSD CrossRef Google Scholar
First citationTalele, T. T. (2016). J. Med. Chem. 59, 8712–8756.  CrossRef CAS PubMed Google Scholar
First citationTong, H., Xu, X., Zhu, Z. & Liu, B. (2023). Z. Kristallogr. New Cryst. Struct. 238, 1175–1176.  CSD CrossRef Google Scholar
First citationVeld, M. A. J., Haveman, D., Palmans, A. R. A. & Meijer, E. W. (2011). Soft Matter, 7, 524–531.  CrossRef CAS Google Scholar
First citationWang, Z., Yang, W., Liu, G., Müller, A. J., Zhao, Y., Dong, X., Wang, K. & Wang, D. (2017). J. Polym. Sci. B Polym. Phys. 55, 418–424.  CSD CrossRef CAS Google Scholar
First citationWu, W., Lin, Z. & Jiang, H. (2018). Org. Biomol. Chem. 16, 7315–7329.  CrossRef CAS PubMed Google Scholar
First citationZhang, J., Guo, S., Guo, Y. & Yang, Y. (2022a). Z. Kristallogr. New Cryst. Struct. 237, 551–553.  CSD CrossRef CAS Google Scholar
First citationZhang, J., Zhao, X. & Cai, C. (2022b). Z. Kristallogr. New Cryst. Struct. 237, 543–545.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds