research communications
N,N′,N′′-tricyclopropylbenzene-1,3,5-tricarboxamide
ofaInstitut für Organische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, 09596 Freiberg/Sachsen, Germany, and bClinical Research Products Management Center (CRPMC) Bioservices, Thermo Fisher Scientific, 1055 First Street, Rockville/Maryland 20850, USA
*Correspondence e-mail: Monika.Mazik@chemie.tu-freiberg.de
The title compound, C18H21N3O3, was prepared from 1,3,5-benzenetricarbonyl trichloride and cyclopropylamine. Its was solved in the monoclinic P21/c. In the crystal, the three amide groups of the molecule are inclined at angles of 26.5 (1), 36.9 (1) and 37.8 (1)° with respect to the plane of the benzene ring. The molecules are linked by N—H⋯O hydrogen bonds, forming two-dimensional supramolecular aggregates that extend parallel to the crystallographic ab plane and are further connected by C—H⋯O contacts. As a result of the supramolecular interactions, a propeller-like conformation of the title molecule can be observed.
Keywords: crystal structure; hydrogen bonding; N—H⋯O bonds; C—H⋯O interaction; benzene-1,3,5-tricarboxamide; cycloalkyl unit.
CCDC reference: 2389250
1. Chemical context
The cyclopropane ring represents a building block of numerous natural products and has also been recognized as a valuable structural motif in drug design (Reissig & Zimmer, 2003; Chen et al., 2012; Talele, 2016; Wu et al., 2018; Bauer et al., 2021). Moreover, the cyclopropyl group has also been used in supramolecular chemistry, for example in the construction of artificial receptors (Stapf et al., 2020). In this paper, we describe the of a compound bearing N-cyclopropylcarbamoyl groups, which belongs to the class of benzene-1,3,5-tricarboxamides. Other representatives of this class of compounds, e.g. those with N-(pyridin-2-yl)carbamoyl or N-(1,8-naphthyridin-2-yl)carbamoyl groups, were found to have interesting binding properties towards (Mazik et al., 2000, 2004, 2006; Mazik & Sicking, 2001, 2004; Mazik & Cavga, 2007). It is worth noting that various supramolecular architectures based on benzene-1,3,5-tricarboxamide have been the subject of intensive research (Cantekin et al., 2012). The self-aggregation processes of benzene-1,3,5-tricarboxamides have been studied particularly intensively and have led to the development of new hydrogels, hydrogen-bonded organic frameworks (HOFs) and other systems with favourable properties (Stals et al., 2009; Veld et al., 2011; Howe et al., 2013; Kulkarni et al., 2017; Li et al., 2024).
2. Structural commentary
The 18H21N3O3, was solved in the monoclinic P21/c with the containing one molecule. One of the cyclopropyl groups is disordered over two positions (s. o. f. 0.70/0.30). The three amide units of the molecule are inclined at angles of 26.5 (1), 36.9 (1) and 37.8 (1)° with respect to the plane of the central benzene ring. This twisting, which is due to supramolecular interactions, gives the threefold-substituted benzene derivative a propeller-like conformation (Fig. 1).
of the title compound, C3. Supramolecular features
In the d(H⋯O) 1.96 (1)–2.04 (1) Å, 159 (1)–168 (1)°; Table 1] to form two-dimensional supramolecular networks extending parallel to the crystallographic ab plane (Figs. 2 and 3). Within these aggregates, the oxygen atom O3 participates in the formation of a C—H⋯O bond [d(H⋯O) 2.58 Å, 139°; for other examples of C—H⋯O bonds, see: Desiraju & Steiner, 1999; Desiraju, 2005; Mazik et al., 1999, 2005, 2010; Ebersbach et al., 2023] to the arene hydrogen H2 of an adjacent molecule. Association of the 2D networks is accomplished by C—H⋯O bonds involving methylene hydrogen H14A and the oxygen O1 [d(H⋯O) 2.55 Å, 131°].
of the title compound, the molecules are connected by N—H⋯O bonds [4. Database survey
A search in the Cambridge Structural Database (CSD, Version 5.45, update June 2024; Groom et al., 2016) for benzene derivatives containing at least one N-cycloalkylcarbamoyl group with a cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl ring gave nineteen hits. Among these are fifteen N-cycloalkylbenzamides, which also have other substituents on the benzene ring, such as hydroxy, methoxy or halogeno groups, making comparison difficult. For example, compounds bearing both hydroxy and methoxy groups and differing in ring size comprise N-cyclopropyl-3-hydroxy-4-methoxybenzamide (HOBGOY; Tong et al., 2023), N-cyclopentyl-3-hydroxy-4-methoxybenzamide (DELLUF; Zhang et al., 2022a) and N-cyclohexyl-3-hydroxy-4-methoxybenzamide (DELCUW; Zhang et al., 2022b). The of the compound lacking further substituents on the benzene ring is only known in the case of the cyclohexyl unit (QUZJAX; Khan et al., 2010). The same applies to compounds that have two or three carboxamide units on the benzene ring; these include N,N′-di(cyclohexyl)benzene-1,4-dicarboxamide (DAVQUP01; Wang et al., 2017) and N,N′,N′′-tris(cyclohexyl)benzene-1,3,5-tricarboxamide (CIYYAO; Li et al., 2024). The latter, tripodal molecule is an analogue of the title compound, but has a markedly different It consists of columnar domains extending in the direction of the crystallographic b axis, in which the molecules are arranged in layers with a stacking of the central benzene rings. Neighbouring molecules are mainly linked by three N—H⋯O=C hydrogen bonds. The periphery of the domains is formed by the cyclohexyl moieties, so that they are only connected to each other via van der Waals interactions.
5. Synthesis and crystallization
A solution of 1,3,5-benzenetricarbonyl trichloride (0.20 g, 0.75 mmol) in CH2Cl2 (10 mL) was added dropwise to a mixture of cyclopropylamine (0.18 mL, 0.15 g, 2.59 mmol) and triethylamine (0.34 mL, 0.25 g, 2.45 mmol) in CH2Cl2 (15 mL). After stirring at room temperature for 12 h, the solvent was evaporated under reduced pressure. The remaining white solid was washed several times with water, again suspended in CH2Cl2, filtered off and dried. Yield: 0.19 g (77%). 1H NMR (500 MHz, DMSO-d6, ppm): δ = 0.58–0.61 (m, 6H, CH2), 0.70–0.74 (m, 6H, CH2), 2.85–2.91 (m, 3H, CH), 8.31 (s, 3H, aryl), 8.65 (d, 3H, J = 4.1 Hz, NH). 13C NMR (125 MHz, DMSO-d6, ppm): δ = 5.7 (CH2), 23.2 (CH), 128.4 (aryl), 134.8 (aryl), 166.8 (C=O). MS (ESI): m/z calculated for C18H22N3O3: 328.2 [M + H]+, found 328.1. Single crystals suitable for X-ray diffraction were obtained by crystallization of the title compound from DMSO.
6. Refinement
Crystal data, data collection and structure . The non-hydrogen atoms were refined anisotropically. All C-bound hydrogen atoms were positioned geometrically and refined isotropically using the riding model with C—H = 0.99–1.00 Å (cycloalkyl), 0.95 Å (aryl); Uiso(H) = 1.2–1.5Ueq(C). The positions of the N—H hydrogens could be located in difference-Fourier maps and were refined to a target value of 0.90 Å [Uiso(H) = 1.2Ueq(N)].
details are summarized in Table 2Supporting information
CCDC reference: 2389250
https://doi.org/10.1107/S2056989024009800/ex2087sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024009800/ex2087Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024009800/ex2087Isup3.cml
C18H21N3O3 | F(000) = 696 |
Mr = 327.38 | Dx = 1.338 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 4.9435 (2) Å | Cell parameters from 4588 reflections |
b = 14.2798 (5) Å | θ = 2.9–28.5° |
c = 23.1247 (9) Å | µ = 0.09 mm−1 |
β = 95.512 (2)° | T = 100 K |
V = 1624.87 (11) Å3 | Needle, colourless |
Z = 4 | 0.47 × 0.11 × 0.08 mm |
Bruker CCD area detector diffractometer | 3059 reflections with I > 2σ(I) |
phi and ω scans | Rint = 0.028 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 27.6°, θmin = 1.7° |
Tmin = 0.958, Tmax = 0.993 | h = −6→6 |
15717 measured reflections | k = −18→18 |
3779 independent reflections | l = −30→30 |
Refinement on F2 | Primary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.040 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.101 | w = 1/[σ2(Fo2) + (0.043P)2 + 0.8263P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
3779 reflections | Δρmax = 0.36 e Å−3 |
257 parameters | Δρmin = −0.22 e Å−3 |
63 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | −0.31098 (19) | 0.74373 (6) | 0.39186 (4) | 0.0168 (2) | |
O2 | −0.36865 (18) | 0.74689 (7) | 0.12301 (4) | 0.0208 (2) | |
O3 | 0.4118 (2) | 0.48708 (7) | 0.26455 (4) | 0.0226 (2) | |
N1 | −0.4171 (2) | 0.86911 (8) | 0.33459 (5) | 0.0159 (2) | |
H1A | −0.396 (3) | 0.9006 (11) | 0.3017 (5) | 0.027 (4)* | |
N2 | 0.0624 (2) | 0.72544 (8) | 0.10159 (5) | 0.0156 (2) | |
H2A | 0.238 (2) | 0.7278 (12) | 0.1146 (7) | 0.024 (4)* | |
N3 | 0.5354 (2) | 0.55827 (8) | 0.35031 (5) | 0.0198 (3) | |
H3A | 0.550 (3) | 0.6129 (8) | 0.3690 (7) | 0.029 (5)* | |
C1 | −0.1216 (3) | 0.74915 (9) | 0.30131 (6) | 0.0138 (3) | |
C2 | −0.1799 (3) | 0.76665 (9) | 0.24228 (6) | 0.0144 (3) | |
H2 | −0.3183 | 0.8101 | 0.2294 | 0.017* | |
C3 | −0.0353 (3) | 0.72041 (9) | 0.20210 (5) | 0.0138 (3) | |
C4 | 0.1643 (3) | 0.65575 (9) | 0.22084 (6) | 0.0145 (3) | |
H4 | 0.2630 | 0.6246 | 0.1933 | 0.017* | |
C5 | 0.2204 (3) | 0.63643 (9) | 0.27977 (6) | 0.0140 (3) | |
C6 | 0.0787 (3) | 0.68403 (9) | 0.31969 (6) | 0.0142 (3) | |
H6 | 0.1187 | 0.6721 | 0.3600 | 0.017* | |
C7 | −0.2892 (3) | 0.78815 (9) | 0.34647 (6) | 0.0141 (3) | |
C8 | −0.6025 (3) | 0.90605 (9) | 0.37302 (6) | 0.0172 (3) | |
H8 | −0.6957 | 0.8585 | 0.3959 | 0.021* | |
C9 | −0.5473 (3) | 0.99839 (11) | 0.40248 (7) | 0.0257 (3) | |
H9A | −0.6011 | 1.0060 | 0.4424 | 0.031* | |
H9B | −0.3803 | 1.0324 | 0.3946 | 0.031* | |
C10 | −0.7684 (3) | 0.98916 (11) | 0.35391 (7) | 0.0242 (3) | |
H10A | −0.9587 | 0.9913 | 0.3638 | 0.029* | |
H10B | −0.7380 | 1.0177 | 0.3161 | 0.029* | |
C11 | −0.1271 (3) | 0.73253 (9) | 0.13884 (6) | 0.0145 (3) | |
C12 | −0.0096 (3) | 0.73106 (10) | 0.03993 (5) | 0.0157 (3) | |
H12 | −0.1448 | 0.7804 | 0.0266 | 0.019* | |
C13 | 0.2084 (3) | 0.71258 (10) | 0.00118 (6) | 0.0198 (3) | |
H13A | 0.3907 | 0.6955 | 0.0196 | 0.024* | |
H13B | 0.2087 | 0.7505 | −0.0346 | 0.024* | |
C14 | −0.0184 (3) | 0.64273 (10) | 0.00452 (6) | 0.0194 (3) | |
H14A | −0.1573 | 0.6381 | −0.0292 | 0.023* | |
H14B | 0.0248 | 0.5830 | 0.0251 | 0.023* | |
C15 | 0.4014 (3) | 0.55474 (9) | 0.29743 (6) | 0.0157 (3) | |
C16 | 0.7030 (9) | 0.4825 (4) | 0.37374 (17) | 0.0243 (9) | 0.700 (7) |
H16 | 0.7408 | 0.4319 | 0.3457 | 0.029* | 0.700 (7) |
C17 | 0.6653 (7) | 0.4516 (3) | 0.43355 (16) | 0.0279 (7) | 0.700 (7) |
H17A | 0.5344 | 0.4867 | 0.4551 | 0.034* | 0.700 (7) |
H17B | 0.6748 | 0.3836 | 0.4418 | 0.034* | 0.700 (7) |
C18 | 0.9190 (7) | 0.4996 (3) | 0.42163 (18) | 0.0384 (8) | 0.700 (7) |
H18A | 1.0868 | 0.4616 | 0.4225 | 0.046* | 0.700 (7) |
H18B | 0.9464 | 0.5647 | 0.4357 | 0.046* | 0.700 (7) |
C16A | 0.6466 (18) | 0.4719 (12) | 0.3775 (4) | 0.0234 (15) | 0.300 (7) |
H16A | 0.5688 | 0.4117 | 0.3613 | 0.028* | 0.300 (7) |
C17A | 0.7441 (19) | 0.4723 (7) | 0.4401 (3) | 0.0296 (14) | 0.300 (7) |
H17C | 0.7222 | 0.5308 | 0.4621 | 0.036* | 0.300 (7) |
H17D | 0.7239 | 0.4139 | 0.4623 | 0.036* | 0.300 (7) |
C18A | 0.9421 (12) | 0.4725 (5) | 0.3963 (4) | 0.0313 (13) | 0.300 (7) |
H18C | 1.0456 | 0.4142 | 0.3911 | 0.038* | 0.300 (7) |
H18D | 1.0438 | 0.5311 | 0.3910 | 0.038* | 0.300 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0226 (5) | 0.0171 (5) | 0.0109 (4) | 0.0015 (4) | 0.0031 (4) | 0.0008 (4) |
O2 | 0.0123 (5) | 0.0349 (6) | 0.0150 (5) | 0.0026 (4) | 0.0010 (4) | 0.0009 (4) |
O3 | 0.0308 (6) | 0.0183 (5) | 0.0184 (5) | 0.0057 (4) | 0.0001 (4) | −0.0049 (4) |
N1 | 0.0197 (6) | 0.0160 (5) | 0.0129 (5) | 0.0025 (4) | 0.0056 (4) | 0.0011 (4) |
N2 | 0.0113 (5) | 0.0254 (6) | 0.0102 (5) | 0.0005 (4) | 0.0008 (4) | 0.0002 (4) |
N3 | 0.0256 (6) | 0.0165 (6) | 0.0161 (6) | 0.0064 (5) | −0.0035 (5) | −0.0024 (5) |
C1 | 0.0147 (6) | 0.0131 (6) | 0.0138 (6) | −0.0020 (5) | 0.0027 (5) | −0.0017 (5) |
C2 | 0.0137 (6) | 0.0150 (6) | 0.0144 (6) | 0.0000 (5) | 0.0006 (5) | 0.0006 (5) |
C3 | 0.0132 (6) | 0.0168 (6) | 0.0114 (6) | −0.0028 (5) | 0.0011 (5) | −0.0005 (5) |
C4 | 0.0132 (6) | 0.0170 (6) | 0.0133 (6) | −0.0008 (5) | 0.0023 (5) | −0.0026 (5) |
C5 | 0.0139 (6) | 0.0138 (6) | 0.0139 (6) | −0.0008 (5) | −0.0001 (5) | −0.0006 (5) |
C6 | 0.0165 (6) | 0.0152 (6) | 0.0107 (6) | −0.0017 (5) | 0.0001 (5) | −0.0002 (5) |
C7 | 0.0151 (6) | 0.0152 (6) | 0.0119 (6) | −0.0013 (5) | 0.0004 (5) | −0.0021 (5) |
C8 | 0.0181 (6) | 0.0176 (7) | 0.0168 (7) | 0.0019 (5) | 0.0070 (5) | 0.0003 (5) |
C9 | 0.0220 (7) | 0.0275 (8) | 0.0287 (8) | 0.0001 (6) | 0.0075 (6) | −0.0113 (6) |
C10 | 0.0227 (7) | 0.0253 (7) | 0.0255 (8) | 0.0083 (6) | 0.0068 (6) | 0.0026 (6) |
C11 | 0.0148 (6) | 0.0166 (6) | 0.0120 (6) | −0.0005 (5) | 0.0013 (5) | −0.0002 (5) |
C12 | 0.0157 (6) | 0.0212 (7) | 0.0103 (6) | 0.0015 (5) | 0.0013 (5) | 0.0009 (5) |
C13 | 0.0192 (7) | 0.0273 (7) | 0.0132 (6) | −0.0021 (5) | 0.0039 (5) | −0.0022 (5) |
C14 | 0.0227 (7) | 0.0209 (7) | 0.0143 (6) | −0.0018 (5) | −0.0004 (5) | −0.0005 (5) |
C15 | 0.0176 (6) | 0.0148 (6) | 0.0150 (6) | 0.0009 (5) | 0.0031 (5) | −0.0003 (5) |
C16 | 0.0310 (18) | 0.0239 (19) | 0.0174 (11) | 0.0150 (16) | −0.0016 (12) | 0.0002 (10) |
C17 | 0.0242 (15) | 0.0277 (15) | 0.0317 (14) | 0.0028 (11) | 0.0015 (11) | 0.0114 (11) |
C18 | 0.0327 (14) | 0.0422 (17) | 0.0365 (17) | −0.0049 (12) | −0.0162 (13) | 0.0200 (13) |
C16A | 0.022 (3) | 0.019 (3) | 0.028 (3) | 0.003 (2) | −0.003 (2) | 0.002 (2) |
C17A | 0.032 (3) | 0.029 (3) | 0.027 (2) | 0.010 (2) | −0.002 (2) | 0.007 (2) |
C18A | 0.022 (2) | 0.027 (2) | 0.044 (3) | 0.0003 (19) | 0.001 (2) | 0.015 (2) |
O1—C7 | 1.2400 (16) | C9—H9A | 0.9900 |
O2—C11 | 1.2321 (16) | C9—H9B | 0.9900 |
O3—C15 | 1.2337 (16) | C10—H10A | 0.9900 |
N1—C7 | 1.3334 (17) | C10—H10B | 0.9900 |
N1—C8 | 1.4369 (16) | C12—C13 | 1.4896 (18) |
N1—H1A | 0.897 (9) | C12—C14 | 1.5023 (19) |
N2—C11 | 1.3361 (16) | C12—H12 | 1.0000 |
N2—C12 | 1.4381 (16) | C13—C14 | 1.5080 (19) |
N2—H2A | 0.893 (9) | C13—H13A | 0.9900 |
N3—C15 | 1.3346 (17) | C13—H13B | 0.9900 |
N3—C16 | 1.437 (6) | C14—H14A | 0.9900 |
N3—C16A | 1.467 (15) | C14—H14B | 0.9900 |
N3—H3A | 0.891 (9) | C16—C17 | 1.481 (5) |
C1—C2 | 1.3903 (18) | C16—C18 | 1.483 (4) |
C1—C6 | 1.3948 (18) | C16—H16 | 1.0000 |
C1—C7 | 1.5010 (17) | C17—C18 | 1.479 (4) |
C2—C3 | 1.3921 (18) | C17—H17A | 0.9900 |
C2—H2 | 0.9500 | C17—H17B | 0.9900 |
C3—C4 | 1.3899 (18) | C18—H18A | 0.9900 |
C3—C11 | 1.4996 (18) | C18—H18B | 0.9900 |
C4—C5 | 1.3921 (18) | C16A—C17A | 1.481 (9) |
C4—H4 | 0.9500 | C16A—C18A | 1.483 (8) |
C5—C6 | 1.3889 (18) | C16A—H16A | 1.0000 |
C5—C15 | 1.5026 (18) | C17A—C18A | 1.474 (8) |
C6—H6 | 0.9500 | C17A—H17C | 0.9900 |
C8—C10 | 1.4854 (19) | C17A—H17D | 0.9900 |
C8—C9 | 1.497 (2) | C18A—H18C | 0.9900 |
C8—H8 | 1.0000 | C18A—H18D | 0.9900 |
C9—C10 | 1.496 (2) | ||
C7—N1—C8 | 120.59 (11) | C13—C12—C14 | 60.53 (9) |
C7—N1—H1A | 121.2 (11) | N2—C12—H12 | 116.1 |
C8—N1—H1A | 118.2 (11) | C13—C12—H12 | 116.1 |
C11—N2—C12 | 120.85 (11) | C14—C12—H12 | 116.1 |
C11—N2—H2A | 120.0 (11) | C12—C13—C14 | 60.15 (9) |
C12—N2—H2A | 118.2 (11) | C12—C13—H13A | 117.8 |
C15—N3—C16 | 122.3 (2) | C14—C13—H13A | 117.8 |
C15—N3—C16A | 119.6 (5) | C12—C13—H13B | 117.8 |
C15—N3—H3A | 119.2 (12) | C14—C13—H13B | 117.8 |
C16—N3—H3A | 117.3 (12) | H13A—C13—H13B | 114.9 |
C16A—N3—H3A | 121.2 (13) | C12—C14—C13 | 59.32 (9) |
C2—C1—C6 | 119.55 (12) | C12—C14—H14A | 117.8 |
C2—C1—C7 | 122.69 (12) | C13—C14—H14A | 117.8 |
C6—C1—C7 | 117.28 (11) | C12—C14—H14B | 117.8 |
C1—C2—C3 | 119.91 (12) | C13—C14—H14B | 117.8 |
C1—C2—H2 | 120.0 | H14A—C14—H14B | 115.0 |
C3—C2—H2 | 120.0 | O3—C15—N3 | 123.22 (13) |
C4—C3—C2 | 120.12 (12) | O3—C15—C5 | 119.98 (12) |
C4—C3—C11 | 121.33 (11) | N3—C15—C5 | 116.73 (11) |
C2—C3—C11 | 118.02 (12) | N3—C16—C17 | 117.2 (4) |
C3—C4—C5 | 120.37 (12) | N3—C16—C18 | 120.4 (4) |
C3—C4—H4 | 119.8 | C17—C16—C18 | 59.9 (2) |
C5—C4—H4 | 119.8 | N3—C16—H16 | 115.9 |
C6—C5—C4 | 119.21 (12) | C17—C16—H16 | 115.9 |
C6—C5—C15 | 121.63 (12) | C18—C16—H16 | 115.9 |
C4—C5—C15 | 118.51 (11) | C18—C17—C16 | 60.1 (2) |
C5—C6—C1 | 120.82 (12) | C18—C17—H17A | 117.8 |
C5—C6—H6 | 119.6 | C16—C17—H17A | 117.8 |
C1—C6—H6 | 119.6 | C18—C17—H17B | 117.8 |
O1—C7—N1 | 122.67 (12) | C16—C17—H17B | 117.8 |
O1—C7—C1 | 119.86 (12) | H17A—C17—H17B | 114.9 |
N1—C7—C1 | 117.43 (11) | C17—C18—C16 | 60.0 (2) |
N1—C8—C10 | 118.44 (12) | C17—C18—H18A | 117.8 |
N1—C8—C9 | 120.37 (12) | C16—C18—H18A | 117.8 |
C10—C8—C9 | 60.20 (10) | C17—C18—H18B | 117.8 |
N1—C8—H8 | 115.5 | C16—C18—H18B | 117.8 |
C10—C8—H8 | 115.5 | H18A—C18—H18B | 114.9 |
C9—C8—H8 | 115.5 | N3—C16A—C17A | 119.3 (12) |
C10—C9—C8 | 59.51 (10) | N3—C16A—C18A | 116.1 (9) |
C10—C9—H9A | 117.8 | C17A—C16A—C18A | 59.6 (4) |
C8—C9—H9A | 117.8 | N3—C16A—H16A | 116.6 |
C10—C9—H9B | 117.8 | C17A—C16A—H16A | 116.6 |
C8—C9—H9B | 117.8 | C18A—C16A—H16A | 116.6 |
H9A—C9—H9B | 115.0 | C18A—C17A—C16A | 60.3 (4) |
C8—C10—C9 | 60.29 (10) | C18A—C17A—H17C | 117.7 |
C8—C10—H10A | 117.7 | C16A—C17A—H17C | 117.7 |
C9—C10—H10A | 117.7 | C18A—C17A—H17D | 117.7 |
C8—C10—H10B | 117.7 | C16A—C17A—H17D | 117.7 |
C9—C10—H10B | 117.7 | H17C—C17A—H17D | 114.9 |
H10A—C10—H10B | 114.9 | C17A—C18A—C16A | 60.1 (4) |
O2—C11—N2 | 122.73 (12) | C17A—C18A—H18C | 117.8 |
O2—C11—C3 | 120.18 (11) | C16A—C18A—H18C | 117.8 |
N2—C11—C3 | 117.07 (11) | C17A—C18A—H18D | 117.8 |
N2—C12—C13 | 117.52 (11) | C16A—C18A—H18D | 117.8 |
N2—C12—C14 | 119.02 (11) | H18C—C18A—H18D | 114.9 |
C6—C1—C2—C3 | −1.09 (19) | C4—C3—C11—O2 | 141.84 (13) |
C7—C1—C2—C3 | −173.04 (12) | C2—C3—C11—O2 | −29.81 (18) |
C1—C2—C3—C4 | 0.99 (19) | C4—C3—C11—N2 | −37.08 (18) |
C1—C2—C3—C11 | 172.74 (11) | C2—C3—C11—N2 | 151.28 (12) |
C2—C3—C4—C5 | 0.26 (19) | C11—N2—C12—C13 | −173.74 (12) |
C11—C3—C4—C5 | −171.21 (12) | C11—N2—C12—C14 | −103.94 (15) |
C3—C4—C5—C6 | −1.40 (19) | N2—C12—C13—C14 | 109.50 (13) |
C3—C4—C5—C15 | 169.51 (12) | N2—C12—C14—C13 | −107.07 (13) |
C4—C5—C6—C1 | 1.30 (19) | C16—N3—C15—O3 | −0.5 (3) |
C15—C5—C6—C1 | −169.32 (12) | C16A—N3—C15—O3 | −15.6 (5) |
C2—C1—C6—C5 | −0.06 (19) | C16—N3—C15—C5 | 176.5 (2) |
C7—C1—C6—C5 | 172.32 (12) | C16A—N3—C15—C5 | 161.4 (5) |
C8—N1—C7—O1 | −4.0 (2) | C6—C5—C15—O3 | 142.42 (13) |
C8—N1—C7—C1 | 173.74 (11) | C4—C5—C15—O3 | −28.26 (18) |
C2—C1—C7—O1 | 149.28 (13) | C6—C5—C15—N3 | −34.62 (18) |
C6—C1—C7—O1 | −22.83 (18) | C4—C5—C15—N3 | 154.70 (12) |
C2—C1—C7—N1 | −28.51 (18) | C15—N3—C16—C17 | −132.1 (4) |
C6—C1—C7—N1 | 159.38 (12) | C15—N3—C16—C18 | 158.6 (3) |
C7—N1—C8—C10 | −171.59 (13) | N3—C16—C17—C18 | −111.1 (4) |
C7—N1—C8—C9 | 118.15 (15) | N3—C16—C18—C17 | 105.8 (4) |
N1—C8—C9—C10 | 107.48 (14) | C15—N3—C16A—C17A | −167.5 (7) |
N1—C8—C10—C9 | −110.63 (14) | C15—N3—C16A—C18A | 124.3 (8) |
C12—N2—C11—O2 | −2.3 (2) | N3—C16A—C17A—C18A | −104.8 (9) |
C12—N2—C11—C3 | 176.63 (12) | N3—C16A—C18A—C17A | 110.2 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O3i | 0.90 (1) | 1.96 (1) | 2.8471 (15) | 168 (1) |
N2—H2A···O2ii | 0.89 (1) | 1.96 (1) | 2.8253 (13) | 165 (2) |
N3—H3A···O1ii | 0.89 (1) | 2.04 (1) | 2.8937 (14) | 159 (1) |
C2—H2···O3i | 0.95 | 2.58 | 3.3485 (17) | 139 |
C14—H14A···O1iii | 0.99 | 2.55 | 3.2839 (17) | 131 |
Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) x+1, y, z; (iii) x, −y+3/2, z−1/2. |
Acknowledgements
Open Access Funding by the Publication Fund of the Technische Universität Bergakademie Freiberg is gratefully acknowledged.
References
Bauer, M. R., Di Fruscia, P., Lucas, S. C. C., Michaelides, I. N., Nelson, J. E., Storer, R. I. & Whitehurst, B. C. (2021). RSC Med. Chem. 12, 448–471. CrossRef CAS PubMed Google Scholar
Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cantekin, S., de Greef, T. F. A. & Palmans, A. R. A. (2012). Chem. Soc. Rev. 41, 6125–6137. CrossRef CAS PubMed Google Scholar
Chen, D. Y.-K., Pouwer, R. H. & Richard, J.-A. (2012). Chem. Soc. Rev. 41, 4631–4642. CrossRef CAS PubMed Google Scholar
Desiraju, G. R. (2005). Chem. Commun. pp. 2995–3001. Web of Science CrossRef Google Scholar
Desiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond. Oxford University Press. Google Scholar
Ebersbach, B., Seichter, W., Schwarzer, A. & Mazik, M. (2023). CrystEngComm, 25, 137–153. CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Howe, R. C. T., Smalley, A. P., Guttenplan, A. P. M., Doggett, M. W. R., Eddleston, M. D., Tan, J. C. & Lloyd, G. O. (2013). Chem. Commun. 49, 4268–4270. CrossRef CAS Google Scholar
Khan, I. U., Javaid, R., Sharif, S. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1687. Web of Science CSD CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Kulkarni, C., Meijer, E. W. & Palmans, A. R. A. (2017). Acc. Chem. Res. 50, 1928–1936. CrossRef CAS PubMed Google Scholar
Li, B., Qiu, W., Yap, G. P. A., Dory, Y. L. & Claverie, J. P. (2024). Adv. Funct. Mater. 34, 2311964. CSD CrossRef Google Scholar
Mazik, M., Bandmann, H. & Sicking, W. (2000). Angew. Chem. Int. Ed. 39, 551–554. CrossRef CAS Google Scholar
Mazik, M., Bläser, D. & Boese, R. (1999). Tetrahedron, 55, 12771–12782. Web of Science CSD CrossRef CAS Google Scholar
Mazik, M., Bläser, D. & Boese, R. (2005). J. Org. Chem. 70, 9115–9122. CSD CrossRef PubMed CAS Google Scholar
Mazik, M. & Cavga, H. (2007). J. Org. Chem. 72, 831–838. Web of Science CSD CrossRef PubMed CAS Google Scholar
Mazik, M., Hartmann, A. & Jones, P. G. (2010). Eur. J. Org. Chem. 2010, 458–463. CSD CrossRef Google Scholar
Mazik, M., Kuschel, M. & Sicking, W. (2006). Org. Lett. 8, 855–858. Web of Science CrossRef PubMed CAS Google Scholar
Mazik, M., Radunz, W. & Boese, R. (2004). J. Org. Chem. 69, 7448–7462. Web of Science CSD CrossRef PubMed CAS Google Scholar
Mazik, M. & Sicking, W. (2001). Chem. Eur. J. 7, 664–670. Web of Science CrossRef PubMed CAS Google Scholar
Mazik, M. & Sicking, W. (2004). Tetrahedron Lett. 45, 3117–3121. Web of Science CSD CrossRef CAS Google Scholar
Reissig, H.-U. & Zimmer, R. (2003). Chem. Rev. 103, 1151–1196. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stals, P. J. M., Haveman, J. F., Palmans, A. R. A. & Schenning, A. P. H. J. (2009). J. Chem. Educ. 86, 230–233. CrossRef CAS Google Scholar
Stapf, M., Seichter, W. & Mazik, M. (2020). Eur. J. Org. Chem. pp. 4900–4915. Web of Science CSD CrossRef Google Scholar
Talele, T. T. (2016). J. Med. Chem. 59, 8712–8756. CrossRef CAS PubMed Google Scholar
Tong, H., Xu, X., Zhu, Z. & Liu, B. (2023). Z. Kristallogr. New Cryst. Struct. 238, 1175–1176. CSD CrossRef Google Scholar
Veld, M. A. J., Haveman, D., Palmans, A. R. A. & Meijer, E. W. (2011). Soft Matter, 7, 524–531. CrossRef CAS Google Scholar
Wang, Z., Yang, W., Liu, G., Müller, A. J., Zhao, Y., Dong, X., Wang, K. & Wang, D. (2017). J. Polym. Sci. B Polym. Phys. 55, 418–424. CSD CrossRef CAS Google Scholar
Wu, W., Lin, Z. & Jiang, H. (2018). Org. Biomol. Chem. 16, 7315–7329. CrossRef CAS PubMed Google Scholar
Zhang, J., Guo, S., Guo, Y. & Yang, Y. (2022a). Z. Kristallogr. New Cryst. Struct. 237, 551–553. CSD CrossRef CAS Google Scholar
Zhang, J., Zhao, X. & Cai, C. (2022b). Z. Kristallogr. New Cryst. Struct. 237, 543–545. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.