research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and structure of trans-2,5-di­methyl­piperazine-1,4-diium di­hydrogen diphosphate

crossmark logo

aLaboratory of Materials Chemistry (LR13ES08), Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Bizerte, Tunisia, and bInstitut de Minéralogie, de Physique des Matériaux et de, Cosmochimie CNRS - UMR 7590, Plateforme de diffraction des rayons X, 75005 Paris, France
*Correspondence e-mail: houda.mrad@fsb.ucar.tn

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 10 October 2024; accepted 17 October 2024; online 24 October 2024)

In the title salt, C6H16N22+ ·H2P2O72−, the complete dication is generated by a crystallographic centre of symmetry with the methyl groups in equatorial orientations. The complete dianion is generated by a crystallographic twofold axis with the central O atom lying on the axis: the P—O—P bond angle is 135.50 (12)°. In the crystal, the di­hydrogen diphosphate anions are linked by O—H⋯O hydrogen bonds, generating (001) layers. The organic cations bond to the inorganic layers by way of N—H⋯O and C—H⋯O hydrogen bonds. A Hirshfeld surface analysis shows that the most important contributions for the crystal packing are from O⋯H/H⋯O (60.5%) and H⋯H (39.4%) contacts.

1. Chemical context

Hybrid organic–diphosphate-based materials have received attention due to their role in catalytic, adsorption, ion-exchange, optical and biological processes (Chen & Munson, 2002[Chen, B. & Munson, E. J. (2002). J. Am. Chem. Soc. 124, 1638-1652.]; Ballarini et al., 2006[Ballarini, N., Cavani, F., Cortelli, C., Ligi, S., Pierelli, F., Trifirò, F., Fumagalli, C., Mazzoni, G. & Monti, T. (2006). Top. Catal. 38, 147-156.]). Protonated diphosphate forms such as HP2O73– or H2P2O72– have the ability to associate with organic cations by means of ionic and non-covalent inter­actions (Desiraju, 1989[Desiraju, G. R. (1989). In Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.]; Steiner, 2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]) to generate different supra­molecular architectures. Among the many diphosphate structures templated with organic cations are (C2H10N2)·H2P2O7 (Averbuch-Pouchot & Durif, 1993[Averbuch-Pouchot, M. T. & Durif, A. (1993). C. R. Acad. Sci. 316, 187-192.]), (C5H6N2O2)2·H2P2O7 (Toumi Akriche et al., 2010[Toumi Akriche, S., Rzaigui, M., Elothman, Z. A. & Mahfouz, R. M. (2010). Acta Cryst. E66, o358.]), (C8H12N)2·H2P2O7, (Marouani et al., 2010[Marouani, H., Elmi, L., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o535.] (C8H12NO)2·H2P2O7 (Elboulali et al., 2013[Elboulali, A., Akriche, S., Al-Deyab, S. S. & Rzaigui, M. (2013). Acta Cryst. E69, o213-o214.]) and (C6H5CH2NH3)2·H2P2O7 (Saad et al., 2014[Saad, A. B., Elboulali, A., Ratel-Ramond, N., Mohamed, R. & Toumi, S. A. (2014). Acta Cryst. E70, o3.]). As part of our ongoing studies of these compounds, we now report the synthesis and structure of the title compound, C6H16N22+·H2P2O72–, (I)[link].

[Scheme 1]

2. Structural commentary

The asymmetric unit of (I)[link] comprises a half diphosphate anion completed by a crystallographic twofold rotation axis (atom O4 lies on the axis) and half a trans-2,5-di­methyl­piperazine-1,4-dium cation completed by inversion symmetry (Fig. 1[link]). The phospho­rous atom adopts a distorted tetra­hedral geometry with bond lengths and angles in the range 1.4916 (11)–1.5884 (8) Å and 102.44 (9)–116.60 (8)°, respectively. The longest P—O distance corresponds to the bridging oxygen atom [P1—O4 = 1.5884 (8) Å], the inter­mediate one is the P—OH bond [P1—O1 = 1.5389 (15) Å], whereas the shortest bonds correspond to terminal oxygen atoms [P1—O2 = 1.4916 (11) and P1—O3 = 1.4924 (14) Å] in agreement with previous di­hydrogen diphosphate structures elaborated by our group (Toumi Akriche et al., 2010[Toumi Akriche, S., Rzaigui, M., Elothman, Z. A. & Mahfouz, R. M. (2010). Acta Cryst. E66, o358.]; Saad et al., 2014[Saad, A. B., Elboulali, A., Ratel-Ramond, N., Mohamed, R. & Toumi, S. A. (2014). Acta Cryst. E70, o3.]). The PO4 tetra­hedra are fused by atom O4 forming a bent P2O7 unit [P1—O4—P1i = 135.50 (12)°; symmetry code: (i) −x + 1, y, −z + [{1\over 2}])] and staggered conformation [O1—P1—P1i—O2i = 42.8 (1)°], close to those previously observed for diphos­phates with twofold symmetry (Marouani et al., 2010[Marouani, H., Elmi, L., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o535.]; Charfi & Jouini, 1997[Charfi, M. & Jouini, A. (1997). Acta Cryst. C53, 463-465.]). In the cation, the piperazine ring adopts a chair conformation with puckering parameters Q = 0.2770 Å, θ = 90° and φ = 142° in which the methyl substituents occupy equatorial sites. The bonds and angles in the cation [N/C—C in the range 1.484 (2)–1.514 (2) Å and N/C—C/N—C, in the range 108.68 (11)–112.80 (12)°] show no significant difference from those reported in other trans-2,5-di­methyl­piperazine based salts (Landolsi & Abid, 2021[Landolsi, M. & Abid, S. (2021). Acta Cryst. E77, 424-427.]; Gatfaoui et al., 2014[Gatfaoui, S., Roisnel, T., Dhaouadi, H. & Marouani, H. (2014). Acta Cryst. E70, o725.]).

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] with displacement ellipsoids drawn at the 50% probability level. Symmetry codes: (i) −x + 1, y, −z + [{1\over 2}]; (ii) −x + 1, −y + 1, −z + 1. The H atoms are presented as small spheres of arbitrary radius. Hydrogen bonds are shown as green dotted lines.

3. Supra­molecular features

The extended structure of (I)[link] is built up from hydrogen-bonded sheets of diphosphate anions extended along the crystallographic c-axis direction at z = 1/4 and 3/4 with the cations lying between these anionic sheets featuring extensive hydrogen bonds, so as to build a three-dimensional supra­molecular network (Fig. 2[link]). A projection along the c axis at z = 1/4 of the inorganic sheet (Fig. 3[link]) shows that O—H⋯O hydrogen bonds (Table 1[link]) link adjacent di­hydrogen diphos­phate anions to develop anionic layers extending parallel to (001). Electrostatic, medium-strength N—H⋯O and weaker C—H⋯O inter­actions (Table 1[link]) between the organic cations and these anionic layers are responsible for the three-dimensional crystal structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.88 (3) 1.61 (3) 2.460 (2) 161 (3)
N1—H1A⋯O2ii 0.90 (2) 1.86 (2) 2.7454 (17) 167 (2)
N1—H1B⋯O2 0.90 (2) 1.87 (2) 2.7543 (17) 168 (2)
C1—H1C⋯O3iii 0.982 (19) 2.353 (19) 3.193 (2) 143.0 (15)
C1—H1D⋯O1iv 0.970 (19) 2.41 (2) 3.205 (2) 139.1 (15)
C2—H2⋯O3v 1.00 (2) 2.53 (2) 3.344 (2) 138.3 (15)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [x, -y+1, z+{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x+1, y, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The projection along the b-axis direction of the crystal packing of (I)[link]. Hydrogen bonds are shown as dotted lines.
[Figure 3]
Figure 3
The layered di­hydrogen diphosphate self-assembly, viewed along the c axis at z = 1/4. The O—H⋯O hydrogen bonds are shown as green dotted lines.

4. Hirshfeld surface analysis

Fig. 4[link]a shows the Hirshfeld surface generated with Crystal Explorer (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia.]) mapped over dnorm with red spots corresponding to short inter-atomic contacts. The fingerprint plots illustrated in Fig. 4[link]b and 4c with characteristic spikes indicate that the major inter-atomic contributions to the structure are from O⋯H/H⋯O (60.5%) and H⋯H (39.4%) contacts in accordance with the structure topology.

[Figure 4]
Figure 4
Hirshfeld surface (a) mapped with dnorm and fingerprint plots showing the major inter-contacts contributions of (b) O⋯H/H⋯O and (c) H⋯H.

5. Synthesis and experimental

The monocrystals of (I)[link] were synthesized into two steps. Firstly, di­phospho­ric acid, H4P2O7, was obtained from Na4P2O7 (26 mg, 50 ml H2O) by using an ion-exchange resin (Amberlite IR 120). Then, the fresh di­phospho­ric acid solution was neutralized with trans-2,5-di­methyl­piperazine base in a 1:1 molar ratio at low temperature. The resulting solution was slowly evaporated at room temperature for several days until colourless needle-shaped crystals of (I)[link] were grown.

6. IR spectrum

The IR spectrum of (I)[link] was collected at room temperature using a Perkin–Elmer Spectrum BXII spectrometer (KBr method) between 400 and 4000 cm−1 (Fig. 5[link]). The spectrum exhibits broad bands between 2376 and 3027 cm−1, which can be assigned to the stretching modes of the –CH3, –CH2–, –CH– and (–NH2)+ groups of the organic cation (Silverstein et al., 1974[Silverstein, R. M., Bassler, G. C. & Morrill, T. C. (1974). Spectrometric identification of organic compounds, 3rd ed. New York: Wiley.]). The broadness of these bands in (I)[link] is indicative of the presence of a hydrogen-bonding network. The bending vibrations of these groups are observed in the region 1321–1631 cm−1. The inter­nal modes of the (H2P2O7)2– anion appear in the range 410–1265 cm−1 (Harcharras et al., 1997[Harcharras, M., Ennaciri, A., Rulmont, A. & Gilbert, B. (1997). Spectrochim. Acta A Mol. Biomol. Spectrosc. 53, 345-352.]; Kamoun et al., 1992[Kamoun, S., Jouini, A. & Daoud, A. (1992). J. Solid State Chem. 99, 18-28.]). The elongation modes of the PO2 and PO3 terminal groups occur between 1265 and 975 cm−1, whereas the terminal P—O stretching vibration of the PO2 group is observed at 1155 cm−1 and those at 1093 and 1051 cm−1 are attributed to the symmetric and asymmetric terminal P—O stretching vibration of the PO3 group (Sarr & Diop, 1987[Sarr, O. & Diop, L. (1987). Spectrochim. Acta A, 43, 999-1005.]). The rocking of the PO2 and PO3 deformation modes occur between 491 and 627 cm−1. The symmetric and asymmetric elongation modes of the P—O—P bridge for the diphosphate group with a bent conformation are observed as νas(P—O—P) = 911 and 975 cm−1 and νs(P—O—P)= 721 cm−1. The simultaneous activity of these vibration modes confirms the results obtained by X-ray concerning the bent geometry and the C2 symmetry of the diphosphate anion. With regard to the Laza­rev (1972[Lazarev, A. N. (1972). Vibrational spectra and structure of silicates, translated by G. D. Archard. New York and London: Consultants Bureau.]) correlation between the P—O—P bridge stretching frequencies and the bridge angle value as Δ = (νasνs)/(νas+ νs) = 0.12, and by simple extrapolation of the graph of Δ = f(α) given by Rulmont et al. (1991[Rulmont, A., Cahay, A., Liegeois-Duyckerts, R. & Tarte, M. (1991). Eur. J. Solid State Inorg. Chem. 28, 207-000.]), we can estimate the calculated P—O—P angle of 136° in excellent agreement with the value of 135.50 (12)° found for (I)[link].

[Figure 5]
Figure 5
The infrared spectrum of (I)[link].

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were located in a difference Fourier map and their positions were freely refined.

Table 2
Experimental details

Crystal data
Chemical formula C6H16N22+·H2O7P22−
Mr 292.16
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 10.2557 (5), 8.3978 (5), 13.7681 (7)
β (°) 91.422 (4)
V3) 1185.42 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.39
Crystal size (mm) 0.30 × 0.20 × 0.10
 
Data collection
Diffractometer Xcalibur diffractometer with Sapphire3 CCD detector
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.979, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 9376, 2255, 1738
Rint 0.040
(sin θ/λ)max−1) 0.769
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.103, 1.05
No. of reflections 2255
No. of parameters 114
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.59, −0.39
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

trans-2,5-Dimethylpiperazine-1,4-diium dihydrogen diphosphate top
Crystal data top
C6H16N22+·H2O7P22F(000) = 616
Mr = 292.16Dx = 1.637 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 10.2557 (5) ÅCell parameters from 2302 reflections
b = 8.3978 (5) Åθ = 4.0–31.8°
c = 13.7681 (7) ŵ = 0.39 mm1
β = 91.422 (4)°T = 293 K
V = 1185.42 (11) Å3Needle, colorless
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Xcalibur
diffractometer with Sapphire3 CCD detector
2255 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source1738 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 16.0318 pixels mm-1θmax = 33.1°, θmin = 3.5°
ω scansh = 1515
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2019)
k = 1212
Tmin = 0.979, Tmax = 1.000l = 2121
9376 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.038P)2 + 1.0885P]
where P = (Fo2 + 2Fc2)/3
2255 reflections(Δ/σ)max = 0.001
114 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.38 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.64197 (4)0.21184 (5)0.26767 (3)0.02554 (12)
O10.72741 (18)0.0974 (2)0.20950 (10)0.0587 (5)
O20.67285 (11)0.20328 (14)0.37398 (7)0.0287 (2)
O30.64629 (15)0.37300 (17)0.22218 (10)0.0449 (3)
O40.50000.1402 (2)0.25000.0500 (6)
H10.757 (3)0.012 (4)0.240 (2)0.084 (10)*
N10.61378 (12)0.40835 (16)0.52268 (9)0.0238 (3)
C10.62451 (15)0.57743 (19)0.49245 (11)0.0248 (3)
C20.51107 (15)0.62671 (18)0.42671 (10)0.0239 (3)
C30.5174 (2)0.8018 (2)0.40212 (19)0.0443 (5)
H1A0.683 (2)0.385 (3)0.5625 (16)0.042 (6)*
H1B0.622 (2)0.345 (3)0.4707 (16)0.039 (6)*
H1C0.6259 (18)0.642 (2)0.5518 (14)0.028 (5)*
H1D0.7042 (19)0.588 (2)0.4565 (14)0.032 (5)*
H20.510 (2)0.559 (3)0.3668 (15)0.039 (5)*
H3A0.516 (3)0.862 (4)0.460 (2)0.084 (10)*
H3B0.442 (3)0.833 (3)0.359 (2)0.064 (8)*
H3C0.603 (3)0.817 (3)0.3694 (19)0.061 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0296 (2)0.0287 (2)0.01809 (17)0.00277 (15)0.00450 (13)0.00137 (14)
O10.0792 (12)0.0686 (11)0.0291 (7)0.0334 (9)0.0148 (7)0.0004 (7)
O20.0323 (6)0.0344 (6)0.0189 (5)0.0073 (5)0.0055 (4)0.0012 (4)
O30.0556 (9)0.0387 (7)0.0400 (7)0.0063 (6)0.0100 (6)0.0169 (6)
O40.0415 (11)0.0244 (9)0.0823 (15)0.0000.0347 (10)0.000
N10.0225 (6)0.0279 (6)0.0210 (5)0.0053 (5)0.0025 (4)0.0010 (5)
C10.0233 (6)0.0276 (7)0.0233 (6)0.0022 (5)0.0009 (5)0.0008 (5)
C20.0252 (7)0.0260 (7)0.0206 (6)0.0019 (5)0.0006 (5)0.0031 (5)
C30.0479 (11)0.0303 (9)0.0548 (12)0.0016 (8)0.0029 (10)0.0144 (9)
Geometric parameters (Å, º) top
P1—O21.4916 (11)N1—C11.484 (2)
P1—O31.4924 (14)N1—C2ii1.5020 (19)
P1—O11.5389 (15)C1—C21.514 (2)
P1—O41.5884 (8)C2—N1ii1.5020 (19)
O4—P1i1.5884 (8)C2—C31.510 (2)
O2—P1—O3116.60 (8)P1—O4—P1i135.50 (12)
O2—P1—O1111.76 (8)C1—N1—C2ii112.80 (12)
O3—P1—O1108.96 (9)N1—C1—C2111.58 (12)
O2—P1—O4107.67 (5)N1ii—C2—C3109.69 (14)
O3—P1—O4108.40 (8)N1ii—C2—C1108.68 (11)
O1—P1—O4102.44 (9)C3—C2—C1111.29 (15)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3iii0.88 (3)1.61 (3)2.460 (2)161 (3)
N1—H1A···O2iv0.90 (2)1.86 (2)2.7454 (17)167 (2)
N1—H1B···O20.90 (2)1.87 (2)2.7543 (17)168 (2)
C1—H1C···O3v0.982 (19)2.353 (19)3.193 (2)143.0 (15)
C1—H1D···O1vi0.970 (19)2.41 (2)3.205 (2)139.1 (15)
C2—H2···O3i1.00 (2)2.53 (2)3.344 (2)138.3 (15)
Symmetry codes: (i) x+1, y, z+1/2; (iii) x+3/2, y1/2, z+1/2; (iv) x+3/2, y+1/2, z+1; (v) x, y+1, z+1/2; (vi) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

We thank Professor Baptiste Benoît from the IMPMC of the Sorbonne University for collecting the intensity data.

Funding information

This work was supported by the Tunisian Ministry of Higher Education Scientific Research.

References

First citationAverbuch-Pouchot, M. T. & Durif, A. (1993). C. R. Acad. Sci. 316, 187–192.  CAS Google Scholar
First citationBallarini, N., Cavani, F., Cortelli, C., Ligi, S., Pierelli, F., Trifirò, F., Fumagalli, C., Mazzoni, G. & Monti, T. (2006). Top. Catal. 38, 147–156.  CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCharfi, M. & Jouini, A. (1997). Acta Cryst. C53, 463–465.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChen, B. & Munson, E. J. (2002). J. Am. Chem. Soc. 124, 1638–1652.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDesiraju, G. R. (1989). In Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.  Google Scholar
First citationElboulali, A., Akriche, S., Al-Deyab, S. S. & Rzaigui, M. (2013). Acta Cryst. E69, o213–o214.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGatfaoui, S., Roisnel, T., Dhaouadi, H. & Marouani, H. (2014). Acta Cryst. E70, o725.  CSD CrossRef IUCr Journals Google Scholar
First citationHarcharras, M., Ennaciri, A., Rulmont, A. & Gilbert, B. (1997). Spectrochim. Acta A Mol. Biomol. Spectrosc. 53, 345–352.  CrossRef Google Scholar
First citationKamoun, S., Jouini, A. & Daoud, A. (1992). J. Solid State Chem. 99, 18–28.  CSD CrossRef CAS Web of Science Google Scholar
First citationLandolsi, M. & Abid, S. (2021). Acta Cryst. E77, 424–427.  CSD CrossRef IUCr Journals Google Scholar
First citationLazarev, A. N. (1972). Vibrational spectra and structure of silicates, translated by G. D. Archard. New York and London: Consultants Bureau.  Google Scholar
First citationMarouani, H., Elmi, L., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o535.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRulmont, A., Cahay, A., Liegeois-Duyckerts, R. & Tarte, M. (1991). Eur. J. Solid State Inorg. Chem. 28, 207–000.  CAS Google Scholar
First citationSaad, A. B., Elboulali, A., Ratel-Ramond, N., Mohamed, R. & Toumi, S. A. (2014). Acta Cryst. E70, o3.  CSD CrossRef IUCr Journals Google Scholar
First citationSarr, O. & Diop, L. (1987). Spectrochim. Acta A, 43, 999–1005.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilverstein, R. M., Bassler, G. C. & Morrill, T. C. (1974). Spectrometric identification of organic compounds, 3rd ed. New York: Wiley.  Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar
First citationToumi Akriche, S., Rzaigui, M., Elothman, Z. A. & Mahfouz, R. M. (2010). Acta Cryst. E66, o358.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds