research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of 1,3,5-tris­­[(1H-benzotriazol-1-yl)meth­yl]-2,4,6-tri­ethyl­benzene

crossmark logo

aInstitut für Organische Chemie, Technische Universität Bergakademie, Freiberg, Leipziger Str. 29, 09599 Freiberg/Sachsen, Germany
*Correspondence e-mail: monika.mazik@chemie.tu-freiberg.de

Edited by T. Akitsu, Tokyo University of Science, Japan (Received 14 August 2024; accepted 12 October 2024; online 31 October 2024)

In the crystal structure of the title compound, C33H33N9, the tripodal mol­ecule exists in a conformation in which the substituents attached to the central arene ring are arranged in an alternating order above and below the ring plane. The three benzotriazolyl moieties are inclined at angles of 88.3 (1), 85.7 (1) and 82.1 (1)° with respect to the mean plane of the benzene ring. In the crystal, only weak mol­ecular cross-linking involving C—H⋯N hydrogen bonds is observed.

1. Chemical context

Benzotriazole and its derivatives have found applications as auxiliaries in a variety of synthetic strategies (Katritzky & Rachwal, 2010[Katritzky, A. R. & Rachwal, S. (2010). Chem. Rev. 110, 15641-1610.], 2011[Katritzky, A. R. & Rachwal, S. (2011). Chem. Rev. 111, 7063-7120.]). In addition, numerous benzotriazole derivatives have valuable biological properties, including anti­bacterial, anti­viral, anti­fungal, anti­cancer and others (for reviews, see: Bajaj & Sakhuja, 2015[Bajaj, K. & Sakhuja, R. (2015). In The Chemistry of Benzotriazole Derivatives. Topics in Heterocyclic Chemistry, vol 43, edited by J.- C. M. Monbaliu, pp. 235-283. Dordrecht: Springer.]; Briguglio et al., 2015[Briguglio, I., Piras, S., Corona, P., Gavini, E., Nieddu, M., Boatto, G. & Carta, A. (2015). Eur. J. Med. Chem. 97, 612-648.]). Benzotriazole has also been used as a building block in various supra­molecular architectures. As an example, a water-soluble cavitand bearing a benzotriazole upper rim can be mentioned (Rahman et al., 2022[Rahman, F.-U., Wang, R., Zhang, H.-B., Brea, O., Himo, F., Rebek, J. & Yu, Y. (2022). Angew. Chem. Int. Ed. 61, e202205534.]). Moreover, anti­corrosive low mol­ecular weight gelators based on compounds with benzotriazolyl units have been developed (Cai et al., 2011[Cai, M., Liang, Y., Zhou, F. & Liu, W. (2011). J. Mater. Chem. 21, 13399-13405.]). It should also be noted that many benzotriazole-based compounds have been considered in the development of coordination polymers and organometallic frameworks (Loukopoulos & Kostakis, 2019[Loukopoulos, E. & Kostakis, G. E. (2019). Coord. Chem. Rev. 395, 193-229.]). These compounds include, for example, benzene derivatives with two 1H-benzotriazol-1-ylmethyl groups (Loukopoulos et al., 2018a[Loukopoulos, E., Abdul-Sada, A., Viseux, E. M. E., Lykakis, I. N. & Kostakis, G. E. (2018a). Cryst. Growth Des. 18, 5638-5651.],b[Loukopoulos, E., Abdul-Sada, A., Csire, G., Kállay, C., Tizzard, G. J., Coles, S. J., Lykakis, I. N. & Kostakis, G. E. (2018b). Cryst. Growth Des. 47, 10491-10508.]).

[Scheme 1]

In this article, we describe the synthesis and crystal structure of a compound belonging to the class of 1,3,5-substituted 2,4,6-tri­ethyl­benzenes and bearing 1H-benzotriazol-1-ylmethyl substituents. Representatives of this class of compounds have been used by us in the development of artificial receptors for various neutral and ionic substrates, such as carbohydrates (Mazik, 2009[Mazik, M. (2009). Chem. Soc. Rev. 38, 935-956.], 2012[Mazik, M. (2012). RSC Adv. 2, 2630-2642.]; Mazik et al., 2004[Mazik, M., Radunz, W. & Boese, R. (2004). J. Org. Chem. 69, 7448-7462.], 2005[Mazik, M., Bläser, D. & Boese, R. (2005). J. Org. Chem. 70, 9115-9122.]; Lippe et al., 2015[Lippe, J., Seichter, W. & Mazik, M. (2015). Org. Biomol. Chem. 13, 11622-11632.]; Koch et al., 2016[Koch, N., Seichter, W. & Mazik, M. (2016). Synthesis, 48, 2757-2767.]; Kaiser et al., 2019[Kaiser, S., Geffert, C. & Mazik, M. (2019). Eur. J. Org. Chem. pp. 7555-7562.]; Stapf et al., 2020[Stapf, M., Seichter, W. & Mazik, M. (2020). Eur. J. Org. Chem. pp. 4900-4915.]; Köhler et al., 2020[Köhler, L., Seichter, W. & Mazik, M. (2020). Eur. J. Org. Chem. pp. 7023-7034.], 2021[Köhler, L., Hübler, C., Seichter, W. & Mazik, M. (2021). RSC Adv. 11, 22221-22229.], 2024[Köhler, L., Kaiser, S. & Mazik, M. (2024). Nat. Prod. Commun. 19. https://doi. org/10.1177/1934578X241258352.]), ammonium ions (Schulze et al., 2018[Schulze, M., Koch, N., Seichter, W. & Mazik, M. (2018). Eur. J. Org. Chem. 2018, 4317-4330.]; Fuhrmann et al., 2022a[Fuhrmann, F., Meier, E., Seichter, W. & Mazik, M. (2022a). Acta Cryst. E78, 785-788.],b[Fuhrmann, F., Seichter, W. & Mazik, M. (2022b). Org. Mater. 4, 61-72.]) and hydro­nium/hydroxide ions (Stapf et al., 2015[Stapf, M., Seichter, W. & Mazik, M. (2015). Chem. A Eur. J. 21, 6350-6354.]).

2. Structural commentary

The crystal structure of the title compound, C33H33N9, was solved in the ortho­rhom­bic space group P212121 with the asymmetric unit containing one mol­ecule (Fig. 1[link]). The mol­ecule adopts a conformation in which the benzotriazolyl units are located on one side of the central arene ring, while the ethyl groups are oriented in the opposite direction (ababab arrangement, a = above, b = below; Das & Barbour, 2008a[Das, D. & Barbour, L. J. (2008a). J. Am. Chem. Soc. 130, 14032-14033.],b[Das, D. & Barbour, L. J. (2008b). Chem. Commun. pp. 5110-5112.], 2009[Das, D. & Barbour, L. J. (2009). Cryst. Growth Des. 9, 1599-1604.]; Arunachalam et al., 2010[Arunachalam, M., Ahamed, B. N. & Ghosh, P. (2010). Org. Lett. 12, 2742-2745.]; Arunachalam & Ghosh, 2010[Arunachalam, M. & Ghosh, P. (2010). Org. Lett. 12, 328-331.]; Koch et al., 2015[Koch, N., Seichter, W. & Mazik, M. (2015). Tetrahedron, 71, 8965-8974.]). The dihedral angles between the planes of the benzotriazolyl moieties are 13.6 (1), 88.0 (1) and 76.8 (1)°. The central arene ring of the mol­ecule is noticeably twisted, with the largest atomic distance from the least-squares plane of the ring being 0.048 (1) Å for atom C1 and 0.040 (1) Å for atom C4. The N atoms of two benzotriazolyl moieties (labeled B and D) are directed outwards, while those of the remaining benzotriazolyl unit are directed towards the central arene ring. The distances of 2.76 and 2.96 Å between the arene H atoms H15 and H29 to the center of the benzene ring and the bond geometries (C—H⋯Cg = 140°) indicate the presence of two intra­molecular C—H⋯π contacts (Nishio et al., 2009[Nishio, M., Umezawa, Y., Honda, K., Tsuboyama, S. & Suezawa, H. (2009). CrystEngComm, 11, 1757-1788.]; Nishio, 2011[Nishio, M. (2011). Phys. Chem. Chem. Phys. 13, 13873-13900.]; Tiekink & Zukerman-Schpector, 2012[Tiekink, E. R. T. & Zukerman-Schpector, J. (2012). In The Importance of Pi-Interactions in Crystal Engineering. Frontiers in Crystal Engineering. Chichester: Wiley.]). In addition, an intra­molecular C—H⋯N bond involving the atoms H11A and N1 [d(H⋯N) 2.54 Å, 133°; Table 1[link]] is likely to have an influence on the conformation of the mol­ecule.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 represents the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20A⋯N8i 0.99 2.59 3.341 (3) 133
C27—H27A⋯N3ii 0.99 2.65 3.217 (3) 117
C11—H11A⋯N1 0.99 2.54 3.296 (3) 133
C15—H15⋯Cg1 0.95 2.96 3.741 (3) 140
C29—H29⋯Cg1 0.95 2.77 3.546 (3) 140
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+2, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
Perspective view of the title mol­ecule including atom labeling and ring specification (A–D). Anisotropic displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

The crystal structure of the title compound is characterized by a low degree of mol­ecular cross-linking. Only the methyl­ene H atoms H20A and H27A and the N atoms N8 and N3 of adjacent mol­ecules are involved in C—H⋯N hydrogen bonding [d(H⋯N) 2.59, 2.64 Å; 140.2° (Table 1[link]); for other examples of C—H⋯N bonds, see: Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond. Oxford University Press.]; Thalladi et al., 2000a[Thalladi, V. R., Gehrke, A. & Boese, R. (2000a). New J. Chem. 24, 463-470.],b[Thalladi, V. R., Smolka, T., Gehrke, A., Boese, R. & Sustmann, R. (2000b). New J. Chem. 24, 143-147.]; Reddy et al., 1996[Reddy, D. S., Craig, D. C. & Desiraju, G. R. (1996). J. Am. Chem. Soc. 118, 4090-4093.]; Mazik et al., 1999[Mazik, M., Bläser, D. & Boese, R. (1999). Tetrahedron, 55, 7835-7840.], 2000a[Mazik, M., Bläser, D. & Boese, R. (2000a). Tetrahedron Lett. 41, 5827-5831.],b[Mazik, M., Bläser, D. & Boese, R. (2000b). Chem. Eur. J. 6, 2865-2873.], 2001[Mazik, M., Bläser, D. & Boese, R. (2001). Tetrahedron, 57, 5791-5797.], 2005[Mazik, M., Bläser, D. & Boese, R. (2005). J. Org. Chem. 70, 9115-9122.]]. Consequently, van der Waals forces play an important role in the cohesion of the crystal structure. An excerpt of the packing structure is shown in Fig. 2[link].

[Figure 2]
Figure 2
Illustration of the packing structure of the title compound. The dashed lines represent C—H⋯N bonds.

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.45, update June 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 1,3,5-substituted 2,4,6-tri­alkyl­benzene derivatives bearing three 1H-benzotriazol-1-ylmethyl units gave no hits. However, the crystal structures of related tripodal mol­ecules, e.g. those equipped with indazolyl (benzopyrazol­yl) moieties, allow a comparison with the crystal structure of the title compound 1. In the solvent-free crystal structure of 1,3,5-tris­(1H-indazolyl-1-yl)-2,4,6-tri­ethyl­benzene (QIDVIL; Schulze et al., 2018[Schulze, M., Koch, N., Seichter, W. & Mazik, M. (2018). Eur. J. Org. Chem. 2018, 4317-4330.]), the mol­ecules adopt a conformation in which two indazolyl units point to the same face of the central benzene ring, while the third points in the opposite direction (aab arrangement of the functionalized side arms, a = above, b = below). By taking the ethyl groups into account, the conformation of the mol­ecule can be defined as ab′ab′ba′ (position of the ethyl groups are marked as a′ and b′, a′ = ethyl above, b′ = ethyl below; Schulze et al., 2017[Schulze, M., Schwarzer, A. & Mazik, M. (2017). CrystEngComm, 19, 4003-4016.]; Koch et al., 2017[Koch, N., Seichter, W. & Mazik, M. (2017). CrystEngComm, 19, 3817-3833.]).

For benzene derivatives with 1H-benzotriazol-1-ylmethyl groups, only crystal structures of mono- and disubstituted derivatives are known, which, however, often contain further substituents on the benzene ring, such as Br, NO2, CN or PhOCH2. In addition, the crystal structures of their metal complexes rather than those of the free ligands are mostly reported. As an example of the latter, the crystal structure of 1,3-bis­(1H-benzotriazol-1-ylmeth­yl)benzene should be mentioned (AMEZEZ; Macías et al., 2016[Macías, M. A., Nuñez-Dallos, N., Hurtado, J. & Suescun, L. (2016). Acta Cryst. E72, 815-818.]). In this case, the benzotriazolyl units form dihedral angles of 88.74 (11) and 85.83 (10)° with the central aromatic ring, which are similar to those observed for two heterocyclic moieties of 1. The crystal structure is mainly governed by C—H⋯N and C—H⋯π inter­actions.

5. Synthesis and crystallization

To a suspension of sodium hydroxide (204 mg, 5.10 mmol) in 10 mL of N,N-di­methyl­formamide, 1H-benzotriazole (608 mg, 5.10 mmol) was added and the mixture was stirred for 20 minutes at room temperature. After addition of 1,3,5-tris­(bromo­meth­yl)-2,4,6-tri­ethyl­benzene (500 mg, 1.13 mmol), the solution was stirred for several hours at room temperature (the course of the reaction was analyzed using TLC). The mixture was then added to 30 mL of ice water, the resulting precipitate was filtered off, washed with small portions of ice water and dried. The crude product was purified by column chromatography [SiO2, EtOAc/n-hexane v/v 2:1]. This procedure yielded the compound 1 (340 mg, 0.61 mmol, 54%) and the structure isomer 2 (218 mg, 0.39 mmol, 35%), bearing two 1H-benzotriazol-1-ylmethyl units and one 2H-benzotriazol-2-ylmethyl group (Fig. 3[link]). Crystals of the title compound suitable for single crystal X-ray diffraction were grown by slow evaporation of the solvent at room temperature. M.p. 481 K. 1H NMR (500 MHz, CDCl3, ppm): δ = 0.96 (t, J = 7.5 Hz, 9H, CH3), 2.86 (q, J = 7.5 Hz, 6H, CH2), 5.94 (s, 6H, CH2), 7.03–7.06 (m, 3H, HAr), 7.22–7.27 (m, 3H, HAr), 7.29–7.33 (m, 3H, HAr), 8.00–8.04 (m, 3H, HAr).13C NMR (125 MHz, DMSO-d6, ppm) δ = 15.1, 23.9, 47.1, 109.9, 120.1, 123.9, 127.7, 129.3, 132.9, 146.3, 146.9. MS (ESI): m/z calculated for C33H33N9Na [M + Na]+: 578.2; found 578.2.

[Figure 3]
Figure 3
Synthesis of the title compound 1 and the byproduct 2 by reaction of 1H-benzotriazole and 1,3,5-tris­(bromo­meth­yl)-2,4,6-tri­ethyl­benzene.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The non-hydrogen atoms were refined anisotropically. All hydrogen atoms were positioned geometrically and refined isotropically using the riding model with C—H = 0.98–0.99 Å (alk­yl), 0.95 Å (ar­yl); Uiso(H)= 1.2–1.5Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C33H33N9
Mr 555.68
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 11.0204 (4), 16.1387 (6), 16.2772 (6)
V3) 2894.98 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.42 × 0.18 × 0.17
 
Data collection
Diffractometer Bruker Kappa APEXII CCD area detector
No. of measured, independent and observed [I > 2σ(I)] reflections 25748, 6002, 5387
Rint 0.033
(sin θ/λ)max−1) 0.628
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.081, 1.05
No. of reflections 6002
No. of parameters 382
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.15, −0.19
Absolute structure Flack x determined using 2115 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker, (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]).

Supporting information


Computing details top

1,3,5-Tris[(1H-benzotriazol-1-yl)methyl]-2,4,6-triethylbenzene top
Crystal data top
C33H33N9Dx = 1.275 Mg m3
Mr = 555.68Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 7118 reflections
a = 11.0204 (4) Åθ = 2.2–27.4°
b = 16.1387 (6) ŵ = 0.08 mm1
c = 16.2772 (6) ÅT = 100 K
V = 2894.98 (18) Å3Irregular, colourless
Z = 40.42 × 0.18 × 0.17 mm
F(000) = 1176
Data collection top
Bruker Kappa APEXII CCD area detector
diffractometer
Rint = 0.033
phi and ω scansθmax = 26.5°, θmin = 2.5°
25748 measured reflectionsh = 1313
6002 independent reflectionsk = 1620
5387 reflections with I > 2σ(I)l = 1820
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0406P)2 + 0.3656P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.081(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.15 e Å3
6002 reflectionsΔρmin = 0.19 e Å3
382 parametersAbsolute structure: Flack x determined using 2115 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.38004 (19)0.88951 (13)0.05254 (11)0.0177 (4)
C20.45997 (19)0.83741 (12)0.09532 (12)0.0182 (4)
C30.51962 (18)0.86757 (13)0.16516 (12)0.0169 (4)
C40.50175 (17)0.94963 (12)0.19122 (11)0.0156 (4)
C50.43143 (19)1.00303 (12)0.14297 (12)0.0165 (4)
C60.37006 (18)0.97360 (13)0.07315 (11)0.0172 (4)
C70.4830 (2)0.74986 (13)0.06507 (13)0.0266 (5)
H7A0.5685450.7349340.0761710.032*
H7B0.4704420.7479750.0048720.032*
C80.4002 (3)0.68626 (14)0.10584 (16)0.0400 (6)
H8A0.4132980.6870600.1653830.060*
H8B0.4187650.6309470.0844060.060*
H8C0.3153530.6998980.0939200.060*
C90.55736 (19)0.97958 (13)0.27096 (12)0.0192 (4)
H9A0.5820151.0382650.2650530.023*
H9B0.6308530.9465760.2833000.023*
C100.4670 (2)0.97151 (14)0.34195 (12)0.0234 (5)
H10A0.3950381.0051950.3303170.035*
H10B0.5050480.9908160.3928910.035*
H10C0.4430870.9133520.3480850.035*
C110.2956 (2)1.03225 (14)0.02043 (12)0.0222 (5)
H11A0.2902221.0094020.0358940.027*
H11B0.3381691.0861760.0170490.027*
C120.1676 (2)1.04660 (17)0.05315 (14)0.0329 (6)
H12A0.1217950.9945750.0509800.049*
H12B0.1267171.0884100.0193660.049*
H12C0.1719151.0660140.1101230.049*
C130.30133 (19)0.85410 (14)0.01529 (12)0.0222 (5)
H13A0.2953010.7933910.0075750.027*
H13B0.2185880.8773470.0098560.027*
C140.45504 (19)0.89480 (13)0.12918 (12)0.0196 (4)
C150.5667 (2)0.91672 (15)0.09411 (13)0.0312 (5)
H150.5802670.9140070.0365290.037*
C160.6553 (2)0.94227 (18)0.14752 (14)0.0353 (6)
H160.7314250.9592330.1258680.042*
C170.6380 (2)0.94438 (18)0.23308 (14)0.0360 (6)
H170.7024880.9620730.2676300.043*
C180.5300 (2)0.92138 (18)0.26732 (14)0.0369 (6)
H180.5185210.9215430.3251680.044*
C190.4370 (2)0.89761 (14)0.21403 (13)0.0244 (5)
C200.60859 (19)0.81289 (13)0.21107 (12)0.0205 (4)
H20A0.5965950.8201140.2709140.025*
H20B0.5922640.7541420.1974990.025*
C210.8348 (2)0.82938 (15)0.23835 (13)0.0282 (5)
C220.8514 (2)0.8141 (2)0.32251 (15)0.0438 (7)
H220.7854380.8025000.3582780.053*
C230.9692 (3)0.8170 (3)0.34969 (17)0.0646 (10)
H230.9851190.8078490.4063280.078*
C241.0675 (3)0.8331 (3)0.29639 (19)0.0663 (10)
H241.1474640.8337670.3181190.080*
C251.0509 (2)0.8478 (2)0.21464 (17)0.0468 (7)
H251.1173360.8590290.1791290.056*
C260.9309 (2)0.84539 (15)0.18542 (14)0.0294 (5)
C270.42433 (19)1.09430 (12)0.16442 (12)0.0180 (4)
H27A0.3428611.1155970.1498880.022*
H27B0.4352671.1011330.2244100.022*
C280.62740 (18)1.12435 (12)0.08657 (11)0.0160 (4)
C290.69299 (18)1.05078 (13)0.07298 (12)0.0196 (4)
H290.6623670.9982520.0892140.023*
C300.80371 (19)1.05899 (14)0.03498 (13)0.0221 (5)
H300.8506551.0106340.0251160.027*
C310.85043 (19)1.13649 (14)0.01001 (12)0.0222 (4)
H310.9273401.1390380.0162330.027*
C320.7865 (2)1.20794 (14)0.02310 (13)0.0224 (5)
H320.8174851.2601850.0063100.027*
C330.67341 (19)1.20129 (12)0.06221 (12)0.0189 (4)
N10.34537 (15)0.87056 (10)0.09864 (10)0.0176 (4)
N20.26511 (16)0.86005 (12)0.16098 (11)0.0235 (4)
N30.31885 (17)0.87568 (14)0.23032 (11)0.0307 (5)
N40.73447 (16)0.83275 (11)0.19011 (10)0.0204 (4)
N50.76712 (17)0.84885 (11)0.11110 (10)0.0225 (4)
N60.88511 (17)0.85727 (11)0.10747 (11)0.0263 (4)
N70.51729 (15)1.14327 (10)0.12093 (10)0.0172 (3)
N80.49855 (17)1.22634 (10)0.11714 (11)0.0212 (4)
N90.59115 (17)1.26176 (11)0.08186 (11)0.0252 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0162 (10)0.0218 (11)0.0150 (9)0.0036 (8)0.0016 (8)0.0000 (8)
C20.0208 (11)0.0169 (10)0.0169 (9)0.0013 (8)0.0036 (8)0.0006 (8)
C30.0162 (10)0.0181 (10)0.0166 (9)0.0004 (8)0.0029 (8)0.0026 (8)
C40.0114 (10)0.0199 (10)0.0155 (9)0.0014 (8)0.0024 (8)0.0002 (8)
C50.0137 (10)0.0169 (10)0.0190 (9)0.0010 (8)0.0051 (8)0.0012 (7)
C60.0140 (10)0.0216 (10)0.0159 (9)0.0002 (8)0.0045 (8)0.0027 (8)
C70.0359 (13)0.0191 (11)0.0247 (10)0.0028 (9)0.0025 (10)0.0037 (9)
C80.0561 (18)0.0189 (12)0.0450 (14)0.0048 (11)0.0052 (13)0.0033 (11)
C90.0185 (11)0.0204 (11)0.0187 (9)0.0014 (9)0.0027 (8)0.0010 (8)
C100.0292 (13)0.0230 (11)0.0179 (9)0.0006 (9)0.0007 (9)0.0001 (9)
C110.0227 (11)0.0250 (11)0.0190 (10)0.0069 (9)0.0016 (9)0.0008 (9)
C120.0222 (12)0.0463 (15)0.0301 (12)0.0116 (11)0.0034 (10)0.0042 (11)
C130.0194 (11)0.0269 (12)0.0202 (10)0.0054 (9)0.0012 (8)0.0001 (9)
C140.0184 (11)0.0208 (10)0.0197 (9)0.0006 (8)0.0002 (8)0.0004 (8)
C150.0226 (12)0.0513 (15)0.0197 (10)0.0093 (11)0.0051 (9)0.0026 (10)
C160.0201 (12)0.0578 (17)0.0281 (12)0.0109 (12)0.0051 (10)0.0031 (12)
C170.0225 (12)0.0604 (17)0.0251 (11)0.0090 (12)0.0013 (10)0.0075 (11)
C180.0250 (13)0.0663 (18)0.0193 (11)0.0098 (12)0.0018 (10)0.0076 (11)
C190.0191 (11)0.0335 (13)0.0206 (10)0.0011 (10)0.0034 (9)0.0012 (9)
C200.0217 (11)0.0216 (11)0.0182 (9)0.0027 (9)0.0015 (9)0.0023 (8)
C210.0221 (12)0.0379 (13)0.0247 (11)0.0111 (10)0.0027 (9)0.0013 (10)
C220.0322 (15)0.077 (2)0.0224 (11)0.0135 (14)0.0011 (11)0.0038 (12)
C230.0370 (17)0.130 (3)0.0266 (13)0.0156 (19)0.0108 (13)0.0061 (17)
C240.0285 (16)0.123 (3)0.0472 (17)0.0109 (19)0.0144 (14)0.0026 (18)
C250.0229 (13)0.074 (2)0.0432 (15)0.0060 (14)0.0010 (12)0.0021 (14)
C260.0248 (12)0.0363 (13)0.0270 (11)0.0088 (10)0.0009 (10)0.0006 (10)
C270.0163 (10)0.0177 (10)0.0202 (9)0.0003 (8)0.0038 (8)0.0001 (8)
C280.0157 (10)0.0187 (10)0.0135 (8)0.0008 (8)0.0022 (8)0.0008 (8)
C290.0209 (11)0.0154 (10)0.0224 (10)0.0018 (8)0.0024 (8)0.0007 (8)
C300.0207 (11)0.0219 (11)0.0238 (10)0.0042 (9)0.0012 (9)0.0008 (9)
C310.0158 (10)0.0278 (11)0.0230 (10)0.0004 (9)0.0011 (8)0.0021 (9)
C320.0217 (12)0.0205 (11)0.0251 (10)0.0045 (8)0.0000 (9)0.0027 (9)
C330.0213 (11)0.0162 (10)0.0191 (9)0.0012 (8)0.0033 (9)0.0000 (8)
N10.0168 (9)0.0184 (8)0.0176 (8)0.0012 (7)0.0031 (7)0.0015 (7)
N20.0208 (9)0.0299 (10)0.0199 (8)0.0023 (8)0.0058 (7)0.0010 (8)
N30.0219 (10)0.0516 (13)0.0186 (8)0.0084 (9)0.0037 (8)0.0019 (9)
N40.0223 (9)0.0232 (10)0.0157 (8)0.0067 (7)0.0008 (7)0.0003 (7)
N50.0262 (10)0.0228 (9)0.0183 (8)0.0049 (8)0.0017 (7)0.0014 (7)
N60.0239 (10)0.0282 (10)0.0267 (9)0.0065 (8)0.0039 (8)0.0003 (8)
N70.0177 (8)0.0135 (8)0.0204 (8)0.0015 (7)0.0008 (7)0.0010 (7)
N80.0229 (10)0.0144 (8)0.0264 (9)0.0035 (7)0.0023 (8)0.0010 (7)
N90.0248 (10)0.0176 (9)0.0333 (10)0.0011 (7)0.0036 (8)0.0020 (8)
Geometric parameters (Å, º) top
C1—C61.402 (3)C17—H170.9500
C1—C21.403 (3)C18—C191.396 (3)
C1—C131.516 (3)C18—H180.9500
C2—C31.401 (3)C19—N31.375 (3)
C2—C71.517 (3)C20—N41.464 (3)
C3—C41.404 (3)C20—H20A0.9900
C3—C201.516 (3)C20—H20B0.9900
C4—C51.400 (3)C21—N41.358 (3)
C4—C91.515 (3)C21—C261.389 (3)
C5—C61.405 (3)C21—C221.404 (3)
C5—C271.516 (3)C22—C231.372 (4)
C6—C111.518 (3)C22—H220.9500
C7—C81.525 (3)C23—C241.412 (4)
C7—H7A0.9900C23—H230.9500
C7—H7B0.9900C24—C251.364 (4)
C8—H8A0.9800C24—H240.9500
C8—H8B0.9800C25—C261.406 (4)
C8—H8C0.9800C25—H250.9500
C9—C101.531 (3)C26—N61.379 (3)
C9—H9A0.9900C27—N71.475 (3)
C9—H9B0.9900C27—H27A0.9900
C10—H10A0.9800C27—H27B0.9900
C10—H10B0.9800C28—N71.371 (3)
C10—H10C0.9800C28—C331.399 (3)
C11—C121.526 (3)C28—C291.408 (3)
C11—H11A0.9900C29—C301.374 (3)
C11—H11B0.9900C29—H290.9500
C12—H12A0.9800C30—C311.412 (3)
C12—H12B0.9800C30—H300.9500
C12—H12C0.9800C31—C321.368 (3)
C13—N11.465 (3)C31—H310.9500
C13—H13A0.9900C32—C331.403 (3)
C13—H13B0.9900C32—H320.9500
C14—N11.364 (3)C33—N91.370 (3)
C14—C191.396 (3)N1—N21.357 (2)
C14—C151.402 (3)N2—N31.299 (3)
C15—C161.371 (3)N4—N51.360 (2)
C15—H150.9500N5—N61.309 (3)
C16—C171.406 (3)N7—N81.358 (2)
C16—H160.9500N8—N91.303 (2)
C17—C181.366 (3)
C6—C1—C2120.70 (18)C16—C17—H17119.5
C6—C1—C13119.62 (18)C17—C18—C19117.5 (2)
C2—C1—C13119.66 (18)C17—C18—H18121.3
C3—C2—C1119.30 (18)C19—C18—H18121.3
C3—C2—C7120.57 (18)N3—C19—C14108.51 (19)
C1—C2—C7120.13 (18)N3—C19—C18130.2 (2)
C2—C3—C4120.47 (18)C14—C19—C18121.2 (2)
C2—C3—C20120.08 (18)N4—C20—C3111.75 (16)
C4—C3—C20119.39 (17)N4—C20—H20A109.3
C5—C4—C3119.26 (17)C3—C20—H20A109.3
C5—C4—C9120.54 (18)N4—C20—H20B109.3
C3—C4—C9120.20 (17)C3—C20—H20B109.3
C4—C5—C6120.80 (18)H20A—C20—H20B107.9
C4—C5—C27119.84 (18)N4—C21—C26104.78 (18)
C6—C5—C27119.33 (18)N4—C21—C22132.6 (2)
C1—C6—C5118.87 (18)C26—C21—C22122.6 (2)
C1—C6—C11120.70 (18)C23—C22—C21115.6 (3)
C5—C6—C11120.42 (18)C23—C22—H22122.2
C2—C7—C8112.68 (19)C21—C22—H22122.2
C2—C7—H7A109.1C22—C23—C24122.3 (3)
C8—C7—H7A109.1C22—C23—H23118.9
C2—C7—H7B109.1C24—C23—H23118.9
C8—C7—H7B109.1C25—C24—C23121.9 (3)
H7A—C7—H7B107.8C25—C24—H24119.0
C7—C8—H8A109.5C23—C24—H24119.0
C7—C8—H8B109.5C24—C25—C26116.8 (3)
H8A—C8—H8B109.5C24—C25—H25121.6
C7—C8—H8C109.5C26—C25—H25121.6
H8A—C8—H8C109.5N6—C26—C21108.5 (2)
H8B—C8—H8C109.5N6—C26—C25130.7 (2)
C4—C9—C10110.89 (17)C21—C26—C25120.8 (2)
C4—C9—H9A109.5N7—C27—C5111.98 (16)
C10—C9—H9A109.5N7—C27—H27A109.2
C4—C9—H9B109.5C5—C27—H27A109.2
C10—C9—H9B109.5N7—C27—H27B109.2
H9A—C9—H9B108.0C5—C27—H27B109.2
C9—C10—H10A109.5H27A—C27—H27B107.9
C9—C10—H10B109.5N7—C28—C33103.82 (17)
H10A—C10—H10B109.5N7—C28—C29134.97 (19)
C9—C10—H10C109.5C33—C28—C29121.20 (18)
H10A—C10—H10C109.5C30—C29—C28116.45 (19)
H10B—C10—H10C109.5C30—C29—H29121.8
C6—C11—C12113.39 (18)C28—C29—H29121.8
C6—C11—H11A108.9C29—C30—C31122.6 (2)
C12—C11—H11A108.9C29—C30—H30118.7
C6—C11—H11B108.9C31—C30—H30118.7
C12—C11—H11B108.9C32—C31—C30120.91 (19)
H11A—C11—H11B107.7C32—C31—H31119.5
C11—C12—H12A109.5C30—C31—H31119.5
C11—C12—H12B109.5C31—C32—C33117.62 (19)
H12A—C12—H12B109.5C31—C32—H32121.2
C11—C12—H12C109.5C33—C32—H32121.2
H12A—C12—H12C109.5N9—C33—C28109.05 (18)
H12B—C12—H12C109.5N9—C33—C32129.72 (19)
N1—C13—C1114.61 (17)C28—C33—C32121.23 (19)
N1—C13—H13A108.6N2—N1—C14109.94 (16)
C1—C13—H13A108.6N2—N1—C13116.99 (16)
N1—C13—H13B108.6C14—N1—C13133.07 (17)
C1—C13—H13B108.6N3—N2—N1109.16 (16)
H13A—C13—H13B107.6N2—N3—C19108.30 (17)
N1—C14—C19104.09 (18)C21—N4—N5109.81 (18)
N1—C14—C15134.57 (19)C21—N4—C20128.95 (17)
C19—C14—C15121.3 (2)N5—N4—C20120.83 (16)
C16—C15—C14116.29 (19)N6—N5—N4108.99 (17)
C16—C15—H15121.9N5—N6—C26107.93 (18)
C14—C15—H15121.9N8—N7—C28109.64 (16)
C15—C16—C17122.6 (2)N8—N7—C27116.44 (16)
C15—C16—H16118.7C28—N7—C27133.74 (16)
C17—C16—H16118.7N9—N8—N7109.52 (16)
C18—C17—C16121.0 (2)N8—N9—C33107.97 (16)
C18—C17—H17119.5
C6—C1—C2—C37.4 (3)C22—C21—C26—N6179.7 (2)
C13—C1—C2—C3171.07 (17)N4—C21—C26—C25179.3 (2)
C6—C1—C2—C7171.50 (19)C22—C21—C26—C250.6 (4)
C13—C1—C2—C710.0 (3)C24—C25—C26—N6179.9 (3)
C1—C2—C3—C41.4 (3)C24—C25—C26—C210.4 (4)
C7—C2—C3—C4177.55 (18)C4—C5—C27—N792.0 (2)
C1—C2—C3—C20178.56 (18)C6—C5—C27—N786.0 (2)
C7—C2—C3—C200.3 (3)N7—C28—C29—C30179.7 (2)
C2—C3—C4—C55.1 (3)C33—C28—C29—C300.1 (3)
C20—C3—C4—C5172.09 (17)C28—C29—C30—C310.4 (3)
C2—C3—C4—C9174.44 (18)C29—C30—C31—C320.2 (3)
C20—C3—C4—C98.3 (3)C30—C31—C32—C330.1 (3)
C3—C4—C5—C65.7 (3)N7—C28—C33—N90.4 (2)
C9—C4—C5—C6173.84 (18)C29—C28—C33—N9179.32 (18)
C3—C4—C5—C27172.29 (18)N7—C28—C33—C32179.47 (18)
C9—C4—C5—C278.1 (3)C29—C28—C33—C320.2 (3)
C2—C1—C6—C56.8 (3)C31—C32—C33—N9179.2 (2)
C13—C1—C6—C5171.67 (17)C31—C32—C33—C280.3 (3)
C2—C1—C6—C11172.39 (18)C19—C14—N1—N20.6 (2)
C13—C1—C6—C119.1 (3)C15—C14—N1—N2177.4 (2)
C4—C5—C6—C10.2 (3)C19—C14—N1—C13178.9 (2)
C27—C5—C6—C1178.21 (18)C15—C14—N1—C133.1 (4)
C4—C5—C6—C11179.02 (18)C1—C13—N1—N2163.28 (18)
C27—C5—C6—C111.0 (3)C1—C13—N1—C1417.3 (3)
C3—C2—C7—C887.5 (3)C14—N1—N2—N30.6 (2)
C1—C2—C7—C893.6 (2)C13—N1—N2—N3178.91 (18)
C5—C4—C9—C1085.3 (2)N1—N2—N3—C190.4 (3)
C3—C4—C9—C1094.2 (2)C14—C19—N3—N20.1 (3)
C1—C6—C11—C1297.3 (2)C18—C19—N3—N2178.6 (3)
C5—C6—C11—C1283.5 (2)C26—C21—N4—N50.8 (2)
C6—C1—C13—N180.3 (2)C22—C21—N4—N5179.2 (3)
C2—C1—C13—N1101.3 (2)C26—C21—N4—C20173.4 (2)
N1—C14—C15—C16176.6 (2)C22—C21—N4—C206.6 (4)
C19—C14—C15—C161.2 (4)C3—C20—N4—C21146.5 (2)
C14—C15—C16—C171.9 (4)C3—C20—N4—N541.7 (2)
C15—C16—C17—C180.6 (5)C21—N4—N5—N61.0 (2)
C16—C17—C18—C191.4 (4)C20—N4—N5—N6174.31 (17)
N1—C14—C19—N30.3 (3)N4—N5—N6—C260.8 (2)
C15—C14—C19—N3178.0 (2)C21—C26—N6—N50.3 (3)
N1—C14—C19—C18179.2 (2)C25—C26—N6—N5179.9 (3)
C15—C14—C19—C180.8 (4)C33—C28—N7—N80.1 (2)
C17—C18—C19—N3176.5 (3)C29—C28—N7—N8179.5 (2)
C17—C18—C19—C142.1 (4)C33—C28—N7—C27174.7 (2)
C2—C3—C20—N4100.5 (2)C29—C28—N7—C275.7 (4)
C4—C3—C20—N476.8 (2)C5—C27—N7—N8162.10 (17)
N4—C21—C22—C23179.1 (3)C5—C27—N7—C2823.4 (3)
C26—C21—C22—C230.8 (4)C28—N7—N8—N90.1 (2)
C21—C22—C23—C240.9 (5)C27—N7—N8—N9175.93 (17)
C22—C23—C24—C250.8 (6)N7—N8—N9—C330.3 (2)
C23—C24—C25—C260.5 (5)C28—C33—N9—N80.4 (2)
N4—C21—C26—N60.4 (3)C32—C33—N9—N8179.5 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 represents the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C20—H20A···N8i0.992.593.341 (3)133
C27—H27A···N3ii0.992.653.217 (3)117
C11—H11A···N10.992.543.296 (3)133
C15—H15···Cg10.952.963.741 (3)140
C29—H29···Cg10.952.773.546 (3)140
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1/2, y+2, z+1/2.
 

Acknowledgements

Open Access Funding by the Publication Fund of the Technische Universität Bergakademie Freiberg is gratefully acknowledged.

References

First citationArunachalam, M., Ahamed, B. N. & Ghosh, P. (2010). Org. Lett. 12, 2742–2745.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationArunachalam, M. & Ghosh, P. (2010). Org. Lett. 12, 328–331.  CSD CrossRef CAS PubMed Google Scholar
First citationBajaj, K. & Sakhuja, R. (2015). In The Chemistry of Benzotriazole Derivatives. Topics in Heterocyclic Chemistry, vol 43, edited by J.- C. M. Monbaliu, pp. 235–283. Dordrecht: Springer.  Google Scholar
First citationBriguglio, I., Piras, S., Corona, P., Gavini, E., Nieddu, M., Boatto, G. & Carta, A. (2015). Eur. J. Med. Chem. 97, 612–648.  CrossRef CAS PubMed Google Scholar
First citationBruker, (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, M., Liang, Y., Zhou, F. & Liu, W. (2011). J. Mater. Chem. 21, 13399–13405.  CrossRef CAS Google Scholar
First citationDas, D. & Barbour, L. J. (2008a). J. Am. Chem. Soc. 130, 14032–14033.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDas, D. & Barbour, L. J. (2008b). Chem. Commun. pp. 5110–5112.  Web of Science CSD CrossRef Google Scholar
First citationDas, D. & Barbour, L. J. (2009). Cryst. Growth Des. 9, 1599–1604.  Web of Science CSD CrossRef CAS Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond. Oxford University Press.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFuhrmann, F., Meier, E., Seichter, W. & Mazik, M. (2022a). Acta Cryst. E78, 785–788.  CSD CrossRef IUCr Journals Google Scholar
First citationFuhrmann, F., Seichter, W. & Mazik, M. (2022b). Org. Mater. 4, 61–72.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKaiser, S., Geffert, C. & Mazik, M. (2019). Eur. J. Org. Chem. pp. 7555–7562.  Web of Science CrossRef Google Scholar
First citationKatritzky, A. R. & Rachwal, S. (2010). Chem. Rev. 110, 15641–1610.  Google Scholar
First citationKatritzky, A. R. & Rachwal, S. (2011). Chem. Rev. 111, 7063–7120.  CrossRef CAS PubMed Google Scholar
First citationKoch, N., Seichter, W. & Mazik, M. (2015). Tetrahedron, 71, 8965–8974.  Web of Science CSD CrossRef CAS Google Scholar
First citationKoch, N., Seichter, W. & Mazik, M. (2016). Synthesis, 48, 2757–2767.  CAS Google Scholar
First citationKoch, N., Seichter, W. & Mazik, M. (2017). CrystEngComm, 19, 3817–3833.  Web of Science CSD CrossRef CAS Google Scholar
First citationKöhler, L., Hübler, C., Seichter, W. & Mazik, M. (2021). RSC Adv. 11, 22221–22229.  Web of Science PubMed Google Scholar
First citationKöhler, L., Kaiser, S. & Mazik, M. (2024). Nat. Prod. Commun. 19. https://doi. org/10.1177/1934578X241258352.  Google Scholar
First citationKöhler, L., Seichter, W. & Mazik, M. (2020). Eur. J. Org. Chem. pp. 7023–7034.  Google Scholar
First citationLippe, J., Seichter, W. & Mazik, M. (2015). Org. Biomol. Chem. 13, 11622–11632.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLoukopoulos, E., Abdul-Sada, A., Csire, G., Kállay, C., Tizzard, G. J., Coles, S. J., Lykakis, I. N. & Kostakis, G. E. (2018b). Cryst. Growth Des. 47, 10491–10508.  CAS Google Scholar
First citationLoukopoulos, E., Abdul-Sada, A., Viseux, E. M. E., Lykakis, I. N. & Kostakis, G. E. (2018a). Cryst. Growth Des. 18, 5638–5651.  CSD CrossRef CAS Google Scholar
First citationLoukopoulos, E. & Kostakis, G. E. (2019). Coord. Chem. Rev. 395, 193–229.  Web of Science CrossRef CAS Google Scholar
First citationMacías, M. A., Nuñez-Dallos, N., Hurtado, J. & Suescun, L. (2016). Acta Cryst. E72, 815–818.  CSD CrossRef IUCr Journals Google Scholar
First citationMazik, M. (2009). Chem. Soc. Rev. 38, 935–956.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMazik, M. (2012). RSC Adv. 2, 2630–2642.  Web of Science CrossRef CAS Google Scholar
First citationMazik, M., Bläser, D. & Boese, R. (1999). Tetrahedron, 55, 7835–7840.  CSD CrossRef CAS Google Scholar
First citationMazik, M., Bläser, D. & Boese, R. (2000a). Tetrahedron Lett. 41, 5827–5831.  CSD CrossRef CAS Google Scholar
First citationMazik, M., Bläser, D. & Boese, R. (2000b). Chem. Eur. J. 6, 2865–2873.  CrossRef PubMed CAS Google Scholar
First citationMazik, M., Bläser, D. & Boese, R. (2001). Tetrahedron, 57, 5791–5797.  Web of Science CSD CrossRef CAS Google Scholar
First citationMazik, M., Bläser, D. & Boese, R. (2005). J. Org. Chem. 70, 9115–9122.  CSD CrossRef PubMed CAS Google Scholar
First citationMazik, M., Radunz, W. & Boese, R. (2004). J. Org. Chem. 69, 7448–7462.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNishio, M. (2011). Phys. Chem. Chem. Phys. 13, 13873–13900.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNishio, M., Umezawa, Y., Honda, K., Tsuboyama, S. & Suezawa, H. (2009). CrystEngComm, 11, 1757–1788.  Web of Science CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRahman, F.-U., Wang, R., Zhang, H.-B., Brea, O., Himo, F., Rebek, J. & Yu, Y. (2022). Angew. Chem. Int. Ed. 61, e202205534.  CrossRef Google Scholar
First citationReddy, D. S., Craig, D. C. & Desiraju, G. R. (1996). J. Am. Chem. Soc. 118, 4090–4093.  CSD CrossRef CAS Web of Science Google Scholar
First citationSchulze, M., Koch, N., Seichter, W. & Mazik, M. (2018). Eur. J. Org. Chem. 2018, 4317–4330.  CSD CrossRef CAS Google Scholar
First citationSchulze, M., Schwarzer, A. & Mazik, M. (2017). CrystEngComm, 19, 4003–4016.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStapf, M., Seichter, W. & Mazik, M. (2015). Chem. A Eur. J. 21, 6350–6354.  CSD CrossRef CAS Google Scholar
First citationStapf, M., Seichter, W. & Mazik, M. (2020). Eur. J. Org. Chem. pp. 4900–4915.  Web of Science CSD CrossRef Google Scholar
First citationThalladi, V. R., Gehrke, A. & Boese, R. (2000a). New J. Chem. 24, 463–470.  CSD CrossRef CAS Google Scholar
First citationThalladi, V. R., Smolka, T., Gehrke, A., Boese, R. & Sustmann, R. (2000b). New J. Chem. 24, 143–147.  CSD CrossRef CAS Google Scholar
First citationTiekink, E. R. T. & Zukerman-Schpector, J. (2012). In The Importance of Pi-Interactions in Crystal Engineering. Frontiers in Crystal Engineering. Chichester: Wiley.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds